(课件2)《圆》复习
合集下载
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册
学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
全国优质课一等奖人教版九年级数学上册《圆(复习课件)》公开课课件
符号语言:
04
基础巩固(圆心角与圆周角)
圆心角的定义:顶点在圆心的角叫做圆心角。
圆心角的判断方法:观察顶点是否在圆心。
圆周角的定义:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的特征: ①顶点在圆上;②两边都和圆相交。
05
基础巩固(弧、弦、圆心角之间的关系)
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
基础回顾
02
热考题型
03
直击中考
CONTENTS
基础回顾
01
基础巩固(圆的概念)
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,
另一个端点A所形成的图形叫做圆。
其中,固定的端点O叫做圆心。
线段OA叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
02
基础巩固(圆的特征)
【特征一】圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形。
( n 2) 180
正n边形的一个内角的度数是____________;
n
360
中心角是___________;
n
相等
正多边形的中心角与外角的大小关系是________.
正n边形的周长为 P=na (P为正n边形的周长,α为边长)
正n边形的周长为 S
A
B
1
Pr (S为正多边形的面积,P为正多边形的周长,
①三角形内切圆半径公式: r
C
其中S为三角形的面积;C为三角形的周长.
ab
a +b- c
.
或r =
②特殊的直角三角形内切圆半径公式:r =
a+b+c
2019届人教版中考数学复习《圆》课件(共13张PPT)高品质版
∠BAC=40°,则
∠BOC=_8_0_°
5.如图,已知⊙O中,弧AD= D
O
弧BC,∠DCA=30°
则∠BAC= __3_0_°___.
若⊙O的直径AB=4,则
C
B
AD=___2____.
点与圆的 位置关系
O C
A B
点A在圆上 点B在圆外 点C在圆内
d =r d>r d<r
6、根据点与圆的关系解决下列问题:
(1)经过一点A的圆有( 无数 )个,经过A、B两
点的圆( 无数 )个,若AB=6则经过A、B两点的
圆的半径r的取 值范围是( R≥3
)
(2)经过三角形的三个顶点有且只有( 一) 个
圆 ,若AB=3,AC=5,BC=4则三角形的外接圆的
圆心在( AC的中点 ),半径是( 2.5 )。
直线与圆 相交
PA=PB ∠APO= ∠BPO ∠AOP= ∠BOP
圆与圆的 位置关系
相交 相切 (外切、内切) 相离(外离、内含)
R+r>d>R-r R+r=d d =R-r d<R-r d>R+r 10.(1)已知⊙O1和⊙O2的半径分别为3cm和5cm, 两圆的圆心距是6cm,则这两圆的位置关系是 相交 。
3、如图,在⊙O中,弦EF∥直径AB,若弧AE的度数为50°,则 弧BF的度数为 50° ,弧EF的度数为 80°,∠EOF= 80° , ∠EFO= 50° 。 弦AE与BF是什么关系?
相等
E
F
A
O
B
在同圆或等圆中,同弧或等弧所对的圆周角相等,
都等于这条弧所对的圆心角的一半。
A
4.如图,在⊙O中,若已知
人教版六年级数学上册5.6 圆的单元整理和复习课件
《圆》的单元整理与复习
圆的认识
圆是一个什么样的图形?
圆是由一条曲线围成的封闭图形。 属于平面图形中的一种。
圆的认识
o
圆中心的一点叫做( 圆心),用字母表示是( )。o 圆心可以确定圆的 ( 位置 )。
圆的认识
o
r
连接圆心和圆上任意一点的线段叫做( 半径), 用字母( r)表示。 半径可以确定圆的 ( 大小 )。
r=5米
答:这只羊能吃到的草所占的最大面积是78.5平方米。
4、判断题
1、圆周率 π 的值是3.14。( x )
2、半径2厘米的圆它的周长和面积相等。( x ) 3、一个圆的半径扩大3倍,面积就扩大6倍。( x ) 4、半圆只有一条对称轴。( √ ) 5、半圆周长就是这个圆周长的一半。( x ) 6、两个圆的直径之比是3:1,它们圆周长之比是3:1。( √ )
亲爱的读者: 1、老吾老以及人之老,幼吾幼以及人之幼。20.7.147.14.202020:2620:26:02Jul-2020:26
2、鞠躬尽瘁,死而后已。二〇二〇年七月十四日2020年7月14日星期二
春去春又回,新桃换旧符。在那桃花盛开的地方,在 3、同是天涯沦落人,相逢何必曾相识。20:267.14.202020:267.14.202020:2620:26:027.14.202020:267.14.2020
圆的认识
do r
通过圆心并且两端都在圆上的线段叫做( 直)径, 用字母( d)表示。 一个圆内有( 无数)条半径,( )无条数直径。 在同一个圆中所有的半径( 相等)、直径( )相。等
圆的认识
半径、直径,在同一个圆或等圆中,它们有什么关系?
