立体几何中的折叠问题-高三数学备考冲刺
微专题6 立体几何中的折叠问题(解析版)-2022届高三数学三轮靶向复习专题(新高考版)
微专题6 立体几何中的截面问题知识梳理1.截面问题(1) 正方体的基本斜截面:正六面体的斜截面不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形.(2) 圆柱体的基本截面:(3) 结合线、面平行的判定定理与性质定理求截面问题;结合线、面垂直的判定定理与性质定理求截面问题.考向导航目录类型一确定截面的形状 (1)类型二确定截面的个数 (4)类型三计算截面图形的面积或周长 (7)典例精讲类型一确定截面的形状【例1】在正方体中,为的中点,E为棱D D上的动点(不包括端点),过点B,E,F的1平面截正方体所得的截面的形状不可能是()A .四边形B .等腰梯形C .五边形D .六边形【考点】LJ :平面的基本性质及推论 【分析】不妨设正方体的棱长为1,分102DE <,12DE =,112DE <<三类画出图形得答案.【解答】解:不妨设正方体的棱长为1 当102DE<时,截面为四边形BFEM ; 特别的,当12DE =时,截面为等腰梯形1BFEC ; 当112DE <<时,截面为五边形BFENK ,不可能为六边形. 故选:D .【点评】本题考查平面的基本性质及推论,考查空间想象能力与思维能力,是中档题. 【例2】如图,在正方体1111ABCD A B C D -中,点M 为棱BC 的中点,用平行于体对角线1BD 且过点A ,M 的平面去截正方体1111ABCD A B C D -,得到的截面的形状F 是( ) A .平行四边形 B .梯形 C .五边形 D .以上都不对 【分析】画出图形,设截面为α,设BD AM O =,P 为1DD 的靠近于1D 的三等分点,N为1CC 的靠近于C 的三等分点,由1//BD α,推出//MN AP 推出截面AMNP 为梯形. 【解答】解:如图,设截面为α,设BD AM O =,P 为1DD 的靠近于1D 的三等分点,N 为1CC 的靠近于C 的三等分点,由1//BD α可得平面1BDD 与α的交线平行于1BD ,所以α⋂平面1DBD OP =, 又平面α与两平行平面11AA D D ,11BB C C 的交线应互相平行, α∴⋂平面11BB C C MN =,由//MN AP 且MN AP ≠可得截面AMNP 为梯形, 故选:B .【点评】本题考查平面的基本性质的应用,直线与平面平行的判断定理的应用,是中档题.【变式1-1】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是()①三棱锥1P AA Q -的体积为定值;②当12CQ =时,S 为等腰梯形;③当314CQ <<时,S 为六边形; ④当1CQ =时,S 6. A .①④B .①②③C .②③④D .①②④【分析】①通过计算点P 到平面1AAQ 的距离,利用体积公式计算即可; ②通过条件可得1//PQ AD ,从而得出结论; ③当314CQ <<时,S 为五边形,故③错误; ④通过条件可知S 为平行四边形1APC R ,利用面积计算公式即得结论. 【解答】解:①点P 到平面1AAQ 的距离24h =, ∴11111211233212P AA Q AA QV S h -==⨯⨯=,故①正确.②当12CQ =时,1//PQ AD ,S 为等腰梯形1APQD ,故②正确. ③当314CQ <<时,S 为五边形,故③错误. ④设11A D 的中点为R ,当1CQ =时,S 为平行四边形1APC R , 易得S 6④正确. 故选:D .【点评】本题考查点到直线的距离公式,棱锥的体积公式,面积公式,注意解题方法的积累,属于中档题.【变式1-2】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是()A .当102CQ <<时,S 为四边形B .当12CQ =时,S 为等腰梯形 C .当34CQ =时,S 与11C D 的交点R 满足113C R =D .当314CQ <<时,S 为六边形 【分析】由题意作出满足条件的图形,由线面位置关系找出截面可判断选项的正误. 【解答】解:如图 当12CQ =时,即Q 为1CC 中点,此时可得1//PQ AD ,221151()2AP QD ==+=,故可得截面1APQD 为等腰梯形,故B 正确; 由上图当点Q 向C 移动时,满足102CQ <<,只需在1DD 上取点M 满足//AM PQ , 即可得截面为四边形APQM ,故A 正确; 当34CQ =时,如图, 延长1DD 至N ,使112D N =,连接AN 交11A D 于S ,连接NQ 交11C D 于R ,连接SR , 可证//AN PQ ,由11NRD QRC ∆∆∽,可得1111::1:2C R D R C Q D N ==,故可得113C R =,故C 正确; 由C 可知当314CQ <<时,只需点Q 上移即可,此时的截面形状仍然上图所示的APQRS ,显然为五边形,故D 错误; 故选:ABC .【点评】本题考查命题真假的判断与应用,涉及正方体的截面问题,属中档题. 易错警示在判断截面形状时,如果对截面与几何体的各个面是否存在交线,交线是什么形状,交线的位置等情况分析不清,那么容易导致判断错误,因此要结合空间中线面平行、面面平行的判定定理和性质定理等进行分析判断.类型二 确定截面的个数【例3】设四棱锥P ABCD -的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面(α ) A .不存在B .只有1个C .恰有4个D .有无数多个【分析】若要使截面四边形1111A B C D 是平行四边形,我们只要证明1111//A B C D ,同时1111//A D B C 即可,根据已知中侧面PAD 与侧面PBC 相交,侧面PAB 与侧面PCD 相交,根据面面平行的性质定理,我们易得结论.【解答】证明:由侧面PAD 与侧面PBC 相交,侧面PAB 与侧面PCD 相交,设两组相交平面的交线分别为m ,n , 由m ,n 确定的平面为β, 作α与β平行且与四条侧棱相交, 交点分别为1A ,1B ,1C ,1D 则由面面平行的性质定理得: 1111////A B m D C ,1111////A D n B C ,从而得截面必为平行四边形.由于平面α可以上下移动,则这样的平面α有无数多个. 故选:D .【点评】本小题主要考查棱锥的结构特征、面面平行的性质定理等基础知识,考查了转化思想,属于基础题.【例4】如图,在四棱锥P ABCD -中,AD 与BC 相交.若平面α截此四棱锥得到的截面是一个平行四边形,则这样的平面(α ) A .不存在B .恰有1个C .恰有5个D .有无数个【分析】由线线平行且相等证明为平行四边形.【解答】解:在平面ABCD 中作线段//MN AB ,交AD 、BC 于点M 、N ; 在平面PAB 中作//EF AB ,交PA 、PB 于点E 、F ; 使MN EF =.则四边形EFNM 为平行四边形; 这样的平行四边形显然可以做无数个, 且平行四边形所在平面可为α. 故选:D .【点评】本题考查了学生作图、识图的能力,属于基础题.【变式2-1】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为)h ,其中:三棱锥的底面是正三角形(边长为)a ,四棱锥的底面是有一个角为60︒的菱形(边长为)b ,圆锥的体积为V ,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( ) A .4323:2:1V Va b a b == B .4323:1:2V Va b a b == C .4323,,:2VVa b a b hh=== D .4323,,:2VVa b a b hh===【分析】由祖暅原理可知:三个几何体的体积相等,设圆锥的底面半径为r .则22213131333V h h h r π=⨯=⨯=⨯⨯,由此能求出结果.【解答】解:由祖暅原理可知:三个几何体的体积相等, 设圆锥的底面半径为r .则22213131333V h h h r π=⨯=⨯=⨯⨯,由2133V h =⨯,解得43V a h =由2133V h =⨯,解得23Vb h=由22131333V h h =⨯=⨯,解得:2a b .故选:C .【点评】本题主要考查祖暅原理的应用,由题意易知,三个几何体的体积相等,从而构建了变量间的等量关系,根据选项合理选择方程,从而易知正确选项.【变式2-2】在下列四个命题中,其中正确命题的是( )A .有两个面互相平行,其余各面都是平行四边形的多面体是棱柱B .有一个面是多边形,其余各面都是三角形的几何体叫棱锥C .有两个面互相平行,其余各面都是梯形的多面体是棱台D .用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台 【分析】直接利用棱柱、棱锥、棱台的结构特征逐一核对四个选项得答案.【解答】解:选项A 不符合棱柱的结构特征,可取一个简单的组合体说明错误,如下面是一个正三棱柱,上面是一个以正三棱柱上底面为底面的斜三棱柱;选项B 不符合棱锥的结构特征,应该是有一个面是多边形,其余各面都是有一个公共顶点的三角形;选项C 不符合棱台的结构特征,棱台是由平行于棱锥底面的平面截棱锥得到的,则应保证各侧棱延长后相交于一点;用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台,正确. 故选:D .【点评】本题考查了命题的真假判断与应用,考查了棱柱、棱锥、棱台的结构特征,是基础题.类型三 计算截面图形的面积或周长【例5】已知正方体1111ABCD A B C D -的棱长为1,点P 是线段1BD 上(不含端点)的任意一点,点E 是线段1A B 的中点,点F 是平面ABCD 内一点,则下面结论中正确的有( ) A .//CD 平面1PBCB .