教育最新K122018-2019学年高中物理 模块综合检测(二)新人教版选修3-3
推荐学习K12(全国通用版)2018-2019高中物理 本册学业质量标准检测 新人教版选修3-5
本册学业质量标准检测本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,时间90分钟。
第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.跳远时,跳在沙坑里比跳在水泥地上安全(如图),这是由于( D )A.人跳在沙坑的动量比跳在水泥地上小B.人跳在沙坑的动量变化比跳在水泥地上小C.人跳在沙坑受到的冲量比跳在水泥地上小D.人跳在沙坑受到的冲力比跳在水泥地上小解析:人跳远从一定高度落下,落地前的速度一定,则初动量相同,落地后静止,末动量一定,所以人下落过程的动量变化量Δp一定,因落在沙坑上作用的时间长,落在水泥地上作用时间短,根据动量定理Ft=Δp,t长F小,故D对。
2.(新疆库尔勒市第四中学2016~2017学年高二下学期期中)如图所示,甲、乙两人静止在光滑的冰面上,甲沿水平方向推了乙一下,结果两人向相反方向滑去。
已知甲的质量为45kg,乙的质量为50kg。
则下列判断正确的是( C )A.甲的速率与乙的速率之比为9∶10B.甲的加速度大小与乙的加速度大小之比为9∶10C.甲对乙的冲量大小与乙对甲的冲量大小之比为1∶1D.甲的动能与乙的动能之比为1∶1解析:甲、乙系统动量守恒,根据P=mv得速度与质量成反比,甲、乙速度之比为10∶9,A选项错误;甲、乙相互作用力大小相等,根据F=ma得加速度与质量成反比,甲乙加速度之比为10∶9,B选项错误;甲、乙相互作用力相等,冲量大小也相等,C选项正确;根据2mE k=P2得动量相同时,动能与质量成反比,甲、乙动能之比为10∶9,D选项错误。
3.下列各种说法中错误的有( B )A .普朗克在研究黑体的热辐射问题中提出了能量子假说B .一束光照射到某种金属上不能发生光电效应,是因为该束光的照射时间太短C .在光的单缝衍射实验中,狭缝越窄,光子动量的不确定量越大D .任何一个运动物体,无论是大到太阳、地球,还是小到电子、质子,都与一种波相对应,这就是物质波,物质波是概率波解析:普朗克在研究黑体的热辐射问题中提出了能量子假说,故A 正确;一束光照射到某种金属上不能发生光电效应,是因为该束光的频率小于极限频率,故B 错误;光的单缝衍射实验中,狭缝越窄,光子动量的不确定量越大,故C 正确;任何一个运动物体,都与一种波相对应,这就是物质波,物质波是概率波,故D 正确。
2018-2019学年人教版高中物理选修3-2:模块综合检测(二)
一、单选题2018-2019学年人教版高中物理选修3-2:模块综合检测(二)1. 如图所示,一个矩形线圈abcd放在垂直纸面向里的匀强磁场中,在进行下列操作时,整个线圈始终处于磁场之内,线圈中能产生感应电流的是( )A.线圈沿纸面向右移动B.线圈沿纸面向下移动C.线圈垂直纸面向外移动D.线圈以ab边为轴转动2. 一矩形线圈在匀强磁场中转动,产生交变电流的电动势为e=220sin 100πt V,关于这个交变电流的说法正确的是()A.交流电的频率为100 Hz,周期为0.01 sB.此交变电流电动势的有效值为220 VC.此交变电流电动势的峰值约为380 VD.t=0时,线圈平面与中性面垂直,此时磁通量为零3.如图所示,理想变压器的原线圈接入的交变电压,副线圈通过电阻r=6Ω的导线对“220V,880W”的电器R L供电,该电器正常工作.由此可知( )A.原、副线圈的匝数比为50:1B.交变电压的频率为100HzC.副线圈中电流的有效值为4AD.变压器的输入功率为880W4. 如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁.现将甲、乙、丙移至相同高度H 处同时释放(各线框下落过程中不翻转,不计空气阻力),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地5. 如图所示,在铁芯上、下分别绕有匝数n1=800和n2=200的两个线圈,上线圈两端u=51sin314tV的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是A.2.0V B.9.0VC.12.7V D.144.0V6. 如图所示,金属棒AB原来处于静止状态(悬挂).由于CD棒的运动,导致AB棒向右摆动,则CD棒( )A.向右平动B.向左平动C.向里平动D.向外平动7. 如图所示,左右两个电路中,当a、b两端和e、f两端分别接220V的交变电压时,测得c、d两端和g、h两端的电压均为110V.若分别在c、d两端和g、h两端加上110V交变电压,则a、b两端和e、f两端测得的电压将分别是( )A.220V,220V B.220V,110VC.110V,110V D.220V, 0V8. 交变电流电压的有效值为6V,它和电阻R1、R2及电容器C、电压表一起连接成如图所示的电路,图中电压表的读数为U1,为了保证电容器C 不被击穿,电容器的耐压值为U2,电容器在电路中正常工作,则A.U1=6V,U2=6VB.U1=6V,U2=3VC.U1=6 V,U2≥6VD.U1=6V,U2≥6V9. 如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框CDEF从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域,在图乙中给出的线框EF两端的电压U EF与线框移动距离x的关系图象正确的是( )二、多选题A .B .C .D .10. 如图所示,甲、乙两图是两个与匀强磁场垂直放置的金属框架,乙图中除了一个电阻极小、自感系数为L 的线圈外,两图其他条件均相同.如果两图中AB 杆均以相同初速度、相同加速度向右运动相同的距离,外力对AB 杆做功的情况是( )A .甲图中外力做功多B .两图中外力做功相等C .乙图中外力做功多D .无法比较11. 自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是()A .奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B .欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C .法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D .焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系12. 如右图所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路。
2018_2019学年高中物理模块综合检测(二)新人教版选修3
模块综合检测(二)(时间:90分钟分值:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.如图所示,一个矩形线圈abcd放在垂直纸面向里的匀强磁场中,在进行下列操作时,整个线圈始终处于磁场之内,线圈中能产生感应电流的是( )A.线圈沿纸面向右移动B.线圈沿纸面向下移动C.线圈垂直纸面向外移动D.线圈以ab边为轴转动解析:产生感应电流的条件是:穿过闭合回路的磁通量发生变化.因此无论线圈如何运动,关键是看其磁通量是否变化,从而判断出是否有感应电流产生.由于磁场是匀强磁场,把线圈向右拉动,或向上拉动,或垂直纸面向外运动,其磁通量均不变化,均无感应电流产生,故A、B、C错误;当线圈绕ab边转动时,其磁通量发生变化,有感应电流产生,故D 正确.答案:D2.一矩形线圈在匀强磁场中转动,产生交变电流的电动势为e=2202sin 100πt V,关于这个交变电流的说法正确的是( )A.交流电的频率为100 Hz,周期为0.01 sB.此交变电流电动势的有效值为220 VC.此交变电流电动势的峰值约为380 VD.t=0时,线圈平面与中性面垂直,此时磁通量为零解析:由交流电的瞬时值表达式知最大值为220 2 V,故C错误;角速度ω=100πrad/s,由频率f=ω2π=100π2πHz=50 Hz,故A错误;t=0时瞬时值e=0知此时线圈与中性面重合,磁通量最大,故D错误.答案:B3.如图所示,理想变压器的原线圈接u =11 0002sin 100πt (V)的交变电压,副线圈通过电阻r =6Ω的导线对“220 V ,880 W ”的电器R L 供电,该电器正常工作.由此可知( )A .原、副线圈的匝数比为50∶1B .交变电压的频率为100 HzC .副线圈中电流的有效值为4 AD .变压器的输入功率为880 W解析:输入电压的有效值为11 000 V ,用电器的额定电压为220 V ,所以变压器的输出电压大于220 V ,原、副线圈的匝数比小于50∶1,故A 错误;由输入电压的表达式知,f =100π2π=50 Hz ,故B 错误;副线圈中的电流与用电器中的电流相同,I =4 A ,故C 正确;变压器的输出功率为用电器的功率和导线电阻损耗的功率之和,大于880 W ,所以变压器的输入功率大于880 W ,故D 错误.答案:C4.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H 处同时释放(各线框下落过程中不翻转),则以下说法正确的是( )A .三者同时落地B .甲、乙同时落地,丙后落地C .甲、丙同时落地,乙后落地D .乙、丙同时落地,甲后落地解析:甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙没有闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D 正确.答案:D5.如图所示,在铁芯上、下分别绕有匝数n 1=800和n 2=200的两个线圈,上线圈两端与u =51sin 314t (V)的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是( )A .2.0 VB .9.0 VC .12.7 VD .144.0 V解析:根据u =51sin 314t (V)可知交流电的最大值为U m =51 V ,则其有效值U 1=512 V =5122 V ;由图可知线圈n 1是原线圈,线圈n 2是副线圈,如果变压器是理想变压器,那么输入电压和输出电压的关系有U 1U 2=n 1n 2可得U 2=n 2n 1U 1=200800×512V =518 2 V ≈9 V ,因为交流电压表指示的是有效值,故如果是理想变压器则B 正确.但实际变压器存在漏磁现象,故通过原线圈的磁通量大于通过副线圈的磁通量,故实际副线圈的输出电压小于9 V ,故A 正确.答案:A6.如图所示,金属棒AB 原来处于静止状态(悬挂).由于CD 棒的运动,导致AB 棒向右摆动,则CD 棒( )A .向右平动B .向左平动C .向里平动D .向外平动解析:AB 棒向右摆动,说明它受到的安培力方向向右,根据左手定则判断出AB 中的电流方向为B →A .这说明CD 棒的电流方向为D →C ,再根据右手定则判断出CD 棒的切割方向是向外,选项D 正确.答案:D7.如图所示甲、乙两电路中,当a 、b 两端与e 、f 两端分别加上220 V 的交流电压时,测得c 、d 间与g 、h 间的电压均为110 V .若分别在c 、d 两端与g 、h 两端加上110 V 的交流电压,则a 、b 间与e 、f 间的电压分别为( )A.220 V,220 V B.220 V,110 VC.110 V,110 V D.220 V,0 V解析:首先要搞清楚变压器和分压器在改变电压原理上的本质不同.对于变压器,a、b 间与c、d间的电压比总是等于它们间线圈的匝数比,与哪一个是原线圈无关,故a、b间接220 V的交流电压,c、d间的电压为110 V,c、d间改接110 V的交流电压,则a、b间应输出电压为220 V;而对于分压器,当e、f间接220 V的电压时,电阻的e、g与f、g部分串联,g、h间电压仅是f、g部分电阻的电压,当g、h间接110 V的电压时,由于e、g部分无电流,e、g两点等电势,故e、f间的电压等于g、h间的电压,故只有选项B正确.答案:B8.交变电流电压的有效值为6 V,它和电阻R1、R2及电容器C、电压表一起连接成如图所示的电路,图中电压表的读数为U1,为了保证电容器C不被击穿,电容器的耐压值为U2,电容器在电路中正常工作,则( )A.U1=6 2 V U2=6 VB.U1=6 V U2=3 2 VC.U1=6 2 V U2≥6 VD.U1=6 V U2≥6 2 V解析:电压表读数为交流电压的有效值,所以电压表读数U1=6 V,电容器耐压值应大于交流电压的最大值,U2≥6 2 V.答案:D9.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置开始沿水平向右方向以速度v匀速穿过磁场区域,在图乙中线框A、B两端电压U AB与线框移动距离的关系图象正确的是( )解析:进入磁场时,注意U AB 是路端电压,应该是电动势的四分之三,此时E =Bav ,所以U AB =3Bav 4;完全进入后,没有感应电流,但有感应电动势,大小为Bav ,穿出磁场时电压应该是电动势的四分之一,U AB =Bav 4,电势差方向始终相同,即ΦA >ΦB ,由以上分析可知选D.答案:D10.如图所示,甲、乙两图是两个与匀强磁场垂直放置的金属框架,乙图中除了一个电阻极小、自感系数为L 的线圈外,两图其他条件均相同.如果两图中AB 杆均以相同初速度、相同加速度向右运动相同的距离,外力对AB 杆做功的情况是( )A .甲图中外力做功多B .两图中外力做功相等C .乙图中外力做功多D .无法比较解析:两图中AB 杆均做加速运动,电流将增大,图乙中由于线圈自感的阻碍作用,感应电流较甲图小,安培阻力也较小, 又加速度相同,则外力较甲图小, 甲图中外力做功多,A 正确.答案:A二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,漏选得3分,错选或不选得0分)11.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是( )A .奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B .欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C .法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系解析:奥斯特发现的电流的磁效应表明了电能生磁,A正确.欧姆定律描述了电流与电阻、电压与电动势之间的关系,焦耳定律才揭示了热现象与电现象间的联系,B错误,D正确.法拉第发现的电磁感应现象表明了磁能生电,C正确.答案:ACD12.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时( )A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度小于g解析:方法一设磁铁下端为N极,如图所示,根据楞次定律可判断出P、Q中的感应电流方向,根据左手定则可判断P、Q所受安培力的方向.可见,P、Q将互相靠拢.由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g.当磁铁下端为S极时,根据类似的分析可得到相同的结果.所以,本题应选AD方法二根据楞次定律的另一表述——感应电流的效果,总要反抗产生感应电流的原因,本题中“原因”是回路中磁通量的增加,归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以,P、Q将互相靠近且磁铁的加速度小于g.答案:AD13.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是( )A.电流表的示数为10 AB.线圈转动的角速度为100π rad/sC.0.01 s时线圈平面与磁场方向平行D.0.02 s时电阻R中电流的方向自右向左解析:由题图乙可知交流电电流的最大值是I m=10 2 A,周期T=0.02 s,由于电流表的示数为有效值,故示数I=I m2=10 A,选项A正确;角速度ω=2πT=100πrad/s,选项B正确;0.01 s时线圈中的感应电流达到最大,感应电动势最大,则穿过线圈的磁通量变化最快,磁通量为0,故线圈平面与磁场方向平行,选项C正确;由楞次定律可判断出0.02 s 时流过电阻的电流方向自左向右,选项D错误.答案:ABC14.(多选)如图所示,内壁光滑、水平放置的玻璃圆环内,有一直径略小于圆环直径的带正电的小球,以速率v0沿逆时针方向匀速转动(俯视),若在此空间突然加上方向竖直向上、磁感应强度B随时间成正比例增加的变化磁场.设运动过程中小球带电荷量不变,那么( )A.小球对玻璃圆环的压力一定不断增大B.小球所受的磁场力一定不断增大C.小球先沿逆时针方向减速运动,过一段时间后沿顺时针方向加速运动D.磁场力对小球一直不做功解析:变化的磁场将产生感生电场,这种感生电场由于其电场线是闭合的,也称为涡旋电场,其电场强度方向可借助电磁感应现象中感应电流方向的判定方法,使用楞次定律判断.当磁场增强时,会产生顺时针方向的涡旋电场,电场力先对小球做负功使其速度减为零,后对小球做正功使其沿顺时针方向做加速运动,所以C正确;磁场力始终与小球运动方向垂直,因此始终对小球不做功,D正确;小球在水平面内沿半径方向受两个力作用:环的压力F N和磁场的洛伦兹力f,这两个力的合力充当小球做圆周运动的向心力,其中f=Bqv,磁场在增强,球速先减小,后增大,所以洛伦兹力不一定总在增大;向心力F 向=m v 2r,其大小随速度先减小后增大,因此压力F N 也不一定始终增大.故正确答案为C 、D.答案:CD三、实验题(本题共2小题,共15分)15.