浙江大学2011-2012数学分析1-试卷及答案baidu
2011-数一真题、标准答案及解析
n(-1) 收敛,可知幂级数∑a ∞2011 年考研数学试题(数学一)一、选择题1、 曲线 y = (x -1)(x - 2)2(x - 3)3(x - 4)4的拐点是()(A )(1,0)(B )(2,0) (C )(3,0) (D )(4,0)【答案】C 【考点分析】本题考查拐点的判断。
直接利用判断拐点的必要条件和第二充分条件即可。
【解析】由 y = (x -1)(x - 2)2(x - 3)3(x - 4)4可知1, 2, 3, 4 分别是y = ( x -1)( x - 2)2 ( x - 3)3 ( x - 4)4= 0的一、二、三、四重根,故由导数与原函数之间的关系可知 y '(1) ≠ 0 , y '(2) = y '(3) =y '(4) = 0y ''(2) ≠ 0 , y ''(3) = y ''(4) = 0 , y '''(3) ≠ 0, y '''(4) = 0 ,故(3,0)是一拐点。
2、 设数列 {a n } 单调减少, lim a n = 0 , S n =∑ a k (n = 1,2) 无界,则幂级数n →∞k =1∑a n ( x -1)n的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )n =1(0,2]【答案】C 【考点分析】本题考查幂级数的收敛域。
主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。
【解析】 S n=∑ a k k =1(n = 1,2)无界,说明幂级数∑a n n =1( x -1)n的收敛半径 R ≤ 1;{a n }单调减少, lim a n →∞= 0 ,说明级数∑a n n =1∞nn n =1( x -1)n的收敛半径 R ≥ 1。
因此,幂级数∑a n( x -1) 的收敛半径 R = 1 ,收敛区间为(0, 2) 。
2011浙江数学高考试题及答案
2011年普通高等学校夏季招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.选择题部分(共50分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是p ,那么n 次独立重新试验中事件A 恰好发生k 次的概率()=(1)k kn k n n P k C p p -- (k =0,1,2,…,n )台体的体积公式11221()3V h S S S S =+其中S 1,S 2分别表示台体的上、下底面积, h 表示台体的高 柱体的体积公式 V =Sh其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 S =4πR 2球的体积公式343V R π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数2,0(),0x x f x x x -≤⎧=⎨>⎩.若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或22.把复数z 的共轭复数记作z ,i 为虚数单位,若z =1+i ,则(1+z )·z =( ) A .3-i B .3+i C .1+3i D .33.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )4.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.设实数x ,y 满足不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪≥≥⎩,若x ,y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .196.若02πα<<,02πβ-<<,1cos(+)=43πα,3cos()=42πβ-,则cos()2βα+等于( )A 3B .3-C .539D .69-7.若a ,b 为实数,则“0<ab <1”是“1a b <或1b a>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.已知椭圆C 1:2222=1x y a b + (a >b >0)与双曲线C 2:2214y x -=有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点, 若C 1恰好将线段AB 三等分,则( )A .a 2=132 B .a 2=13 C .b 2=12D .b 2=29.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )A .15 B .25 C . 35 D .4510.设a ,b ,c 为实数,f (x ) =(x +a )(x 2+bx +c ),g (x )=(ax +1)(cx 2+bx +1).记集合S ={x |f (x )=0,x ∈R },T ={x |g (x )=0,x ∈R },若|S |,|T |分别为集合S ,T 的元素个数,则下列结论不可能...的是( ) A .|S |=1且|T |=0B .|S |=1且|T |=1C .|S |=2且|T |=2D .|S |=2且|T |=3非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.12.若某程序框图如图所示,则该程序运行后输出的k 的值是________.13.设二项式6()x x(a >0)的展开式中x 3的系数为A ,常数项为B , 若B =4A ,则a 的值是________.14.若平面向量α、β满足|α|=1,|β|≤1,且以向量α、β为邻边的平行四边形的面积为12,则α与 β的夹角θ的取值范围是________. 15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.16.设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________.17.设F 1,F 2分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上.若125F A F B =,则点A 的坐标是________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知sin A +sin C =p sin B (p ∈R ),且214ac b =. (1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.19.已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R ),设数列的前n 项和为S n ,且11a ,21a ,41a 成等比数列, (1)求数列{a n }的通项公式及S n ; (2)记A n =1231111n S S S S ++++…,B n =2-112221111+n a a a a +++…,当n ≥2时,试比较A n 与B n 的大小.20.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.21.已知抛物线C 1:x 2=y ,圆C 2 :x 2+(y -4)2=1的圆心为点M.(1)求点M 到抛物线C 1的准线的距离;(2)已知点P 是抛物线C 1上一点(异于原点),过点P 作圆C 2的两条切线,交抛物线C 1于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.22.设函数f (x )=(x -a )2ln x ,a ∈R .(1)若x =e 为y =f (x )的极值点,求实数a ;(2)求实数a 的取值范围,使得对任意的x ∈(0,3e],恒有f (x )≤4e 2成立.注:e 为自然对数的底数.参考答案1.B 2.A 3.D 4.D 5.B 6.C 7.A 8.C 9.B 10.D11.答案:0 12.答案:5 13.答案:214.答案:[6π,56π] 15.答案:5316.21017.答案:(0,1)或(0,-1)18.解:(1)由题设并利用正弦定理,得5414a c ac ⎧+=⎪⎪⎨⎪=⎪⎩,解得1,1,4a c =⎧⎪⎨=⎪⎩或1,41.a c ⎧=⎪⎨⎪=⎩ (2)由余弦定理,b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac cos B =222211cos 22p b b b B --, 即231cos 22p B =+,因为0<cos B <1,得p 2∈(32,2),由题设知p >062p <<19.解:(1)设等差数列{a n }的公差为d ,则(2214111()a a a =⋅,得(a 1+d )2=a 1(a 1+3d ).因为d ≠0,所以d =a 1=a .所以a n =na ,(1)2n an n S +=. (2)因为1211()1n S a n n =-+,所以 123111121(1)1n n A S S S S a n =++=-++…+.因为a 2n -1=2n -1a ,所以21122211()111112112n nn B a a a a a --=+++=⋅-…+ 21(1)2n a =-. 当n ≥2时,0122n nn n n n C C C C =+++…+>n +1,即111112n n -=-+,所以,当a >0时,A n <B n ; 当a <0时,A n >B n . 20.解:方法一:(1)证明:如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz . 则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),A P =(0,3,4),BC =(-8,0,0),由此可得A 0P BC ⋅=,所以A P BC ⊥,即AP ⊥BC .(2)解:设PM PA λ=,λ≠1,则PM =λ(0,-3,-4).BM BP PM BP PA λ=+=+=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC =(-4,5,0),BC =(-8,0,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1),平面APC 的法向量n 2=(x 2,y 2,z 2).