以1A 为球心、2为半径的球面与该正方体侧面11DCCD 的交线长是2π C .||||EP PF +的最小值是23 D .||||EP PF +的最小值是23【分析】利用线线平行可得线面平行可判断A ,求出球面与面11DCC D 的交线长可判断B ,求出||||EP PF +的最小值可判断C ,D .【解答】解:平面1PBC 即为平面11BC D ,11//CD C D ,11C D ⊂平面11BC D ,CD ⊂/平面11BC D ,//CD ∴平面1PBC ,故A 正确;11A D ⊥平面11DCC D ,以1A 为球心、2为半径的球面与该正方体侧面11DCC D 的交线即为以1D 为圆心,1为半径的圆在面11DCC D 内的部分,故其交线长为12142ππ⨯⨯=,故B 正确;点F 是平面ABCD 内一点,||PF 的最小值即为P 到面ABCD 的距离,即过点P 向BD 作垂线,垂足即为F ,把平面11BA D 绕1BD 旋转平与1BDD 在同一平面内,如图所示, 由正方体1111ABCD A B C D -的可知112DBA DBD ∠=∠, 又2211121cos cos 22cos 12(33DBA DBD DBD ∠=∠=∠-=⨯=,122sin DBA ∴∠=又2BE ,||||EP PF +的最小值即为E 到BD 的距离,||||EP PF ∴+的最小值为2222233=.故C 错误,D 正确. 故选:ABD .【点评】本题考查线面平行的证明,点运动和轨迹问题,距离和的最小值的求法,属中档题.【例6】已知在棱长为4的正方体1111ABCD A B C D -中,E 为棱BC 的中点,以点E 为球心,10Γ,则下列结论正确的是( ) A .Γ与面11ABB A 6πB .直线1BD 被Γ266C .若点H 为Γ上的一个动点,则1HD 的最小值为810D .Γ与截面11BDD B 的交线长为423【分析】由球的相关性质知,重点在于由球心向平面或直线作垂线,从而找到圆心,从而依次解答.【解答】解:BE ⊥平面11ABB A ,∴平面11ABB A 截Γ所得小圆半径1046r =-为B ,故Γ与面11ABB A 62πA 正确,点E 到直线1BD 的距离等于点C 到直线1BD 424126243⨯= 故直线1BD 被Γ截得的线段长为82662103-B 正确, 221(42)2610D E =+=>,1HD ∴的最小值为610C 错,过点E 作1EO BD ⊥于点1O ,连接11B O ,则2BE =,112O B EO ==,1132O B =连接ED ,在BD 上取2DF ,则10EF所以点F 在该球上,在1BB 上取6BG ,则122GO =10GE = 所以点G 在该球上,故Γ与截面11BDD B 的交线弧的端点为F 、G , 且1120FO G ∠=︒,所以Γ与截面11BDD B 的交线弧长为2223π⨯故D 对,故选:ABD .【点评】本题考查了立体几何相关知识的应用,球与多面体问题,考查了空间想象力,属于难题.【变式3-1】正方体1111ABCD A B C D -棱长为2,以其体对角线的交点O 21径的球与正方体表面的交线长为 .【分析】根据球与正方体的关系,作出轴截面,进行求解即可.【解答】解:依题意,球心O 到正方体表面的距离为1,设正方形ABCD 的中心为1O , 正方形ABCD 所在平面裁球O 所得的圆的半径22231r R d ->. 故球O 与每一个面的交线均为四段圆弧,且13EO F π∠=.故四段圆弧的圆心角之和为2()4233πππ-⨯=,故一个面上的交线长223433l π==, 则643836π⨯=, 83π【点评】本题主要考查球与正方体的位置关系,作出轴截面是解决本题的关键,是中档题.【变式3-2】在棱长为1的正方体1111ABCD A B C D -中,以A 23方体表面的交线长为 .【分析】球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上;另一类在不过顶点A 的三个面上,且均为圆弧,分别求其长度可得结果. 【解答】解:正方体的各个面根据与球心位置关系分成两类:ABCD 、11AA DD 、11AA BB 为过球心的截面,截痕为大圆弧,各弧圆心角为6π, 1111A B C D 、11B BCC 、11D DCC 为与球心距离为1的截面,截痕为小圆弧,由于截面圆半径为3r 2π. ∴这条曲线长度为:233533362ππ⋅+⋅=. 53. 【点评】本题为空间几何体交线问题,找到球面与正方体的表面相交所得到的曲线是解决问题的关键,是中档题.【变式3-3】已知正方体1111ABCD A B C D -的棱长为2,以顶点A 43个球,则球面与正方体的表面相交所得到的各段曲线的长度之和等于53. 【分析】球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上;另一类在不过顶点A 的三个面上,且均为圆弧,分别求其长度可得结果. 【解答】解:如图,球面与正方体的六个面都相交,所得的交线分为两类: 一类在顶点A 所在的三个面上,即面11AA B B 、面ABCD 和面11AA D D 上; 另一类在不过顶点A 的三个面上,即面11BB C C 、面11CC D D 和面1111A B C D 上. 在面11AA B B 上,交线为弧EF 且在过球心A 的大圆上, 因为43AE ,12AA =,则16A AE π∠=.同理6BAF π∠=,所以6EAF π∠=, 故弧EF 43236π=,而这样的弧共有三条. 在面11BB C C 上,交线为弧FG 且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B 23,2FBG π∠=, 所以弧FG 2332π=.这样的弧也有三条. 于是,所得的曲线长为2335333+=. 53.【点评】本题为空间几何体交线问题,找到球面与正方体的表面相交所得到的曲线是解决问题的关键,属中档题.巩固训练1.已知球O 2的正方体1111ABCD A B C D -的各个面都相切,则平面1ACD 截此球所得的截面面积为( ) A .3πB .23π C .π D .43π 【分析】由题意可得:球O 的半径2R =球心O 为正方体的中心,可得:点O 到平面1ACD 的距离116d BD =.平面1ACD 截此球所得的截面圆的半径22r R d =- 1ACD 截此球所得的截面面积.【解答】解:由题意可得:球O 的半径2R =球心O 为正方体的中心,可得:点O 到平面1ACD 的距离11162366d BD ==.∴平面1ACD 截此球所得的截面圆的半径223r R d =-= ∴平面1ACD 截此球所得的截面面积213r ππ==.故选:A .【点评】本题考查了正方体与其内切球及其截面圆的性质、等边三角形的性质,考查了空间想象能力、推理能力与计算能力,属于中档题.2.已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为( ) A 23B 3C 23D 3 【分析】求出平面1ACB 截此球所得的截面的圆的半径,即可求出平面1ACB 截此球所得的截面的面积,由此能求出平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积. 【解答】解:由题意,球心与B 的距离为12332⨯=B 到平面1ACB 的距离为123233⨯,球的半径为1,球心到平面1ACB 2333=∴平面1ACB 12133-=∴平面1ACB 截此球所得的截面的面积为2233S ππ=⨯=, 球心O 截面圆的距离2313d =-=, ∴平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积:112323333V Sd ππ=⨯=⨯=. 故选:C .【点评】本题考查圆锥的体积的求法,考查正方体及内切球的性质等基础知识,考查运算求解能力,是中档题.3.已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为 .【分析】由题意画出图形,求出平面1ACB 截此球所得的截面圆的半径,则答案可求. 【解答】解:正方体1111ABCD A B C D -的棱长为2,球O 与该正方体的各个面相切, 则球O 的半径为1,如图,设E 、F 、G 分别为球O 与平面ABCD 、平面11BB C C 、11AA B B 的切点, 则等边三角形EFG 为平面1ACB 截此球所得的截面圆的内接三角形, 由已知可得2EF EG GF ==∴平面1ACB 截此球所得的截面圆的半径26r =. ∴截面的面积为262(3ππ⨯=. 故答案为:23π. 【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,是中档题.4.已知棱长 为4的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则以平面1ACB 截此球所得的截面为底面,以O 为顶点的圆锥体积为 .【分析】直径为4,且AC ,1AB ,1CB 的中点在所求的截面圆上,所求截面为此三点构成的边长为22由此能求出以O 为顶点,以平面1ACB 截此球所得的截面为底面的圆锥体积.【解答】解:因为球与各面相切,所以直径为4,且AC ,1AB ,1CB 的中点在所求的截面圆上,所以所求截面为此三点构成的边长为2 由正弦定理知26R =83S π=, ∴以O 为顶点,以平面1ACB 截此球所得的截面为底面的圆锥体积为:18116343336V π=⨯⨯⨯.163. 【点评】本题考查圆锥的体积的求法,考查正方体、圆锥性质等基础知识,考查运算求解能力、考查函数与方程思想,是中档题.5.