(6分)在探究产生感应电流条件的实验中,实验室提供了下列器材:电源、开关、电流表、大小螺线管、铁芯、滑动变阻器、导线若干,如图所示.请按照实验的要求连好实验电路.解析:大螺线管和电流表组成闭合电路;带铁芯的小螺线管、滑动变阻器、电源、开关组成闭合回路.如图所示.16.(9分)如图所示,先后以速度v 1和v 2(v 1=2v 2),匀速地把同一线圈从同一位置拉出有界匀强磁场的过程中,在先后两种情况下:(1)线圈中的感应电流之比I 1∶I 2=________.(2)线圈中产生的热量之比Q 1∶Q 2=________.(3)拉力做功的功率之比P 1∶P 2=________.答案:(1)2∶1 (2)2∶1 (3)4∶1四、计算题(本题共3小题,共35分,解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)17.(8分)如图甲所示,在周期性变化的匀强磁场区域内有垂直于磁场的半径为r =1 m 、电阻为R =3.14Ω的金属圆形线框,当磁场按图乙所示规律变化时,线框中有感应电流产生.(1)在图丙中画出感应电流随时间变化的i -t 图象(以逆时针方向为正);(2)求出线框中感应电流的有效值.解析:(1)如图所示.(2)设电流的有效值为I ,则有:I 2RT =I 21R ·T 3+I 22R ·2T 3, 得I = 2 A.18.(12分)如图所示,一小型发电机内有N =100 匝的矩形线圈,线圈面积S =0.10 m 2,线圈电阻可忽略不计.在外力作用下矩形线圈在B =0.10 T 的匀强磁场中,以恒定的角速度ω=100π rad/s 绕垂直于磁场方向的固定轴OO ′匀速转动,发电机线圈两端与R =100 Ω的电阻构成闭合回路.求:(1)线圈转动时产生感应电动势的最大值;(2)从线圈平面通过中性面时开始,线圈转为90°角的过程中通过电阻R 的电荷量;(3)线圈匀速转动10 s ,电流通过电阻R 产生的焦耳热.解析:(1)线圈中感应电动势的最大值E m =NBS ω=3.14×102V(314 V ,100π V 也同样得分).(2)设从线圈平面通过中性面时开始,线圈转过90°角所用时间为Δt ,线圈中的平均感应电动势E —=n BSΔt,通过电阻R 的平均电流I —=E R =nBS R Δt, 在Δt 时间内通过电阻的电荷量Q =I —Δt =nBS R=1.0×10-2 C. (3)矩形线圈在匀强磁场中匀速转动产生正弦式交变电流,电阻两端电压的有效值U =22E m , 经过t =10 s ,电流通过电阻产生的焦耳热Q 热=U 2Rt , 解得Q 热=4.9×103J.19.(13分)如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场,若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(a) (b)(1)棒进入磁场前,回路中的电动势E ;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流i 与时间t 的关系式.解析:(1)正方形磁场的面积为S ,则S =L 22=0.08 m 2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B-t 图象可知ΔB Δt =0.5 T/s ,根据E =n ΔΦΔt ,得回路中的感应电动势E =ΔB ΔtS =0.5×0.08 V =0.04 V. (2)当导体棒通过bd 位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E ′=BLv =0.5×0.4×1 V =0.2 V ;回路中感应电流I ′=E ′R =0.21A =0.2 A 导体棒受到的安培力F =BI ′L =0.5×0.2×0.4 N =0.04 N11 当导体棒通过三角形abd 区域时,导体棒切割磁感线的有效长度l =2v (t -1) (1 s ≤t ≤1.2 s)感应电动势e =Blv =2Bv 2(t -1)=(t -1) V感应电流i =e R=(t -1) A(1 s ≤t ≤1.2 s)。
【配套K12】[学习]2018-2019学年高中物理 模块综合检测(二)新人教版必修1
模块综合检测(二)(时间:90分钟分值:100分)一、单项选择题(本题共10小题,每题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分.)1.北京时间10月17日7时30分28秒,“神舟十一号”发射成功,中国载人航天再度成为世人瞩目的焦点.下列说法正确的是( )A.7时30分28秒表示时间间隔B.研究“神舟十一号”飞行姿态时,可把“神舟十一号”看作质点C.“神舟十一号”绕地球飞行一圈位移不为零D.“神舟十一号”绕地球飞行一圈平均速度为零解析:时刻与时间轴上的点对应,时间间隔与时间轴上的线段相对应,是两个时刻间的间隔,所以7时30分28秒表示“时刻”,故A错误;研究“神舟十一号”飞行姿态时,如果将“神舟十一号”看成一个质点,对点而言无所谓姿态的,故不能将“神舟十一号”看成质点,故B错误;“神舟十一号”绕地球飞行一圈,初末位置相同,则位移为零,故C 错误;平均速度等于位移和时间的比值,因为飞行一圈的过程中位移为0,所以平均速度为0,故D正确.故选D.答案:D2.一质点在x轴上运动,每秒末的位置坐标如下表所示,则:A.质点在这5 sB.质点在这5 s内做的是匀加速运动C.质点在第5 s内的位移比任何一秒内的位移都大D.质点在第4 s内的平均速度比任何一秒内的平均速度都大解析:质点在x轴上往复运动,质点的位移等于初末坐标之差,即Δx=x2-x1,确定出前5 s每1秒内的位移,再判断哪一秒内位移最大,位移大小是位移的绝对值,平均速度等于位移与时间的比值,根据题表数据可知质点在这5 s内做非匀变速运动,在第5 s内的位移比任何一秒内的位移都大且平均速度最大,本题选C.答案:C3.同时作用在某物体上的两个方向相反的力,大小分别为6 N和8 N,当8 N的力逐渐减小到零的过程中,两力合力的大小( )A.先减小,后增大B.先增大,后减小C.逐渐增大D.逐渐减小解析:当8 N 的力减小到6 N 时,两个力的合力最小,为0,若再减小,两力的合力又将逐渐增大,两力的合力最大为6 N ,故A 正确.答案:A4.(2014·北京高考)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如,平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是( )A .手托物体向上运动的过程中,物体始终处于超重状态B .手托物体向上运动的过程中,物体始终处于失重状态C .在物体离开手的瞬间,物体的加速度大于重力加速度D .在物体离开手的瞬间,手的加速度大于重力加速度解析:本题考查牛顿第二定律的应用,重在物理过程的分析,根据加速度方向判断超重和失重现象.手托物体抛出的过程,必有一段加速过程,其后可以减速,可以匀速,当手和物体匀速运动时,物体既不超重也不失重;当手和物体减速运动时,物体处于失重状态,选项A 错误;物体从静止到运动,必有一段加速过程,此过程物体处于超重状态,选项B 错误;当物体离开手的瞬间,物体只受重力,此时物体的加速度等于重力加速度,选项C 错误;手和物体分离之前速度相同,分离之后手速度的变化量比物体速度的变化量大,物体离开手的瞬间,手的加速度大于重力加速度,所以选项D 正确.答案:D5.如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mghD .在B 与A 分离之前,它们做匀加速直线运动解析:A 、B 分离前,A 、B 共同做加速运动,由于F 是恒力,而弹力是变力,故A 、B 做变加速直线运动,当两物体要分离时,F AB =0,对B :F -mg =ma ,对A :kx -mg =ma .即F =kx 时,A 、B 分离,此时弹簧仍处于压缩状态, 由F =mg ,设用恒力F 拉B 前弹簧压缩量为x 0,则2mg =kx 0,h =x 0-x ,解以上各式得k =mg h,综上所述,只有C 项正确. 答案:C6.如图所示,质量为m 的物体放在水平桌面上,在与水平方向成θ的拉力F 作用下加速往前运动,已知物体与桌面间的动摩擦因数为μ,则下列判断正确的是( )A .物体受到的摩擦力为F cos θB .物体受到摩擦力为μmgC .物体对地面的压力为mgD .物体受到地面的支持力为mg -F sin θ 解析:对物体受力分析,如图所示,则有物体受到的摩擦力为f =μN =μ(mg -F sin θ),故A 、B 错误.物体对地面的压力与地面对物体的支持力是作用力与反作用力,而支持力等于mg -F sin θ,故C 错误.物体受到地面的支持力为mg -F sin θ,故D 正确. 答案:D7.质点做直线运动的位移x 和时间t 2的关系图象如图所示,则该质点( )A .质点的加速度大小恒为1 m/s 2B .0~2 s 内的位移是为1 mC .2末的速度是 4 m/sD .物体第3 s 内的平均速度大小为3 m/s解析:根据x =12at 2得,可知图线的斜率表示12a ,则12a =22,a =2m/s 2.故A 错误.0-2 s内的位移x =12at 2=12×2×4 m =4 m .故B 错误.2 s 末的速度v =at =2×2 m/s =4 m/s.故C 正确.物体在第3 s 内的位移x =12at 22-12at 21=12×2×(9-4) m =5 m ,则平均速度v =xt =5 m/s.故D 错误.答案:C8.星级快车出站时能在150 s 内匀加速到180 km/h ,然后正常行驶.某次因意外列车以加速时的加速度大小将车速减至108 km/h.以初速度方向为正方向,则下列说法不正确的是( )A .列车加速时的加速度大小为13m/s 2B .列车减速时,若运用v =v 0+at 计算瞬时速度,其中a =-13 m/s 2C .若用v -t 图象描述列车的运动,减速时的图线在时间轴(t 轴)的下方D .列车由静止加速,1 min 内速度可达20 m/s 解析:列车的加速度大小a =Δv Δt =50150 m/s 2=13m/s 2,减速时,加速度方向与速度方向相反,a ′=-13 m/s 2,故A 、B 两项都正确.列车减速时,vt 图象中图线依然在时间轴(t轴)的上方,C 项错.由v =at 可得v =13×60 m/s =20 m/s ,D 项对.答案:C9.用一轻绳将小球P 系于光滑墙壁上的O 点,在墙壁和球P 之间夹有一长方体物块Q ,如图所示.P 、Q 均处于静止状态,则下列相关说法正确的是( )A .Q 物体受3个力B .P 物体受3个力C .若绳子变短,Q 受到的静摩擦力将增大D .若绳子变长,绳子的拉力将变小解析:墙壁光滑,Q 处于静止状态,则P 、Q 间必有摩擦力,Q 应受4个力作用,P 受4个力作用,故A ,B 错.对Q ,P 物体受力分析如图所示,对P 由平衡条件:T sin θ=N 1,T cos θ=m P g +f ,对Q 由平衡条件:f ′=m Q g ,故f ′不变,C 错.根据牛顿第三定律,f=f ′,N 1=N 1′,当绳子变长时,θ减小,故T 减小,D 对.答案:D10.如图所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (t 是常数),木板和木块加速度的大小分别为a 1和a 2.下图中反映a 1和a 2变化的图线中正确的是( )解析:当拉力F 很小时,木块和木板一起加速运动,由牛顿第二定律,对木块和木板:F =(m 1+m 2)a ,故a 1=a 2=a =F m 1+m 2=km 1+m 2t ;当拉力很大时,木块和木板将发生相对运动,对木板:μm 2g =m 1a 1,得a 1=μm 2g m 1,对木块:F -μm 2g =m 2a 2,得a 2=F -μm 2g m 2=km 2t -μg ,A 正确.故正确答案为A.答案:A二、多项选择题(本题共4小题,每题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分.)11.如图所示,粗糙水平面上叠放着P 、Q 两木块,用水平向右的力F 推Q 使它们保持相对静止一起向右运动,P 、Q 受力的个数可能是( )A .P 受2个力,Q 受5个力B .P 受3个力,Q 受5个力C .P 受3个力,Q 受6个力D .P 受4个力,Q 受6个力解析:题目没有说明它们的运动状态,可能有两种情况:(1)匀速运动:对P 进行受力分析,处于平衡状态,只受到重力和支持力;对Q ,则受到重力、地面的支持力、P 的压力以及地面的摩擦力和推力F 的作用,共5个力.所以选项A 正确;(2)在水平推力的作用下,物体P 、Q 一起匀加速滑动,则对P 受力分析:重力与支持力,及向右的静摩擦力共3个力.对Q 受力分析:重力、地面支持力、P 对Q 的压力、水平推力、地面给Q 的滑动摩擦力,及P 对Q 的静摩擦力共6个力.所以选项C 正确.故选AC.答案:AC12.a 、b 两车在平直公路上行驶,其v -t 图象如图所示,在t =0时,两车间距为s 0,在t =t 1时间内,a 车的位移大小为s ,下列说法不正确的是( )A .0~t 1时间内a 、b 两车相向而行B .0~t 1时间内a 车平均速度大小是b 车平均速度大小的2倍C .若a 、b 在t 1时刻相遇,则s 0=23sD .若a 、b 在t 12时刻相遇,则下次相遇时刻为2t 1解析:由图可知0~t 1时间内a 、b 两车同向行驶,故选项A 错;由v =v t +v 02可得:v a=2v 0+v 02=3v 02、v b =v 02,由此计算,故选项B 错误;由相遇根据图象:可推出要在t 1时刻s 0=23s ,故选项C 正确;由图线中的斜率和运动规律可知若a 、b 在t 12时刻相遇,则下次相遇时刻不是2t 1,故选项D 错误.答案:ABD13.如图所示,传送带的水平部分长为L ,向右传动速率为v ,在其左端无初速释放一木块.若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间可能是( )A.L v +v2μg B.L vC.2L μgD.2L v解析:若木块一直匀加速至传送带右端,则由L =12μgt 2可得,木块从左端运动到右端的时间为t =2L μg ,若木块加速至传送带右端时恰与带同速,则由L =v 2t 可得:t =2L v,若木块加速至v 后又匀速一段至带的右端,则有:t =vμg+L -v 22μg v =L v +v2μg,故A 、C 、D 均正确. 答案:ACD14.如图所示,质量分别为m A 和m B 的物体A 、B 用细绳连接后跨过滑轮,A 静止在倾角为45°的斜面上.已知m A =2m B ,不计滑轮摩擦,现将斜面倾角由45°增大到50°,系统保持静止.下列说法正确的是( )A .细绳对A 的拉力将增大B .A 对斜面的压力将减小C .A 受到的静摩擦力不变D .A 受到的合力不变解析:设m A =2m B =2m ,对物体B 受力分析,受重力和支持力,由二力平衡得到:T =mg 再对物体A 受力分析,受重力、支持力、拉力和静摩擦力,如图,根据平衡条件得到:f +T -2mg sin θ=0,N -2mg cos θ=0,解得:f =2mg sin θ-T =2mg sin θ-mg ,N =2mg cos θ;当θ不断变大时,f 不断变大,N 不断变小,故选项B 正确,A 、C 错误; 系统保持静止,合力始终为零不变,故选项D 正确;答案:BD三、非选择题(共4小题,共46分)15.(8分)某同学用如图所示的实验装置研究小车在斜面上的运动. 实验步骤如下:a .安装好实验器材.b .接通电源后,让拖着纸带的小车沿平板斜面向下运动,重复几次.下图为一次实验得到的一条纸带,纸带上每相邻的两计数点间都有四个点未画出,按时间顺序取0、1、2、3、4、5、6七个计数点,用米尺量出1、2、3、4、5、6点到0点的距离如图所示(单位:cm).c .测量1、2、3、…6计数点到0计数点的距离,分别记做s 1、s 2、s 3…、s 6记录在以下表格中,其中第2点的读数如图,请填入下方表格中.d.e .分别计算出打计数点时的速度v 1、v 2、v 3、v 4、v 5,并记录在以下表格中,请计算出v 1并填入下方表格 .f.以v a =______m/s 2.(保留两位有效数字)解析:c.刻度尺的读数需要估读一位,故为:12.80 cm.e .在匀变速运动中,中间时刻的瞬时速度等于该段位移的平均速度:v 1=s 22T =12.80×10-22×0.1m/s =0.64 m/s.f .描点后如图所示.在vt 中图线的斜率表示加速度:a =Δv Δt =0.81-0.640.5-0.1m/s 2=0.43 m/s 2. 答案:12.80 0.64 图略 0.4316.(8分)一光滑圆环固定在竖直平面内,环上套着两个小球A 和B (中央有孔),A 、B 间由细绳连接着,它们处于如图所示位置时恰好都能保持静止状态.此情况下,B 球与环中心O 处于同一水平面上,A 、B 间的细绳呈伸直状态,与水平线成30°夹角,已知B 球的质量为3 kg ,求细绳对B 球的拉力和A 球的质量m A (取g =10 m/s 2).解析:对A 球受力分析如图所示,可知: 水平方向:T cos 30°=N A sin 30°, 竖直方向:N A cos 30°=m A g +T sin 30°,同理对B 球进行受力分析及正交分解得: 竖直方向:T sin 30°=m B g ,联立以上三式可得:T =60 N ,m A =2m B =6 kg. 答案:60 N 6 kg17.(12分)如图所示,水平地面O 点的正上方的装置M 每隔相等的时间由静止释放一小球,当某小球离开M 的同时,O 点右侧一长为L =1.2 m 的平板车开始以a =6.0 m/s 2的恒定加速度从静止开始向左运动,该小球恰好落在平板车的左端,已知平板车上表面距离M 的竖直高度为h =0.45 m ,忽略空气的阻力,重力加速度g 取10 m/s 2.(1)求小球左端离O 点的水平距离;(2)若至少有2个小球落在平板车上,则释放小球的时间间隔Δt 应满足什么条件? 