8.2二元一次方程消元4
8.2消元──解二元一次方程组(4)
设1台大收割机和1台小收割机每小时各收割小麦 x hm2和 y hm2 ,则
2台大收割机1小时收割小麦 2台大收割机2小时收割小麦 5台小收割机2小时收割小麦
hm2 , hm2 , hm2 .
探究新知,解决问题
4 x 10 y 3.6 ①
y 解得
y 0.2
二 元 一 次 方 程 组
代入
第八章 二元一次方程组
8.2 消元——解二元一 次方程组(4)
探究新知,解决问题
【问题1】例4:2台大收割机和5台小收割机均工作2 h共收
割小麦3.6 hm2,3台大收割机和2台小收割机均工作5 h共收割 小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多 少公顷? 等量关系:
①2台大收割机2小时的工作量 5台小收割机2小时的工作量 3.6 ; ②3台大收割机5小时的工作量 2台小收割机5小时的工作量 8.
当堂达标
• 1.将方程3x-y=1变形成用y的代数式表示x,则x =___________. • 2. 若 (3x 4 y 1)2 3y 2x 5 0 ,则( ) • A.-1 B.1 C.2 D.-2 • 3. 我校运动员分组训练,若每组7人,余3人; 若每组8人,则缺5人;设运动员人数为x人,组数 为y组,则列方程组为( )
相等关系: ①6节火车皮的装载量+15辆汽车的装载量=360; ②8节火车皮的装载量+10辆汽车的装载量=440. 解:设每节火车皮平均装 x t化肥,每辆汽车平均装 y t化肥, 根据题意,得
6 x 15 y 360, x 50, 解这个方程组,得 8 x 10 y 440. y 4.
解:设轮船在静水中的速度为 x km/h,水的流速为 y km/h, 根据题意,得 x y 20, x 18, 解这个方程组,得 x y 16. y 2.
8.2消元-解二元一次方程组(1)-人教版七年级数学下册教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《消元-解二元一次方程组(1)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个未知数的问题?”(如购物时计算总价和数量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
4.培养学生的合作交流意识,通过小组讨论和问题解决,提高团队协作能力和表达沟通技巧。
三、教学难点与重点
1.教学重点
-理解二元一次方程组的定义及构成,能够正确列出方程组。
-掌握代入法解二元一次方程组的具体步骤,并能熟练运用。
-学会使用加减法(消元法)解二元一次方程组,并能应用于实际问题。
-通过解二元一次方程组,培养学生的数学建模和逻辑推理能力。
五、教学反思
在今天的教学中,我尝试了通过实际问题引入二元一次方程组的概念,让学生们感受到数学与生活的紧密联系。我发现,这种方法能够激发学生的兴趣,使他们更愿意投入到学习中。但在教学过程中,我也注意到几个需要改进的地方。
首先,关于代入法和消元法的讲解,虽然我尽力通过举例和逐步引导让学生理解,但从学生的反馈来看,部分同学仍然对这两个方法的具体操作步骤感到困惑。在今后的教学中,我需要更加细化讲解,可以设计更多有针对性的练习题,让学生在实践中掌握这两个方法。
其次,在学生小组讨论环节,我发现有些同学在讨论中不够积极,可能是因为他们对讨论主题不够了解,或者是对二元一次方程组的应用场景感到陌生。为了提高学生的参与度,我可以在下次课前,提前给出一些与生活相关的案例,让学生有更多的时间去思考和准备。
人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)
第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
人教版七下数学8-2消元——解二元一次方程组课时4
车床一天加工零件 y 个.
2 + 6 = 500 − 10, ①
根据题意,得 ൝
3 + 5 = 500 + 15. ②
①×3,得 6x+18y=1 470,③
②×2,得 6x+10y=1 030,④
③-④,得 8y=440,解得 y=55.
将 y=55 代入①可得 2x+6×55=500-10,解得 x=80.