已知正方体1111ABCD A B C D -的棱长为2,P 是空间中任意一点. ①若点P 是正方体表面上的点,则满足1||2AP =的动点轨迹长是34π;②若点P 是线段1AD 上的点,则异面直线BP 和1B C 所成角的取值范围是[,]32ππ;③若点P 是侧面11BCC B 上的点,P 到直线BC 的距离与到点1C 的距离之和为2,则P 的轨迹是椭圆;④过点P 的平面α与正方体每条棱所成的角都相等,则平面α截正方体所得截面的最大面积是33以上说法正确的有 ①④ . 【分析】满足1||2AP =的动点P 的轨迹是以A 为圆心,以12为半径的3个14圆弧,求出动点轨迹长可判断①;证明1B C ⊥面11ABC D ,可得1B C BP ⊥ 可判断②;若P 到直线BC 的距离与到点1C 的距离之和为2,则点P 在线段1CC 上可判断③;作出平面α为截正方体的正六边形求出其面积可判断④,进而可得正确答案. 【解答】解:对于①:满足1||2AP =的动点P 的轨迹是以A 为圆心,以12为半径的3个14圆弧,因此动点轨迹长是11332424ππ⨯⨯⨯=,故①正确:对于②:如图:连接1BC ,则11B C BC ⊥, 因为AB ⊥面11BCC B ,1B C ⊂面11BCC B , 所以1AB B C ⊥,因为1ABBC B =,所以1B C ⊥面11ABC D ,因为P 是线段1AD 上的点,则BP ⊂面11ABC D ,可得1B C BP ⊥, 所以异面直线BP 和1B C 所成角恒为2π, 故②不正确;对于③:过点P 作PM BC ⊥于点M ,则P 到直线BC 的距离与到点1C 的距离之和为1PM PC +, 当点P 在线段1CC 上时, 1112PM PC PC PC CC +=+==,当点P 不在线段1CC 上时,112PM PC PC PC +>+=此时不满足P 到直线BC 的距离与到点1C 的距离之和为2,所以P 的轨迹是线段1CC ,故③不正确;对于④:过点P 的平面α与正方体每条棱所成的角都相等,只需过同一顶点的三条棱所成的角相等即可,如图所示:111A P A R AQ ==,则平面PQR 与正方体过点1A 的三条棱所成的角都相等, 若点E ,F ,G ,H ,M ,N 别为相应棱的中点,则平面//EFGHMN 平面PQR ,且六边形EFGHMN 2, 所以正六边形的面积为:236(2)33= 故④正确;故答案为:①④.【点评】本题考查空间中异面直线所成的角,考查学生的分析推理能力,属于难题.6.已知正四面体ABCD 的棱长为2,平面α与棱AB ,CD 均平行,则α截此正四面体所得截面面积的最大值为( ) A .1B 2C 3D .2【分析】作出α截此正四面体所得截面,证明是长方形,然后长方形面积表示为某一边长的函数可解决此题.【解答】解:如图所示:作//MN AB ,交BC 、AC 于点M 、N ,过点N 作//NQ CD ,交AD 于点Q ,过点Q 作//QP AB 交BD 于点P ,连接MP ,看得到平行四边形MNQP . 取CD 中点O ,连接AO 、BO ,由AC AD BC BD ===,可得OA CD ⊥、OB CD ⊥,于是得到CD ⊥平面AOB ,则得到AB CD ⊥,所以MN NQ ⊥,则平行四边形MNQP 是长方形.设(0,2)MN x =∈,可知CMN ∆、BMP ∆都是等边三角形,所以MC x =,则2MP MB x ==-,∴长方形MPNQ 的面积2(2)2S x x x x =-=-+,当1x =时,S 取得最大值21211-+⨯=.故选:A .【点评】本题考查线线、线面平行或垂直,考查数学运算能力及直观想象能力,属于中档题.7.已知正四面体ABCD 的棱长为2,所有与它的四个顶点距离相等的平面截这个四面体所得截面的面积之和是( ) A .33+B .4C .3D 3【分析】根据题意,到正四面体ABCD 四个顶点距离相等的截面分为两类:一类是由同一顶点出发的三条棱的中点构成的三角形截面,这样的截面有4个;另一类是与一组相对的棱平行,且经过其它棱的中点的四边形截面,这样的截面有3个.因此作出示意图,其中E 、F 、G 、H 、I 是各条棱的中点,根据题中数据分别算出EFG ∆与四边形EGHI 的面积,从而可得所有满足条件的截面面积之和.【解答】解:设E 、F 、G 分别为AB 、AC 、AD 的中点,连结EF 、FG 、GE ,则EFG ∆是三棱锥A BCD -的中截面,可得平面//EFG 平面BCD ,点A 到平面EFG 的距离等于平面EFG 与平面BCD 之间的距离,A ∴、B 、C 、D 到平面EFG 的距离相等,即平面EFG 是到四面体ABCD 四个顶点距离相等的一个平面.正四面体ABCD 中,象EFG ∆这样的三角形截面共有4个. 正四面体ABCD 的棱长为2,可得1EF FG GE ===, EFG ∴∆是边长为1的正三角形,可得13sin 602EFG S EF FG ∆=︒=. 取CD 、BC 的中点H 、I ,连结GH 、HI 、IE ,EI 、GH 分别是ABC ∆、ADC ∆的中位线,∴1//2EI AC =,//12GH AC =,得//EI GH =,可得四边形EGHI 为平行四边形,又AC BD =且AC BD ⊥,//12EI AC =,//12HI BD =,EI HI ∴=且EI HI ⊥,可得四边形EGHI 为正方形,其边长为112AC =,由此可得正方形EGHI 的面积1EGHI S =.BC 的中点I 在平面EGHI 内,B ∴、C 两点到平面EGHI 的距离相等.同理可得D 、C 两点到平面EGHI 的距离相等,且A 、B 两点到平面EGHI 的距离相等.A ∴、B 、C 、D 到平面EGHI 的距离相等,可得平面EGHI 是到四面体ABCD 四个顶点距离相等的一个平面.正四面体ABCD 中,象四边形EGHI 这样的正方形截面共有3个.因此,所有满足条件的正四面体的截面面积之和等于34343133EFG EGHI S S ∆+=+⨯=+ 故选:A .【点评】本题给出棱长为2的正四面体,求到它的各个顶点等距离的所求截面之和.着重考查了正四面体的性质、点到平面距离的定义、三角形面积与四边形形面积的求法等知识,属于中档题.8.已知正四面体ABCD 的棱长为2,E ,F ,G 分别为AB ,BC ,CD 的中点,则正四面体ABCD 的外接球被平面EFG 所截的截面面积是( ) A .49π B .43π C .32π D .23π 【分析】将正四面体放入相应的正方体中,由题意可得球心在EFG 上,正四面体ABCD 的外接球被平面EFG 所截得的截面为球的大圆,则面积可求. 【解答】解:如图,将正四面体放入正方体中,E 、G 分别为AB 、CD 的中点,E ∴、G 为正方体左右侧面的中心,∴正方体的外接球即正四面体的外接球,球心为EG 的中点, ∴正四面体ABCD 的外接球被平面EFG 所截的截面即为大圆,正四面体ABCD 的棱长为22 得外接球的半径222(2)(2)(2)6R ++==,∴大圆面积为:2263(2R πππ=⨯=. 故选:C .【点评】本题考查多面体外接球,考查空间想象能力与思维能力,考查运算求解能力,训练了分割补形法,是中档题.9.如图,已知四面体ABCD 为正四面体,2AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( ) A .1B 2C 3D .2【分析】将四面体ABCD 补成正方体,在正方体内利用截面为平行四边形MNKL ,有2NK KL +=,进而由基本不等式即可得解.【解答】解:将四面体ABCD 补成正方体AODP HBGC -,其示意图如图所示: 已知EF α⊥,记平面α截该四面体得到的截面为四边形MNKL , 由题意得,////NK AD ML ,////KL BC MN ,所以四边形MNKL 为平行四边形,且易得2NK KL +=, 因为AD BC ⊥,所以NK KL ⊥, 故2()12MNKL NK KL S NK KL +=⋅=四边形, 当且仅当1NK KL ==时,取等号, 故选:A .【点评】本题考查平面的基本性质及推论,其中涉及到基本不等式的应用,用了割补法,属于中档题.10.勒洛四面体是一个非常神奇的“四面体”、它能在:两个平行平面间自由转动,并且始终保持与两平面都接触、因此它能像球一样来回滚动(如图甲),利用这一原理,科技人员发明了转子发动机.勒洛四面休是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体,如图乙所示,若正四面体ABCD的棱长为2,则勒洛四面体能够容纳的最大球的半径为62;用过A,B,C三点的平面去截勒洛四面体,所得截面的面积为.【分析】根据题意,勒洛四边形能容纳的最大球与勒洛四面体的弧面相切,如图,设该求与勒洛四面体的一个切点为E,连接BE,则B,O,E三点共线,且O为该球球心,也是正四面体ABCD的中心,再求正四面体的外接球半径即可得到勒洛四面体能够容纳的最大球的半径,再结合勒洛四面体的构成可知过A,B,C三点的截面面积为3个半径为2,圆心角为60︒的扇形的面积减去两个边长为2的正三角形的面积,再计算即可得到答案.【解答】解:根据题意,勒洛四面体能够容纳的最大球与勒洛四面体的弧面相切,如图1,其中点E为该球与勒洛四面体的一个切点,O为该球球心,所以,由四面体的性质可知该球球心O为正四面体ABCD的中心,半径为OE,连接BE,则B,E,O三点共线,此时2BE=,BO为正四面体的外接球的半径,由于正四面体ABCD的棱长为22的正方体中截出,所以正四面体ABCD2即正方体体对角线的一半,所以6BO=,则勒洛四面体能够容纳的最大球的半径62OE=;根据勒洛四面体的构成可知,过A,B,C三点的截面面积为3个半径为2,圆心角为60︒的扇形的面积减去两个边长为2的正三角形的面积,所以所得截面的面积为223π-故答案为:62-;223π-【点评】本题考查多面体与球体内切外接问题,数形结合思想,属于中档题.。
高考数学命题角度44立体几何中的折叠问题大题狂练理-含答案
3 10 . 10
2. 如图甲,已知矩形 ABCD 中, AB 2 3, BC 2, H 为 CD 上一点,且 BH AC ,垂足 为 O ,现将矩形 ABCD 沿对角线 AC 折起,得到如图乙所示的三棱锥 B ADC .