由11·0,·0,BM n BC n ⎧=⎪⎨=⎪⎩得1111423440,80,x y z x λλ--(+)+(-)=⎧⎨-=⎩ 即1110,23,44x z y λλ=⎧⎪+⎨=⎪-⎩可取n 1=(0,1,2344λλ+-). 由220,0,AP AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即2222340,450,y z x y +=⎧⎨-+=⎩得22225,43,4x y z y ⎧=⎪⎪⎨⎪=-⎪⎩可取n 2=(5,4,-3). 由n 1·n 2=0,得4-3×2344λλ+-=0,解得25λ=,故AM =3.综上所述,存在点M 符合题意,AM =3.方法二:(1)证明:由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面P AD ,故BC ⊥P A .(2)解:如图,在平面P AB 内作BM ⊥P A 于M ,连结CM . 由(1)知AP ⊥BC ,得AP ⊥平面BMC . 又AP ⊂平面APC , 所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得41AB =在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2, 所以PB 2=PO 2+OD 2+DB 2=36,得PB =6. 在Rt △POA 中,P A 2=AO 2+OP 2=25,得P A =5.又cos ∠BP A =2222PA PB AB PA PB ++⋅=13,从而PM =PB cos ∠BP A =2,所以AM =P A -PM =3. 综上所述,存在点M 符合题意,AM =3.21.解:(1)由题意可知,抛物线的准线方程为:14y =-,所以圆心M (0,4)到准线的距离是174.(2)设P (x 0,20x ),A (x 1,21x ),B (x 2,22x ),由题意得x 0≠0,x 0≠±1,x 1≠x 2.设过点P 的圆C 2的切线方程为y -20x =k (x -x 0), 即y =kx -kx 0+20x .① 20021k+=1,即(x 02-1)k 2+2x 0(4-x 02)k +(x 02-4)2-1=0.设P A ,PB 的斜率为k 1,k 2(k 1≠k 2),则k 1,k 2是上述方程的两根,所以k 1+k 2=20020241x x x (-)-,k 1k 2=22020411x x (-)--. 将①代入y =x 2,得x 2-kx +kx 0-x 02=0,由于x 0是此方程的根,故x 1=k 1-x 0,x 2=k 2-x 0,所以k AB =221212x x x x --=x 1+x 2=k 1+k 2-2x 0=20020241x x x (-)--2x 0,k MP =2004x x -. 由MP ⊥AB ,得k AB ·k MP =220000200244(2)()1x x x x x x (-)--⋅-=-1,解得20235x =, 即点P 的坐标为(235235),所以直线l 的方程为31154y x =+. 22.解:(1)求导得()22()ln x a f x x a x x(-)'=-+()(2ln )1x a x ax=-+-.因为x =e 是f (x )的极值点,所以()e (e )(3e)0f a a'=--=,解得a =e 或a =3e.经检验,符合题意,所以a =e 或a =3e.(2)①当0<x ≤1时,对于任意的实数a ,恒有f (x )≤0<4e 2成立. ②当1<x ≤3e 时,由题意,首先有f (3e)=(3e -a )2ln(3e)≤4e 2,解得ln(33e 3e)e a ≤≤+ln(3e)由(1)知()()(2ln 1)f x x a x ax'=-+-,令h (x )=2ln x +1-ax,则h (1)=1-a <0,h (a )=2ln a >0,且()()()3e+ln(3e)3e 2ln 3e 12ln 3e 13ah e≥=+-+-32l (l n3n3e 0e>=-.又h (x )在(0,+∞)内单调递增,所以函数h (x )在(0,+∞)内有唯一零点,记此零点为x 0,则1<x 0<3e ,1<x 0<A .从而,当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.即f (x )在(0,x 0)内单调递增,在(x 0,a )内单调递减,在(a ,+∞)内单调递增.。
2011年浙江省高考数学试卷和答案(理科)
2011年浙江省高考数学试卷和答案(理科)一、选择题(共10小题,每小题5分,满分50分)1、(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A、﹣4或﹣2B、﹣4或2C、﹣2或4D、﹣2或22、(2011•浙江)把复数z的共轭复数记作,i为虚数单位.若z=1+i,则(1+z)•=()A、3﹣iB、3+iC、1+3iD、33、(2011•浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()A、B、C、D、4、(2011•浙江)下列命题中错误的是()A、如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB、如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC、如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD、如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5、(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A、14B、16C、17D、196、(2011•浙江)若0<a<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A、B、﹣C、D、﹣7、(2011•浙江)若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件8、(2011•浙江)已知椭圆的离心率e=,则k的值为()A、4或B、4C、4或﹣D、﹣9、(2011•浙江)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地摆放到书架的同一层上,则同一科目的书都不相邻的概率是()A、B、C、D、10、(2011•浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f (x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是()A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3二、填空题(共7小题,每小题4分,满分28分)11、(2011•浙江)若函数f(x)=x2﹣|x+a|为偶函数,则实数a=_________.12、(2011•浙江)某程序框图如图所示,则该程序运行后输出的k的值是_________.13、(2011•浙江)若二项式(x﹣)n(a>0)的展开式中x的系数为A,常数项为B,若B=4A,则a的值是_________.14、(2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是_________.15、(2011•浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=_________.16、(2011•浙江)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是_________.17、(2011•浙江)一个椭圆的焦点将其准线间的距离三等分,则椭圆的离心率为_________.三、解答题(共5小题,满分72分)18、(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2.(Ⅰ)当p=,b=1时,求a,c的值;(Ⅱ)若角B为锐角,求p的取值范围.19、(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.20、(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.21、(2011•浙江)已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M(Ⅰ)求点M到抛物线C1的准线的距离;(Ⅱ)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂足于AB,求直线l的方程.22、(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3a],恒有f(x)≤4e2成立.注:e为自然对数的底数.答案一、选择题(共10小题,每小题5分,满分50分)1、(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A、﹣4或﹣2B、﹣4或2C、﹣2或4D、﹣2或2考点:分段函数的解析式求法及其图象的作法。
浙江大学2011-2012数学分析1-试卷及答案baidu