do r
d=2r r=d÷2
圆的认识
圆的认识
圆是一个什么样的图形?
圆是由一条曲线围成的封闭图形。 属于平面图形中的一种。
圆的认识
o
圆中心的一点叫做( 圆心),用字母表示是( )。o 圆心可以确定圆的 ( 位置 )。
圆的认识
o
r
连接圆心和圆上任意一点的线段叫做( 半径), 用字母( r)表示。 半径可以确定圆的 ( 大小 )。
r=5米
答:这只羊能吃到的草所占的最大面积是78.5平方米。
4、判断题
1、圆周率 π 的值是3.14。( x )
2、半径2厘米的圆它的周长和面积相等。( x ) 3、一个圆的半径扩大3倍,面积就扩大6倍。( x ) 4、半圆只有一条对称轴。( √ ) 5、半圆周长就是这个圆周长的一半。( x ) 6、两个圆的直径之比是3:1,它们圆周长之比是3:1。( √ )
亲爱的读者: 1、老吾老以及人之老,幼吾幼以及人之幼。20.7.147.14.202020:2620:26:02Jul-2020:26
2、鞠躬尽瘁,死而后已。二〇二〇年七月十四日2020年7月14日星期二
春去春又回,新桃换旧符。在那桃花盛开的地方,在 3、同是天涯沦落人,相逢何必曾相识。20:267.14.202020:267.14.202020:2620:26:027.14.202020:267.14.2020
圆的认识
do r
通过圆心并且两端都在圆上的线段叫做( 直)径, 用字母( d)表示。 一个圆内有( 无数)条半径,( )无条数直径。 在同一个圆中所有的半径( 相等)、直径( )相。等
圆的认识
半径、直径,在同一个圆或等圆中,它们有什么关系?
do r
d=2r r=d÷2
圆的认识
圆的复习课课件
4. 在艺术和文学作品中,圆常被用来象征完美、完整和无限。
总结词:说明圆在实际生活中的应用
1. 日常生活用品,如碗、盘子和轮胎的设计都利用了圆的特性。
3. 物理学中的波、磁场和力场理论中经常用到圆或圆的性质。
01
02
03
04
05
06
02
圆的周长与面积
圆的面积的定义
圆的面积是指圆所占的平面的大小。
03
圆与其他几何形状的应用
在实际生活中,这些几何形状的应用非常广泛,如建筑设计、机械制造等。
01
与圆相关的其他几何形状
圆与椭圆、圆环等其他几何形状有着密切的联系。
02
圆与其他几何形状的相似性
圆与其他几何形状在某些性质上具有相似性,如周长、面积等。
03
圆的方程
标准方程是描述圆的最基本形式,包含了圆心和半径的信息。
圆的复习课PPT课件
圆的定义与性质圆的周长与面积圆的方程圆的几何证明圆的实际应用
contents
目录
01
圆的定义与性质
总结词
描述圆的基本定义
详细描述
圆是平面内所有点到一个固定点(圆心)的距离等于一个固定长度(半径)的点的集合。
ห้องสมุดไป่ตู้
详细描述
2. 建筑学中,圆或圆弧常用于设计美观和功能性的建筑结构。
公式推导
总结词:参数方程是另一种描述圆的方式,通过引入参数来表示圆的各个部分。
04
圆的几何证明
总结词
总结词
总结词
总结词
01
02
03
04
理解圆的相交性质,掌握证明方法
理解弦心距定理,掌握应用弦心距定理证明弦与圆相交的方法
总结词:说明圆在实际生活中的应用
1. 日常生活用品,如碗、盘子和轮胎的设计都利用了圆的特性。
3. 物理学中的波、磁场和力场理论中经常用到圆或圆的性质。
01
02
03
04
05
06
02
圆的周长与面积
圆的面积的定义
圆的面积是指圆所占的平面的大小。
03
圆与其他几何形状的应用
在实际生活中,这些几何形状的应用非常广泛,如建筑设计、机械制造等。
01
与圆相关的其他几何形状
圆与椭圆、圆环等其他几何形状有着密切的联系。
02
圆与其他几何形状的相似性
圆与其他几何形状在某些性质上具有相似性,如周长、面积等。
03
圆的方程
标准方程是描述圆的最基本形式,包含了圆心和半径的信息。
圆的复习课PPT课件
圆的定义与性质圆的周长与面积圆的方程圆的几何证明圆的实际应用
contents
目录
01
圆的定义与性质
总结词
描述圆的基本定义
详细描述
圆是平面内所有点到一个固定点(圆心)的距离等于一个固定长度(半径)的点的集合。
ห้องสมุดไป่ตู้
详细描述