(Ⅰ)在图乙中,若 BH AD ,求 BH 的长度; (Ⅱ)当二面角 B AC D 等于 60 时,求二面角 A DC B 的余弦值 .
【答案】(Ⅰ)(Ⅱ) 3 10 10
【解析】试题分析: (Ⅰ)利用折叠前后的不变量得到有关垂直关系,进而利用线面垂直的判
定定理得到线面垂直,再利用线面垂直的性质得到线线垂直;
(Ⅱ)同(Ⅰ)证明有关线面垂
直和线线垂直,进而建立适当的空间直角坐标系,利用空间向量进行求解.
(Ⅱ)设 AB 中点为 Q ,连接 CQ ,交 BD 于点 N ,连接 NC ' . 同(Ⅰ)可证 DE CQC ' , 从而面 CQC '/ / 面 FPF ' ,所以 C ' N / /F ' M ;由 DE 面 CQC ' ,可得面 CQC ' 面 ABCD ,又因为面 BDC ' 面 ABCD ,且面 BC ' D 与面 CQC ' 相交于 C ' N ,所以 CN 面
3
y
x,
{
3 3
33
n2
1, ,
,
39
z
x
9
所以 cos
n1 n2 n1 n2
37 , 37
由横坐标 B
33 ,0,
大于 H
3 ,0,0
横坐标,
22
3
所以二面角 A DC B 为钝角,所以余弦值为
立体几何中的折叠问题含解析
高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。
高考数学命题角度44立体几何中折叠问题大题狂练理含
命题角度 4.4 :立体几何中的折叠问题1. 在正方形ABCD 中,BC 的中点为点 E ,CD 的中点为点 F ,起获得 C 'DE ,使得面BC 'D面ABCD,此时点 F 位于点 F ' 处(Ⅰ)证明:AF' DE;(Ⅱ)求面ADC ' 与面 BEC ' 所成二面角的正弦值.3 10【答案】(Ⅰ)(Ⅱ)10【分析】试题剖析:(Ⅰ)利用折叠前后的不变量获得相关垂直关系,从而利用定定理获得线面垂直,再利用线面垂直的性质获得线线垂直;(Ⅱ)同直和线线垂直,从而成立适合的空间直角坐标系,利用空间向量进行求解.ABCD .设 N 为原点,过点N 作 x 轴平行于AB ,作 y 轴平行于 BC ,NC妨设正方形ABCD 边长为3 ,从而B 1, 1,0 ,C 1,2,0,A2AF315, MF5 ,22又由于 DPF351DCE ,因此 PF, PM5 ,在直角105可得F'M1,2因此 NC'1 ,即 C ' 0,0,1,因此能够求得面BCC ' 的法向量1为n10向量 n 2 为 1,0,2 ,因此能够得出法向量cosn 1, n 2,则3 101010.2. 如图甲,已知矩形ABCD 中,AB 2 3, BC2, H 为 CD 上一点【分析】试题剖析:(Ⅰ)当BH AD 时,由线面垂直的判断定理,可得因此 BH DC ,由勾股定理求出BH的长度;(Ⅱ)以O 为坐标原点,y 轴,垂直于平面ADC 的方向为z 轴建系,可得平面ADC 的法向量为面角 B AC D等于 60,求出点B,C,H 三点的坐标,假n2x, y, z,由22HB , 求出n2,依据两向量的夹角公n HC ,nA DCB 的余弦值.(Ⅱ)如图,以O 为坐标原点,OH 为x轴,OC 为y轴,垂直于平建系,可得平面ADC 的法向量为n10,0,1 ,3y3xyx,33则 { 3{3n 21,,,3 x3 zz3 x39629因此 cosn 1n 237 ,n 1n 237由横坐标 B3 ,0,3 大于 H3 ,0,0横坐标,223因此二面角 A DCB 为钝角,因此余弦值为37.373. 如图 1,已知在菱形ABCD 中,B 120 , E 为 AB 的中点, 现折起至 EBHD ,如图 2.。
2019届高三数学备考冲刺140分问题28立体几何中的折叠问题(含解析)
问题28立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,ABC S ∆=V(x)=(0x <<(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;6x <<'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中PF =(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .CDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则. 所以直线AP 与平面PEF. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得在Rt APH ∆中,所以直线AP 与平面PEF所成角的正弦值为427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFH(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D 、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为2B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为2MC =A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得R=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BC A -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE AC ⊥(4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1A C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE AC ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE ,从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、(D ',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面 平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积.【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。
高考数学难点突破八立体几何中的翻折问题答案
高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。
核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。
二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。
立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)
立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。
(完整版)立体几何中的折叠问题
立体几何中的折叠问题1.概念:将平面图形沿某直线翻折成立体图形,再对折叠后的立体图形的线面位置关系和某几何量进行论证和计算,就是折叠问题.2.折叠问题分析求解原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。
(最值问题)1、把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_______.(两点间距离,全品83页)2、把长宽分别为2的长方形ABCD 沿对角线AC 折成60o 的二面角,求顶点B 和D 的距离。
3、(全品70页)给出一边长为2的正三角形纸片,把它折成一个侧棱长与底面边长都相等的三棱锥,并使它的全面积与原三角形面积相等,设计一种折叠方法,并用虚线标在图中,并求该三棱锥的体积。
4、(2005江西文)矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( ) A .π12125B .π9125C .π6125D .π3125A BCEMN解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求,是培养空间想象能力的很好的题型。
高考题中的折叠问题1、在正方形SG 1G 2G 3中E 、F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE 、SF 及EF 把这个正方形折成一个四面体,使G 1、G2、G 3三点重合,重合后的点记为G.那么,在四面体S —EFG 中必有(A)SG ⊥△EFG 所在平面 (B)SD ⊥△EFG 所在平面 (C)GF ⊥△SEF 所在平面 (D)GD ⊥△SEF 所在平面 2、如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE , EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ) A .90° B .60° C .45° D .0°3、(2005浙江理科)12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.4、(2006山东)如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为(A)2734π (B)26π (C)86π (D)246π5、(2009浙江)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .6.(2010上海)在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB V ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。
高中数学立体几何中的折叠问题
高中数学立体几何中的折叠问题在高中数学的立体几何领域,折叠问题是一个相当重要且具有一定难度的知识点。
它不仅考验我们对空间想象力的运用,还要求我们具备扎实的几何基础知识和逻辑推理能力。
首先,我们来了解一下什么是折叠问题。
简单来说,折叠问题就是将一个平面图形按照某种规则折叠成一个立体图形,然后让我们去研究这个立体图形中的各种几何关系,比如线线关系、线面关系、面面关系以及相关的角度、长度、面积、体积等的计算。
折叠问题的关键在于理解折叠前后图形的不变量和变化量。
不变量通常包括线段的长度、角度的大小等。
比如,在一个矩形沿着某条边折叠的过程中,矩形相邻两边的长度是不变的。
而变化量则包括位置关系、角度关系等。
例如,原本在平面上相互平行的两条线,在折叠后可能不再平行。
那么,解决折叠问题有哪些常见的思路和方法呢?第一步,我们要仔细观察题目中给出的折叠过程和条件,明确折叠前后的图形特征。
这就像是在拼图游戏中,先看清每一块拼图的样子。
第二步,根据不变量和变化量,找出折叠前后图形中的关键元素和关系。
比如,找到折叠后形成的直角、等腰三角形等特殊图形,这些往往是解题的突破口。
第三步,运用我们所学的立体几何知识,如线面垂直的判定定理、面面垂直的判定定理、勾股定理等,进行推理和计算。
接下来,通过一些具体的例子来感受一下折叠问题的魅力。
例 1:有一个边长为 2 的正方形 ABCD,将其沿着对角线 AC 折叠成一个三棱锥,求三棱锥的体积。
在这个例子中,我们先分析折叠前后的不变量。