解析:(1)设小球自由下落至平板车上表面处历时t 0,在该时间段内由运动学方程 对小球有:h =12gt 20①对平板车有:x =12at 20②由①②式并代入数据可得:x =0.27 m.(2)从释放第一个小球至第2个小球下落到平板车上表面高度处历时Δt +t 0,设平板车在该时间段内的位移为x 1,由运动学方程有:x 1=12a (Δt +t 0)2③至少有2个小球落在平板车上须满足:x 1≤x +L ④ 由①~④式并代入数据可得:Δt ≤0.4 s. 答案:(1)0.27 m (2)Δt ≤0.4 s18.(18分)如图甲所示,质量为M =4 kg 足够长的木板静止在光滑的水平面上,在木板的中点放一个质量m =4 kg 大小可以忽略的铁块,铁块与木板之间的动摩擦因数为μ=0.2,设最大静摩擦力等于滑动摩擦力.两物块开始均静止,从t =0时刻起铁块m 受到水平向右、大小如图乙所示的拉力F 的作用,F 共作用时间为6 s ,(取g =10 m/s 2)则:图甲 图乙(1)铁块和木板在前2 s 的加速度大小分别为多少? (2)铁块和木板相对静止前,运动的位移大小各为多少?(3)拉力F 作用的最后2 s 内,铁块和木板的位移大小分别是多少? 解析:(1)前2 s ,由牛顿第二定律得 对铁块:F -μmg =ma 1,解得a 1=3 m/s 2对木板:μmg =Ma 2,解得a 2=2 m/s 2.(2)2 s 内,铁块的位移x 1=12a 1t 2=6 m 木板的位移x 2=12a 2t 2=4 m2 s 末,铁块的速度v 1=a 1t =6 m/s 木板的速度v 2=a 2t =4 m/s精品K12教育教学资料精品K12教育教学资料 2 s 后,对铁块:F ′-μmg =ma 1,解得a 1′=1 m/s 2对木板:μmg =Ma 2,解得a 2′=2 m/s 2设再经过t 0时间铁块和木板的共同速度为v ,则v =v 1+a 1′t 0=v 2+a 2′t 0,解得t 0=2 s ,v =8 m/s在t 0内,铁块的位移x 1′=v 1+v 2t 0=6+82×2 m =14 m 木板的位移x 2′=v 2+v 2t 0=4+82×2 m =12 m 所以铁块和木板相对静止前铁块运动的位移为x 铁块=x 1+x 1′=20 m铁块和木板相对静止前木板运动的位移为x 木板=x 2+x 2′=16 m.(3)拉力F 作用的最后2 s ,铁块和木板相对静止,一起以初速度v =8 m/s 做匀加速直线运动,对铁块和木板整体:F =(M +m )a解得a =FM +m =124+4m/s 2=1.5 m/s 2 所以铁块和木板运动的位移均为x 3=v Δt +12a ·(Δt )2=19 m.答案:(1)3 m/s 2 2 m/s 2 (2)20 m 16 m(3)19 m 19 m。
2018-2019学年高中物理模块综合试卷(二)新人教版选修3_1
模块综合试卷(二)(时间:90分钟 满分:100分)一、选择题(本题共12小题,共40分.1~8题为单选题,每小题3分,9~12题为多选题,全部选对得4分,有选对但不全的得2分,有选错的得0分)1.(2018·山东烟台市高一下期末)关于下列公式的理解,以下说法正确的是( ) A.点电荷场强公式E =kQr2中,Q 为试探电荷的电荷量 B.电场强度的定义式E =F q中,q 为场源电荷的电荷量 C.由电阻定义式R =U I知,R 与U 成正比,与I 成反比 D.电源电动势定义式E =W q中,W 指的是非静电力所做的功 答案 D2.如图1所示,电场中一正离子只受静电力作用从A 点运动到B 点,离子在A 点的速度大小为v 0,速度方向与电场方向相同,能定性反映该离子从A 点到B 点运动情况的速度—时间(v -t )图象是( )图1答案 C3.(2018·衡中微山分校高一下期末)硅光电池作为电源已广泛应用于人造卫星、灯塔和无人气象站等,高速公路上安装的“电子眼”通常也采用硅光电池供电.硅光电池的原理如图2所示,a 、b 是硅光电池的两个电极,P 、N 是两块硅半导体,E 区是两块半导体自发形成的匀强电场区,P 的上表面镀有一层增透膜.光照射到半导体P 上,使P 内受原子束缚的电子成为自由电子,自由电子经过E 区电场加速到达半导体N ,从而产生电动势,形成电流.以下说法中正确的是( )图2A.E区匀强电场的方向由P指向NB.电源内部的电流方向由P指向NC.a电极为电池的正极D.硅光电池是一种把化学能转为电能的装置答案 C解析根据题意,E区电场能使P逸出的自由电子加速向N运动,因负电荷受到的电场力与电场方向相反,所以电场方向由N指向P,由于电流的方向与负电荷的运动方向相反,所以电源内部的电流方向由N指向P,故A、B错误;根据以上对电流方向的分析可知,a为电池正极,该电池是将光能转化为电能的装置,C正确,D错误.4.如图3所示电路,闭合开关S,两个灯泡都不亮,电流表指针几乎不动,而电压表指针有明显偏转,该电路的故障可能是( )图3A.电流表坏了或未接好B.从点a经过灯L1到点b的电路中有断路C.灯L2的灯丝断了或灯座未接通D.电流表和灯L1、L2都坏了答案 B解析电流表坏了或未接好,电路断路,电路中无电流,两电表都无示数,A项不符合题意.两灯都不亮,电流表的指针几乎不动,而电压表指针有明显偏转,说明电压表所测那部分电路断路,电压表与电路串联,分担绝大部分电压,示数很大,B项符合题意.灯L2灯丝断了或灯座未接通,电路断路,电路中无电流,两电表都无示数,C项不符合题意.电流表和灯L1、L2都坏了,电路断路,电路中无电流,两电表都无示数,D项不符合题意.5.(2018·山东济宁市高一下期末)如图4所示,在两个等量异种点电荷的电场有1、2、3、4、5、6各点,其中1、2之间的距离与2、3之间的距离相等,2、5之间的距离与2、6之间的距离相等,2位于两电荷连线的中点,两条虚线互相垂直,那么关于各点电场强度和电势的叙述错误的是( )图4A.1、3两点电势相等B.1、3两点电场强度相同C.4、5两点电势相等D.5、6两点电场强度相同答案 A6.(2018·山东烟台市高一下期末)在如图5所示的电路中,闭合开关S,在滑动变阻器R的滑片由a端滑向b端的过程中,下列说法正确的是( )图5A.R1两端电压增大B.电源内阻消耗的功率变大C.电流表的示数变小D.R2两端电压变小答案 C7.有一场强方向与x轴平行的静电场,电势φ随坐标x变化的图线如图6所示,若规定x 轴正方向为场强的正方向,则该静电场的场强E随x变化的图线应是图中的哪一个?( )图6答案 B解析 0~2mm ,电势φ升高,逆着电场线,则知电场线方向为x 轴负方向,E 是负的,故A 、D 错误.0~2mm ,E =U d =-402×10-3V/m =-2×104 V/m2~10mm ,E =U d =808×10-3V/m =1×104V/m10~12mm ,E =U d=-2×104V/m ,故B 正确,C 错误.8.如图7所示,绝缘水平面上固定一正点电荷Q ,另一电荷量为-q (q >0)、质量为m 的滑块(可看做点电荷)从a 点以初速度v 0沿水平面向Q 运动,到达b 点时速度为零.已知a 、b 间距离为s ,滑块与水平面间的动摩擦因数为μ,重力加速度为g .最大静摩擦力等于滑动摩擦力,以下说法正确的是( )图7A.滑块在运动过程中所受Q 的库仑力有可能大于滑动摩擦力B.滑块在运动过程的中间时刻速率大于v 02C.此过程中产生的内能为mv 022D.Q 产生的电场中a 、b 两点间的电势差U ab =m (v 02-2μgs )2q答案 D解析 若滑块受到的库仑力某时刻大于滑动摩擦力,则滑块即开始做加速运动,不会在b 点停下,A 错误;水平方向上滑块受到恒定的摩擦力和逐渐变大的库仑力,且摩擦力大于库仑力,应做加速度逐渐减小的减速运动,前半段时间速度变化量较大,故中间时刻滑块速率小于v 02,B 错误;滑块从a 运动到b 的过程中,动能和电势能减小,转化为内能,故内能Q内=12mv 02-qU ab =μmgs ,显然Q 内≠mv 022,C 错误;由上式可得:U ab =m (v 02-2μgs )2q ,D 正确. 9.(2018·山东滨州市高一下期末)如图8所示,已知电源电动势E =12V ,内阻r =1Ω,电阻R 1=2Ω,R 2=25Ω,电容C =100μF ,小灯泡的电阻为3Ω,小型直流电动机线圈的电阻为1Ω,当开关接到1时通过小灯泡的电流为1A ,电动机正常工作,当开关接到2时,电动机不转,则( )图8A.开关接到1时,电动机两端的电压为6V ,电动机的输出功率为6WB.开关接到2时,电动机两端的电压为0.4V ,电容器所带电荷量为1.6×10-4C C.开关由1接到2,电容器所带电荷量减小,灯泡变暗 D.开关由1接到2,电容器所带电荷量增大,灯泡变亮 答案 BC10.(2018·山东滨州市高一下期末)如图9所示把两只完全相同的表头进行改装,已知其内阻R g =200Ω,下列说法正确的是( )图9A.由甲图可知,该表头满偏电流I g =2mAB.甲图是改装成的双量程电压表,其中b 量程为15VC.乙图是改装成的双量程电流表,R 1=10Ω,R 2=50ΩD.乙图是改装成的双量程电流表,R 1=5Ω,R 2=45Ω 答案 ABD11.如图10所示,长为L =0.5m 、倾角为θ=37°的光滑绝缘斜面AB 处于水平向右的匀强电场中,一带电荷量为+q 、质量为m 的小球(可视为质点,不计空气阻力),恰能以初速度v 0=2 m/s 沿斜面匀速上滑,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,则下列说法中正确的是( )图10A.小球在B 点的电势能大于在A 点的电势能B.水平匀强电场的电场强度为3mg4qC.若电场强度加倍,小球运动的加速度大小为3m/s 2D.若电场强度减半,小球运动到B 点时的速度为初速度v 0的一半 答案 BD解析 在小球由A 运动到B 的过程中,电场力做正功,小球电势能减少,A 错;由动能定理知qEL cos θ-mgL sin θ=0,所以水平匀强电场的电场强度为E =3mg4q ,B 对;电场强度加倍后,则有q ·2E cos θ-mg sin θ=ma ,所以a =6m/s 2,C 错;电场强度减半后,则有mg sin θ-q E2cos θ=ma 1,a 1=3m/s 2,由v 2-v 02=-2a 1L 代入数值得v =1m/s ,D 对. 12.如图11所示,AB 、CD 为一圆的两条直径且相互垂直,O 点为圆心.空间存在一未知静电场,方向与圆周所在平面平行.现让一电子先从A 点运动至C 点,电势能减少了E p ;又从C 点运动到B 点,电势能增加了E p .那么此空间存在的静电场可能是( )图11A.匀强电场,方向垂直于AB 由O 点指向C 点B.匀强电场,方向垂直于AB 由C 点指向O 点C.位于O 点的正点电荷形成的电场D.位于D 点的负点电荷形成的电场 答案 BD解析 由题知,W AC =-eU AC ,为正功,故U AC <0,即φA <φC ,又因从A 至C 再到B ,W 电=0,所以φA =φB ,故φA =φB <φC ,若电场为匀强电场,则AB 为等势面,电场方向与AB 垂直,方向由C 指向O ,故A 错,B 对;若电场是由位于O 点的正点电荷形成的,因为OA =OB =OC ,则φA=φB=φC,故C错;若电场是由位于D点的负点电荷形成的,因为DA=DB<DC,所以φA=φB<φC,D对.二、实验题(本题3小题,共18分)13.(4分)(2018·山东烟台市高一下期末)某同学用多用电表测一电阻阻值(约为2000Ω).为了比较精确地测定该电阻的阻值,现给出下列器材:A.电压表(量程6V,内阻约为10kΩ)B.电流表(量程3mA,内阻约为2Ω)C.滑动变阻器(最大阻值20Ω)D.电源(电动势6V,内阻1Ω)E.开关、导线若干(1)在虚线框内画出实验电路图.(2)电阻的测量值比真实值(选填“偏大”或“偏小”).答案(1)如图所示(2)偏大14.(6分)为了测定一节旧干电池的电动势和内阻(内阻偏大),配备的器材有:A.电流表A(量程为0.6A)B.电压表V(量程为1V,内阻为1.2kΩ)C.滑动变阻器R1(0~10Ω,1A)D.电阻箱R2(0~9999.9Ω)某实验小组设计了如图12所示的电路.图12(1)实验中将1V 电压表量程扩大为2V ,电阻箱R 2的取值应为k Ω.(2)利用上述实验电路进行实验,测出多组改装后的电压表读数U V 与对应的电流表读数I A ,得到U V -I A 的图象如图13所示.由图象可知,电源的电动势E =V ,内阻r =Ω.图13答案 (1)1.2 (2)1.60 2.75解析 (1)量程增大1倍,即内阻增加1倍,所以R 2的取值应为1.2k Ω.(2)图象与纵轴的交点即为电源电动势,故E =1.60V ,斜率的绝对值表示内阻,r =|ΔU ||ΔI |,解得r =2.75Ω.15.(8分)为了测量一根长约为3cm ,电阻约为100Ω,横截面为圆形,粗细均匀的导电材料的电阻率,所用器材如下:直流电源E ,电动势为8.0V ,内阻可忽略不计; 电流表A 1,量程为0~25mA ,内阻r 1=100Ω; 电流表A 2,量程为0~150mA ,内阻r 2=20Ω; 定值电阻R 0,阻值为10Ω; 滑动变阻器R ,最大阻值为10Ω; 开关S 、导线若干.(1)用游标卡尺测得该材料的长度如图14甲所示,示数为L =mm ;用螺旋测微器测得该材料的直径如图乙所示,示数为D =mm.图14(2)为了在测量中尽量减小误差,并测多组数据,现给出测量电阻R x 的实验电路,请根据图15电路图把图16实验器材连接起来.图15 图16(3)若某次测量中电流表A 1的示数为I 1,电流表A 2的示数为I 2,则由已知量和测量量计算电阻率的表达式为ρ=.(用题目中字母表示即可) 答案 (1)30.35 3.205 (2)如图所示(3)πD 24I 1L[I 2(R 0+r 2)-I 1r 1] 解析 (1)材料的长度L =3 cm +7×0.05 mm =30.35 mm ,材料的直径D =3 mm +20.5×0.01 mm =3.205 mm. (3)由欧姆定律可得R x =I 2(R 0+r 2)I 1-r 1, 由电阻定律可得R x =ρL S=ρ4L πD2, 联立可解得ρ=πD24I 1L [I 2(R 0+r 2)-I 1r 1].三、计算题(本题4小题,共42分)16.(8分)如图17所示的电路中,电源的电动势E =12V ,内阻未知,R 1=8Ω,R 2=1.5Ω,L 为规格“3V 3W ”的灯泡,开关S 断开时,灯泡恰好正常发光.(不考虑温度对灯泡电阻的影响)试求:图17(1)灯泡的额定电流和灯丝电阻; (2)电源的内阻;(3)开关S 闭合时,灯泡实际消耗的功率. 答案 (1)1A 3Ω (2)1Ω (3)0.48W解析 (1)灯泡的额定电流I L =P L U L =33A =1A灯丝电阻R L =U L 2P L =323Ω=3Ω(2)S 断开时,灯L 正常发光,即I 1=I L ,根据闭合电路欧姆定律E =I L (R 1+R L +r )得r =E I L -(R 1+R L )=[121-(8+3)] Ω=1Ω(3)S 闭合时,设外电路总电阻为R 外R 外=R L ·R 2R L +R 2+R 1=9Ω干路电流为I 总=ER 外+r=1.2A灯泡两端的电压U L ′=I 总·R L ·R 2R L +R 2=1.2V 灯泡实际消耗的功率P =U L ′2R L=0.48W.17.(10分)如图18所示,一长为h 2、内壁光滑的绝缘细管竖直放置,管的底部固定一电荷量为Q (Q >0)的点电荷M .现在管口A 处无初速度释放一电荷量为q (q >0)、质量为m 的点电荷N ,N 在距离底部点电荷为h 1的B 处速度恰好为零.再次从A 处无初速度释放电荷量为q 、质量为3m 的点电荷P (已知静电力常量为k ,重力加速度为g ).求:图18(1)电荷P 运动过程中速度最大处与底部点电荷间的距离; (2)电荷P 运动到B 处时的速度大小. 答案 (1)kQq3mg(2)2g (h 2-h 1)3解析 (1)电荷P 运动到重力等于电场力时,速度最大,距底部距离为r ,则有3mg =kQq r 2,解得r =kQq 3mg(2)设电荷P 运动到B 处时的速度为v B ,由动能定理,有3mg (h 2-h 1)-qU AB =12×3mv B 2 依题意有mg (h 2-h 1)=qU AB联立两式可得:v B =2g (h 2-h 1)3.18.(12分)(2018·山东济宁市高一下期末)如图19所示,在水平面上方,O 点右侧空间有一匀强电场,场强大小E =6.0×105N/C ,方向水平向右,在O 点有一个电荷量q =-5.0×10-8C 、质量m =1.0×10-2kg 的绝缘物块(可视为质点),物块与水平面间的动摩擦因数μ=0.2,现给物块一个水平向右的初速度v 0=3.0m/s(取g =10 m/s 2).求:图19(1)物块向右运动离O 点的最远距离x 1为多大;(2)物块最终停止时的位置.答案 见解析解析 (1)物块受到的电场力为F =Eq =0.03N物块受到的摩擦力为F f =μmg =0.02N物块到达最右端的过程中,由动能定理得-Fx 1-F f x 1=0-12mv 02 解得x 1=0.9m(2)因为F >F f ,所以物块先向右减速运动,再向左加速运动,越过O 点进入无电场区域后,再减速运动直到停止.设物块最终停止的位置离O 点的距离为x 2.对整个运动过程,由动能定理得-2F f x 1-F f x 2=0-12mv 02 解得x 2=0.45m即物块停在O 点左侧0.45m 处.19.(12分)如图20所示,竖直固定放置的光滑绝缘杆上O 点套有一个质量为m 、带电荷量为-q (q >0)的小环.在杆的左侧固定一个带电荷量为+Q 的点电荷,杆上a 、b 两点与Q 正好构成等边三角形.已知Oa 之间距离为h 1,a 、b 之间距离为h 2,重力加速度为g ,静电力常量为k .现使小环从图示位置的O 点由静止释放,不计空气阻力,若通过a 点的速率为3gh 1.试求:图20(1)小环运动到a 点时对杆的压力大小及方向;(2)小环通过b 点的速率.答案 (1)3kQq2h 22 水平向左 (2)g (2h 2+3h 1)解析 (1)由库仑定律可得,小环运动到a 点时所受库仑力为F =kQq r 2,方向由a 指向Q ,其中r 为Q 到a 点的距离,依题意r =h 2,所以F =kQq h 22, 杆对小环的支持力F N =F cos 30°=3kQq 2h 22,方向水平向右;由牛顿第三定律可知,小环对杆的压力大小F N ′=F N =3kQq2h 22,方向水平向左. (2)小环从a 运动到b 的过程中,根据动能定理有mgh 2-qU ab =12mv b 2-12mv a 2, 其中v a =3gh 1,由于a 、b 两点到点电荷Q 的距离相等,所以U ab =0, 可得v b =g (2h 2+3h 1).。