浙江大学20 11 -20 12 学年 秋冬 学期《 数学分析(Ⅰ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2012 年 1 月 11 日,考试时间: 120 分钟. 考生姓名: 学号: 所属院系: _一、6分)0002()()00013214()().lim ()..0min{1}00251251322.lim 3.111x x x f x U x A x x x x x x x x f x A f x x x x A f x x x A εδδεδεεδε→→∀>∃><-<<<<+<∀>∃=><-<----=<-<=+++-<=设在内有定义,如果存在常数,对,,当时,不妨令,则:对,,,当,有;则称在处有极限,记作::因此二、 计算下列极限:(每题6分,共18分)1. ()21211cos 12cos 101lim cos lim 1(cos 1).x ux u u u x u u e x =--⋅-→∞→⎛⎫=+-= ⎪⎝⎭令2.222303330003322200limlim limarcsin [()]()662arctan 26lim 6lim 4.33x x x x x x x x x x x x xx x o x xo x x x x xx +++++→→→→→==⋅-++-+===⎰⎰⎰ 3. tan 0.x x n x e e x n αα→-设当时,与为等价无穷小量,求:常数、的值tan tan 3330000(1)tan 1lim lim lim lim 1313.3x x x x x n n n n x x x x e e e e x x x x x x x x x n ααααα-→→→→---==⋅====,因此,,三、 导数及应用:(每题7分,共21分) 1.21211(1)11111..242x y x x x y x y x π='=⋅=-+-'===+-则:故,在处的切线方程为2.342242444cos 42(1)2.(2).2cos 2cos cos dy dy dy t t d y t dt dt t dx dx dx t t dx t t t dt dt'======3.(2012)2(2012)12(2011)22(2010)2012201220122201120102(2012)0(2)()(2)()(2)()(1)(2)(1)2012(22)(1)20122011(2)2012(22)20122011.=20122x x x x x x xxxx y x x e C x x e C x x e x x e x e e x x e x ee y ---------='''=-+-+-=--+--+-⨯=---+⨯⨯因此,013=4050156.四、 计算下列积分:(每题7分,共28分) 1.ln(1)x x dx +⎰222222111ln(1)ln(1)ln(1)2221111ln(1)1221111ln(1)(1)ln(1).242x x x dx x dx x x dx x x x x dxx x x x x C +=+=+-+⎛⎫=+--+ ⎪+⎝⎭=+---++⎰⎰⎰⎰2.66333(2(2(3)63(27.2x x x u u π--+=+-==+==⎰⎰⎰⎰令3.22222tan 1422220002124220002(1).1(1)2=2sin 1(1)3132.4228(2)sin 2sin cos .3sin tan 2sin cos 2sin .8u t u uu x dx du u u u u u du tdtu u x u dx u udu u u u udu udu ππππππ=+∞===++⋅⋅=++=⋅⋅⋅====⋅==⎰⎰⎰⎰⎰⎰,则:,则:令:,则:则:4. 211()().xt f x e dt f x dx -=⎰⎰设,计算:()22111111001()()().22xxe ef x dx xf x xf x dx xedx ----'=-=-==⎰⎰⎰五、(1)(2)2.D D x =计算:的面积;绕直线旋转一周所得立体的体积 (9分)322221111222001(1)(21).211(2)21.23144(3)212(22(1).335444(2)(1).335l y x A D S V x x dx V x dy y dy ππππππππππ==⋅⋅-=⎫=⋅⋅--=--=⎪⎭=--=--=⎰⎰⎰⎰⎰切线的方程为,切点,的面积或:证明题:(每题6分,共18分)1.21121111311(1)()()0.().41(41)11111(2).1()().22222(3){}.2()().3{}{}.(4n n n n n n n n n n n n n x f x f x f x x x x x x x f x f x x x x x x f x f x x x x +-+--'==>-->=>>=>==<<=<=【方法一】:令,则:则:单调递增下面证明:显然;假设,则:下面证明:单调递减,假设,则:由此可得,单调递减且有下界,因此,数列收敛11121113111)lim .lim .41221(1){}.21113112110.2224122(41)11.{}.222(2){}.3n n n n n n n n n n n n n n n n n n x x x x x x x x n N x x x x x x x x x x x x x x x x →+∞→+∞+++-+-==⇒==-∀∈>--•=>>-=-=>-->=<<设,则:故,【方法二】:数列有下界:对,;假设,则:因此,即:数列有下界数列单调递减,假设,则:111131310.{}.4141(41)(41)(3)(1)(2){}{}.3111lim .lim .4122n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x ----→+∞→+∞----=-=>-----==⇒==-因此,单调递减由、可得,数列单调递减有下界,因此,收敛令:,则:故,().()[)()f x I f x a g x +∞叙述函数在区间上一致连续的定义设在,上一致连续,[)lim[()()]0.()[).x a f x g x g x a →+∞+∞-=+∞在,上连续,且证明:在,上一致连续(1)00()()().li (2)()[)00()().300.m [()()]0()(300)x x x I x x f f x a x f x f x I f x g x f x g x x x f x f x G x G x x εδδεεδδεεδεε→+∞'''+∞'''''''''∀>∃>∈-<-<∀>∃>-<'''-<∀>∃->><'''=∀>->∃由于在,内一致连续,则对,,当时,由于对,,当时,则:对,对,,当、,且时,,当,则称在区间上一致连续,、()()()[1)()()()()()()()()()()()()()().()[1).()[1]()[).G x x g x g x g x f x f x f x f x g x g x f x f x f x f x g x g x G g x a G g x a δε'''∈++∞-<''''''''''''-=-+-+-'''''''''≤-+-+-<++∞++∞,,且时,因此,在,内一致连续而,在,上一致连续,因此,在,内一致连续2. 2240()[02](02)()2(2).x f x e f x dx f -=⎰设在,上连续,在,内可导,且 (02)()2().f f ξξξξ'∃∈=证明:,,使得()2222242(1)()()()()2().(2)(02)2()2(2)()(2).()(2).(3)()[2](2)(2)(02)()0.()2().x xF x e f x F x e f x xf x e f f e f e f F F F x Rolle F f f ηηηηηηηηξηξξξξ-----''==-∃∈=⇒==∃∈⊂''==令:,则:根据积分中值定理,,使得,即:又在,上连续,在,内可导,根据定理,,,使得即:友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
浙江大学概率论2011_2012秋冬试卷
浙大2011-2012学年秋冬学期《概率论与数理统计》期末考试试卷一、填空题1.A ,B ,C 为三个随机事件,设事件A 与事件B 相互独立,且当事件A 与事件B 至少有一个发生时,事件C 一定发生。
已知 , ,则 _,事件C 发生的概率最小值为_。
答案:0.3;0.72.是随机变量X 服从参数为 的泊松分布。
已知()()2121D X E X +=+,则()E X =_,()2P X ≥=_。
答案:0.5;0.51 1.50.09e --=3.有甲乙两只袋,甲袋里有4个红球,2个白球;乙袋里有2个红球,2个白球。
现从甲袋中不放回抽取2个球放入乙袋,然后再从乙袋中不放回取出2球。
以X 表示从甲袋中取到的红球数,Y 表示从乙袋中取到的红球数,则()1P X ==_,()0P Y ==_,()10P X Y ===_。
若将这样的实验独立重复进行n 次,i X 表示第i 次从甲袋中不放回取2球时取到的红球数,1,2,i n =,则当n →∞时,11ni i X n =∑依概率收敛到_。
答案:815;425;23;4 4.设总体()2,X N μσ,1X ,…,16X 为来自X 的简单随机样本,,,(1)设0μ=,2σ未知,则2811629ii i i X X==⎛⎫⎪⎝⎭∑∑_分布(要求写出参数);(2)设μ,2σ均未知,则2σ的矩估计量为_;若()8281i i i a X X +=-∑是2σ的无偏估计,则a =_;μ的置信度为95%的单侧置信上限为_;假设20:15H σ≥,21:15H σ<的显著水平为0.05的拒绝域为_。
答案:()1,8F ;21516S 或2B ;116;0.4375X S +;27.26S ≤ 二、为比较三个型号的汽车的油耗情况,随即抽取A 型汽车6辆,B 型汽车5辆,C 型汽车7辆,记录每辆汽车每公升汽油行驶的公里数,得如下数据:设每个型号的数据()2,ii X N μσ,1,2,3i =,1μ,2μ,3μ,2σ均未知。
2011考研数一真题答案及详细解析
所以 x1= -./k二[是极小值点, X2 =.fl..厂二了是极大值点;
由千 f(O)=O, 则 f(x) 的极大值 f (./1..言刁-)>0, J(x) 的极小值 f(- ,/k — 1 ) < 0.
又lim f(x)= +=,lim J(x) = —=,J(O) =0,
工j—00
.,•-•j-0<>
00) e一1 sinx
解 由条件知: P(x)=1,Q(x) =尸cosx'于是微分方程通解为
(J (J y=e-I压)扛 Q(x)eJP<x)d丑'dx +c) =e寸ld工 尸cosx ef1凸 dx +c) (J =e一1 cosxdx +C)=尸(sinx +C),
由y(O)=O得C=O,因此所求特解为
J'(y) , f(y)
a飞 a正
=f
,,(x)lnf(y),
一3一五—= 妇办
J'(x)•
J'(y) f(y)'
a飞
尸(y汀(y) -[f'(y)J 2
ay2 =f(x)
尸(y)
若函数乏 = f位) Inf Cy)在(0,0) 处取得极小值 , 则
�o, (�'"·"�J'(O)ln::�:
-I f ay co.o> = f(O)• Co) = O,
则E(XY 2 )
=EX• E(Y2 )
=EX•
[DY+(EY) 2 ]
= 叭矿+矿)
= µ
rJ
2
+矿.