正方形的边长不变,对角线 AC 的长度也不变。
折叠后,三角形 ABC 和三角形 ADC 都是等腰直角三角形,且 AC 是三棱锥的高。
然后,我们可以根据三棱锥体积的公式 V = 1/3×底面积×高,计算出体积。
例 2:一个直角梯形 ABCD,其中 AD 平行 BC,AD 垂直 AB,AB = BC = 2AD = 2。
将直角梯形沿着 AB 边折叠成一个直二面角,求异面直线 CD 与 AB 所成角的余弦值。
高考数学难点突破八立体几何中的翻折问题
高考数学难点突破八--------立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。
核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。
二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为( )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则 A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<<Q DPCBA例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( ) A.5C.4例9、(2020年3月名校合作体)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤D.βα3≥例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( ) A. 重心 B. 垂心 C. 内心 D.外心B DACG PFD C B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年9月嘉兴基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。
立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题06立体几何中折叠问题类型对应典例折叠问题中的点线面位置关系典例1折叠问题中的体积典例2折叠问题中的线面角典例3折叠问题中的二面角典例4【典例1】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【典例2】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【典例3】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,2PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ;(Ⅱ)求三棱锥E PBC -的体积.【典例4】如图,ABC 中,4AB BC ==, 90ABC ∠=︒,,E F 分别为 AB ,AC 边的中点,以EF 为折痕把AEF 折起,使点 A 到达点 P 的位置,且 PB BE =.(1)证明: BC ⊥平面 PBE ;(2)求平面 PBE 与平面 PCF 所成锐二面角的余弦值.1.在Rt ABC △中,90ABC ∠=︒,1tan 2ACB ∠=.已知E ,F 分别是BC ,AC 的中点.将CEF △沿EF 折起,使C 到'C 的位置且二面角'C EF B --的大小是60︒.连接C'B ,'C A ,如图:(Ⅰ)求证:平面'FA C ⊥平面'ABC ;(Ⅱ)求平面'AFC 与平面'BEC 所成二面角的大小.2.已知长方形ABCD 中,1AB =,AD =BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.3.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.4.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.5.如图,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O ⋂=.沿EF 将△CEF 翻折到△PEF ,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且PB =.(1)求证:BD ⊥平面POA ;(2)求四棱锥P BFED -的体积.6.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中:(I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二参考答案【典例1】【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ;(2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值.【详解】(1)证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==.所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=.(3)过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =.又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE ,所以CF //平面ADE .同理//FP 平面ADE .又因为CF PF F ⋂=,所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =.【典例2】【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM和平面MFD 的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即由题意知,在图2中,,,平面,平面,且,平面,平面,.又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅱ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果.【详解】(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC DE ⊥;所以折叠后,DE PF ⊥,DE CF ⊥,又PF CF F ⋂=,,PF CF ⊂平面PCF ,所以DE ⊥平面PCF因为四边形AECD 为菱形,所以//,AE DC AE DC =.又点E 为线段AB 的中点,所以//,EB DC EB DC =.所以四边形DEBC 为平行四边形.所以//CB DE .又DE ⊥平面PCF ,所以BC ⊥平面PCF .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCF .(Ⅱ)图1中,由已知得32AF CF ==,1BC BE ==,60CBE ∠=︒所以图2中,2PF CF ==,又2PC =所以222PF CF PC +=,所以PF CF ⊥又BC ⊥平面PCF ,所以BC ⊥PF 又BC CF C ⋂=,,BC CF ⊂平面BCDE ,所以PF ⊥平面BCDE ,所以1113111sin6033228E PBC P BCE BCE V V S PF --∆==⨯⨯=⨯⨯⨯⨯⨯= .所以三棱锥E PBC -的体积为18.【典例4】【思路引导】(1)由E ,F 分别为AB ,AC 边的中点,可得EF BC ,由已知结合线面垂直的判定可得EF ⊥平面PBE ,从而得到BC ⊥平面PBE ;(2)取BE 的中点O ,连接PO ,由已知证明PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出平面PCF 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PBE 与平面PCF 所成锐二面角的余弦值.【详解】(1)因为,E F 分别为AB ,AC 边的中点,所以EF BC ,因为90ABC ∠=︒,所以EF BE ⊥,EF PE ⊥,又因为BE PE E ⋂=,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB BE PE ==,所以PO BE ⊥,又因为PO ⊂平面PBE ,平面PBE ⋂平面BCFE BE =,所以PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为,,x y z轴建立空间直角坐标系,则(P ,()1,4,0C ,()1,2,0F -.(1,4,PC =,(1,2,PF =-,设平面PCF 的法向量为(),,m x y z=,则0,0,PC m PF m ⎧⋅=⎨⋅=⎩即40,20,x y x y ⎧+=⎪⎨-+-=⎪⎩则(m =-,易知()0,1,0n=为平面PBE的一个法向量,cos<,5m n >=== ,所以平面PBE 与平面PCF所成锐二面角的余弦值55.1.【思路引导】(Ⅰ)法一:由'AF C F =.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .而'BEC ∠即为二面角'C EF B --的平面角.'60BEC ∠=︒,推导出'EH BC ⊥.由'EF C E ⊥,EF BE ⊥,从而EF ⊥平面'BEC .由//EF AB ,得AB ⊥平面'BEC ∠,从而AB EH ⊥,即EH AB ⊥.进而EH ⊥平面'ABC .推导出四边形EHGF 为平行四边形.从而//FG EH ,FG ⊥平面'ABC ,由此能证明平面'AFC ⊥平面'ABC .法二:以B 为原点,在平面'BEC 中过B 作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能证明平面'AFC ⊥平面'ABC .(Ⅱ)以B 为原点,在平面'BEC 中过B .作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能求出平面'AFC 与平面'BEC 所成二面角大小.【详解】(Ⅰ)证法一:F 是AC 的中点,'AF C F ∴=.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .由题意得'C E EF ⊥,BE EF ⊥,'BEC ∴即为二面角'C EF B --的平面角.'60BEC ∴=︒,E 为BC 的中点.'BE EC ∴=,'BEC ∴∆为等边三角形,'EH BC ∴⊥.'EF C E ⊥ ,EF BE ⊥,'C E BE E ⋂=,EF ∴⊥平面'BEC .//EF AB ,AB ∴⊥平面'BEC ,AB EH ∴⊥,即EH AB ⊥.'BC AB B ⋂= ,EH ∴⊥平面'ABC .G ,H 分别为'AC ,'BC 的中点.////GH AB FE ∴,12GH AB FE∴==四边形EHGF 为平行四边形.//FG EH ∴,FG ⊥平面'ABC ,又FG ⊂平面'AFC .∴平面'AFC ⊥平面'ABC.法二:如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E,()'C .