【配套K12】[学习]2018-2019学年高中物理 模块综合检测(二)粤教版选修3-2
模块综合检测(二)(时间:90分钟分值:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得3分,选错或不答的得0分) 1.如图所示,该图是一正弦式交流电的电压随时间变化的图象,下列说法中不正确的是( )A.它的频率是50 HzB.电压的有效值为311 VC.电压的周期是0.02 sD.电压的瞬时表达式是u=311sin 314t (V)解析:从图象中可以知道电压最大值为311 V,周期是0.02 s,所以有效值为220 V,频率为50 Hz,所以A、C、D对,答案为B.答案:B2.下述仪器或装置没有使用到传感器的有( )A.自动报警器B.弹簧测力计C.电视遥控器D.红外线探测仪解析:自动报警器,通过光信号转换成电信号,因此使用传感器,故A不符合题意;弹簧测力计,也是运用受力平衡来测量力的大小,刻度尺是用来测量长度的工具,没有使用传感器,故B符合题意;电视遥控器是将红外线转换成电信号,因此C不符合题意,红外测温仪是通过将温度转换成电信号,从而显示温度的高低,因此D不符合题意;本题选择没有使用的,故选B.答案:B3.一台家用电冰箱的铭牌上标有“220 V 100 W”,这表明所用交变电压的( ) A.峰值是380 V B.峰值是220 VC.有效值是220 V D.有效值是311 V解析:交流电表的示数,保险丝的熔断电流,铭牌上标有“220 V 100 W”,都是有效值,故C正确,ABD错误.答案:C4.如图所示,闭合线圈正上方有一竖直放置的条形磁铁,磁铁的N极朝下但未插入线圈内部.当磁铁向上运动时( )A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引B.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引C.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥解析:当磁铁向上运动时,穿过线圈的磁通量变小,原磁场方向向下,所以感应磁场方向向下,根据右手螺旋定则,拇指表示感应磁场的方向,四指弯曲的方向表示感应电流的方向,故可判断出产生了如图中箭头方向相反的的感应电流.根据楞次定律“来拒去留”可判断线圈对磁铁的作用是阻碍作用,故磁铁与线圈相互吸引.故选B.答案:B5.如图是一种焊接方法的原理示意图.将圆形待焊接金属工件放在线圈中,然后在线圈中通以某种电流,待焊接工件中会产生感应电流,感应电流在焊缝处产生大量的热量将焊缝两边的金属熔化,待焊工件就焊接在一起.我国生产的自行车轮圈就是用这种办法焊接的.下列说法中正确的是( )A.线圈中的电流是很强的恒定电流B.线圈中的电流是交变电流,且频率很高C.待焊工件焊缝处的接触电阻比非焊接部分电阻小D.焊接工件中的感应电流方向与线圈中的电流方向总是相反解析:恒定电流不能在工件中产生感应电流,A错误;线圈中的电流是交变电流,且频率很高,磁通量变化快,产生的感应电动势较大,B正确;待焊工件焊缝处的接触电阻比非焊接部分电阻大,产生的热量多,C错误;若磁通量减少时,焊接工件中的感应电流方向与线圈中的电流方向相同,D错误.答案:B6.在磁感应强度为B、方向如图所示的匀强磁场中,金属杆PQ在宽为L的平行金属导轨上以速度v向右匀速滑动,PQ中产生的感应电动势为E1;若磁感应强度增为3B,其他条件不变,所产生的感应电动势大小变为E2,则E1与E2之比及通过电阻R的感应电流方向为( )A.1∶3,a→b B.3∶1,b→aC.3∶1,a→b D.1∶3,b→a解析:PQ中产生的感应电动势为E=BLv,若磁感应强度增为2B,其他条件不变时,E 与B成正比,则有E1∶E2=1∶3;由右手定则知通过电阻R的感应电流方向为a→b.答案:A7.电阻R、电容器C与一个线圈连成闭合回路,条形磁铁静止在线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N极接近线圈上端过程中,流过R的电流方向和电容器极板的带电情况是( )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电解析:当磁铁下落时,穿过线圈的磁通量向下增加,在线圈中产生的感应电流的磁场阻碍其增加,则方向向上,由右手定则可知产生的感应电流为从b到a;电容器下极板电势高,故带正电,选项D正确.答案:D8.如图所示,理想变压器的原线圈接入u=11 0002sin 100πt (V)的交变电压,副线圈通过电阻r=6 Ω的导线对“220 V,880 W”的电器R L供电,该电器正常工作.由此可知( )A .原、副线圈的匝数比为50∶1B .交变电压的频率为100 HzC .副线圈中电流的有效值为4 AD .变压器的输入功率为880 W解析:由P =UI 可得I =P L U L=4 A ,选项C 正确;根据Ir =24 V 得副线圈电压U 2=U L +U r =244 V ,再由n 1n 2=U 1U 2可得n 1∶n 2=2 750∶61≈45∶1,选项A 错误;由u =11 0002sin 100πt (V)及f =ω2π可得f =50 Hz ,选项B 错误;因导线电阻消耗电能,故变压器输入功率为P =P L +I 2r =976 W ,选项D 错误.答案:C9.如图所示,一个边长为a 、电阻为R 的等边三角形线框,在外力作用下,以速度v 匀速穿过宽均为a 的两个匀强磁场区.这两个磁场的磁感应强度大小相等,方向相反.线框的运动方向与底边平行且与磁场边缘垂直,取逆时针方向的电流为正.若从图示位置开始计时,关于线框中产生的感应电流i 与运动时间t 之间的函数图象,正确的是( )解析:线框向前移动a2的过程中,由法拉第电磁感应定律有:E =Blv ,而l =vt tan 60°=3vt ,可得E =3Bv 2t ,可见E ∝t ,i =E R,由楞次定律可得电流为逆时针方向,即感应电流正向增大,当向右移动到a2处时最大,后l 减小,E 减小,i 减小,当向右移动到a 处时最小,方向不变,即感应电流先正向增大,后正向减小;向右移动距离由a 到2a 的过程中电流仍是先增大后减小,因两区域磁场方向相反,磁通量的变化率是前一过程的2倍,则最大值是前一过程的2倍,由楞次定律可得电流为顺时针方向,即感应电流先反向增大,后反向减小;向右移动距离由2a 到3a 的过程中电流变化与方向与第一阶段相同,即感应电流先正向增大,后正向减小.故选A.答案:A10.某种角速度计,其结构如图所示.当整个装置绕轴OO ′转动时,元件A 相对于转轴发生位移并通过滑动变阻器输出电压,电压传感器(传感器内阻无限大)接收相应的电压信号.已知A 的质量为m ,弹簧的劲度系数为k 、自然长度为l ,电源的电动势为E 、内阻不计.滑动变阻器总长也为l ,电阻分布均匀,装置静止时滑片P 在变阻器的最左端B 端,当系统以角速度ω转动时,不计摩擦,则( )A .电路中电流随角速度的增大而增大B .电路中电流随角速度的增大而减小C .弹簧的伸长量为x =m ωlk -m ω2D .输出电压U 与ω的函数式为U =Em ω2k -m ω2解析:系统在水平面内以角速度ω转动时,无论角速度增大还是减小,BC 的电阻不变,根据闭合电路欧姆定律得知,电路中电流保持不变,与角速度无关,故AB 错误;设系统在水平面内以角速度ω转动时,弹簧伸长的长度为x ,则对元件A ,根据牛顿第二定律得kx=m ω2(L +x ),解得x =m ω2l k -m ω2,又输出电压U =R BP R BC E =x L E ,联立两式得U =Em ω2k -m ω2.故C 错误,D 正确.答案:D二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)11.如图所示,在水平方向的匀强磁场中,一矩形闭合线圈绕OO ′轴匀速转动,若要使线圈中的电流峰值减半,下列可行的方法是( )A .将线圈的转速减半B .将线圈的匝数减半C .将匀强磁场的磁感应强度减半D .将线圈的边长减半解析:由I m =E m R ,E m =nBS ω,ω=2πn ,得I m =nBS ·2πnR,故A 、C 正确;又电阻R 与匝数有关,当匝数减半时,电阻R 也随之减半,则I m 不变,故B 错误;当边长减半时,面积S 减为原来的14,而电阻减为原来的12,故D 正确.答案:ACD12.远距离输电线路的示意图如图所示 ,若发电机的输出电压不变,那么当用户用电的总功率增大时( )A .升压变压器的原线圈中的电流保持不变B .降压变压器的输出电压升高C .降压变压器的输出电压降低D .输电线上损失的功率增大解析:由题意知输出的总功率增大时,输入功率也增大,由于发电机的输出电压不变,根据P =UI 得升压变压器原线圈电流I 1增大,副线圈电流I 2也增大,A 错误;输电线上的功率损失I 22R 线增大,D 正确;降压变压器原线圈两端电压U 3=U 2-U 线,因为升压变压器的输入电压U 1不变,U 2不变,U 线=I 2R 线,所以U 3降低,降压变压器的输出电压也降低,B 错误,C 正确.答案:CD13.如图所示,电路中的变压器为理想变压器,S 为单刀双掷开关,R 为定值电阻,U 1为加在原线圈两端的交变电压,I 1、I 2分别为原线圈和副线圈中的电流,下列说法正确的是( )A .保持U 1不变,S 由b 切换到a ,则R 上消耗的功率增大B .保持U 1不变,S 由b 切换到a ,则I 1减小C .保持U 1不变,S 由b 切换到a ,则I 1增大D .保持U 1不变,S 由b 切换到a ,则I 2减小解析:理想变压器输入功率等于输出功率,原副线圈电压与匝数成正比.S由b切换到a,副线圈匝数变多,所以副线圈电压变大,电阻不变,副线圈中的电流I2增大,而根据P =I2R知,R上消耗的功率变大,进一步推知原线圈的输入功率变大,根据P=UI可知I1增大,故AC正确,BD错误.答案:AC14.如图所示,是某同学站在压力传感器上,做下蹲、起立的动作时记录的压力随时间变化的图线.由图线可知,该同学的体重约为650 N,在2~8 s时间内( )A.该同学做了一次下蹲再起立的动作B.该同学做了两次下蹲再起立的动作C.下蹲过程中人一直处于失重状态D.下蹲过程中人先处于失重状态后处于超重状态解析:当物体对接触面的压力小于物体的真实重力时,物体处于失重状态,此时有向下的加速度;当物体对接触面的压力大于物体的真实重力时,物体处于超重状态,此时有向上的加速度.人下蹲动作分别有失重和超重两个过程,先是加速下降失重,到达一个最大速度后再减速下降超重对应先失重再超重,起立对应先超重再失重,对应图象可知,该同学做了一次下蹲起立的动作,故A正确,B错误;由图可知,下蹲过程既有失重又有超重,且先失重后超重,故C错误,D正确.答案:AD三、非选择题(本题共4小题,共54分.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位)15.(12分)如图所示,面积为0.2 m2的100匝线圈A处在磁场中,磁场方向垂直于线圈平面,磁感强度随时间变化的规律是B=(6-0.2t)(T).已知R1=4 Ω,R2=6 Ω,电容C=30 μF,线圈A的电阻不计.求:(1)闭合S后,通过R2的电流强度大小和方向.(2)闭合S一段时间后再断开S,S断开后通过R2的电荷量是多少?解析:(1)由题意B=(6-0.2t) T得磁感应强度的变化率为:ΔBΔt=0.2 T/s. 由法拉第电磁感应定律知:A 线圈内产生的感应电动势:E =N ΔΦΔt =N ΔBS Δt=100×0.2×0.2 V=4 V ,S 闭合后,电路中电流由闭合电路欧姆定律I =E (R 1+R 2)=4(4+6)A =0.4 A ,方向由a →R 2→b .(2)S 闭合后R 2的电压为U 2=IR 2=2.4 V ,电容上充电电荷量为Q =CU 2=CIR 2=7.2×10-5C ,所以断开S 后,电容器开始放电,通过R 2的电荷量Q =7.2×10-5C. 答案:(1)0.4 A ,电流方向由a →R 2→b (2)7.2×10-5C16.(13分)如图所示,线圈abcd 的面积是0.05 m 2,共100匝,线圈电阻为1 Ω,外接电阻R =9 Ω,匀强磁场的磁感应强度为B =1π T ,当线圈以角速度ω=4π rad/s 的转速匀速转动时,求:(1) 电路中交流电压表的示数;(2) 线圈从图示位置转过90°的过程中通过电阻R 的电荷量. (3) 线圈从图示位置转过360°的过程中,外力做的功是多大?解析:(1)线圈转动产生的最大感应电动势E m =nBS ω,代入数据得: E m =20 V 感应电动势有效值E =E m2=10 2 V ,电路中电流有效值I =Er +R= 2 A ,交流电压表的示数U =IR ,解得: U =9 2 V ≈12.7 V(2) 线圈从图示位置转过90°的过程中,磁通量的变化ΔΦ=BS ,所用时间Δt =14T =π2ω ,感应电动势的平均值E =n ΔΦΔt ,回路中感应电流的平均值I =E R +r,通过R 的电荷量q =I Δt ,联立解得: q =12πC ≈0.16 C (3) 线圈从图示位置转过360°的过程中,外力做的功W =Q ,回路中产生电热Q =I 2()R +r t ,转过360°的时间t =2πω,联立解得: W =10 J 答案:(1) 9 2 V(或12.7 V) (2) 12πC(或0.16 C) (3)10 J17.(13分)某发电站的输出功率为104kW ,输出电压为4 kV ,通过理想变压器升压后向远处供电.已知输电导线的电阻为25.6 Ω,输电线路损失的功率为输出功率的4%,求:(1)输电线上的电流; (2)输电线路上的电压损失; (3)升压变压器的原副线圈匝数比.解析:(1)输电线路损失的功率为P 损=P 1×4%=107×4% W =4.0×105W 对输电线有P 损=I 22R ,解得I 2=1.25×102A (2)U 线=I 2R =3.2 kV (3)P 1=P 2=U 2I 2=104 kW 代入数据得U 2=80 kV升压变压器的原副线圈匝数比n 1n 2=U 1U 2=120答案:(1)1.25×102A (2)3.2 kV (3)n 1n 2=12018.(16分)如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m 的重物,另一端系一质量为m 、电阻为r 的金属杆.在竖直平面内有间距为L 的足够长的平行金属导轨PQ 、EF ,在QF 之间连接有阻值为R 的电阻,其余电阻不计,磁感应强度为B 0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF 处,将重物由静止释放,当重物下降h 时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好(忽略所有摩擦,重力加速度为g ).求:(1)电阻R 中的感应电流方向; (2)重物匀速下降的速度大小v ;(3)重物从释放到下降h 的过程中,电阻R 中产生的焦耳热Q R ;(4)若将重物下降h 时的时刻记作t =0,速度记为v 0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B 怎样随时间t 变化(写出R 与t的关系式).解析:(1)电阻R 中的感应电流方向为Q →R →F . (2)对系统由平衡关系得:3mg -mg -F =0,又F =B 0IL =B 20L 2vR +r,解得:v =2mg (R +r )B 20L2. (3)设电阻中产生的总焦耳热为Q ,则由能量守恒关系得:减少的重力势能等于增加的动能和焦耳热Q 即:3mgh -mgh =12(3m )v 2+12mv 2+Q ,所以电阻R 中产生的焦耳热Q R 为: Q R =RR +r Q =2mghR R +r -8m 3g 2(R +r )RB 40L4. (4)金属杆中恰好不产生感应电流,即磁通量不变:hLB 0=(h +h ′)LB ,式中h =v 0t +12at 2,又a =3mg -mg 3m +m =12g .解得:B =B 0hh +v 0t +g4t 2.答案:(1)Q →R →F (2)2mg (R +r )B 20L2(3)2mghR R +r -8m 3g 2(R +r )R B 40L4(4)B =B 0hh +v 0t +g4t 2。
2018-2019学年高中物理 模块综合检测(二)新人教版选修3-3