三、解答题
ln(l +x)�
浙江大学城市学院线性代数期中考试试卷汇集
城院线性代数期中试卷汇集浙江大学姜豪汇编2012年3月目录第一部分:试卷真题11—12学年第一学期期中试卷 (2)10—11学年第二学期期中试卷 (4)10—11学年第一学期期中试卷 (6)09—10学年第二学期期中试卷 (9)09—10学年第一学期期中试卷 (13)第二部分:答案与评估11—12学年第一学期期中试卷答案 (15)11—12学年第一学期期中试卷难度与题量评估 (16)10—11学年第二学期期中试卷答案 (16)10—11学年第二学期期中试卷难度与题量评估 (18)10—11学年第一学期期中试卷答案 (18)10—11学年第一学期期中试卷难度与题量评估 (19)09—10学年第二学期期中试卷答案 (20)09—10学年第二学期期中试卷难度与题量评估 (21)09—10学年第一学期期中试卷答案 (21)09—10学年第一学期期中试卷难度与题量评估 (22)第三部分:试题详解11—12学年第一学期期中试卷详解 (22)10—11学年第二学期期中试卷详解 (28)10—11学年第一学期期中试卷详解 (34)09—10学年第二学期期中试卷详解 (39)09—10学年第一学期期中试卷详解 (44)第一部分:试卷真题城院线代2011—2012学年第一学期期中试卷一,填空题(每空2分,共20分)1. 5阶行列式||ij a 的项2532511344a a a a a 的符号是_______ .2. _____002013112, _____21501102=-=-.3. 已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=100030002 ,200010001B A ,则==AB A , ____||4. 若矩阵[]42⨯=ija A ,且j i a ij 2-=,则=A5. 已知⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=22111602 ,51240321B A ,则=+B A 2 ,=-B A 26. ()()=-⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-211223 , _____223211二,问答题(每题5分,共25分)1. 排列)12(135)2(246-n n 的逆序数是多少?请说明理由。
完整word版,浙江大学2010-2011数学分析(2)-试卷及答案,推荐文档
浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。
请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负!考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim.x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2. (122)().f x y z gradf=,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x fr x r r r x ffyz gradf∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===r 令:,,,则:,,因此,在点,,的法向量,,,故法线为:4. 2221.(2).4Cx C y L x y ds +=+⎰Ñ设曲线:的长度为计算: 222(2)(44)44.=0.CCCCx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰蜒蜒其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的211.n Fourier n+∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n n n nn n n n n f x b x x a dx a nxdx n nf x nx x R nx f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑L 由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n nx n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n nn n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n nn n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n n nn nn t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n n t t n nt x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z zz f x y f x x x y∂∂=+∂∂∂设,,且具有阶连续偏导,计算:,12221112221222221112222232(1)2.111(2)222214(2).z y xf f x x z y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()1121.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 344444344444204113).2281(cos sin )41313)]sin 2sin 2.444228u v uu v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110cos 0cos 2011012.241(sin )4sin cos 2422.22zzx y z z z u xxu z z x y z xoy e z I e dV I d rdr dz r dr r x x xedx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 222011cos 20(1)2.2sin 4sin 44(1)2.z dz I d d ed de d ed e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327SSS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.Sxdydz ydzdx zdxdy x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zxxy yz zxxy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdya a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰Ò++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42Cxdy ydx xC A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从(2).B D ππ-点沿直线到点,2222222222222222222222224.44(4)4(0).444410arc 42CC DA L DA LLy x P y x QP Q x y x y y x y x DA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂•====++∂+∂•+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰Ñ方法一、,,则:连接,作:,足够小,方向为顺时针则:222224221122332222222221tan2217.88(0)(2)(2)(2).444(4)x y ydxdyA A A A A A A D L y x P y x QP Q C Lx y x y y x y x P Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都1122332222222222222222202442244444422arctan arctan arctan arctan 2242248C L AA A A A A AD xdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nxu x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nxx n n n n nxn N n nxf x n nx n nx ng x n nn ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin22sin sin [2](02)11.cos sin (02)()(0211nk n n xn x kx x n nx n nxDirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数.2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dyf x f x f x x dx==+++=满足,且并计算的值22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ•=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222220)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos().0.22cos()x x f x x x y y x x x y x y x yy y x x x x y dy y y x y dx=++=•+++===''+++-=-+'==++在两边同时对求导,且当时,则:因此,故,。
浙江大学08-09学年《数学分析》(下)-毕业前试卷(baidu)
诚信考试 沉着应考 杜绝违纪浙江大学2008–2009学年 夏 学期《数学分析(下)》课程期末考试试卷开课学院: 理学院 ,考试形式: 闭 卷,允许带___笔__入场 考试时间: 2009 年 6 月 23 日,所需时间: 120 分钟考生姓名: _____学号: 专业: ______考生承诺:“我确认本次考试是完全通过自己的努力完成的。
”考生签名:一、 计算下列各题——级数理论:(共28分) 1、(6%)将函数1()3f x x =-展开成关于)1(-x 的幂级数,并确定其收敛区间.2、 (6%)判别级数111(2)nnn a a∞-=+-∑的敛散性.3、(6%)求幂级数1(1)2nnn x n ∞=-⋅∑的收敛区域及和函数。
4、(10%)将函数)20()(2π<<=x x x f 展开成Fourier 级数;并证明:.61211222π=++++ n二、 计算下列各题——多元函数微分学:(共20分)5、(6%)求曲面222y x z +=上点(1,1,3)处的切平面方程和法线方程。
6、(6%)设333),,(z y x z y x f ++=,求:).()(gradf rot gradf iv d gradf ,,7、(8%)设22().x z z z f x y y x x y ∂∂=∂∂∂,,求:,三、 计算下列各题——多元函数积分学:(共36分)8、(8%)221{()0101}.Dx y d D x y x y σ+-=≤≤≤≤⎰⎰计算二重积分,其中,,.9、(8%)计算三重积分2222||1||()x y z z x y dV ++≤+⎰⎰⎰。
10、22(-20(20)4ABCydx xdy I ABC A y B x y-==+⎰计算,其中是由点,)沿,,再 沿直线到点(22).C --,(10%)11、 (10%)333x dydz y dzdx z dxdy ∑++⎰⎰,其中2221(0)x y z z ∑++=≥是上半球面的上侧.四、 证明题:(共16分)12、 (6%)证明:存在00δ>以及在00()δδ-,内具有连续导数的函数()f x ,满足:(0)0f =, 且对一切00()x δδ∈-,,2()sin((()))f x x f x =+。
2011考研数学一真题及答案解析