解消元后的一元一次方程
把求得的未知数的值代入方程组中比较简单
的方程中
把两个未知数的值用大括号联立起来
2 − 5 = −3, ①
用加减消元法解方程组 ቊ
−4 + = −3. ②
解:①×2,得 4x-10y=-6. ③
③y=1 代入①,得 2x-5×1=-3,解得 x=1,
若用 3 台自动化车床和 5 台普通车床加工一天,则可
以超额完成 15 个零件.一台自动化车床和一台普通车
床一天加工的零件数分别为多少?
等量关系:
2台自动化车床一天加工数+6台普通车床一天加工数=
500-10(个);
3台自动化车床一天加工数+5台普通车床一天加工数=
500+15(个).
解:设一台自动化车床一天加工零件 x 个,一台普通
2
= 6,
所以这个方程组的解是 ቐ = 9 .
2
x y x y
6, ①
3
2
2.解二元一次方程组:
2 x y 3 x 3 y 24, ②
③
5
+
=
36,
解:原方程组可变形为 ቊ
《8.2消元——解二元一次方程组》第1课时教案
《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
人教版七年级数学下册8.2 消元——代入法解二元一次方程组(课件20张PPT 教案)
例2 根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g)两种产品的销 售数量(按瓶计算)的比为2:5.某厂每天生产 这种消毒液 22.5吨,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
问题中的条件 大瓶数:小瓶数=2:5 大瓶所装消毒液+小瓶所装消毒液=总生 产量
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
x y 3 的解是( 2x 4
x 5
D )
x 3 A. y 0
x 1 B. y 2
x 2 C. y 2 D. y1
作业布置
1. 必做题:97页1.(2)(4)2.(3)(4 2. 选做题:98页7.8
“即使能力有限,也要全力以赴,即使输了, 也要比从前更强,我一直都在与自己比,我要 把最美好的自己,留在这终于相逢的决赛赛 场。”
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】
P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48
①
10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2
⑵
2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)
①
3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
二元一次方程组的解法(4)
课题:8.2消元——二元一次方程组的解法(4)编写:王昌劲李智华打印:李智华班级: 组别:姓名:一、教材分析:(一)学习目标:1. 会用加减法解简单的二元一次方程组.(直接加减)2. 进一步体会解二元一次方程组的基本思想——“消元”,渗透化归思想.(二)学习重点和难点:1. 重点:用加减法解简单的二元一次方程组.2. 难点:加减消元过程.二、问题导读单:(阅读P31—32页回答下列问题:课前完成部分)1.研读P31页示例方程组,回答“思考1”问题__________________________________2.分析P31中例1和例2方程组的解题过程(练习薄上).3. 加减消元法的概念把两个二元一次方程的两边分别进行________,就可以消去___________,得到一个一元一次方程。
如果两个二元一次方程中同一未知数的系数______或______时,将两个方程的两边分别______或______,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称___________。
4. 完成下面的解题过程:(用加减法解方程组并与同学生说明为什么用“加”或“减”的)(1)①②3x7y9 ,4x7y 5.⎧+=⎨-=⎩解:①+②,得____________.解这个方程,得x=____.把x=____代入____,得y=________, y=_____.所以这个方程组的解是x____ ,y____.⎧=⎨=⎩(2)①②3x7y9 ,4x7y 5.⎧+=⎨+=⎩解:②-①,得____________.解这个方程,得x=____.把x=____代入____,得y=_________,y=_____.所以这个方程组的解是x____ ,y____.⎧=⎨=⎩三、问题训练单:6.解方程组(直接快速写出方程组的解)⎩⎨⎧=+=-15y x y x ⎩⎨⎧==y x ; ⎩⎨⎧=+=-182y x y x ⎩⎨⎧==y x ;⎩⎨⎧=+=-1252y x y x ⎩⎨⎧==y x ; ⎩⎨⎧=+=-152y x y x ⎩⎨⎧==y x 。
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
8.2 消元----解二元一次方程组(4)
解:设1台大收割机和1台小收割机每小时各收割 小麦x hm2和y hm2.根据两种工作方式中的等量关系, 得方程组: 同一个未知 2(2 x 5 y) 3.6, 去括号,得 4 x 10 y 3.6, ①
②-①,得 11x=4.4,
5(3x 2 y) 8.