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中正确的是( )A.已知某物质的摩尔质量和分子质量,可以算出阿伏加德罗常数B.已知某物质的摩尔质量和分子体积,可以算出阿伏加德罗常数C.当两个分子之间的距离增大时,分子引力和斥力的合力一定减小D.当两个分子之间的距离增大时,分子势能一定减小解析:阿伏加德罗常数等于摩尔质量与分子质量的比值,A正确,B错误;两个分子之间的距离增大时,分子引力和斥力都要减小,但在r>r0区域,随着分子间距的增大,分子引力的斥力的合力表现为引力,是先变大到最大再减小,C错误;在r>r0区域,随着分子间距的增大,分子引力和斥力的合力表现为引力,且引力做负功,分子势能增加,D错误.答案:A2.关于内能的正确说法是( )A.物体分子热运动的动能的总和就是物体的内能B.对于同一种物体,温度越高,分子平均动能越大C.同种物体,温度高、体积大的内能大D.温度相同,体积大的物体内能一定大解析:内能是物体内所有分子的动能和分子势能的总和,故A错;温度是分子平均动能的标志,温度高,分子平均动能大,B对;物体的内能是与物体的物质的量、温度、体积以及存在状态都有关的量,C、D中的描述都不完整.答案:B3.关于液体,下列说法正确的是( )A.液体的性质介于气体和固体之间,更接近固体B.小液滴成球状,说明液体有一定形状和体积C.液面为凸形时表面张力使表面收缩,液面为凹形时表面张力使表面伸张D.硬币能浮在水面上是因为所受浮力大于重力解析:液体性质介于气体和固体之间,更接近于固体,具有不易被压缩,有一定体积,没有一定形状,扩散比固体快等特点,A对、B错.无论液面为凸面还是凹面,表面张力总是使表面收缩,C错.硬币能浮在水面上是因为受到表面张力的缘故,而不是浮力作用的结果,D错.答案:A4.如图所示,在一个配有活塞的厚壁有机玻璃筒底放置一小团硝化棉,迅速向下压活塞,筒内气体被压缩后可点燃硝化棉.在筒内封闭的气体被活塞压缩的过程中( )A.气体对外界做正功,气体内能增加B.外界对气体做正功,气体内能增加C.气体的温度升高,压强不变D.气体的体积减小,压强不变解析:压缩玻璃筒内的空气,气体的压强变大,机械能转化为筒内空气的内能,空气的内能增加,温度升高,当达到棉花的燃点后,棉花会燃烧;故B正确,A、C、D错误.答案:B5.(2015·福建卷)下列有关分子动理论和物质结构的认识,其中正确的是( )A.分子间距离减小时分子势能一定减小B.温度越高,物体中分子无规则运动越剧烈C.物体内热运动速率大的分子数占总分子数比例与温度无关D.非晶体的物理性质各向同性而晶体的物理性质都是各向异性解析:当分子间距减小分子势能可能增大,也可能减小,故A错误;温度高平均动能一定大,物体中分子无规则运动越剧烈,故B正确;根据麦克斯韦统计规律可知,物体内热运动速率大的分子数占总分子数比例与温度有关,故C错误;单晶体的物理性质是各向异性,多晶体的物理性质各向同性,故D错误.答案:B6.下列说法中不正确的是( )A.给轮胎打气的过程中,轮胎内气体内能不断增大B.洒水车在不断洒水的过程中,轮胎内气体的内能不断增大C.太阳下暴晒的轮胎爆破,轮胎内气体内能减小D.拔火罐过程中,火罐能吸附在身体上,说明火罐内气体内能减小解析:给轮胎打气的过程中,轮胎内气体质量增加,体积几乎不变,压强增加,温度升高,内能增加,选项A正确;洒水车内水逐渐减少,轮胎内气体压强逐渐减小,体积增大,对外做功,气体内能减小,选项B错误;轮胎爆破的过程中,气体膨胀对外做功,内能减小,选项C正确;火罐内气体温度逐渐降低时,内能减小,选项D正确.答案:B7.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F ,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )A .温度升高,压强增大,内能减少B .温度降低,压强增大,内能减少C .温度升高,压强增大,内能增加D .温度降低,压强减小,内能增加解析:向下压缩活塞,对气体做功,气体的内能增加,温度升高,对活塞受力分析可得出气体的压强增大,故C 选项正确.答案:C8.带有活塞的气缸内封闭一定量的理想气体.气体开始处于状态a ;然后经过过程ab 到达状态b 或经过过程ac 到达状态c ,b 、c 状态温度相同,V -T 图如图所示.设气体在状态b 和状态c 的压强分别为p b 和p c ,在过程ab 和ac 中吸收的热量分别为Q ab 和Q ac ,则( )A .p b >p c ,Q ab >Q aB .p b >p c ,Q ab <Q acC .p b <p c ,Q ab >Q acD .p b <p c ,Q ab <Q ac解析:由V =K pT 可知V -T 图线的斜率越大,压强p 越小,故p b <p c .由热力学第一定律有:Q =ΔE -W ,因T b =T c ,所以ΔE ab =ΔE ac ,而W ab <W ac ,故Q ab >Q ac .综上C 正确.答案:C9.一定质量的理想气体由状态A 变化到状态B ,气体的压强随热力学温度变化如图所示,则此过程( )A .气体的密度减小B .外界对气体做功C .气体从外界吸收了热量D .气体分子的平均动能增大解析:由图线可知,在从A 到B 的过程中,气体温度不变,压强变大,由玻意耳定律可知,气体体积变小,V B <V A ;气体质量不变,体积变小,由密度公式可知气体密度变大,故A 错误;气体体积变小,外界对气体做功,故B 正确;气体温度不变,内能不变,ΔU =0,外界对气体做功,W >0,由热力学第一定律ΔU =Q +W 可知:Q <0,气体要放出热量,故C 错误;气体温度不变,分子平均动能不变,故D 错误.答案:B10.用一导热的可自由滑动的轻隔板把一圆柱形容器分隔成A 、B 两部分,如图所示.A 和B 中分别封闭有质量相等的氮气和氧气,均可视为理想气体,则当两部分气体处于热平衡时( )A .内能相等B .分子的平均动能相等C .分子的平均速率相等D .分子数相等解析:两种理想气体处于热平衡时,温度相同,所以分子的平均动能相同,但气体种类不同,其分子质量不同,所以分子的平均速率不同,故B 正确,C 错误;两种气体的质量相同,而摩尔质量不同,所以分子数不同,故D 错误;两种气体的分子平均动能相同,但分子个数不同,故内能也不相同,A 错误.答案:B二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多个选项符合题目要求)11.一般情况下,分子间同时存在分子引力和分子斥力.若在外力作用下两分子间的间距达到不能再靠近为止,且甲分子固定不动,乙分子可自由移动,则去掉外力后,当乙分子运动到相距很远时,速度为v ,则在乙分子的运动过程中(乙分子的质量为m )( )A .乙分子的动能变化量为12mv 2 B .分子力对乙分子做的功为12mv 2 C .分子引力比分子斥力多做了12mv 2的功D .分子斥力比分子引力多做了12mv 2的功 解析:当甲、乙两分子间距离最小时,两者都静止,当乙分子运动到分子力的作用范围之外时,乙分子不再受力,此时速度为v ,故在此过程中乙分子的动能变化量为12mv 2;且在此过程中,分子斥力始终做正功,分子引力始终做负功,即W 合=W 斥+W 引,由动能定理得W 引+W 斥=12mv 2,故此分子斥力比分子引力多做了12mv 2的功. 答案:ABD12.关于空气湿度,下列说法正确的是( )A .当人们感到潮湿时,空气的绝对湿度一定较大B .当人们感到干燥时,空气的相对湿度一定较小C .空气的绝对湿度用空气中所含水蒸气的压强表示D .空气的相对湿度定义为水的饱和蒸汽与相同温度时空气中所含水蒸气的压强之比 解析:相对湿度越大,人感觉越潮湿,相对湿度大时,绝对湿度不一定大,故A 错误;相对湿度较小时,使人感觉干燥,故B 正确.用空气中水蒸气的压强表示的温度叫作空气的绝对湿度,用空气中水蒸气的压强与同一温度时水的饱和汽压之比叫作相对湿度,故C 正确,D 错误.答案:BC13.关于永动机和热力学定律的讨论,下列叙述正确的是( )A .第二类永动机违反能量守恒定律B .如果物体从外界吸收了热量,则物体的内能一定增加C .保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D .做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的解析:第二类永动机违反了热力学第二定律,但不违反能量守恒定律,所以A 错误;做功和热传递都可以改变物体的内能,物体从外界吸收了热量,同时也对外做了功,则物体的内能有可能减少,所以B 错误;保持气体的质量和体积不变,根据理想气体的状态方程pV T=C 知,当温度升高时,气体的压强增大,故每秒撞击单位面积器壁的气体分子数增多,所以C 正确;做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的,D 正确.答案:CD14.一定质量的理想气体的状态变化过程表示在如图所示的p -V 图上,气体先由a 状态沿双曲线经等温过程变化到b 状态,再沿与横轴平行的直线变化到c 状态,a 、c 两点位于与纵轴平行的直线上,以下说法中正确的是( )A .由a 状态至b 状态的过程中,气体放出热量,内能不变B .由b 状态至c 状态的过程中,气体对外做功,内能增加,平均每个气体分子在单位时间内与器壁碰撞的次数不变C .c 状态与a 状态相比,c 状态分子平均距离较大,分子平均动能较大D .b 状态与a 状态相比,b 状态分子平均距离较小,分子平均动能相等解析:由a 到b 的过程是等温过程,所以内能不发生变化,气体体积减小,所以外界对气体做功,放出热量,分子平均距离减小,分子平均动能不变,A 、D 正确;由b 到c 的过程是等压过程,体积增大,温度升高,内能增加,所以气体对外界做功,应该吸收热量,因为压强不变,且气体分子热运动的平均动能增大,碰撞次数减少,B 错误;由c 到a 的过程是等容过程,压强减小,温度降低,所以分子平均距离不变,分子平均动能减小,C 错误.答案:AD三、非选择题(本题共6小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p 和体积V 关系的是________.解析:根据理想气体状态方程,空气等温压缩,pV =C ,p 与1V成正比,所以该过程中空气的压强p 和体积V 关系的是图(B).答案:图(B)16.(10分)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24 kJ 的功.现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5 kJ 的热量.在上述两个过程中,空气的内能共减小________kJ ,空气________(选填“吸收”或“放出”)的总能量为________kJ.解析:将空气压缩装入气瓶的过程中,温度保持不变,气体内能保持不变;外界做了24 kJ 的功,空气放出24 kJ 能量,气瓶缓慢地潜入海底的过程中,放出了5 kJ 的热量,所以在上述两个过程中,空气的内能共减小5 kJ ,空气放出的总能量为24 kJ +5 kJ =29 kJ.答案:5 放出 2917.(8分)已知金刚石密度为3.5×103 kg/m 3 ,体积为4×10-8m 3的一小块金刚石中含有多少碳原子?并估算碳原子的直径(取两位有效数字).解析:这一小块金刚石的质量 m =ρV =3.5×103×4×10-8 kg =1.4×10-4kg ,这一小块金刚石的物质的量n =m M =1.4×10-4kg 0.012 kg =76×10-2mol , 所含碳分子的个数N =n ×6.02×1023=76×10-2×6.02×1023个=7×1021个. 一个碳原子的体积为 V ′=V N =4×10-87×1021 m 3=47×10-29m 3. 碳原子的直径d =2r =233V ′4π= 2 33×47×10-294πm ≈2.2×10-10m. 答案:7.0×1021个 2.2×10-10m18.(10分)如图所示,一定质量的理想气体从状态A变化到状态B ,再从状态B 变化到状态C .已知状态A 的温度为480 K .求:(1)气体在状态C 时的温度;(2)试分析从状态A 变化到状态B 的整个过程中,气体是从外界吸收热量还是放出热量. 解析:(1)A 、C 两状态体积相等,则有p A T A =p CT C.① 得T C =p C p A T A =0.5×4801.5K =160 K .②(2)由理想气体状态方程得p A V A T A =p B V B T B .③ 解得T B =p B V B p A V A T A =0.5×3×4801.5×1K =480 K. 由此可知A 、B 两状态温度相同,故A 、B 两状态内能相等.答案:(1)160 K (2)既不吸热也不放热19.(10分)如图,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度为l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为h 1=10.0 cm 时将开关K 关闭.已知大气压强p 0=75.0 cmHg.(1)求放出部分水银后A 侧空气柱的长度;(2)此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,求注入的水银在管内的长度.解析:(1)以cmHg 为压强单位.设A 侧空气柱长度l =10.0 cm 时的压强为p ;当两侧水银面的高度差为h 1=10.0 cm 时,A 侧空气柱的长度为l 1,压强为p 1.由玻意耳定律得pl =p 1l 1①由力学平衡条件得p =p 0+h ②打开开关K 放出水银的过程中,B 侧水银面处的压强始终为p 0,而A 侧水银面处的压强随空气柱长度的增加逐渐减小,B 、A 两侧水银面的高度差也随之减小,直至B 侧水银面低于A 侧水银面h 1为止.由力学平衡条件有p 1=p 0-h 1③联立①②③式,并代入题给数据得l 1=12.0 cm ④(2)当A 、B 两侧的水银面达到同一高度时,设A 侧空气柱的长度为l 2,压强为p 2. 由玻意耳定律得pl =p 2l 2⑤由力学平衡条件有p 2=p 0⑥联立②⑤⑥式,并代入题给数据得l 2=10.4 cm ⑦设注入的水银在管内的长度为Δh ,依题意得Δh =2(l 1-l 2)+h 1⑧联立④⑦⑧式,并代入题给数据得Δh =13.2 cm答案:(1)12.0 cm (2)13.2 cm20.(10分)如图所示,两个充有空气的容器A 、B ,以装有活塞栓的细管相连通,容器A 浸在温度为t 1=-23 ℃的恒温箱中,而容器B 浸在t 2=27 ℃的恒温箱中,彼此由活塞栓隔开.容器A 的容积为V 1=1 L ,气体压强为p 1=1 atm ;容器B 的容积为V 2=2 L ,气体压强为p 2=3 atm ,求活塞栓打开后,气体的稳定压强是多少.解析:设活塞栓打开前为初状态,打开后稳定的状态为末状态,活塞栓打开前后两个容器中的气体总质量没有变化,且是同种气体,只不过是两容器中的气体有所迁移流动,故可用分态式求解.将两容器中的气体看成整体,由分态式可得:p 1V 1T 1+p 2V 2T 2=p 1′V 1′T 1′+p 2′V 2′ T 2′. 因末状态为两部分气体混合后的平衡态,设压强为p ′,则p 1′=p 2′=p ′,代入有关的数据得:p ′=2.25 atm.因此,活塞栓打开后,气体的稳定压强为2.25 atm.答案:稳定压强为2.25 atm。
2018-2019学年高中物理 模块综合检测(二)新人教版选修3-5
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项正确)1.关于下列四幅图说法不正确的是( )A.原子中的电子绕原子核高速运转时,运行轨道的半径是任意的B.光电效应实验说明了光具有粒子性C.电子束通过铝箔时的衍射图样证实了电子具有波动性D.发现少数α粒子发生了较大偏转,说明原子的质量绝大部分集中在很小空间范围内解析:原子中的电子绕核旋转的轨道是特定的,不是任意的,选项A错误.易知B正确.电子能通过铝箔衍射,说明电子也有波动性,C正确. 发现少数α粒子大角度偏转,说明原子的正电荷和大部分质量集中在很小空间范围内,D正确.答案:A2.当具有5.0 eV能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为( ) A.1.5 eV B.3.5 eVC.5.0 eV D.6.5 eV解析:本题考查光电效应方程及逸出功.由E k=hν-W,得W=hν-E k=5.0 eV-1.5 eV =3.5 eV,则入射光的最低能量为hνmin=W=3.5 eV,故正确选项为B.答案:B3.已知氢原子的基态能量为E1,激发态能量为E n,其中n=2,3….用h表示普朗克常量,c表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A.4hc3E1B.2hcE1C.4hc E 1D.9hc E 1解析:对于量子数n =2的氢原子,其电离能为0-E 14,则由-E 14=h c λ知C 项正确. 答案:C4.238 92U 放射性衰变有多种途径,其中一种途径是先衰变成210 83Bi ,而210 83Bi 可以经一次衰变变成210a X(X 代表某种元素),也可以经一次衰变变成 b 81Tl ,210a X 和 b 81Tl 最后都衰变变成206 82Pb ,衰变路径如图所示,则可知图中( )A .过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变B .过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变C .过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变D .过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变解析:在210 83Bi 衰变变成210a X 的过程中质量数不变,过程①是β衰变;210a X 衰变变成20682Pb 过程中质量数减少4,过程③是α衰变;210 83Bi 衰变变成 b 81Tl ,核电荷数减少2,过程②是α衰变; b 81Tl 衰变变成206 82Pb ,核电荷数增加1,过程④是β衰变,所以选项A 正确.答案:A5.如图所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球在落到车底前瞬间速度是25 m/s ,则当小球与小车相对静止时,小车的速度是( )A.5 m/sB.4 m/sC.8.5 m/sD.9.5 m/s解析:小球抛出后做平抛运动,根据动能定理得:mgh =12mv 2-12mv 20 解得:v 0=15 m/s ,小球和车作用过程中,水平方向动量守恒,则有:-mv 0+MV =(M +m )v ′,解得:v ′=5 m/s ,故选A.