2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =−−−−的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=−∑的收敛域为( )(A) (1,1]−. (B) [1,1)−. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12PP . (B) 112P P −. (C) 21P P . (D) 121P P −.(6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x −'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ .(13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x−→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x −=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++−=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A −⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭.(I) 求A 的特征值与特征向量; (II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=−==,2222(2),2(2),2,y x y x y '''=−=−= 32333(3),3(3),6(3),y x y x y x '''=−=−=− 432444(4),4(4),12(4),y x y x y x '''=−=−=− (3)()y x P x ''=−,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=−∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=−∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂−''''==⋅=−=∂ 又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>.(4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP −=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P −==.因此,121A P P −=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =−=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413−=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D). 【解析】选项(D)1122()()()()f x F x f x F x dx +∞−∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞−∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞−∞⎡⎤=⎣⎦⎰12()()|F x F x +∞−∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1+.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x −=.【解析】由通解公式得(cos )dx dxx y e e x e dx C −−⎰⎰=⋅+⎰(cos )x e xdx C −=+⎰(sin )xe x C −=+.由于(0)0,y =故C =0.所以sin xy e x −=.(11)【答案】4. 【解析】2sin 1()F xy y x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +−=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdyydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅−+−+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=−−+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x−→+0ln(1)1lim[1].1x x x x e e →+−−=2ln(1)limx x xx e →+−=22201()2lim x x x o x x x e→−+−=22201()2lim x x o x x e→−+=12e −=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=−()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1x g x x x R x =−∈+,()()()222222211220111x x x x g x x x x +−⋅'=−=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=−=−,()lim lim arctan x x xf x k x→∞→∞=−=+∞, 所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −≥时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫−=+−=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++−=−∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫−=−+−−=+=−+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫−+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=−>+− ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏,()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=−>+−>+−> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=−⎢⎥⎣⎦⎰⎰ ()11''0(,1)(,)x x xdx f x f x y dy =−⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'(,)xI xdx f x y dy =−⎰⎰11'0(,)x dy xf x y dx =−⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰ Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭ 1002150104210001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭, 故112324βααα=+−,2122βαα=+,31235102βααα=+−.(21)(本题满分11分)【解析】(I)由于111100001111A −⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=−=,则()()1212,,A αααα=−,即1122,A A αααα=−=,而120,0αα≠≠,知A 的特征值为121,1λλ=−=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x −=⎧⎨+=⎩. 解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==−====. 令()123,,Q βββ=,则110TQ AQ −⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ22122001102201022⎛−⎛⎫⎪ ⎪−⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎪ ⎪− ⎪⎪⎝⎭ ⎪⎝⎭220012200000002210001022⎛−⎛⎫− ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=−==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==−=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====−==−−===;{}{}{}11,110,13P X Y P Y P X Y==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y====−===.即,X Y的概率分布为(II)Z的所有可能取值为1,0,1−.{}{}111,13P Z P X Y=−===−=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==−=−=−=.Z XY=的概率分布为(III)因为XY Cov XY E XY E X E Y ρ−⋅==其中()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=.所以()()()0−⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x nnnx i i i L f x eμμσσσσπσ=−−−−−==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=−=−−∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=−=−+∑2202211[()]2()nii x μσσ==−−∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==−∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==−∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=−,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑442244112{()[()]}(3)σσσ=−=−=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
2011考研数学一真题及答案解析
2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =----的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=-∑的收敛域为( )(A) (1,1]-. (B) [1,1)-. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设40ln sin I x dx π=⎰,4ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12P P . (B) 112P P -. (C) 21P P . (D) 121PP -. (6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x -'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ . (13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x-→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x -=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++-=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xyDI xy fx y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)Tβ=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(I) 求A 的特征值与特征向量;(II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=-==,2222(2),2(2),2,y x y x y '''=-=-= 32333(3),3(3),6(3),y x y x y x '''=-=-=- 432444(4),4(4),12(4),y x y x y x '''=-=-=- (3)()y x P x ''=-,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=-∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=-∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂-''''==⋅=-=∂ 又22[(0)]ln (0)0,AC B f f ''-=⋅>故(0)1,(0)0f f ''>>. (4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以lnsin lncos lncot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP -=. 