数的系数相 同,则两个 方程消减
问 题
分 抽 析 象
15 x 10 y 8. ②
方程组
求 检 解 验
解这个方程,得 x=0.4, 把x=0.4代入①,得y=0.2, x 0.4, 所以这个方程组的解是 y 0.2.
解 答
答:1台大收割机和1台小收割机每小时各收割小麦0.4 hm2和重要.
解:设轮船在静水中的速度为x km/h,水的流速为y km/h,根据题意, x y 20, 得 x 18, 解这个方程组,得 x y 16. y 2. 答:轮船在静水中的速度为18 km/h,水的流速为2 km/h.
6.运输360吨化肥,装载了6节火车皮与15辆汽车;运输440吨化 肥,装载了8节火车皮与10辆汽车.每节火车皮与每辆汽车平 均各装多少吨化肥?
y 1.
x 11, y 2.
x 3 y 5,① 请模仿小军的“整体代换”法解方程组 3 x 10 y 13.②
7.某工厂第一车间工人人数比第二车间工人人数的2倍少10 人,若从第一车间抽调5人到第二车间,那么两个车间的人 数一样多, 问原来每个车间各有多少名工人? 第一车间原有工人30名,第二车间原有工人20名
6.列方程组解应用题的一般步骤有哪些?
课后演练
x 1 y, 3 1. 二元一次方程组 的解是( D 2( x 1) y 6
人教版七年级数学下册第八章8.2 第2课时 用加减消元法解方程组
知识点 用加减法解二元一次方程组
1.
(2018·怀化)二 Nhomakorabea元
一
次
方
程
组
x+y=2,
x-y=-2
的解是
( B)
A.x=y=0,-2
B.x=y=0,2
C.x=y=2,0
D.x=y=-02,
2. 用“加减消元法”解方程组33xx+ -75yy= =- 1620,① ②的步骤 如下:(1)由①-②得 12y=-36,y=-3,(2)由①×5+②×7 得 36x=12,x=13,则下列说法正确的是( B )
A.(1)①-②
B.(2)②-①
C.(3)①-②
D.(4)②-①
10. 用加减法解方程组23xx+-32yy==18,时,要使两个方程中 同一未知数的系数相等或互为相反数,有以下四种变形结果:
①66xx+ -94yy= =18, ;②49xx+-66yy==18,; ③6-x+6x9+y=4y3=,-16;④49xx+-66yy==22,4. 其中变形正确的是( B )
9. 用加减法解下列四个方程组:
2.5x+3y=1①, 3x-4y=7①, (1)-2.5x+2y=4②;(2)4x-4y=8②;
(3)y12-x+0.55yx==321①0., 5②;(4)33xx--56yy==78①②,.
其中方法正确且最合适的是( B )
第八章 二元一次方程组 8.2 消元——解二元一次方程组
第2课时 用加减消元法解方程组
1. 代入消元法 和 加减消元法 是解二元一次方程组的 基本方法,其基本思想是“ 消元 ”,运用 消元 的思想 把方程组逐渐转化为 一元一次方程 求解.
2. 消元时一般选取系数较为简单的未知数作为消元对 象.
七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
8.2解二元一次方程组—加减消元法
2.已知方程组
25x+6y=10 只要两边 分别相减 就可以消去未知数 x
两个方程
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x C. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
1、解二元一次方程组的基本思路是什么? 消元: 二元 一元 2、用代入法解方程的步骤是什么?
基本思路:
主要步骤: 用含有一个未知数的代数式 表 示 另 一 个 未 知 数 , 写 成 1、变形
y=ax+b或x=ay+b
2、代入 3、求解 4、写解
把变形后的方程代入到另一个方程中, 消去一个元 分别求出两个未知数的值 写出方程组的解
x5
将y=-2代入①,得 3x 5 2 5
解方程组: 3x 5 y 5 3x 4 y 23
① ②
解:由①-②得: (3x 5 y) (3x 4 y) 5 23
将y=-2代入①,得: 3x 5 2 5
3x 5 y 3x 4 y 18 9 y 18 y 2 即
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1) <2>若a=b,那么ac= bc . (等式性质2)
思考:若a=b,c=d,那么a±c=b±d吗? 2、用代入法解方程的关键是什么? 二元
代入 转化
一元
3、解二元一次方程组的基本思路是什么?