答案:A6.两球A 、B 在光滑水平面上沿同一直线,同一方向运动,m A =1 kg ,m B =2 kg ,v A =6m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A ,B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/sB .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s解析:这是一道同向追击碰撞问题,在分析时应注意考虑三个方面的问题:动量是否守恒,机械能是否增大,是否符合实际物理情景.针对这三点,要逐一验证.取两球碰撞前的运动方向为正,则碰撞前,系统总动量p =m A v A +m B v B =10 kg ·m/s ,逐一验证各个选项,发现碰撞后,四个选项均满足动量守恒.碰前,系统总动能E k =12m A v 2A +12m B v 2B =22 J .碰后系统总动能应不大于碰前总动能,即E ′k ≤22 J ,把各选项代入计算,知选项C 、D 不满足,被排除.对于选项A ,虽然满足机械能不增加的条件,但仔细分析,发现v ′A >v ′B ,显然不符合实际情况,故本题正确答案为选项B.答案:B7.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中,( )A.小球所受合力的冲量方向为弧中点指向圆心B.小球所受支持力的冲量为0C.小球所受重力的冲量大小为m 2gRD.小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力,和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒可得mgR =12mv 2B ,故v B =2gh ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误;D 正确.答案:D8.我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是( )A.玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念B.爱因斯坦最早认识到了能量子的意义,提出光子说,并成功地解释了光电效应现象C.德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念D.普朗克大胆地把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性解析:普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,故A 错误;爱因斯坦最早认识到了能量子的意义,为解释光电效应的实验规律提出了光子说,并成功地解释了光电效应现象,故B 正确;玻尔第一次将量子观念引入原子领域,提出了定态和跃迁的概念,故C 错误;德布罗意大胆地把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性,故D 错误;故选B.答案:B9.在自然生态系统中,蛇与老鼠等生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌,它通过接收热辐射来发现老鼠的存在.假设老鼠的体温约为37 ℃,它发出的最强的热辐射的波长为λmax ,根据热辐射理论,λmax 与辐射源的绝对温度T 的关系近似为λmax T =2.90×10-3 m ·K.则老鼠发出的最强的热辐射的波长为( ) A .7.8×10-5 mB .9.4×10-6 mC .1.16×10-4 mD .9.7×10-8 m解析:体温为37 ℃时,热力学温度T =310 K ,根据λmax T =2.90×10-3 m ·K ,得λmax=2.90×10-3310m =9.4×10-6 m. 答案:B 10.如图所示,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以大小v =4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( )A .处于匀速运动阶段B .处于减速运动阶段C .处于加速运动阶段D .静止不动解析:木板和木块组成的系统动量守恒,设它们相对静止时的共同速度为v ′,以木板运动的方向为正方向,则:Mv -mv =(M +m )v ′,所以v ′=Mv -mv M +m=2 m/s ,方向与木板运动方向相同.在此之前,木板一直做匀减速运动,木块先做匀减速运动,当相对地面的速度为零时,再反向向右做匀加速运动,直到速度增大到 2 m/s.设当木块对地速度为零时,木板速度为v ″,则:Mv -mv =Mv ″,v ″=Mv -mv M=2.67 m/s ,大于2.4 m/s ,故木板的速度为2.4 m/s 时,木块处在反向向右加速运动阶段,C 正确.答案:C二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中有多个选项正确,全选对得4分,漏选得2分,错选或不选得0分)11.大量处于基态的氢原子吸收了某种单色光的能量后能发出3种不同频率的光子,分别用它们照射一块逸出功为W 0的金属板时,只有频率为ν1和ν2(ν1>ν2)的两种光能发生光电效应.下列说法正确的是( )A.金属板的极限频率为W 0hB.光电子的最大初动能为h (ν1+ν2)-W 0C.吸收光子的能量为h (ν1+ν2)D.另一种光的光子能量为h (ν1-ν2)解析:A.金属板的极限频率为h ν=W 0,得ν=W 0h,A 正确;B.频率为ν1的光子照射到金属板时逸出的光电子初动能最大,则光电子的最大初动能为E k =h ν1-W 0,B 错误;C.吸收光子的能量为h ν1,C 错误;D.逸出的三种光子能量关系为: h ν1=h ν2+h ν3,所以另一种光的光子能量为h (ν1-ν2),D 正确.故选:AD.答案:AD12.如图所示,质量为m 的小球从距离地面高H 的A 点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h 的B 点速度减为零.不计空气阻力,重力加速度为g .关于小球下落的整个过程,下列说法中正确的是( )A .小球的机械能减少了mg (H +h )B .小球克服阻力做的功为mghC .小球所受阻力的冲量大于m 2gHD .小球动量的改变量等于所受阻力的冲量解析:由动能定理mg (H +h )-W f =0,则W f =-mg (H +h ),所以小球的机械能减少了mg (H+h ),所以A 选项正确,B 选项错误;小球自由落下至地面过程,机械能守恒,mgH =12mv 2,v =2gH ,落到地面后又陷入泥潭中,由动量定理I G -I f =0-mv ,所以I f =I G +mv =I G +m 2gH ,小球所受阻力的冲量大于m 2gH ,所以C 选项正确;由动量定理知小球动量的改变量等于合外力的冲量,所以D 选项错误.答案:AC13.如图所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动并发生对心碰撞,则( )A .它们碰撞后的总动量是18 kg ·m/s ,方向水平向右B .它们碰撞后的总动量是2 kg ·m/s ,方向水平向右C .它们碰撞后B 小球向右运动D .它们碰撞后B 小球可能向左运动解析:根据动量守恒,设向右为正方向,碰后它们的总动量p ′=p =m A v A +m B v B =2×5 kg ·m/s -4×2 kg ·m/s =2 kg ·m/s ,故A 错、B 对;因总动量向右,所以碰后B 球一定向右运动,C 对、D 错.答案:BC14.如图所示,光滑的水平面上,质量为m 1的小球以速度v 与质量为m 2的静止小球正碰,碰后两小球的速度大小都为12v ,方向相反,则两小球质量之比m 1∶m 2和碰撞前后动能变化量之比ΔE k1∶ΔE k2为( )A .m 1∶m 2=1∶3B .m 1∶m 2=1∶1C .ΔE k1∶ΔE k2=1∶3D .ΔE k1∶ΔE k2=1∶1 解析:以原来m 1的速度v 方向为正方向,根据动量守恒定律,得m 1v =-12m 1v +12m 2v ,所以m 1m 2=13,故A 正确、B 错误;两球碰撞前后动能变化量分别为:ΔE k1=12m 1⎝ ⎛⎭⎪⎫v 22-12m 1v 2=38m 1v 2,ΔE k2=12m 2⎝ ⎛⎭⎪⎫v 22-0=18m 2v 2,所以ΔE k 1ΔE k2=3m 1m 2=11,故C 错误、D 正确. 答案:AD二、非选择题(本题共5小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)质量为m =0.10 kg 的小钢球以v 0=2.0 m/s 的水平速度抛出,下落h =0.6 m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角θ=________.刚要撞击钢板时小球的动量大小为________(取g =10 m/s 2).解析:小球撞击后速度恰好反向,说明撞击前速度与钢板垂直.利用平抛运动规律可求得此时竖直方向的速度为2 3 m/s ,小球与钢板撞击前的速度大小v =2v 0=4 m/s ,钢板与水平面的夹角θ=30°,其动量的大小为p =mv =0.4 kg ·m/s.答案:30° 0.4 kg ·m/s16.(8分)用图示实验装置探究“碰撞中的不变量”实验,除了图示装置中的实验仪器外,下列仪器中还需要的是 W.A.秒表B.天平C.刻度尺D.直流电源E.交流电源若实验中得到一条纸带如图所示,已知A 、B 车的质量分别为m A 、m B ,则该实验需要验证的表达式是 (用图中物理量和已给出的已知量表示).解析:该实验需要测量小车的质量,需要天平;需要测量各计数点间距,需要刻度尺;打点计时器有计时功能,无需秒表;而打点计时器工作电源是交流电源,无需直流电源,故选BCE ;小车A 碰前做匀速运动,打在纸带上的点间距是均匀的,故求碰前小车A 的速度应选BC 段,碰后两车一起做匀速运动,打出的点也是间距均匀的,故选DE 段来计算碰后速度,在误差允许的范围内,需要验证的表达式是m A v A =(m A +m B )v AB ,即m A x AB =(m A +m B )x DE .答案:BCE m A x AB =(m A +m B )x DE17.(11分)如图所示,一物体从固定斜面顶端由静止开始经过1 s 下滑到底端,已知斜面的倾角θ=37°,斜面长度L =2.5 m ,sin 37°=0.6,cos 37°=0.8,取重力加速度g =10 m/s 2,求:(1)物体与斜面间的动摩擦因数μ;(2)下滑过程中损失的机械能与减少的重力势能的比值;(3)下滑过程中合外力冲量的大小与重力冲量大小的比值.解析:(1)根据L =12at 2,解得a =5 m/s 2,根据牛顿第二定律,得mg sin θ-μmg cos θ=ma ,解得μ=0.125.(2)损失的机械能等于克服摩擦力做的功,即ΔE =μmg cos θL ,减少的重力势能ΔE p =mg sin θL ,故损失的机械能与减少的重力势能的比值为:ΔE ΔE p =μtan θ=0.125tan 37°=16. (3)设物体下滑到斜面底端时速度大小为v ,有v =at =5 m/s ,根据动量定理,得合外力冲量的大小为:I 合=mv -0=5 m (N ·s),下滑过程中,重力的冲量I G =mgt =10 m (N ·s),所以下滑过程中合外力冲量的大小与重力冲量大小的比值I 合∶I G =1∶2.答案:(1)0.125 (2)16(3)1∶2 18.(12分)一个静止在磁场中的22688Ra (镭核),发生α衰变后转变为氡核(元素符号为Rn ).已知衰变中释放出的α粒子的速度方向跟匀强磁场的磁感线方向垂直.设镭核、氡核和α粒子的质量一次是m 1、m 2、m 3,衰变的核能都转化为氡核和α粒子的动能.求:(1)写出衰变方程;(2)氡核和α粒子在匀强磁场中做匀速圆周运动的轨道半径之比;(3)氡核的动能E k .解析:(1)衰变方程为: 226 88Ra →222 86Rn +42He (2)根据qvB =m v 2r 得, r =mv qB两个粒子动量等大,由半径公式r =mv qB ∝1q ,得r 1r 2=286=143. (3)由质能方程得:ΔE =(m 1-m 2-m 3)c 2,因为E k =p 22m ,可知两粒子动能跟质量成反比,因此氡核分配到的动能为E =(m 1-m 2-m 3)m 3c 2m 2+m 3. 答案:(1)衰变方程为: 226 88Ra →222 86Rn +42He(2)43∶1(3)氡核的动能为E =(m 1-m 2-m 3)m 3c 2m 2+m 319.(15分)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H =5 m 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h =1.8 m 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出. 已知m A =1 kg ,m B =2 kg ,m C =3 kg ,g =10 m/s 2,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能;(3)滑块C 落地点与桌面边缘的水平距离.解析:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为v 1, 由机械能守恒定律有:m A gh =12m A v 21,解得:v 1=6 m/s. 滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v 2,由动量守恒定律有:m A v 1=(m A +m B )v 2,解得:v 2=13v 1=2 m/s. (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度v 3,由动量守恒定律有:m A v 1=(m A +m B +m C )v 3,解得:v 3=16v 1=1 m/s.由机械能守恒定律有:E p =12(m A +m B )v 22-12(m A +m B +m C )v 23. 解得:E p =3 J.(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为v 4,滑块C 的速度为v 5,分别由动量守恒定律和机械能守恒定律有:(m A +m B )v 2=(m A +m B )v 4+m C v 5.12(m A +m B )v 22=12(m A +m B )v 24+12m C v 25. 解得:v 4=0,v 5=2 m/s.滑块C 从桌面边缘飞出后做平抛运动:s =v 5t ,H =12gt 2.解得:s =2 m.答案:(1)2 m/s (2)3 J (3)2 m。
学年高中物理 综合质量评估二新人教版选修
综合质量评估(二)(90分钟100分)一、选择题(本题共12小题,每题4分,共48分。
其中1~8小题为单项选择题,9~12小题为多项选择题)1.(2018·德州高二检测) 以下列图,矩形线圈abcd置于匀强磁场中,线圈平面跟磁感线平行,在以下过程中,线圈中能产生感觉电流的是()A.线圈以ad边为轴转动B.线圈以ab边为轴转动C.线圈平行于磁感线向右平动D.线圈垂直于磁感线向纸外平动【解题指南】闭合线圈中产生感觉电流的条件是回路中的磁通量发生变化。
磁通量发生变化有两种方法:磁感觉强度变化或回路的有效面积发生变化。
【解析】选B。
线圈以ad边为轴转动,穿过线圈的磁通量向来为零,故没有产生感觉电流,故A错误;线圈以ab边为轴转动,闭合线圈的磁通量发生变化,能产生感觉电流,故B正确;线圈平行于磁感线向右运动,回路的有效面积未发生变化,穿过线圈的磁通量向来为零,故没有产生感觉电流,故C错误;沿垂直磁感线方向运动,回路的有效面积未发生变化,穿过线圈的磁通量向来为零,故没有产生感觉电流,故D错误。
2.(2018·大连高二检测)以下列图,螺线管匝数n=1 500匝,横截面积S=20 cm2,螺线管导线电阻r=1 Ω,电阻R=4 Ω,磁感觉强度B的B-t图象以下列图(以向右为正方向),以下说法正确的选项是 ()A.经过电阻R的电流方向是从A到CB.感觉电流的大小保持不变为2.4 AC.电阻R的电压为6 VD.C点的电势为4.8 V【解析】选D。
从题图中可得磁通量在渐渐增大,依照楞次定律可得经过R的电流方向为从C到A,A错误;依照法拉第电磁感觉定律:E=n=n=1 500×0.002×V=6 V,而感觉电流大小为I==A=1.2 A,B错误;依照闭合电路欧姆定律,有:U=IR=1.2×4 V=4.8 V,C错误;由于A端接地,电压为零,所以C端的电势为4.8 V,D正确。
(通用版)2018-2019版高中物理 模块综合试卷 新人教版选修3-2
图6
A.若从图示线框位置开始计时,线框中感应电动势的瞬时值为30 cos (100t) V
B.理想变压器原、副线圈匝数比为10∶1
C.灯泡L2的额定功率为0。9 W
D.若开关S断开,电流表的示数将增大
答案 D
解析 变压器的输入电压的最大值为Um=nBSω=10× ×0.3×100 V=30 V;从垂直中性面位置开始计时,故线框中感应电动势的瞬时值为u=Umcosωt=30 cos (100t) V,故A正确.变压器输入电压的有效值为U1= =30 V.开关闭合时两灯泡均正常发光,所以U2= = V=3 V,所以 = = = ,故B正确.原线圈的输入功率为P1=U1I1=30×0.04 W=1。2 W.由于原线圈的输入功率等于副线圈的输出功率,所以PL2=P1-PL1=1.2 W-0.3 W=0.9 W,故C正确.若开关S断开,输出电压不变,输出端电阻增大,输出电流减小,故输入电流也减小,电流表的示数减小,D错误.