由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P -==.因此,121A P P -=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =-=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413-=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D).【解析】选项(D)1122()()()()f x F x f x F x dx +∞-∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞-∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞-∞⎡⎤=⎣⎦⎰12()()|F x F x +∞-∞=1=.所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x -=.【解析】由通解公式得(cos )dx dxx y e e x e dx C --⎰⎰=⋅+⎰(cos )x e xdx C -=+⎰(sin )xe x C -=+.由于(0)0,y =故C =0.所以sin xy e x -=.(11)【答案】4. 【解析】2sin 1()F xyy x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂-⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +-=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdy ydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅-+-+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=--+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x-→+0ln(1)1lim[1].1x x x x e e →+--=2ln(1)limx x xx e→+-=22201()2lim x x x o x x x e→-+-=22201()2lim x x o x x e→-+=12e -=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂[][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=-()()22arctan 1arctan xx x f x x -+'=. 令()2arctan 1x g x x x R x =-∈+,()()()222222211220111x x x x g x x x x +-⋅'=-=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=-=-,()lim lim arctan x x xf x k x→∞→∞=-=+∞, 所以当10k -<时,由零点定理可知()f x 在(,0)-∞,(0,)+∞内各有一个零点; 当10k -≥时,则()f x 在(,0)-∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫-=+-=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++-=-∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫-=-+--=+=-+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫-+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=->+- ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏, ()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=->+->+-> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=-⎢⎥⎣⎦⎰⎰()11''0(,1)(,)x x xdx f x f x y dy =-⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'0(,)x I xdx f x y dy =-⎰⎰11'0(,)x dy xf x y dx =-⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=--⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=--⎢⎥⎣⎦⎰⎰Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→- ⎪ ⎪-⎝⎭113101011112005210a ⎛⎫ ⎪→- ⎪ ⎪--⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭1002150104210001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭, 故112324βααα=+-,2122βαα=+,31235102βααα=+-.(21)(本题满分11分)【解析】(I)由于111100001111A -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=-=,则()()1212,,A αααα=-,即1122,A A αααα=-=,而120,0αα≠≠,知A 的特征值为121,1λλ=-=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x -=⎧⎨+=⎩.解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==-====. 令()123,,Q βββ=,则110TQ AQ -⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ0220122001100010022⎛-⎛⎫ ⎪⎪-⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎪⎝⎭2200122000000022100010⎛-⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=-==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==-=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====-==--===;{}{}{}11,110,13P X Y P Y P X Y==-==--==-=;{}{}{}11,110,13P X Y P Y P X Y====-===.即(II)Z的所有可能取值为1,0,1-.{}{}111,13P Z P X Y=-===-=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==-=-=-=.Z XY=的概率分布为(III)因为XYCov XY E XY E X E Yρ-⋅==,其中()()1111010333E XY E Z ==-⋅+⋅+⋅=,()1111010333E Y =-⋅+⋅+⋅=.所以()()()0-⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X的概率密度为202()2()x f x μσ--=,x -∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x n nnx i i i L f x eμμσσσσπσ=-----==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=-=--∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=-=-+∑2202211[()]2()nii x μσσ==--∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==-∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==-∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=-,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑ 442244112{()[()]}(3)σσσ=-=-=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ-,得到()2201~nii X Y n μχσ=-⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==-∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=-===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=-===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
2011年浙江省高考调研考试-数学(理科)(试卷、答案和评分标准)
2011年数学理科测试卷球的表面积公式 S = 4πR 2 球的体积公式334R V π=其中R 表示球的半径 锥体的体积公式 V =31Sh 其中S 表示锥体的底面积,h 表示锥体的高柱体的体积公式 V = Sh其中S 表示柱体的底面积,h 表示柱体的高 台体的体积公式)(312211S S S S h V ++=其中S 1,S 2分别表示台体的上、下底面积, h 表示台体的高如果事件A ,B 互斥,那么P (A +B ) = P (A ) + P (B )一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知函数f (x )=267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩ 则 f (0)+f (-1)=(A) 9 (B) 7110(C) 3 (D)1110(2) “cos x =1”是“sin x =0”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件(3) 在等差数列{a n }中,若a 2+a 3=4,a 4+a 5=6,则a 9+a 10=(A) 9 (B) 10 (C) 11 (D) 12(4) 在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =2AB .若E ,F 分别为线段A 1D 1,CC 1的中点,则直线EF 与平面ABB 1A 1所成角的余弦值为3(B)23(D)13(5) 设F 是抛物线C 1:y 2=2px (p >0) 的焦点,点A 是抛物线与双曲线C 2:22221x y a b-=(a >0,b >0)的一条渐近线的一个公共点,且AF ⊥x 轴,则双曲线的离心率为 (A)22(6) 下列函数中,在(0,2π)上有零点的函数是(A) f (x )=sin x -x (B) f (x )=sin x -2πx(C) f (x )=sin 2x -x (D) f (x )=sin 2x -2πx(7) 某程序框图如图所示,则该程序运行后输出的S 的值为(A) 1 (B) 12 (C) 14 (D) 18(8) 设2010(12)(1)x x ++=a 0+a 1x +a 2x 2+…+a 10x 10+29129100(1)b b x b x b x x +++++ ,则a 9=(A) 0 (B) 410(C) 10⋅410 (D) 90⋅410(9) 设,2,,2,x y x y z y x y -≥=<⎧⎨⎩若-2≤x ≤2,-2≤y ≤2,则z 的最小值为(A)-4 (B)-2 (C)-1 (D) 0(10) 设U 为全集,对集合X ,Y ,定义运算“*”,X *Y(X ∩Y).对于任意集合X ,Y ,Z ,则( X *Y )*Z =(A) (X ∪Y )Z(B) (X ∩Y )ZXY)∩Z X Y )∪Z二、填空题: 本大题共7小题,每小题4分,共28分。