2. 建筑学中,圆或圆弧常用于设计美观和功能性的建筑结构。
公式推导
总结词:参数方程是另一种描述圆的方式,通过引入参数来表示圆的各个部分。
04
圆的几何证明
总结词
总结词
总结词
总结词
01
02
03
04
理解圆的相交性质,掌握证明方法
理解弦心距定理,掌握应用弦心距定理证明弦与圆相交的方法
第24章 圆的复习-九年级数学上册教学课件(人教版)
原 所示,则这个小圆孔的宽口AB的长度为 8 mm.
理
C
精
炼
O
8mm
A
B
提
D
升
与圆有关的概念
典 1.圆:平面内到定点的距离等于定长的所有点组成的图形.
例 2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
原 4.劣弧:小于半圆周的圆弧.
理 5.优弧:大于半圆周的圆弧.
炼 【注意】(1)三角形的外心是三角形三边的垂直平分线的交点.
(2)一个三角形的外接圆是唯一的.
提
(3)三角形的内心是三角形三条角平分线的交点.
升
(4)一个三角形的内切圆是唯一的.
点与圆的位置关系
典 1.在△ABC中,∠C=90º,AC=1,BC=2,M是AB的中点,以点C为圆 例 心,1为半径作⊙C,则( C )
原 2.垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦, 理 并且平分这条弦所对的两条弧;
精 3.垂径定理的推论:平分弧的直径垂直平分这条弧所对的弦. 炼
提 升
圆的基本性质
典 1.圆的对称性: 例 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴.
原 2.有关圆心角、弧、弦的性质:
理
在同圆或等圆中,如果两个圆心角、
° 精 炼
提 升
典 6.如图,已知A、B、C、D是⊙O上的四点,延长DC,AB相交于点 例 E.若BC=BE.求证:△ADE是等腰三角形.
原 理
精 炼
提 升
典 7.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. 例 (1)若∠CBD=39º,求∠BAD的度数; 原 (2)求证:∠1=∠2. 理
北师大版六年级数学上册--第一单元《圆》复习课件全文
(4)一张圆桌面的周长是376.8cm,要在它上面配一块圆形 玻璃,这块圆形玻璃的面积是( 11304 )cm2。 (5)李明浩家的抽油烟机排烟管道直径是18cm,在安装排烟 管道处至少要打( 254.34 )cm2的圆孔。
2. 判断。(对的画“√”,错的画“×”)
(1)通过圆心的线段,叫做圆的直径。( × ) (2)任何圆的圆周率都是π。( √ ) (3)同一个圆内,半径是直径的一半。( √ ) (4)大圆的半径与小圆的直径相等,小圆的面积是大圆面积 的 。( × ) (5)用10 m长的铁丝分别围成圆、正方形,其中面积比较小 的是圆。( × )
知识点/04 圆的周长
圆的周长除以直径的商是一个固定 的数。我们把它叫做圆周率,用字
母π表示。
π=3.141592653……
π≈3.14
知识点/04 圆的周长
圆的直径与半径的关系: 圆的周长计算的公式: 圆的面积计算的公式:
d=2r C=2πr S=πr²
知识点/05 圆周率的历史
古希腊的阿基米德和我国古代的刘徽想到的计 算圆周率的方法在本质上是一致的,都是把圆 的周长转化成正多边形的周长。
规
画
2厘米
圆
知识点/01 圆的认识(一)
c. 在同圆或等圆内,所有的半径都相等,
所有的直径也都相等,直径的长度是半 径的2倍,半径的长度是直径的一半。圆 心确定圆的位置,半径确定圆的大小。
知识点/02 圆的认识(二)
a. 在圆形纸片上折叠的折痕都通过了圆心,每一
条直径所在的直线都是圆的对称轴。圆有无数 条对称轴。
知识点/07 圆的面积(二)
b. 已知圆的周长求圆的面积,应先利用周长公
式C=2πr求出半径,再利用圆的面积公式计 算。综合算式为S=π (C÷2π) 2。
六年级数学圆的整理和复习PPT课件
半径的2倍 C 半径是直径的一半
第35页/共45页
圆单元整理与复习
查漏补缺
2、对比练习:
给直径是75厘米的水缸做一个木盖,木盖的直径 比缸口直径大5厘米。
(1)木盖的面积是多少平方米?