设平面'ABC 的法向量为(),,a x y z = ,()0,0,2BA =,()'BC =,20'0a BA z a BC x ⎧⋅==⎪∴⎨⋅=+=⎪⎩,令1y =,则()a = ,设平面'AFC 的法向量为(),,b x y z = ,()2,0,1AF =-,()'2AC =-,20'20b AF x z b AC x z ⎧⋅=-=⎪∴⎨⋅=+-=⎪⎩,取1x =,得()2b =.0a b ⋅= ,∴平面'AFC ⊥平面'ABC .解:(Ⅱ)如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E ,()'3,0C .平面'BEC 的法向量()0,0,1m = 设平面'AFC 的法向量为(),,n x y z = ,()'3,2AC =- ,()2,0,1AF =- ,'32020n AC x y z n AF x z ⎧⋅=+-=⎪∴⎨⋅=-=⎪⎩ ,取1x =,得()3,2n = .设平面'AFC 与平面'BEC 所成的二面角的平面角为θ,2cos 2m n m nθ⋅∴==⋅ 由图形观察可知,平面'AFC 与平面'BEC 所成的二面角的平面角为锐角.∴平面'AFC 与平面'BEC 所成二面角大小为45 .2.【思路引导】(1)若AB ⊥CD ,得AB ⊥面ACD ,由于AB ⊥AC .,所以AB 2+a 2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD 体积最大时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣CD ﹣B 的余弦值.【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D ,所以AB ⊥面ACD ⇒AB ⊥AC .由于AB=1,2,AC=a ,由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz -(如图),则易知,显然,面BCD 的法向量为,设面ACD 的法向量为n=(x ,y ,z ),因为所以,令y =2,得n=(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.3.【思路引导】(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A = ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒= .4.【思路引导】(1)先计算得BE ⊥AE ,再根据面面垂直性质定理得结果,(2)先分析确定点M 位置,再取D 1E 的中点L ,根据平几知识得AMFL 为平行四边形,最后根据线面平行判定定理得结果.【详解】(1)证明连接BE ,∵ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)解AM =14AB ,取D 1E 的中点L ,连接AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴FL ∥AM ,FL =AM∴AMFL 为平行四边形,∴MF ∥AL ,因为MF 不在平面AD 1E 上,AL ⊂平面AD 1E ,所以MF ∥平面AD 1E .故线段AB 上存在满足题意的点M ,且AM AB =14.5.【思路引导】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥.∴EF AC ⊥.∴EF AO ⊥,EF PO ⊥.分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = ,∴EF ⊥平面POA .∴BD ⊥平面POA .(2)解:设,连接BO ,∵60DAB ︒∠=,∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =3HO PO ==.在R t △BHO 中,227BO BH HO =+=在△PBO 中,22210BO PO PB +==,∴PO BO ⊥.∵PO EF ⊥,EF BO O ⋂=,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .梯形BFED 的面积为()1332S EF BD HO =+⋅=∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯=.6.【思路引导】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO .由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC ,因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC ,所以BMO ∠是直线BM 与平面PAC 所成的角,且1tan BOBMO OM OM ∠==,所以当OM 最短时,即M 是PA 的中点时,BMO ∠最大.由PO ⊥平面ABC ,OB AC ⊥,所以PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =- ,()1,0,1PC =- ,31,0,22MC ⎛⎫=- ⎪⎝⎭ .设平面MBC 的法向量为()111,,m x y z = ,则由00m BC m MC⎧⋅=⎨⋅=⎩得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3m =.设平面PBC 的法向量为()222,,n x y z = ,由00n BC n PC ⎧⋅=⎨⋅=⎩ 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1n =.cos ,33m n n m m n ⋅===⋅ .由图可知,二面角P BC M --的余弦值为33.。
立体几何中翻折问题(微专题)(解析版)
立体几何中翻折问题(微专题)一、题型选讲题型一、展开问题1(2022·广东佛山·高三期末)长方体ABCD-A1B1C1D1中,AB=1,AD=AA1=2,E为棱AA1上的动点,平面BED1交棱CC1于F,则四边形BED1F的周长的最小值为()A.43B.213C.2(2+5)D.2+42【答案】B【分析】将几何体展开,利用两点之间直线段最短即可求得截面最短周长.【详解】解:将长方体展开,如图所示:当点E为BD1与AA1的交点,F为BD1与CC1的交点时,截面四边形BED1F的周长最小,最小值为2BD1=222+(1+2)2=213.故选:B.1.(2022·湖北武昌·高三期末)已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为22的菱形,B,C分别为AE,FD的中点,BD=22,则在该四面体中()A.BE⊥CDB.BE与平面DCE所成角的余弦值为21015D.四面体ABCD的外接球表面积为9πC.四面体ABCD的内切球半径为10530【答案】ACD【分析】几何体内各相关线段的计算即可.【解析】由题意得,展开图拼成的几何体如下图所示,AB=CD=2,AD=BD=BC=AC=22,取AB中点M,CD中点N,MN中点O,连MN、OA,过O作OH⊥CM于H,则OH是内切球的半径,OA是外接球的半径.所以AM=CN=12AB=22,CM=AN=AC2-CN2=222-222=302MN=CM2-CN2=3022-22 2=7对于A:AN⊥CD,BN⊥CD,AN∩BN=N,故CD⊥平面ABN,而BE⊂平面ABN,所以BE⊥CD,故A正确;对于B:由于CD⊂平面ACD,故平面ABN⊥平面ACD,故∠BAN是BE与平面DCE所成角,故cos∠BAN=AMAN=22×230=1515,故B错误;对于C:OH=CNCM12MN=22×230×12×7=10530,故C正确;对于D:OA2=AM2+12MN2=22 2+72 2=94所以外接球的表面积为9π,故D正确.故选:ACD2.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P-ABC的平面展开图中,AC=1,AB=AD= 3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.【答案】-14【解析】∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ⋅AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ⋅BC=1+4-62×1×2=-14.故答案为:-14.题型二、折叠问题2(2022·河北唐山·高三期末)如图,四边形ABCD 是边长为2的正方形,E 为AB 的中点,将△AED 沿DE 所在的直线翻折,使A 与A 重合,得到四棱锥A -BCDE ,则在翻折的过程中()A.DE ⊥AAB.存在某个位置,使得A E ⊥CDC.存在某个位置,使得A B ∥DED.存在某个位置,使四棱锥A -BCDE 的体积为1【答案】AB 【分析】过A 作A O ⊥DE ,垂足为O ,证得DE ⊥平面A AO ,可判定A 正确;取DC 的中点G ,连接EG ,A G ,当A 在平面ABCD 上的投影在FG 上时,可判定B 正确;连接A B ,由直线A B 与DE 是异面直线,可判定C错误;求得A O=25,结合体积公式求可判定D错误.【详解】对于A中,如图所示,过A 作A O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A O=O,所以DE⊥平面A AO,又因为A A⊂平面A AO,所以DE⊥AA ,所以A正确;对于B中,取DC的中点G,连接EG,A G,当A 在平面ABCD上的投影在FG上时,此时DC⊥平面A EG,从而得到A E⊥CD,所以B正确;对于C中,连接A B,因为E⊂平面A BE,D⊄平面A BE,所以直线A B与DE是异面直线,所以不存在某个位置,使得A B∥DE,所以C错误;对于D中,由V A -BCDE=13×12×(1+2)×2×h=1,解得h=1,由A 作A O⊥DE,可得A O=A E⋅A DDE=1×25=25,即此时四棱锥的高h∈0,25 5,此时25<1,所以不存在某个位置,使四棱锥A -BCDE的体积为1,所以D错误.故选:AB.1.(2022·江苏宿迁·高三期末)如图,一张长、宽分别为2,1的矩形纸,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,则()A.在该多面体中,BD=2B.该多面体是三棱锥C.在该多面体中,平面BAD⊥平面BCDD.该多面体的体积为112【答案】BCD利用图形翻折,结合勾股定理,确定该多面体是以A ,B ,C ,D 为顶点的三棱锥,利用线面垂直,判定面面垂直,以及棱锥的体积公式即可得出结论.【解析】由于长、宽分别为2,1,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,且P 为BD 的中点,从而得到一个多面体ABCD ,所以该多面体是以A ,B ,C ,D 为顶点的三棱锥,故B 正确;AB =BC =CD =DA =32,AC =BD =1,AP =CP =22,故A 不正确;由于22 2+22 2=1,所以AP ⊥CP ,BP ⊥CP ,可得BD ⊥平面ACP ,则三棱锥A -BCD 的体积为13×BD ×S △ACP =13×1×12×22×22=112,故D 正确;因为AP ⊥BP ,AP ⊥CP ,所以AP ⊥平面BCD ,又AP ⊂平面BAD ,可得平面BAD ⊥平面BCD ,故C 正确.故选:BCD2.