2011年高考浙江省数学试卷-文科(含详细答案)
2011年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页,满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项1. 答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。
2. 每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦•干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给也的四个选项中,只有一项是符合题目要求的。
(1)若P {XX 1},Q{xx 1},贝U(A) P Q (B) Q P(C) C R P Q(D) Q C R P【答案】D【解析】P x x 1 •- C R P xx 1 ,又T Q x x 1 ,• Q C R P,故选D(2) 若复数z 1 i,i为虚数单位,则(1 z) z(A) 1 3i (B) 3 3i (C) 3 i (D) 3 【答案】A【解析】••• z 1 i,••• (1 z)?z (2i)(1 i) 1 3i .r X+2y-5 > 0(3) 若实数x,y满足不等式组< 2 x +y -7 > 0,则3x+4y的最小值是< x>0, y>0(C)20 (D)28(A)13 (B)15 【答案】A【解析】可行域如图所示2x 1y 3.1 )时,有最小值 13.y 7 0(4)若直线I 不平行于平面 (A) a 内存在直线与异面 (B) a 内不存在与I 平行的直线 (C) a 内存在唯一的直线与 【答案】B【解析】在 ,则有I // 不正确. I 平行 (D) a 内的直线与I 都相交sin AcosA (A )- 2【答案】D内存在直线与I 相交,所以A 不正确;若 ,与题设相矛盾,••• B 正确C 不正确;在 ABC 中,角A, B,C 所对的边分2cos B存在直线与内不过I 与 a,b,c .若(C) -1l 平行,又T I交点的直线与I 异面,DacosA bsinB ,则(D) 1【解析】••• acosA bsin B ,••• sin AcosA sin 2 B ,・ 2 ・ 2 2 ,• sin AcosA cos B sin B cos B 1 .C 2的一条渐近线与C 1C 2的长度为直径的圆相交于 A,B 两点若C 1恰好将线段AB(6)若a,b 为实数,则“ 0 ab 1 ”是“ b(A)充分而不必要条件 (C)充分必要条件【答案】D【解析】当0 ab 1,a 0,b “ 0 ab 1 ”是“ b0时,有b 1 的a(B)必要而不充分条件 (D)既不充分也不必要条件11-,反过来b ,当a 0时,则有ab 1, a a的既不充分也不必要条件(8)从已有3个红球、2个白球的袋中任取 3个球,则所取的3个球中至少有11(A )-10(B )-10(兀【答案】D C 39【解析】由右典型的概率公式得:p 1 3c ; 10(D )9 102 2 ⑼已知椭圆G :*話 1 (a >b >0)与双曲线 C 2 :x 22丁1有公共的焦点,(7)几何体的三视图如图所示,则这个几何体的直观图可以是【答案】B【解析】由正视图可排除 A ,C ;由侧视图可判断该该几何体的直观图是B.个白球的概率是等分,则131(A ) a 2 = —(B ) a 2=13 (C ) b 2=—(D)b 2=222【答案】C2【解析】由双曲线X 2 — = 1知渐近线方程为y 2x ,又•••椭圆与双曲线有公共焦点,4解之得b 21.2(10) 设函数f x ax 2 bx c a,b,c R ,若x 1为函数f x e x 的一个极值点, 则下列图象不可能为y f x 的图象是F (x) e x f (x) e x f (x) e x (2ax b ax 2 bx c),又二x 1为f (x)e x 的一个极值点,2• F ( 1) e ( a c) 0,即 a c ,b 2 4ac b 2 4a 2 ,当 0时,b2a ,即对称轴所在直线方程为 x 1 ; 当 0时,|-匕| 1,即对称轴所在直线方程应大于1或小于—1.2a非选择题部分(共100分)b 2 5 b 21 22 2 b5 b 2 2a 5b 2,又・ C 1将线段AB 一等分, • 202X 5b 20 ~3•••椭圆方程可化为b 2x 2+ b 22 2 25 y = b 5b ,联立直线与椭圆方程消2Xy 得,【解析】设F(x) f(x)e x ,【答案】D考生注意事项请用0.5毫米黑色墨水签字笔或钢笔将答案写在答题纸上,不能答在试题卷上若需在答题纸上作图,可先使用铅笔作图,确定后必须使用黑色字迹的签字笔或钢笔描黑二、填空题:本大题共7小题,每小题4分,共28分。
《2011年高考真题解析版—数学理(浙江卷)解析版精品》
2011年普通高等学校招生全国统一考试(浙江卷)理科数学一、选择题 (本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨〉⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】B【解析】当0≤α时,()4,4f ααα=-==-; 当0>α时,2()4,2f ααα===.(2)把复数z 的共轭复数记作z ,i 为虚数单位,若1z i =+,则(1)z z +⋅= (A )3-i (B )3+i (C )1+3i (D )3 【答案】A【解析】∵i z +=1,∴i z -=1,∴(1)(11)(1)3z z i i i +⋅=++-=-.(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D【解析】由正视图可排除A 、B 选项;由俯视图可排除C 选项. (4)下列命题中错误的是(A )如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β (B )如果平面不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】因为若这条线是αβ平面和平面的交线L ,则交线L 在平面α内,明显可得交线L 在平面β内,所以交线L 不可能垂直于平面β,平面α内所有直线都垂直于平面β是错误的(5)设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 【答案】B【解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,又∵边界线为虚线取不到,且目标函数线的斜率为43-,∴当y x z 43+=过点(4,1)时,有最小值16.(6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=则c o s ()2βα+=(A(B)(C(D)【答案】C【解析】∵31)4cos(=+απ,20πα<<,∴sin()43πα+=,又∵33)24cos(=-βπ,2<<-βπ,∴36)24sin(=-βπ,∴)]24()4cos[()2cos(βπαπβα--+=+=)24sin()4sin()24cos()4cos(βπαπβπαπ-++-+=13+935.(7)若,a b 为实数,则“01ab <<”是11a b ba<或>的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当0,0>>b a 时,由10<<ab 两边同除b 可得ba 1<成立;当0,0<<b a 时,两边同除以a 可得a b 1>成立,∴“10<<ab ”是“ba 1<或a b 1>”的充会条件,反过来0<ab ,由b a 1<或ab 1>得不到10<<ab .(8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由双曲线422y x -=1知渐近线方程为x y 2±=,又∵椭圆与双曲线有公共焦点,∴椭圆方程可化为22x b +()225y b +=()225b b +,联立直线x y 2±=与椭圆方程消y 得,()20552222++=b b b x,又∵1C 将线段AB 三等分,∴()3220552212222a b b b =++⨯+, 解之得212=b .(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率[(A )15 (B )25 (C )35D 45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=A A A A A A A P .(10)设a ,b ,c 为实数,)1)1()(),)(()(22+++=+++=bx cx ax x g c bx x a x x f (.记集合S=()0,,()0,,x f x x R T x g x x R =∈==∈若S ,T 分别为集合元素S ,T 的元素个数,则下列结论不可能的是(A )S =1且T =0 (B )1T =1S =且 (C )S =2且T =2 (D )S =2且T =3 【答案】D【解析】当0===c b a 时,1=s 且 0||=T ;当0a ≠且240b ac -〈时,1=s 且1T =;当20,40a b ac ≠-〉且b=a+c(例如a=1 c=3,b=4)时, 2=s 且2T =.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分 (11)若函数2()f x x x a =-+为偶函数,则实数a = 。
浙江大学概率论2011-2012春夏试卷
浙江大学2011—2012学年春夏学期 《概率论与数理统计》期末考试试卷一. 填空题(每小格3分,共39分):1. 有个活动,记甲、乙、丙参加为事件A 、B 、C ,已知甲参加时乙一定参加,()0.5P A =,()0.6P B =,()0.8P C A =,()0.6P C A =,则()___________P C =,()__________P ABC =。
2. 进行12分钟跑测试。
设某批同学在12分钟内跑步圈数()~5X π(平均5圈的泊松分布),则随机选一位同学,她至少跑4圈的概率为___________;若随机选3位同学,记她们中至少跑4圈的人数为Y ,则Y 的概率分布律为3. 设服从参数为1的指数分布,对进行n 次独立重复试验,记观测结果为1X ,…,n X ,则11(32)____________P X X >>=;当n →∞时,211____________i n X pi e n -=−−→∑;1081{57}____________i X i P e -=>≈∑。
4. 设总体2~(,)X N μσ,μ,2σ未知,1X ,…,9X 为X 的简单随机样本,9119i i X X ==∑,()922118i i S X X==-∑,则61i i X =∑与94i i X =⎛⎫- ⎪⎝⎭∑的相关系数为___________;若()1~0,1a X XN b σ-,则(),________a b =;()()()21234221234________X X X X X X X X +---+-分布(要求写出参数);若根据样本观测值,7.2x =, 1.5s =,则2σ的置信度为0.95的置信区间为___________。
5. 保险公司希望希望确定居民住宅区火灾损失数额Y (千元)与该住户到最近消防站之间距离x (千米)的关系以便确定保险金额。
设2~(,)Y N a bx σ+,a ,b ,2σ均未知,()11,x y ,……,()1515,x y 是15个独立观察数据,已知 3.3x =,26.4y =,()152134.80ii x x =-=∑,()1521907.698i i y y=-=∑,()()151170.52i i i x x y y =--=∑,采用最小二乘估计,则回归方程ˆ__________y=,2σ的无偏估计为__________。
11-12-1浙江科技学院高等数学A1期末试卷
2011-2012学年第一学期期末高等数学A1考试试卷一.选择题(每小题3分,共18分)1. 微分方程xy y ′=+是( )。
(A) 可分离变量方程; (B) 齐次方程;(C) 一阶线性方程; (D) 伯努利方程。
2.若()f x 的导函数为sin x ,则()f x 的一个原函数( )。
(A ) 1sin x +; (B ) 1sin x −; (C ) 1cos x +; (D ) 1cos x −。
3.已知()0411cos 2xf t dt x ⎡⎤−=−⎣⎦∫,则()0f ′=( )。