(2)如果在木盖的边沿钉一条铁片,铁片长多少厘米?
这两个问题有什么区别?
第36页/共45页
圆单元整理与复习
查漏补缺
3.14×0.28×20 =3.14×5.6 =17.584(平方米)
17.584÷(3.14×0.35) =17.584 ÷3.14 ÷0.35 =16(圈)
2、在一答个:周后轮长行为驶1186圈.8。4厘米的圆内画一个最大的 正方形,这个正方形的面积是多少平方厘米?
Байду номын сангаас
18.84÷3.14=6(厘米) 6×(6÷2)=18(平方厘米) 答:这个正方形的面积是18平方厘米。
这两个问题有什么区别?
第38页/共45页
圆单元整理与复习
查漏补缺
下图是一个直径是4厘米的半圆,你会求它的周长 和面积吗?
4厘米 半圆的周长等于圆周长的一半加一条直径。 半圆的面积等于圆面积的一半。
第39页/共45页
圆单元整理与复习
灵活应用
1、如下图,绳长4米,问小狗的活动面积有多大?
2、一个圆形花圃的周长是50.24米,在它里面留出1/8 的面积种菊花。菊花的占地面积是多少?
通过观察、思考、交流 ,我们发现了 拼成的长方形与原来的圆之间的联系。 长方形的面积与圆的面积相等。
长方形的长是圆的( 周长的一半r )。
长方形的宽是圆的( 半径r )。
r
2C(r)
第26页/共45页
北师版六年级上册圆复习课件(36页)完美版
注意:圆周率不等于3.14,3.14只是它的近似值。
复习驿站
5.圆的面积(一)
复习驿站
复习驿站
6.圆的面积(二)
典型例题分析
典型例题分析
分析:
典型例题分析
解答:
12 6 12
典型例题分析
典型例题分析
分析:
典型例题分析
解答:
典型例题分析
典型例题分析
分析:
典型例题分析
容错展板
错解分析:
正确解答:×
容错展板
容错展板
错误解答:3.14×5÷2=7.85(m)答:它的周长是7.85m。
容错展板
错解分析:
正确解答:3.14×5÷2+5=12.85(m)答:它的周长是12.85 m。
容错展板
容错展板
错例5.一个环形铁片,内圆直径是3 dm,环宽是1 dm。这个环形铁片的面积是多少平方分米?