(2022·江苏海安·高三期末)如图,ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .现将△BCD 沿BD 折起,成为二面角A -BD -C 是90°的加热零件,则AC 间的距离是dm ;为了安全,把该零件放进一个球形防护罩,则球形防护罩的表面积的最小值是dm 2.(所有器件厚度忽略不计)【答案】4设E 为BD 的中点,由题可得AE ⊥平面BCD ,进而可求AC ,再结合条件可得△DAB 的中心为棱锥C -ABD 的外接球的球心,即求.【解析】∵ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .∴△DAB 为等边三角形,BC =23dm ,DC =2dm ,设E 为BD 的中点,连接AE ,CE ,则AE ⊥BD ,又二面角A -BD -C 是90°,∴AE ⊥平面BCD ,CE ⊂平面BCD ,∴AE ⊥CE ,又CE =2dm ,AE =23dm ,∴AC =AE 2+CE 2=4dm ,设△DAB 的中心为O ,则OE ⊥平面BCD ,又E 为BD 的中点,△BCD 为直角三角形,∴OB =OC =OD =OA ,即O 为三棱锥C -ABD 的外接球的球心,又OA =23×23=433dm ,故球形防护罩的表面积的最小值为4π⋅OA 2=64π3dm 2.故答案为:4,64π3.3.(2022·河北保定·高三期末)如图,DE 是边长为4的等边三角形ABC 的中位线,将△ADE 沿DE 折起,使得点A 与P 重合,平面PDE ⊥平面BCDE ,则四棱雉P -BCDE 外接球的表面积是.【答案】52π3求出四边形BCDE 外接圆的圆半径,再设四棱锥P -BCDE 外接球的球心为O ,由R 2=OO 2+O B 2求出半径,代入球的表面积公式即可.【解析】如图,分别取BC ,DE 的中点O ,F ,连接PF ,O F .因为△ABC 是边长为4的等边三角形,所以PF =O F =3,所以O B =O C =O D =O E =2,则四边形BCDE 外接圆的圆心为O ,半径r =2.设四棱锥P -BCDE 外接球的球心为O ,连接OO ,过点O 作OH ⊥PF ,垂足为H .易证四边形HFO O 是矩形,则HF =OO ,OH =O F =3.设四棱锥P -BCDE 外接球的半径为R ,则R 2=OO 2+O B 2=OH 2+PH 2=O F 2+PF -OO 2,即R 2=OO 2+22=3 2+3-OO 2,解得R 2=133,故四棱锥P -BCDE 外接球的表面积是4πR 2=52π3.故答案为:52π3题型三、折叠的综合性问题3(2022·江苏扬州·高三期末)在边长为6的正三角形ABC 中M ,N 分别为边AB ,AC 上的点,且满足AM AB =ANAC=λ,把△AMN 沿着MN 翻折至A ′MN 位置,则下列说法中正确的有()A.在翻折过程中,在边A ′N 上存在点P ,满足CP ∥平面A ′BMB.若12<λ<1,则在翻折过程中的某个位置,满足平面A ′BC ⊥平面BCNMC.若λ=12且二面角A ′-MN -B 的大小为120°,则四棱锥A ′-BCNM 的外接球的表面积为61πD.在翻折过程中,四棱锥A ′-BCNM 体积的最大值为63【答案】BCD 【分析】通过直线相交来判断A 选项的正确性;通过面面垂直的判定定理判断B 选项的正确性;通过求四棱锥A -BCNM 外接球的表面积来判断C 选项的正确性;利用导数来求得四棱锥A -BCNM 体积的最大值.【详解】对于选项A,过P作PQ⎳MN⎳BC,交AM于Q,则无论点P在A′N上什么位置,都存在CP与BQ相交,折叠后为梯形BCQP,则CP不与平面A′BM平行,故选项A错误;对于选项B,设D,E分别是BC,MN的中点,若12<λ<1,则AE>DE,所以存在某一位置使得A′D⊥DE,又因为MN⊥A′E,MN⊥DE,且A′E∩DE=E,所以MN⊥平面A′DE,所以MN⊥A′D,DE∩MN=E,所以A′D⊥平面BCNM,所以A′BC⊥平面BCNM,故选项B正确;对于选项C,设D,E分别是BC,MN的中点,若λ=12且二面角A′-MN-B的大小为120°,则△AMN为正三角形,∠BMN=120°,∠C=60°,则BCNM四点共圆,圆心可设为点G,其半径设为r,DB=DC=DM=DN=3,所以点G即为点D,所以r=3,二面角A′-MN-B的平面角即为∠A′ED=120°,过点A′作A′H⊥DE,垂足为点H,EH=334,DH=934,A′H=94,DH2=24316,设外接球球心为O,由OD2+32=R294-OD2+24316=R2,解得R2=614,所以外接球的表面积为S=4πR2=61π,故选项C正确;对于选项D,设D,E分别是BC,MN的中点,设h是四棱锥A -BCNM的高.S△AMN=12×6λ×6λ×32=93λ2,S△ABC=12×6×6×32=93,所以S四边形BCNM=93(1-λ2),则V A′-BCNM=13×93(1-λ2)×h≤33(1-λ2)×A′E=33(1-λ2)×33λ=27(-λ3+λ),λ∈(0,1),可设f(λ)=27(-λ3+λ),λ∈(0,1),则f λ =27(-3λ2+1),令f λ =0,解得λ=33,则函数f(λ)在0,33上单调递增,在33,1上单调递减,所以f(λ)max=f33=63,则四棱锥A′-BCN体积的最大值为63,故选项D正确.故选:BCD1.(2021·山东滨州市·高三二模)已知正方形ABCD的边长为2,将△ACD沿AC翻折到△ACD 的位置,得到四面体D -ABC,在翻折过程中,点D 始终位于△ACD所在平面的同一侧,且BD 的最小值为2,则下列结论正确的是()A.四面体D -ABC的外接球的表面积为8πB.四面体D -ABC体积的最大值为63C.点D的运动轨迹的长度为22π3D.边AD旋转所形成的曲面的面积为22π3【答案】ACD【解析】对ABCD各选项逐一分析即可求解.【详解】解:对A:∵∠ABC=90o,∠AD C=90o,∴AC中点即为四面体D -ABC的外接球的球心,AC为球的直径,∴R=2,∴SD -ABC =4πR2=4π22=8π,故选项A正确;对B:当平面AD C⏊平面ABC时,四面体D -ABC体积的最大,此时高为2,∴V D -ABCmax=13×12×2×2×2=223,故选项B错误;对C :设方形ABCD 对角线AC 与BD 交于O ,由题意,翻折后当BD 的最小值为2时,△OD B 为边长为2的等边三角形,此时∠D OB =π3,所以点D 的运动轨迹是以O 为圆心2为半径的圆心角为2π3的圆弧,所以点D 的运动轨迹的长度为2π3×2=22π3,故选项C 正确;对D :结合C 的分析知,边AD 旋转所形成的曲面的面积为以A 为顶点,底面圆为以O 为圆心OD =2为半径的圆锥的侧面积的13,即所求曲面的面积为13πrl =13π×2×2=22π3,故选项D 正确.故选:ACD .2.【2022·广东省深圳市宝安区第一次调研10月】如图甲是由正方形ABCD ,等边△ABE 和等边△BCF 组成的一个平面图形,其中AB =6,将其沿AB ,BC ,AC 折起得三棱锥P -ABC ,如图乙.(1)求证:平面PAC ⊥平面ABC ;(2)过棱AC 作平面ACM 交棱PB 于点M ,且三棱锥P -ACM 和B -ACM 的体积比为1:2,求直线AM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)427.【分析】(1)取AC 的中点为O ,连接BO ,PO ,证明PO ⊥AC ,PO ⊥OB ,即证PO ⊥平面ABC ,即证得面面垂直;(2)建立如图空间直角坐标系,写出对应点的坐标和向量AM 的坐标,再计算平面PBC 法向量n,利用所求角的正弦为cos AM ,n即得结果.【解析】(1)证明:如图,取AC 的中点为O ,连接BO ,PO .∵PA =PC ,∴PO ⊥AC .∵PA =PC =6,∠APC =90°,∴PO =12AC =32,同理BO =32.又PB =6,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵AC ∩OB =O ,AC ,OB ⊂平面ABC ,11∴PO ⊥平面ABC .又PO ⊂平面PAC ,∴平面PAC ⊥平面ABC ;(2)解:如图建立空间直角坐标系,根据边长关系可知,A 32,0,0 ,C -32,0,0 ,B 0,32,0 ,P 0,0,32 ,∴CB =32,32,0 ,CP =32,0,32.∵三棱锥P -ACM 和B -ACM 的体积比为1:2,∴PM :BM =1:2,∴M 0,2,22 ,∴AM =-32,2,22 .设平面PBC 的法向量为n =x ,y ,z ,则32x +32y =032x +32z =0 ,令x =1,得n =1,-1,-1 .设直线AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =-6227⋅3 =427.∴直线AM 与平面PBC 所成角的正弦值为427.。
【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考
立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。
解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。
2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。
因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。
实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。
立体几何深度拔高讲义第2节折叠问题的解题技巧
立体几何深度拔高讲义第2节折叠问题的解题技巧折叠问题是立体几何中一个重要的解题技巧,涉及到折纸、折箱等实际应用问题的求解。
本节将介绍一些折叠问题的解题技巧。
1.关注对称性在解折叠问题时,往往可以通过关注折叠线的对称性来简化问题。
对称性可以帮助我们确定折叠线的位置,从而降低问题的复杂度。
例如,在折纸问题中,纸张通常具有对称性,我们可以根据对称性先确定折叠线的位置,然后再进行计算。
2.利用平行性平行性是解折叠问题的另一个重要技巧。
平行性指的是折叠前后的线段保持平行,这可以帮助我们确定线段的位置,从而解决折叠问题。
例如,在折叠纸箱问题中,可以利用平行性来确定纸箱的边缘位置,进而计算纸箱的体积。
3.角度关系解折叠问题时,角度关系也是需要注意的。
通过观察折叠前后角度的变化,我们可以得出一些重要结论,从而解决问题。
例如,在折叠三角形问题中,我们需要注意折叠前后三角形的角度关系,以确定三角形的形状和大小。
4.利用结构相似性结构相似性是指折叠前后的图形保持一定的相似性。
通过观察结构相似性,我们可以得到一些有用的信息,从而解决问题。
例如,在折纸问题中,我们可以利用结构相似性来确定两个三角形的比例关系,进而计算出未知的边长或角度。
5.利用垂直关系垂直关系是解折叠问题时常用的技巧。
通过观察折叠前后的垂直关系,我们可以得到一些有用的信息,从而解决问题。
例如,在折叠盒子问题中,我们可以利用垂直关系来确定盒子的高度和底面积,进而计算出盒子的体积。
综上所述,折叠问题在立体几何中具有重要的应用价值。
通过关注对称性、平行性、角度关系、结构相似性和垂直关系,我们可以利用这些解题技巧来简化问题的求解过程。
希望本节的讲义能够帮助读者更好地理解和应用折叠问题的解题技巧。
2022年高三数学备考冲刺140分问28立体几何中的折叠问配套精选
〔1〕求的表达式;
〔2〕当为何值时,取得最大值?