(时间:90分钟 满分:100分)
一、选择题(本题共12小题,每小题4分,共计48分.1~7题为单选题,8~12题为多选题,全部选对的得4分,选对但不全的得2分,有选错的得0分)
1.如图1所示,线圈L的电感很大,电源内阻不可忽略,A、B是完全相同的两只灯泡,当开关S闭合时,下列判断正确的是 ( )
2018-2019学年物理浙江专版人教版选修3-2模块综合检测(二)
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本小题共8小题,每小题4分,共32分。
每小题只有一个选项正确)1.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。
以下叙述符合事实的是()A.丹麦物理学家奥斯特梦圆电生磁,终于发现了电磁感应现象B.英国物理学家麦克斯韦认为,磁场变化时会在空间激发一种电场C.法拉第发现了电流的磁效应,拉开了研究电与磁相互关系的序幕D.安培定则是用来判断通电导线在磁场中所受安培力方向的答案:B2.如图所示是测定自感系数很大的线圈L直流电阻的电路,L两端并联一只电压表,用来测量自感线圈的直流电压。
在测量完毕后,将电路解体时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电阻R解析:选A只要不断开S1,线圈L与电压表就会组成闭合电路,在断开电路干路时,线圈L会因此产生感应电流,流过电压表的电流方向与原电流方向相反,电压表中指针将反向转动,损坏电压表,所以必须先断开S1。
A正确。
3.如图所示,两条平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc的ab边与磁场边界平行,现使此线框向上匀速穿过磁场区域,运动过程中始终保持速度方向与ab边垂直,则选项图中可以定性地表示线框在上述过程中感应电流随时间变化的规律的是()解析:选D线框进入磁场过程中,切割磁感线的有效长度逐渐变短,感应电动势逐渐变小,完全进入磁场之后,磁通量不再变化,感应电动势等于零,离开磁场过程中,切割磁感线的有效长度逐渐变短,反向的感应电动势逐渐变小,感应电流的变化与感应电动势的变化一致,D正确。
4.一磁铁自远处匀速沿一圆形线圈的轴线运动,并穿过线圈向远处而去,如图所示,则选项图中能较正确反映线圈中电流I 和时间t 的关系的是(线圈中电流的图示箭头方向为正方向)( )解析:选B 当条形磁铁向右运动且并未穿过线圈过程中,通过线圈的磁通量向右逐渐增加,由楞次定律可知,线圈中的感应电流为正方向,当条形磁铁的正中央到达线圈位置时,磁通量的变化率最小,感应电流为零,当条形磁铁正中央通过线圈后,穿过线圈向右的磁通量逐渐减小,则线圈中产生负方向的感应电流,且先增大再减小,故选项B 正确。
(山东省专用)2018-2019学年高中物理 模块综合检测(含解析)新人教版必修2
模块综合检测(时间:90分钟 满分:110分)一、选择题(本题共14小题,每小题4分,共56分。
第1~8小题只有一个选项正确,第9~14小题有多个选项正确,全选对的得4分,选对但不全的得2分,有选错的得0分)1.有一个物体做加速度与速度方向一致的直线运动,下列说法中不可能的是( )A .物体的某时刻的瞬时速度很大,但加速度却很小B 物体的某时刻加速度很大,但瞬时速度却很小C .物体的加速度在增大,但速度却在减小D .物体的速度不断增大,加速度保持不变解析:选C 根据加速度的定义式a =Δv Δt知,瞬时速度大,但加速度不一定大,故A 可能;瞬时速度小,但加速度可能大,故B 可能;当加速度方向与速度方向相同时,加速度增大,速度增大,故C 不可能;当物体做匀加速直线运动时,加速度不变,故D 可能。
2.质量都是m 的物体在水平面上沿直线运动,如图甲、乙、丙、丁是它的运动图像,由图像可知( )A .图甲表明物体做匀加速直线运动B .图乙表明物体做匀速直线运动C .图丙表明物体沿负方向做减速直线运动D .图丁表明物体做匀加速直线运动解析:选D 图甲表示物体做匀速直线运动,选项A 错误;图乙表示物体做一定初速度的匀加速直线运动,选项B 错误;图丙表示速度不断减小的沿正方向运动的匀减速直线运动,选项C 错误;图丁表示物体做匀加速直线运动,选项D 正确。
3.以下判断正确的是( )A .跳高运动员起跳时,地面对他的支持力大于他对地面的压力B .拔河比赛时,若甲胜乙负,则甲队对乙队的拉力大于乙队对甲队的拉力C .起重机用钢丝绳吊着货物加速上升时,钢丝绳对货物的拉力等于货物对钢丝绳的拉力D .汽车拉着拖车在水平道路上沿直线运动,只有它们做匀速运动时,汽车拉拖车的力才等于拖车拉汽车的力解析:选C 根据牛顿第三定律,作用力和反作用力总是等大反向的,与物体的运动状态、是否受其他力无关,所以只有C 正确。
4.一块质量为m 的物体,放在光滑的水平地面上,在物体的一侧与一根轻弹簧相连,当一人用力F 水平推弹簧使物体向前运动并获得速度v (如图所示),则人做的功( )A .等于12mv 2B .大于12mv 2 C .小于12mv 2 D .大小无法确定 解析:选B 人做功,使物体的动能增大,同时也使弹簧具有了一定的弹性势能,即W F =12mv 2+E p ,故A 、C 、D 错误,B 正确。
人教版高中物理选修3-2-高二模块综合测评2.docx
高中物理学习材料(灿若寒星**整理制作)模块综合测评(二)(时间:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图1甲所示,一闭合线圈置于磁场中,若磁感应强度B 随时间变化的规律如图乙所示,线圈中感应电动势E 随时间t 变化的图象是( )【导学号:05002180】图1【解析】 由E =ΔΦΔt =ΔB Δt ·S 可知,因磁感应强度B 随时间变化的变化率ΔB Δt 是分段恒定的,因此电动势E 随时间变化的规律也是分段恒定的,故D 正确.【答案】 D2.如图2所示电路中,线圈L 与灯泡L A 并联,当合上开关S 后灯L A 正常发光.已知,线圈L 的电阻小于灯泡L A 的电阻.则下列现象可能发生的是( )图2A.当断开S时,灯泡L A立即熄灭B.当断开S时,灯泡L A突然闪亮一下,然后逐渐熄灭C.若把线圈L换成电阻,断开S时,灯泡L A逐渐熄灭D.若把线圈L换成电阻,断开S时,灯泡L A突然闪亮一下,然后逐渐熄灭【解析】当断开S时,线圈L产生断电自感,灯泡L A突然闪亮一下,然后逐渐熄灭,B项正确,A项错误;若把线圈L换成电阻,断开S时,灯炮L A 立即熄灭,C、D均错误.【答案】 B3.通过理想变压器给用电器供电,电路如图3甲所示,变压器初级线圈匝数n1=1 000匝,两次级线圈的匝数分别为n2=50匝、n3=100匝.在初级线圈ab端接如图乙所示的交变电流,下列说法正确的是()【导学号:05002181】甲乙图3A.交流电的频率为100 HzB.U2=50 V,U3=100 VC.I1∶I2=1∶20D.闭合开关S,则I1增大【解析】交流电的周期为0.02 s,频率为50 Hz,选项A错误;根据变压器的匝数与电压比可知,U2=n2U1n1=501 000·1 0002V=25 2 V;U3=n3U1n1=1001 000·1 0002 V =50 2 V ,选项B 错误;因电流与匝数之间满足:I 1n 1=I 2n 2+I 3n 3,故选项C 错误;闭合开关S ,则I 3变大,根据I 1n 1=I 2n 2+I 3n 3可知I 1增大,选项D 正确.【答案】 D4.如图4所示,接在家庭电路上的理想降压变压器给小灯泡L 供电,如果将原、副线圈减少相同匝数,其他条件不变,则( )图4A .小灯泡变亮B .小灯泡变暗C .原、副线圈两端电压的比值不变D .通过原、副线圈电流的比值不变【解析】 由于家庭电路上理想变压器为降压变压器,故n 1>n 2,当原、副线圈减少相同的匝数时,其变压比n ′1n ′2变大,根据U 1U 2=n ′1n ′2,U 1一定,U 2变小,故小灯泡变暗,选项A 错误,选项B 正确;由U 1U 2=n ′1n ′2知,原、副线圈电压的比值变大,选项C 错误;根据I 1I 2=n ′2n ′1,则通过原、副线圈电流的比值变小,选项D 错误.【答案】 B5.为了能安全对某一高电压U 、大电流I 的线路进行测定,图中接法可行的是(绕组匝数n 1>n 2)( )【解析】 电流互感器是将大电流变成便于测量的小电流,由I 1I 2=n 2n 1知I 2=n 1n 2I 1,副线圈的匝数应大于原线圈的匝数且测量时应串联在被测电路中,A 、C 错误;电压互感器是将高电压变成低电压,由U1U2=n1n2知U2=n2n1U1,n1应大于n2,且测量时应并联在待测电路中,B正确,D错误.【答案】 B6.如图5所示,A是长直密绕通电螺线管.小线圈B与电流表连接,并沿A的轴线Ox从O点自左向右匀速穿过螺线管A.下面4个选项能正确反映通过电流表中电流I随x变化规律的是()【导学号:05002182】图5【解析】通电螺线管产生稳定的磁场,磁场特征为:两极附近最强且不均匀,管内场强近似匀强.当小线圈穿过两极时,因磁场不均匀,故穿过小线圈的磁通量发生变化,产生感应电流,且因磁场的变化不同,故在小线圈中感应出方向相反的电流,小线圈在螺线管内部运动时,因穿越区域的磁感应强度不变,小线圈中没有感应电流产生.【答案】 C7.有人设计了一个汽车“再生能源装置”,原理简图如图6甲所示.当汽车减速时,线圈受到辐向磁场的阻尼作用帮助汽车减速,同时产生电能储存备用.图甲中,线圈匝数为n,ab长度为L1,bc长度为L2.图乙是此装置的侧视图,切割处磁场的磁感应强度大小恒为B,有理想边界的两个扇形磁场区边线夹角都是90°.某次测试时,外力使线圈以角速度ω逆时针匀速转动,线圈中电流i随时间t变化的图象如图丙所示(I为已知量),取ab边刚开始进入右侧的扇形磁场时刻t =0,不计线圈转轴处的摩擦,则( )图6A .线圈在图乙所示位置时,线圈中电流方向为a →b →c →d →aB .线圈在图乙所示位置时,线圈产生电动势的大小为12nBL 1L 2ωC .外力做功的平均功率为nBL 1L 2ωI 2 D .闭合电路的总电阻为nBL 1L 2ωI【解析】 根据右手定则或者楞次定律和安培定则,可以判定当线圈在图乙位置时,线圈中的电流方向为a →b →c →d →a ,所以A 正确.当线圈在图乙位置时,ab 边和cd 边同时切割磁感线,产生的都是沿a →b →c →d →a 方向的感应电流,所以线圈在此位置时产生的电动势为ab 边产生的电动势的两倍,且线圈绕O 1O 2轴匀速转动,ab 边的切割速度v =L 22ω,则E =n ·2BL 1L 2ω2=nBL 1L 2ω,总电阻R =E I =nBL 1L 2ωI,所以B 错误,D 正确.根据能量守恒定律,外力做功的平均功率等于电路中的电功率,取一个周期T ,P =EI T 2T =EI 2=nBL 1L 2ωI 2,所以C 正确.【答案】 ACD8.电吉他中电拾音器的基本结构如图7所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.下列说法正确的有( )【导学号:05002183】图7A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .弦振动过程中,线圈中的电流方向不断变化【解析】 铜不能被磁化,铜质弦不能使电吉他正常工作,选项A 错误;取走磁体后,弦的振动无法通过电磁感应转化为电信号,音箱不能发声,选项B正确;增加线圈匝数,根据法拉第电磁感应定律E =N ΔΦΔt 知,线圈的感应电动势变大,选项C 正确;弦振动过程中,线圈中感应电流的磁场方向发生变化,则感应电流的方向不断变化,选项D 正确.【答案】 BCD9.如图8所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为20 2 cm ,电阻不计,其左端连接一阻值为10 Ω的定值电阻.两导轨之间存在着磁感应强度为1 T 的匀强磁场,磁场边界虚线由多个正弦曲线的半周期衔接而成,磁场方向如图.一接入电阻阻值为10 Ω的导体棒AB 在外力作用下以10 m/s 的速度匀速向右运动,交流电压表和交流电流表均为理想电表,则( )图8A .电流表的示数是210 AB .电压表的示数是1 VC .导体棒运动到图示虚线CD 位置时,电流表示数为零D .导体棒上消耗的热功率为0.1 W【解析】 当导体棒切割磁感线时,产生的感应电动势为E =BL v ,由于L 按正弦规律变化,这个过程产生正弦式电流,磁场方向变化时,电流方向变化,所以回路中产生的是正弦式交变电流.产生的感应电动势的最大值E m =BL v =1×202×10-2×10 V =2 2 V ,则电动势的有效值E =E m 2=2 V ,电流表的示数I =E R +r=220 A =0.1 A ;电压表测量R 两端的电压,则U =IR =1 V ,故A 错误,B 正确;电流表示数为有效值,一直为0.1 A ,故C 错误;导体棒上消耗的热功率P =U ′2r =(2-1)210 W =0.1 W ,故D 正确.【答案】 BD10.如图9甲所示,一光滑的平行金属导轨AB 、CD 竖直放置,AB 、CD 相距L ,在A 、C 之间接一个阻值为R 的电阻;在两导轨间的abdc 矩形区域内有垂直导轨平面向里、高度为5h 的有界匀强磁场,磁感应强度为B .一质量为m 、电阻为r 、长度也为L 的导体棒放在磁场下边界ab 上(与ab 边重合).现用一个竖直向上的力F 拉导体棒.使它由静止开始向上运动,导体棒刚要离开磁场时恰好做匀速直线运动,导体棒与导轨始终垂直且保持良好接触,导轨电阻不计.F 随导体棒与初始位置的距离x 变化的情况如图乙所示,下列判断正确的是( )【导学号:05002184】甲 乙图9A .导体棒离开磁场时速度大小为3mg (R +r )B 2L 2B .离开磁场时导体棒两端电压为2mgR BLC.导体棒经过磁场的过程中,通过电阻R的电荷量为2BLh RD.导体棒经过磁场的过程中,电阻R产生焦耳热为9mghRr+R-2m3g2R(R+r)B4L4【解析】导体棒刚要离开磁场时,做匀速直线运动,则3mg=mg+B BL vr+RL,可求得v=2mg(R+r)B2L2,A错;由3mg=mg+BUR L知U=2mgRBL,B对;导体棒经过磁场的过程中,通过电阻R的电荷量q=ΔΦr+R =5BLhr+R,C错;导体棒经过磁场的过程中,产生的总热量为Q,由能量守恒得:2mgh+3mg·4h-mg·5h=12m v2+Q总,知Q R=RR+rQ总=9mghRr+R-2m3g2R(R+r)B4L4,D对.【答案】BD二、非选择题(本题3小题,共40分.按题目要求作答)11.(10分)(1)按图10所示连接好电路,合上S和S′,发现小灯泡不亮,用电吹风对热敏电阻吹一会儿,会发现小灯泡发光了,原因是__________________________________________________________________.图10(2)若将热敏电阻换成光敏电阻,合上S和S′,发现小灯泡发光,用黑纸包住光敏电阻后,小灯泡熄灭,其原因是___________________________________ _____________________________________________________________.【解析】(1)热敏电阻阻值较大,左侧电路电流较小,电磁铁磁性较弱,吸不住衔铁,小灯泡不亮,电吹风对热敏电阻加热,使其阻值变小,电路中电流增大,电磁铁磁性增强吸住衔铁,使上、下触点接触,小灯泡发光;(2)用黑纸包住去敏电阻后,光敏电阻的阻值增大,左侧电路电流减小,电磁铁磁性变弱,使上、下触点断开,造成小灯泡熄灭.【答案】见解析12.(15分)如图11甲所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内存在着与线圈平面垂直的均匀分布的磁场.已知线圈的匝数n =100匝,总电阻r =1.0 Ω,所围成矩形的面积S =0.040 m 2,小灯泡的电阻R =9.0 Ω,磁场的磁感应强度按如图乙所示的规律变化,线圈中产生的感应电动势瞬时值的表达式为e =nB m S 2πT ·cos 2πT t ,其中B m 为磁感应强度的最大值,T 为磁场变化的周期,不计灯丝电阻随温度的变化,求:【导学号:05002185】甲 乙图11(1)线圈中产生感应电动势的最大值;(2)小灯泡消耗的电功率;(3)在磁感应强度变化的0~T 4的时间内,通过小灯泡的电荷量.【解析】 (1)由图象知,线圈中产生的交变电流的周期T =3.14×10-2 s , 所以E m =nB m Sω=2πnB m S T =8.0 V .(2)电流的最大值I m =E m R +r =0.80 A 有效值I =I m 2=225 A 小灯泡消耗的电功率P =I 2R =2.88 W. (3)在0~T 4时间内,电动势的平均值E -=nS ΔB Δt平均电流I -=E -R +r =nS ΔB (R +r )Δt流过灯泡的电荷量Q =I -Δt =nS ΔB R +r=4.0×10-3 C. 