复习驿站
2.圆的认识(二)
将圆沿直径对折,正好完全重合。圆是轴对称图形,直径所在的直线或通过圆心的直线是圆的对称轴,圆有无数条对称轴。将一个圆沿直径按不同方向对折,折痕相交于一点,即圆心。
复习驿站
3.欣赏与设计
基本的图形通过旋转、对称、平移可以得到一些复杂的图案。
复习驿站
4.圆的周长
圆的周长除以直径的商是一个固定的数,我们把它叫作圆周率,用字母π表示,它是一个无限不循环小数,计算时通常取3.14。围成圆的曲线的长度就是圆的一周的长度,即圆的周长,一般用字母C表示。已知直径用C=πd求周长,已知半径用C=2πr求周长。
例如:一个圆的半径是3 cm,求它的周长列式计算为:2×3.14×3=18.84(cm)。
北师版六年级上册第一单元
复习驿站
5.圆的面积(一)
复习驿站
复习驿站
6.圆的面积(二)
典型例题分析
典型例题分析
分析:
典型例题分析
解答:
12 6 12
典型例题分析
典型例题分析
分析:
典型例题分析
解答:
典型例题分析
典型例题分析
分析:
典型例题分析
容错展板
错解分析:
正确解答:×
容错展板
容错展板
错误解答:3.14×5÷2=7.85(m)答:它的周长是7.85m。
容错展板
错解分析:
正确解答:3.14×5÷2+5=12.85(m)答:它的周长是12.85 m。
容错展板
容错展板
错例5.一个环形铁片,内圆直径是3 dm,环宽是1 dm。这个环形铁片的面积是多少平方分米?
复习驿站
2.圆的认识(二)
将圆沿直径对折,正好完全重合。圆是轴对称图形,直径所在的直线或通过圆心的直线是圆的对称轴,圆有无数条对称轴。将一个圆沿直径按不同方向对折,折痕相交于一点,即圆心。
复习驿站
3.欣赏与设计
基本的图形通过旋转、对称、平移可以得到一些复杂的图案。
复习驿站
4.圆的周长
圆的周长除以直径的商是一个固定的数,我们把它叫作圆周率,用字母π表示,它是一个无限不循环小数,计算时通常取3.14。围成圆的曲线的长度就是圆的一周的长度,即圆的周长,一般用字母C表示。已知直径用C=πd求周长,已知半径用C=2πr求周长。
例如:一个圆的半径是3 cm,求它的周长列式计算为:2×3.14×3=18.84(cm)。
北师版六年级上册第一单元
六年级上册数学课件 -圆的整理与复习 (共48张PPT)_全国通用
数学诊所
1.两个半圆一定能拼成一个圆。 ( ×) 2.半径是2厘米的圆,周长和面积相等( ×) 3.大圆的圆周率比小圆的圆周率大。 ( ×) 4.半圆形纸片的周长就是圆周长的一半( ×)
5.把半径3厘米的圆等分成十六份,拼成一个近似
长方形,长方形的周长比圆的周长长( √ )
6.《易经》中的太极图。图中黑白部分的周长和
答:略。
羊吃草、喷泉问题
6.一只羊拴在一片草坪中的树桩上, 从树桩到羊颈的绳长为2米。这只羊 能吃到青草的占地面积是多少?
3.14×22=12.56(平方米) 答:略。
拓展提升
7.用一根长7米的绳子绕大厅柱子2圈还 剩0.72米,这根柱子的占地面积是多少?
半径:(7-0.72)÷2÷3.14÷2=0.5m 面积:3.14×0.5²=0.785m² 答:略。
21.两个半圆形纸板,一定能够拼成一个圆(。× )
22.大圆的周长除以它的直径等于小圆的周长除以
它的直径。( √ )
填一填,我能行
1. 圆中心的一点叫做( 圆心 ),一般用字母(O)表示。
2. 连接圆心和圆上任意一点的线段叫做( 半径),一般用字母r表示。 3. 通过圆心并且两端都在圆上的线段叫做(直径),一般用字母d 表示。 4. 一个圆内有(无数 )条直径,( 无数 )条半径。并且( 1)条直径等于2 条半径。
4.电视塔的圆形塔底半径为15米,要 在它的周围种上5米宽的环形草坪。 (1)需要多少平方米草坪? (2)如果每平方米草坪需要50元,那 么植这块草坪至少需要多少元?
3.14×(20²-15²)=549.5(m²)
5. 圆是( 轴对称 )图形,有( 无数 )条对称轴。 6. 把圆规的两脚分开,定好两脚间的距离作为(半径)。 7、圆是平面上的一种(曲线)图形。圆的两条直径的交点是圆的(圆心)。
第24章圆期末复习圆的基本性质PPT课件(沪科版)
2
O E1C D
BO⊥AD
8.如图,AB是⊙O的直径,AC,BC分别
与⊙O相交于点D,E,连接DE,现给出两个命题:
①若AC=AB,则DE=CE;②若∠C=45°,记
△CDE的面积为S1,四边形DABE的面积为S2,则
S1=S2,那么( D ).