消元: 二元
一元
人教七年级数学下课件8.2消元——解二元一次方程组第2课时用加减法解二元一次方程组
解:(1)设出租车的起步价是 x 元,超过 1.5 千米后每千米收费 y 元.依 题意得,xx++((46..55--11..55))yy==1104..55,解得xy==42..5,答:出租车的起步 价是 4.5 元,超过 1.5 千米后每千米收费 2 元
(2)4.5+(5.5-1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底 南站(高铁站)走了 5.5 千米,应付车费 12.5 元
【综合运用】 16.(13 分)(2015·娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为 0~ 1.5 千米,超过 1.5 千米的部分按每千米另收费. 小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5 千米,付车费 10.5 元.” 小李说:“我乘出租车从市政府到娄底汽车站走了 6.5 千米,付车费 14.5 元.” 问:(1)出租车的起步价是多少元?超过 1.5 千米后每千米收费多少元? (2)小张乘出租车从市政府到娄底南站(高铁站)走了 5.5 千米,应付车费多少元?
x=2, A.y=-4
x=2, B.y=4
x=-2, C.y=4
x=-2, D.y=-4
3.(4 分)解方程组32xx-+33yy==41,②①时,用加减消元法最简便的是( A )
A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
4.(4 分)用加减法解方程组44xx+ -33yy= =62.,若先求 x 的值,应先将两个方程组___加_____; 若先求 y 的值,应先将两个方程相___减_____.
13.(2015·武汉)定义运算“*”,规定 x*y=ax2+by,其中 a,b 为常数,且 1*2=5,2*1=
6,则 2*3=___1_0____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课时间:2012、3、13 主备人:孙雪慧审核人:数学组 8.2消元——二元一次方程组的解法
【学习目标】
1、会用加减解二元一次方程组.
【教学方法】
分层次教学,讲授、练习相结合。
【旧知回顾】
探究1、加减法解二元一次方程组步骤
【新知探索】
1.用加减法解下列方程组
3415
2410
x y
x y
+=
⎧
⎨
-=
⎩
较简便的消元方法是:将两个方程_______,消去未知
数_______.
2.已知方程组
23
321
x y
x y
-=
⎧
⎨
+=
⎩
用加减法消x的方法是__________;用加减法消y的方法是
________.
3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.
(1)
3215
5423
x y
x y
-=
⎧
⎨
-=
⎩
消元方法___________.
(2)
731
232
m n
n m
-=
⎧
⎨
+=-
⎩
消元方法_____________.
4.方程组
24
1
x y
x y
+=
⎧
⎨
+=
⎩
的解_________.
5.方程23
53
x y x
-+
==3的解是_________.
6.若二元一次方程2x+y=3,3x-y=2和2x-my=-1有公共解,则m取值为( ) A.-2 B.-1 C.3 D.4
7.已知方程组
5
1
mx n
my m
+=
⎧
⎨
-=
⎩
的解是
1
2
x
y
=
⎧
⎨
=
⎩
,则m=________,n=________.
8.已知(3x+2y-5)2与│5x+3y-8│互为相反数,则x=______,y=________.
9.若方程组
2
2
ax by
ax by
+=
⎧
⎨
-=
⎩
与
234
456
x y
x y
+=
⎧
⎨
-=-
⎩
的解相同,则a=________,b=_________.
10.解方程组:
(1)
42
436
x y
x y
+=
⎧
⎨
-=-
⎩
(2)
321
47
x y
x y
+=-
⎧
⎨
+=-
⎩
11.已知方程组
2526
4
x y
ax by
+=-
⎧
⎨
-=-
⎩
和方程组
3536
8
x y
bx ay
-=
⎧
⎨
+=-
⎩
的解相同,求(2a+b)2005的值.
【小结】【课后反思】。