【解析】〔1〕由折起的过程可知, ,该纸片上的正方形的中心为, , , ,为圆上的点, , , , 分别以, , , 为底边的等腰三角形,沿虚线剪开后,分别以, , , 为折痕折起, , , ,使得, , , 重合,得到一个四棱锥,当该棱锥的侧面积是底面积的倍时,该四棱锥的外接球的体积为__________.
问题28立体几何中折叠问题
一、考情分析
立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的外表展开问题,主要涉及到几何体的外表积以及几何体外表上的最短距离等
二、经验分享
1立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的外表展开把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题把一个几何体的外表伸展为一个平面图形从而研究几何体外表上的距离问题,这就是几何体的外表展开问题折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中表达,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程此类问题也是历年高考命题的一大热点
〔3〕在线段上是否存在一点,使?证明你的结论.
【分析】〔1〕问可利用翻折之后的几何体侧面的中位线得到,便可由线面平行的判定定理证得;〔2〕先根据直二面角将条件转化为面,然后做出过点且与面垂直的直线,再在平面内过作的垂线即可得所求二面角的平面角;〔3〕把作为条件利用,利用中过与垂直的直线确定点的位置
专题06 立体几何中折叠问题(第三篇)(解析版)
备战2020年高考数学大题精做之解答题题型全覆盖高端精品第三篇 立体几何专题06 立体几何中折叠问题【典例1】【新疆维吾尔自治区乌鲁木齐市第四中学2020届月考】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ; (2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由. 【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ; (2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值. 【详解】(1)证明:因为G 为AE 中点,2AD DE ==, 所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅== 所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=(3) 过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =. 又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE , 所以CF //平面ADE . 同理//FP 平面ADE . 又因为CF PF F ⋂=, 所以平面CFP //平面ADE . 因为CP ⊂平面CFP , 所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =. 【典例2】【福建省罗源市第一中学2020届月考】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆ 分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1 图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值. 【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM 和平面MFD 的一个法向量,利用向量的夹角公式,即可求解. 【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即 由题意知,在图2中,,,平面,平面,且,平面,平面,. 又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则, 令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【河南南阳一中2020届月考】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ; (Ⅰ)求三棱锥E PBC -的体积. 【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅰ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥ PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果. 【详解】。
立体几何中的折叠问题——一节高三复习教研课引发的思考
立体几何中的折叠问题——一节高三复习教研课引发的思考摘要:复习课是高三数学教学中的一种重要课型,在复习课中提高学生自主学习和探究问题的能力十分关键。
本文从数学折叠问题出发,通过自我展示提高学生的语言表达和沟通能力,通过探究提高学生思考问题的能力,从而促使学生形成和发展数学核心素养。
关键词:高三复习课;立体几何折叠问题;数学核心素养高效的复习教学对于学生巩固知识、建立认知结构、提高问题解决能力都有重要价值。
在高三复习备考中,刷题讲题常成为课堂教学的主流,而培养学生解决问题的能力及发展其核心素养常常被忽略。
本文探索一类高三复习课的教学方式,用问题引导启发学生思考、探索、解决数学问题,既提高学生的解题能力,又发展学生的核心素养,培养学生的学习能力。
在高中数学课程中,立体几何在发展学生的直观想象与逻辑推理等数学核心素养方面发挥着不可替代的作用。
折叠问题是立体儿何的一个重要内容,是空间儿何问题与平面几何问题相互转化的集中体现,对这类问题,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答。
1教材习题题目如图1,在梯形ABCD中,∠BAD为直角,AD∥BC,AB=AD=BC=2,如图2,将三角形ABD沿BD折起至PBD.(1)若平面PBD⊥平面BCD,求证:PB⊥PC;(2)设E是PC的中点,若二面角E-BD-C为30°,求平面PBD与平面BCD夹角的大小.2教学实施环节1:旧知再探,培养信心。
学生独立解答第一问,上台展示交流。
设计意图:第一问是空间中简单的线面垂直关系,学生很容易由面面垂直到线面垂直,再到线线垂直。
通过学生自己上台展示,培养学生良好的语言表达能力和数学交流能力,以及规范的书写能力,也可以促进同学之间相互学习和帮助。
环节2:向量工具,功能强大。
学生用向量法解决第二问。
(2)法一:如图,以M为原点,直线MB为x轴,直线MN为y轴,直线Mz为z轴,建立空间直角坐标系.设∠PMN=θ,θ∈(0,π),则P(0,2cos θ,2sin θ),E(-1,cos θ+2,sin θ),故=(-3,cos θ+2,sin θ),=(4,0,0).设平面BDE的法向量为n=(x,y,z),则取y=sin θ,得n=(0,sin θ,-cos θ-2).显然平面BCD的一个法向量为n1=(0,0,1).因为二面角E-BD-C为30°,则===,整理得4cos2θ+4cos θ+1=0,解得cos θ=-,所以θ=,所以平面PBD与平面BCD夹角的大小为.设计意图:向量法是处理立体几何中角度问题的常用方法,通过学生互助学习,让学生展示自己的解答过程,有助于在培养学生解决折叠问题的基本方法,也有助于培养学生书写规范作答及学好数学的信心。
2022年新高考数学总复习:立体几何中的折叠问题
2022年新高考数学总复习:立体几何中的折叠问题例(2018·课标全国Ⅰ卷)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.【分析】①线线垂直推出线面垂直,进而得到面面垂直;②利用锥体的体积公式求解.【标准答案】——规范答题步步得分(1)由已知可得,∠BAC =90°,BA ⊥AC .又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -APB 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.12分得分点⑤【评分细则】①由线线垂直推出线面垂直,给3分.②由线面垂直得面面垂直,给2分.③根据已知,求出BP 的长,给2分.④证明QE 为三棱锥Q -APB 的高,并求出它的值,给3分.⑤利用体积公式正确求解,给2分.【名师点评】1.核心素养:本题考查面面垂直的证明及三棱锥的体积计算,考查空间想象能力和逻辑推理能力.2.解题技巧:(1)解决翻折问题的关键①一般地,翻折后还在同一个平面上的性质不发生变化;②翻折后不在同一个平面上的性质可能会发生变化,翻折过程中长度、角度和平行、垂直关系是否发生改变是解决问题的关键.(2)计算几何体的体积时,关键是确定几何体的高,若是不方便求,要注意进行体积的转化.〔变式训练3〕(2021·河北省衡水中学调研)等边三角形ABC 的边长为6,O 为三角形的重心,EF 过点O 且与BC 平行,将△AEF 沿直线EF 折起,使得平面AEF ⊥平面BCFE .(1)求证:BE ⊥平面AOC ;(2)求点O 到平面ABC 的距离.[解析](1)因为O 为三角形ABC 的重心,所以AO ⊥BC ,因为EF ∥BC ,所以AO ⊥EF ,因为平面AEF ⊥平面BCFE ,平面AEF ∩平面BCFE =EF ,AO ⊂平面AEF ,所以AO ⊥平面BCFE ,因为BE ⊂平面BCFE ,所以AO ⊥BE ,因为O 为三角形ABC 的重心,所以CO ⊥BE ,因为AO 、CO ⊂平面AOC ,AO ∩CO =O ,所以BE ⊥平面AOC .(2)∵等边三角形ABC 的边长为6,O 为三角形ABC 的重心,∴AO =BO =CO =23,S △OBC =12×6×3=33,由(1)可知AO ⊥OC ,∴AC =26,同理AB =26,∴S △ABC =12×6×15=315,V O -ABC =V A -OBC ,即13×315×h =13×33×23,解得h =2155.即点O 到平面ABC 的距离为2155.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题28立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,ABC S ∆=V(x)=(0x <<(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;6x <<'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中PF =(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .CDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则427. 所以直线AP 与平面PEF. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得在Rt APH ∆中,所以直线AP 与平面PEF. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFH(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则, ,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是()A.点M到ABB.AB与EF所成角是90︒C.三棱锥C DNE-的体积是16D.EF与MC是异面直线【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为22MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】273cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得R=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、(D ',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面 平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把A P D E ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。