C
A.①是真命题 ②是假命题
B.①是假命题 ②是真命题 D
并交BO、AO的延长线于点C、D,连接CD,交
⊙O于点E、F,过圆心O作OM⊥CD于点M.
求证: (2)CE=DF.
(2) ∵△ACO≌△BDO, A
B O
∴OC=OD,
∵OM⊥CD, C E M F
D
∴CM=DM, EM=FM,
∴CM-EM=DM-FM.
∴CE=DF.
D
5.如图,AB是⊙O的直径,C、D是⊙O上 的两点,分别连接AC、BC、CD、OD,若 ∠DOB=140°,则∠ACD= ( A).
A.20° B. 30° C. 40° D.70° C
A
O
B
D
6.如图,⊙O的直径CD过弦EF的中点G, 连接 CF,∠C=30°,CF= 2 ,3 则OG的长是( A).
沪科版
第24章 圆 期末复习(2)
圆的基本性质
复习要点
1.圆 (1)平面上到定点的 距离 等于定长的所有 点 组成
的图形叫做圆; 定点称为圆心, 定长 称为半径. (2)圆是轴对称图形,其对称轴是任意一条过 圆心的
直线;圆又是中心对称图形,对称中心是 圆心 . (3)不在同一条直线上的 三个点确定一个圆.
AB=AC, ∠ BAC=36°,在AB上取点D(不与点
A,B重合),连接BD,AD,则∠BAD+
人教版六年级下册数学6.2 圆的整理与复习 课件(18张ppt)
圆的周长
圆的周长指什么? 圆周率是什么? 要想计算圆的周长,需要什么信息? 怎样计算圆的周长? 圆的周长与直径的比值是什么?圆的周长与半 径的比值是什么? 圆的周长与直径成什么比例关系?为什么?
圆的面积
圆的面积指什么?如何计算圆的面积? 圆的面积公式是如何推导出来的?
平行四边形的底 = 圆周长的一半(πr) 平行四边形的高 = 圆的半径(r) 圆的面积 = πr×r =πr²
25.12÷3.14÷2=4(dm) 3.14×4²=50.24(dm²)
一个花坛的直径是10米,在它的周围修一条2米宽的小 路,小路的面积是多少平方米? 你是这样理解题意的?
10÷2=5(米) 5+2=7(米) 3.14×(7²-5²)=75.36(平方米)
已知圆中正方形的面积是9cm²,这个圆的周长是多少 厘米?
=1256+4000 =5256(平方米)
本课总结:
你认为学习几何平面图形时, 要学习哪些方面的知识?
思考:圆和正方形之间有什么关系? 9=3×3
3.14×(3×2)=18.84(厘米)
如果正方形的面积是6cm²,那么圆的面积是多少平方厘 米。
3.14×6=18.84(平方厘米)
下面是跑道示意图,请你分别算出它的周长和面积。
40m
100m 周长:3.14×40+100×2=325.6(米) 面积:3.14×(40÷2)²+100×40
什么是圆环?
圆环的周长指什么? 怎样计算圆环的周长? 圆环的面积指什么? 怎样计算圆环的面积?
半圆是由什么围起来的?
如何计算半圆的周长? C=πr+d
如何计算半圆的面积? S=πr²÷2
如果一个半圆的半径是10厘米,那么,它的周长 是多少厘米?面积是多少平方厘米?
人教版九年级上册数学《圆周角》圆说课复习(第2课时圆内接四边形的性质)
于 AC 的对称点 E 在边 BC 上,连接 AE.若∠ABC=64°,则∠BAE 的度数为
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
_____5_2_°___. 手抄报:课件/shouchaobao/
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
第二十四章 圆
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
=8,∴AC=12AB=4,∴⊙C 课件
课件
的半径为
4.∵CE⊥OA,∴OE=12OA=2.在
Rt△CEO
中,CE= OC2-OE2= 42-22=2 3.又∵点 C 在第二象限,∴点 C 的坐标为(-2 3,
2).