【答案】 (1)8.0 V (2)2.88 W (3)4.0×10-3 C13.(15分)如图12甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.图12(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.【解析】(1)如图所示,重力mg,竖直向下;支持力N,垂直斜面向上;安培力F,沿斜面向上.(2)当ab杆速度为v时,感应电动势E=BL v,此时电路中电流I=ER=BL vRab杆受到安培力F=BIL=B2L2v R根据牛顿运动定律,有ma=mg sin θ-F=mg sin θ-B2L2v R,a=g sin θ-B2L2v mR.(3)当B2L2vR=mg sin θ时,ab杆达到最大速度v m=mgR sin θB2L2.【答案】(1)见解析(2)BL vR g sin θ-B2L2vmR(3)mgR sin θB2L2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中正确的是( )A.已知某物质的摩尔质量和分子质量,可以算出阿伏加德罗常数B.已知某物质的摩尔质量和分子体积,可以算出阿伏加德罗常数C.当两个分子之间的距离增大时,分子引力和斥力的合力一定减小D.当两个分子之间的距离增大时,分子势能一定减小解析:阿伏加德罗常数等于摩尔质量与分子质量的比值,A正确,B错误;两个分子之间的距离增大时,分子引力和斥力都要减小,但在r>r0区域,随着分子间距的增大,分子引力的斥力的合力表现为引力,是先变大到最大再减小,C错误;在r>r0区域,随着分子间距的增大,分子引力和斥力的合力表现为引力,且引力做负功,分子势能增加,D错误.答案:A2.关于内能的正确说法是( )A.物体分子热运动的动能的总和就是物体的内能B.对于同一种物体,温度越高,分子平均动能越大C.同种物体,温度高、体积大的内能大D.温度相同,体积大的物体内能一定大解析:内能是物体内所有分子的动能和分子势能的总和,故A错;温度是分子平均动能的标志,温度高,分子平均动能大,B对;物体的内能是与物体的物质的量、温度、体积以及存在状态都有关的量,C、D中的描述都不完整.答案:B3.关于液体,下列说法正确的是( )A.液体的性质介于气体和固体之间,更接近固体B.小液滴成球状,说明液体有一定形状和体积C.液面为凸形时表面张力使表面收缩,液面为凹形时表面张力使表面伸张D.硬币能浮在水面上是因为所受浮力大于重力解析:液体性质介于气体和固体之间,更接近于固体,具有不易被压缩,有一定体积,没有一定形状,扩散比固体快等特点,A对、B错.无论液面为凸面还是凹面,表面张力总是使表面收缩,C错.硬币能浮在水面上是因为受到表面张力的缘故,而不是浮力作用的结果,D错.答案:A4.如图所示,在一个配有活塞的厚壁有机玻璃筒底放置一小团硝化棉,迅速向下压活塞,筒内气体被压缩后可点燃硝化棉.在筒内封闭的气体被活塞压缩的过程中( )A.气体对外界做正功,气体内能增加B.外界对气体做正功,气体内能增加C.气体的温度升高,压强不变D.气体的体积减小,压强不变解析:压缩玻璃筒内的空气,气体的压强变大,机械能转化为筒内空气的内能,空气的内能增加,温度升高,当达到棉花的燃点后,棉花会燃烧;故B正确,A、C、D错误.答案:B5.(2015·福建卷)下列有关分子动理论和物质结构的认识,其中正确的是( )A.分子间距离减小时分子势能一定减小B.温度越高,物体中分子无规则运动越剧烈C.物体内热运动速率大的分子数占总分子数比例与温度无关D.非晶体的物理性质各向同性而晶体的物理性质都是各向异性解析:当分子间距减小分子势能可能增大,也可能减小,故A错误;温度高平均动能一定大,物体中分子无规则运动越剧烈,故B正确;根据麦克斯韦统计规律可知,物体内热运动速率大的分子数占总分子数比例与温度有关,故C错误;单晶体的物理性质是各向异性,多晶体的物理性质各向同性,故D错误.答案:B6.下列说法中不正确的是( )A.给轮胎打气的过程中,轮胎内气体内能不断增大B.洒水车在不断洒水的过程中,轮胎内气体的内能不断增大C.太阳下暴晒的轮胎爆破,轮胎内气体内能减小D.拔火罐过程中,火罐能吸附在身体上,说明火罐内气体内能减小解析:给轮胎打气的过程中,轮胎内气体质量增加,体积几乎不变,压强增加,温度升高,内能增加,选项A正确;洒水车内水逐渐减少,轮胎内气体压强逐渐减小,体积增大,对外做功,气体内能减小,选项B错误;轮胎爆破的过程中,气体膨胀对外做功,内能减小,选项C正确;火罐内气体温度逐渐降低时,内能减小,选项D正确.答案:B7.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F ,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )A .温度升高,压强增大,内能减少B .温度降低,压强增大,内能减少C .温度升高,压强增大,内能增加D .温度降低,压强减小,内能增加解析:向下压缩活塞,对气体做功,气体的内能增加,温度升高,对活塞受力分析可得出气体的压强增大,故C 选项正确.答案:C8.带有活塞的气缸内封闭一定量的理想气体.气体开始处于状态a ;然后经过过程ab 到达状态b 或经过过程ac 到达状态c ,b 、c 状态温度相同,V -T 图如图所示.设气体在状态b 和状态c 的压强分别为p b 和p c ,在过程ab 和ac 中吸收的热量分别为Q ab 和Q ac ,则( )A .p b >p c ,Q ab >Q aB .p b >p c ,Q ab <Q acC .p b <p c ,Q ab >Q acD .p b <p c ,Q ab <Q ac解析:由V =K pT 可知V -T 图线的斜率越大,压强p 越小,故p b <p c .由热力学第一定律有:Q =ΔE -W ,因T b =T c ,所以ΔE ab =ΔE ac ,而W ab <W ac ,故Q ab >Q ac .综上C 正确.答案:C9.一定质量的理想气体由状态A 变化到状态B ,气体的压强随热力学温度变化如图所示,则此过程( )A .气体的密度减小B .外界对气体做功C .气体从外界吸收了热量D .气体分子的平均动能增大解析:由图线可知,在从A 到B 的过程中,气体温度不变,压强变大,由玻意耳定律可知,气体体积变小,V B <V A ;气体质量不变,体积变小,由密度公式可知气体密度变大,故A 错误;气体体积变小,外界对气体做功,故B 正确;气体温度不变,内能不变,ΔU =0,外界对气体做功,W >0,由热力学第一定律ΔU =Q +W 可知:Q <0,气体要放出热量,故C 错误;气体温度不变,分子平均动能不变,故D 错误.答案:B10.用一导热的可自由滑动的轻隔板把一圆柱形容器分隔成A 、B 两部分,如图所示.A 和B 中分别封闭有质量相等的氮气和氧气,均可视为理想气体,则当两部分气体处于热平衡时( )A .内能相等B .分子的平均动能相等C .分子的平均速率相等D .分子数相等解析:两种理想气体处于热平衡时,温度相同,所以分子的平均动能相同,但气体种类不同,其分子质量不同,所以分子的平均速率不同,故B 正确,C 错误;两种气体的质量相同,而摩尔质量不同,所以分子数不同,故D 错误;两种气体的分子平均动能相同,但分子个数不同,故内能也不相同,A 错误.答案:B二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多个选项符合题目要求)11.一般情况下,分子间同时存在分子引力和分子斥力.若在外力作用下两分子间的间距达到不能再靠近为止,且甲分子固定不动,乙分子可自由移动,则去掉外力后,当乙分子运动到相距很远时,速度为v ,则在乙分子的运动过程中(乙分子的质量为m )( )A .乙分子的动能变化量为12mv 2 B .分子力对乙分子做的功为12mv 2 C .分子引力比分子斥力多做了12mv 2的功D .分子斥力比分子引力多做了12mv 2的功 解析:当甲、乙两分子间距离最小时,两者都静止,当乙分子运动到分子力的作用范围之外时,乙分子不再受力,此时速度为v ,故在此过程中乙分子的动能变化量为12mv 2;且在此过程中,分子斥力始终做正功,分子引力始终做负功,即W 合=W 斥+W 引,由动能定理得W 引+W 斥=12mv 2,故此分子斥力比分子引力多做了12mv 2的功. 答案:ABD12.关于空气湿度,下列说法正确的是( )A .当人们感到潮湿时,空气的绝对湿度一定较大B .当人们感到干燥时,空气的相对湿度一定较小C .空气的绝对湿度用空气中所含水蒸气的压强表示D .空气的相对湿度定义为水的饱和蒸汽与相同温度时空气中所含水蒸气的压强之比 解析:相对湿度越大,人感觉越潮湿,相对湿度大时,绝对湿度不一定大,故A 错误;相对湿度较小时,使人感觉干燥,故B 正确.用空气中水蒸气的压强表示的温度叫作空气的绝对湿度,用空气中水蒸气的压强与同一温度时水的饱和汽压之比叫作相对湿度,故C 正确,D 错误.答案:BC13.关于永动机和热力学定律的讨论,下列叙述正确的是( )A .第二类永动机违反能量守恒定律B .如果物体从外界吸收了热量,则物体的内能一定增加C .保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D .做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的解析:第二类永动机违反了热力学第二定律,但不违反能量守恒定律,所以A 错误;做功和热传递都可以改变物体的内能,物体从外界吸收了热量,同时也对外做了功,则物体的内能有可能减少,所以B 错误;保持气体的质量和体积不变,根据理想气体的状态方程pV T=C 知,当温度升高时,气体的压强增大,故每秒撞击单位面积器壁的气体分子数增多,所以C 正确;做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的,D 正确.答案:CD14.一定质量的理想气体的状态变化过程表示在如图所示的p -V 图上,气体先由a 状态沿双曲线经等温过程变化到b 状态,再沿与横轴平行的直线变化到c 状态,a 、c 两点位于与纵轴平行的直线上,以下说法中正确的是( )A .由a 状态至b 状态的过程中,气体放出热量,内能不变B .由b 状态至c 状态的过程中,气体对外做功,内能增加,平均每个气体分子在单位时间内与器壁碰撞的次数不变C .c 状态与a 状态相比,c 状态分子平均距离较大,分子平均动能较大D .b 状态与a 状态相比,b 状态分子平均距离较小,分子平均动能相等解析:由a 到b 的过程是等温过程,所以内能不发生变化,气体体积减小,所以外界对气体做功,放出热量,分子平均距离减小,分子平均动能不变,A 、D 正确;由b 到c 的过程是等压过程,体积增大,温度升高,内能增加,所以气体对外界做功,应该吸收热量,因为压强不变,且气体分子热运动的平均动能增大,碰撞次数减少,B 错误;由c 到a 的过程是等容过程,压强减小,温度降低,所以分子平均距离不变,分子平均动能减小,C 错误.答案:AD三、非选择题(本题共6小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p 和体积V 关系的是________.解析:根据理想气体状态方程,空气等温压缩,pV =C ,p 与1V成正比,所以该过程中空气的压强p 和体积V 关系的是图(B).答案:图(B)16.(10分)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24 kJ 的功.现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5 kJ 的热量.在上述两个过程中,空气的内能共减小________kJ ,空气________(选填“吸收”或“放出”)的总能量为________kJ.解析:将空气压缩装入气瓶的过程中,温度保持不变,气体内能保持不变;外界做了24 kJ 的功,空气放出24 kJ 能量,气瓶缓慢地潜入海底的过程中,放出了5 kJ 的热量,所以在上述两个过程中,空气的内能共减小5 kJ ,空气放出的总能量为24 kJ +5 kJ =29 kJ.答案:5 放出 2917.(8分)已知金刚石密度为3.5×103 kg/m 3 ,体积为4×10-8m 3的一小块金刚石中含有多少碳原子?并估算碳原子的直径(取两位有效数字).解析:这一小块金刚石的质量 m =ρV =3.5×103×4×10-8 kg =1.4×10-4kg ,这一小块金刚石的物质的量n =m M =1.4×10-4kg 0.012 kg =76×10-2mol , 所含碳分子的个数N =n ×6.02×1023=76×10-2×6.02×1023个=7×1021个. 一个碳原子的体积为 V ′=V N =4×10-87×1021 m 3=47×10-29m 3. 碳原子的直径d =2r =233V ′4π= 2 33×47×10-294πm ≈2.2×10-10m. 答案:7.0×1021个 2.2×10-10m18.(10分)如图所示,一定质量的理想气体从状态A变化到状态B ,再从状态B 变化到状态C .已知状态A 的温度为480 K .求:(1)气体在状态C 时的温度;(2)试分析从状态A 变化到状态B 的整个过程中,气体是从外界吸收热量还是放出热量. 解析:(1)A 、C 两状态体积相等,则有p A T A =p CT C.① 得T C =p C p A T A =0.5×4801.5K =160 K .②(2)由理想气体状态方程得p A V A T A =p B V B T B .③ 解得T B =p B V B p A V A T A =0.5×3×4801.5×1K =480 K. 由此可知A 、B 两状态温度相同,故A 、B 两状态内能相等.答案:(1)160 K (2)既不吸热也不放热19.(10分)如图,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度为l =10.0 cm ,B 侧水银面比A 侧的高h =3.0 cm.现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为h 1=10.0 cm 时将开关K 关闭.已知大气压强p 0=75.0 cmHg.(1)求放出部分水银后A 侧空气柱的长度;(2)此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,求注入的水银在管内的长度.解析:(1)以cmHg 为压强单位.设A 侧空气柱长度l =10.0 cm 时的压强为p ;当两侧水银面的高度差为h 1=10.0 cm 时,A 侧空气柱的长度为l 1,压强为p 1.由玻意耳定律得pl =p 1l 1①由力学平衡条件得p =p 0+h ②打开开关K 放出水银的过程中,B 侧水银面处的压强始终为p 0,而A 侧水银面处的压强随空气柱长度的增加逐渐减小,B 、A 两侧水银面的高度差也随之减小,直至B 侧水银面低于A 侧水银面h 1为止.由力学平衡条件有p 1=p 0-h 1③联立①②③式,并代入题给数据得l 1=12.0 cm ④(2)当A 、B 两侧的水银面达到同一高度时,设A 侧空气柱的长度为l 2,压强为p 2. 由玻意耳定律得pl =p 2l 2⑤由力学平衡条件有p 2=p 0⑥联立②⑤⑥式,并代入题给数据得l 2=10.4 cm ⑦设注入的水银在管内的长度为Δh ,依题意得Δh =2(l 1-l 2)+h 1⑧联立④⑦⑧式,并代入题给数据得Δh =13.2 cm答案:(1)12.0 cm (2)13.2 cm20.(10分)如图所示,两个充有空气的容器A 、B ,以装有活塞栓的细管相连通,容器A 浸在温度为t 1=-23 ℃的恒温箱中,而容器B 浸在t 2=27 ℃的恒温箱中,彼此由活塞栓隔开.容器A 的容积为V 1=1 L ,气体压强为p 1=1 atm ;容器B 的容积为V 2=2 L ,气体压强为p 2=3 atm ,求活塞栓打开后,气体的稳定压强是多少.解析:设活塞栓打开前为初状态,打开后稳定的状态为末状态,活塞栓打开前后两个容器中的气体总质量没有变化,且是同种气体,只不过是两容器中的气体有所迁移流动,故可用分态式求解.将两容器中的气体看成整体,由分态式可得:p 1V 1T 1+p 2V 2T 2=p 1′V 1′T 1′+p 2′V 2′ T 2′. 因末状态为两部分气体混合后的平衡态,设压强为p ′,则p 1′=p 2′=p ′,代入有关的数据得:p ′=2.25 atm.因此,活塞栓打开后,气体的稳定压强为2.25 atm.答案:稳定压强为2.25 atm。