(A) 2; (B)21e −; (C) 1; (D) 1e −。
4.阿基米德螺线()0a a ρθ=>相应于θ从0变到π2的一段弧与极轴所围成图形的面积为( )。
(A)2212a d ππθθ−∫; (B)220122a d πθθ∫; (C)222012a d πθθ∫; (D)22012a d πθθ∫。
5.通解为212x x x y C e C e xe −=++的微分方程是 ( )。
(A) 23x y y y xe ′′′−−=; (B) +23x y y y e ′′′−=;(C) +23x y y y xe ′′′−= ; (D) 23x y y y e ′′′−−=。
6.设()y f x =是方程240y y y ′′′−+=的一个解,若()00f x >,且0()0f x ′=,则()f x 在0x 处 ( )。
(A) 取得极大值; (B) 取得极小值;(C) 某邻域内单调增加; (D) 某邻域内单调减少。
二.填空题(每小题3分,共18分)1.函数(y C x C =−为任意常数)是微分方程1xy y ′′′−= ,(在“通解、特解、解”中选择一个答案)。
2.抛物线2y ax bx c =++在处,曲率最大。
3.=∫。
4.设()f x 的一个原函数是ln xx,则()d x f x x ′∫=。
2011考研数一真题及解析
轴负向看去为逆时针方向,则曲线积分
xzdx
xdy
y2 2
dz
___________
13.若二次曲面的方程为 x2 3y2 z2 2axy 2xz 2yz 4 ,经正交变换化
为 y12 4z12 4 ,则 a _______________
三、解答题
15
求极限
lim( ln(1
x)
2z xy
f1[xy, yg(x)]
y[ xf11 ( xy,
yg(x)
g(x) f12 (xy,
yg(x)]
2z xy
fx(1,1)
f11(1,1)
f12 (1,1)
17 解:
令f (x) k arctan x x
f
( x)
k 1 x2 1 x2
(1)当k 1 0,即k 1时,f (x) 0(除去可能一点外f (x) 0),所以f (x)单调减少,
知,
2
0
未知,
_
x
和
S
2
分别表示样本均值和样本方差。
口
1)求参数 2 的最大似然估计 2
口
口
2)计算 E( 2 )和 D( 2 )
试题答案
1.C 2.C 3.A 4.B 5.D 6.D 7.D 8.B 填空题:
9. ln(1 2) 10 y ex sin x 11 4 12 13 a 1 14 ( 2 2 )
又因为 lim f (x) , lim f (x) , 所以方程只有一个根。
x
x
(2)当k 1 0,即k 1时,由f (x) 0得x k 1,
二、填空题
9.曲线
y
x
0
2011-2012_1_高等数学期末试卷(浙大城院)
诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《高等数学》开课单位: 计算分院 ;考试形式:闭卷;考试时间:_2012_年_1_月_10_日; 所需时间:120 分钟`特别提醒:请将答案做在答题纸上,否则不得分!一、填空或单项选择(本大题共15小题,每格2分,共30分)1、 (1)03lim sinx x x →=_____________. (2) 21lim(1)xx x→∞-=____________.2、 若函数1sin 3, 0() , 0x x f x x k x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则k =__________.3、 函数2()ln(1)f x x x =+在2x =处的导数(2)f '= .4、函数y e=dy = .5、 设)(x f 在点a x =处的导数为2,则0(2)()limx f a x f a x∆→+∆-∆= .6、 函数3xy e =的n 阶导数为= .7、 (1)21xdx x =+⎰ . (2) ()20sin x x dx π+⎰= .8、函数21x y =⎰的单调增加区间为 .9、 设123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123B =-,则AB = .10、 设齐次线性方程组1231231230020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则k 的取值为 .11、 袋中有4个红球,2个绿球,从中任取一个球,抽后不放回,然后再从袋中任取一个球,则取得的二个球颜色恰好相同的概率是 .12、 甲和乙二人独立地破译同一个密码,甲能译出的概率为0.5,乙能译出的概率0.6,则此密码能被他们译出的概率为 .13、 有一颗均匀骰子,随机地抛4次,则其中至少有二次出现的点数恰好为6点的概率是 .二、 概率应用题(本大题共3题,每小题5分,共15分。
)14、 一批零件共100个,其中有次品10个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江大学20 11 -20 12 学年 秋冬 学期《 数学分析(Ⅰ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2012 年 1 月 11 日,考试时间: 120 分钟.考生姓名: 学号: 所属院系: _一、6分)0002()()00013214()().lim ()..0min{1}00251251322.lim 3.111x x x f x U x A x x x x x x x x f x A f x x x x A f x x x A εδδεδεεδε→→∀>∃><-<<<<+<∀>∃=><-<----=<-<=+++-<=设在内有定义,如果存在常数,对,,当时,不妨令,则:对,,,当,有;则称在处有极限,记作::因此(每题6分,共18分)1. ()21211cos 12cos 101lim cos lim 1(cos 1).x ux u u u x u u e x =--⋅-→∞→⎛⎫=+-= ⎪⎝⎭令2.222303330003322200limlim limarcsin [()]()662arctan 26lim 6lim 4.33x x x x x x x x x xx x xxx o x xo x x x x xx +++++→→→→→==⋅-++-+===⎰⎰⎰ 3. tan 0.x x n x e e x n αα→-设当时,与为等价无穷小量,求:常数、的值tan tan 3330000(1)tan 1lim lim lim lim 1313.3x x x x x n n n n x x x x e e e e x x x x x x x x x n ααααα-→→→→---==⋅====,因此,,1.21211(1)11111..242x y x x x y x y x π='=⋅=-+-'===+-则:故,在处的切线方程为2. 342242444cos 42(1)2.(2).2cos 2cos cos dy dy dy t t d y t dt dt t dx dx dxt t dx t t t dt dt'====== 3. (2012)2(2012)12(2011)22(2010)2012201220122201120102(2012)0(2)()(2)()(2)()(1)(2)(1)2012(22)(1)20122011(2)2012(22)20122011.=20122x x x x x x xxxx y x x e C x x e C x x e x x e x e e x x e x ee y ---------='''=-+-+-=--+--+-⨯=---+⨯⨯因此,013=4050156.四、 计算下列积分:(每题7分,共28分) 1. ln(1)x x dx+⎰222222111ln(1)ln(1)ln(1)2221111ln(1)1221111ln(1)(1)ln(1).242x x x dx x dx x x dx x x x x dxx x x x x C +=+=+-+⎛⎫=+--+ ⎪+⎝⎭=+---++⎰⎰⎰⎰ 2.66333(2(2(3)63(27.2x x x u u π--+=+-==+==⎰⎰⎰⎰令3.22222tan 1422220002124220002(1).1(1)2=2sin 1(1)3132.4228(2)sin 2sin cos .3sin tan 2sin cos 2sin .8u t u uu x dx du u u u u u du tdtu u x u dx u udu u u u udu udu ππππππ=+∞===++⋅⋅=++=⋅⋅⋅====⋅==⎰⎰⎰⎰⎰⎰,则:,则:令:,则:则:4. 211()().xt f x e dt f x dx -=⎰⎰设,计算:()22111111001()()().22x x ee f x dx xf x xf x dx xedx ----'=-=-==⎰⎰⎰五、(1)(2)2.D D x =计算:的面积;绕直线旋转一周所得立体的体积 (9分)322221111222001(1)(21).211(2)21.23144 (3)212(22(1).335444(2)(1).335l y x AD SV x x dxV x dy y dyππππππππππ==⋅⋅-=⎫=⋅⋅--=--=⎪⎭=--=--=⎰⎰⎰⎰⎰切线的方程为,切点,的面积或:证明题:(每题6分,共18分)1.21121111311(1)()()0.().41(41)11111(2).1()().22222(3){}.2()().3{}{}.(4n n n n n n n n n n n n n x f x f x f x x x x x x x f x f x x x x x x f x f x x x x +-+--'==>-->=>>=>==<<=<=【方法一】:令,则:则:单调递增下面证明:显然;假设,则:下面证明:单调递减,假设,则:由此可得,单调递减且有下界,因此,数列收敛11121113111)lim .lim .41221(1){}.21113112110.2224122(41)11.{}.222(2){}.3n n n n n n n n n n n n n n n n n n x x x x x x x x n N x x x x x x x x x x x x x x x x →+∞→+∞+++-+-==⇒==-∀∈>--•=>>-=-=>-->=<<设,则:故,【方法二】:数列有下界:对,;假设,则:因此,即:数列有下界数列单调递减,假设,则:111131310.{}.4141(41)(41)(3)(1)(2){}{}.3111lim .lim .4122n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x ----→+∞→+∞----=-=>-----==⇒==-因此,单调递减由、可得,数列单调递减有下界,因此,收敛令:,则:故,().()[)()f x I f x a g x +∞叙述函数在区间上一致连续的定义设在,上一致连续,[)lim[()()]0.()[).x a f x g x g x a →+∞+∞-=+∞在,上连续,且证明:在,上一致连续(1)00()()().li (2)()[)00()().300.m [()()]0()(300)x x x I x x f f x a x f x f x I f x g x f x g x x x f x f x G x G x x εδδεεδδεεδεε→+∞'''+∞'''''''''∀>∃>∈-<-<∀>∃>-<'''-<∀>∃->><'''=∀>->∃由于在,内一致连续,则对,,当时,由于对,,当时,则:对,对,,当、,且时,,当,则称在区间上一致连续,、()()()[1)()()()()()()()()()()()()()().()[1).()[1]()[).G x x g x g x g x f x f x f x f x g x g x f x f x f x f x g x g x G g x a G g x a δε'''∈++∞-<''''''''''''-=-+-+-'''''''''≤-+-+-<++∞++∞,,且时,因此,在,内一致连续而,在,上一致连续,因此,在,内一致连续2. 2240()[02](02)()2(2).x f x e f x dx f -=⎰设在,上连续,在,内可导,且 (02)()2().f f ξξξξ'∃∈=证明:,,使得()2222242(1)()()()()2().(2)(02)2()2(2)()(2).()(2).(3)()[2](2)(2)(02)()0.()2().x xF x e f x F x e f x xf x e f f e f e f F F F x Rolle F f f ηηηηηηηηξηξξξξ-----''==-∃∈=⇒==∃∈⊂''==令:,则:根据积分中值定理,,使得,即:又在,上连续,在,内可导,根据定理,,,使得即:(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。