第二十四章 圆
上一页 返回导航 下一页
数学·九年级(上)·配人教
思维训练
14.【核心素养题】如图,⊙O的内接四边形ABCD两组对边的延长线分别交于
点E、F.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(1)当∠E=∠F时,则∠ADC=_______9_0_°_;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r 2 lr
7.结合本章内容,进一步体会数学来源于现实, 服务于现实.
1
1°的扇形面积是 360 R 1°
2
° n° n°圆心角的扇形的面积
R 2 n 360
(3) 举例说明如何计算圆锥的侧面积和全面积.
扇形
圆锥的侧面展开图是一个扇形,设圆锥的母线 长为l,底面圆的半径为r,那么这个扇形的半径 l 为l 扇形的弧长为 2r
r
因此圆锥的侧面积
o
lr
圆锥的全面积为
一、本章知识结构图
圆的对称性
圆的基本性质
弧、弦、圆心角之间的关系
同弧上的圆周角与圆心角的关系 点和圆的位置关系 三角形外接圆 切线 三角形内切圆
圆
与圆有关的位置关系
直线和圆的位置关系 圆与圆的位置关系
正多边形和圆
等分圆周 弧长
有关圆的计算
扇形面积 圆锥的侧面积和全面积
二、回顾与思考 1. 重点知识内容
1°
n°的圆心角所对的弧长的为 l n
R
O
·
n°
180
(2)举例说明如何计算扇形面积
在半径为R的圆中,因为圆心角是360°的扇形面积就
是圆面积 2 是
R 360
,所以圆心角是1°的扇形面积 S R 2 。这样,在半径为R的圆中,圆心角为n°的
扇形面积的计算公式是:
S扇形
nR 2 360
在本章,我们利用圆的对称性,探索了圆的一些重要性质; 通过图形的运动,研究了点和圆、直线和圆、圆和圆的位置关 系;研究了圆中的有关计算问题.
2.
(1)在同圆或等圆中的弧、弦、圆心角有什么关系?
在同圆或等圆中, 相等的圆心角所对的弧相等,所对的弦相等, 所对的弦的弦心距相等.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心 距中有一组量相等,那么它们所对应的其余各组量都分别相等.
A′ B
B′
O
·
A
(2) 垂直于弦的直径有什么性质?
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等.
d>r.
r
O
·
l l l
(3)圆和圆的位置干关系有几种? 如何判定?
两圆外离 两圆外切 两圆相交 两圆内切
d > r1+r2;
两圆内含
r1+r2<d < r1+r2; d = r1- r2; d < r1- r2.
O1
d = r1+r2;
O1
·
O2
·
·
O2
·
O1
·
O2
·
O1 O2
(2).你能用正多边形和等分圆周设计一些图案吗?
6.
(1)举例说明如何计算弧长?
因为360°的圆心角所对的弧长就是圆周长C=2πR,所以1°的 R 2 R 圆心角所对的弧长是 ,即 。于是可得半径为R的圆 360 180 中,n°的圆心角所对的弧长l的计算公式为: l n R
180
1 R 2 R 1°的圆心角所对的弧长是 360 180
··
O1 O2
· ·
Hale Waihona Puke (4) 你能举出这些位置关系的一些实例吗?
4.
(1)圆的切线有什么性质? 圆的切线垂直于过切点的半径.
· O A l
(2)如何判断一条直线是圆的切线? 经过半径的外端并且垂直于这条半径的直线是圆的切线.
· O A l
5.
(1)正多边形和圆有什么关系?
正多边形必有外接圆和内切圆.
C
·
O E A D B
(3)
一条弧所对的圆周角和它所对的圆心角有什么关系?
一条弧所对的圆周角等于它所对的圆心角的一半. 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对 的弧也相等. 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦 是直径.
C2 C C1 C3
·
O A B
A
O
·
B
(4) 你能举出这些关系的实际应用吗?
3.
(1)点和圆有怎样的位置关系?如何判定?
点P在圆外 点P在圆上 点P在圆内 d > r ; d = r; P
O
P
d<r.
·
P
r
A
(2)直线和圆位置有几种,如何进行判定?
直线和⊙O相交 直线和⊙O相离 直线和⊙O相切
d<r;
d = r;