函数综合题重点题型归纳

合集下载

一次函数综合题解法归纳

一次函数综合题解法归纳

一次函数综合题解法归纳
一次函数是一种线性函数,其数学表达式为y = ax + b,其中a和b为常数,a代表斜率,b代表y轴截距。

综合题是指结合多个概念或条件,进行综合运算和分析的题目。

下面将归纳一次函数在综合题中的解法:
1. 求解函数的斜率和截距:通过已知条件得到函数的斜率和截距。

斜率可以通过计算两个不同点的纵坐标差值除以横坐标差值得到,截距可以通过将已知的点的坐标代入函数表达式求解得到。

2. 求解函数与坐标轴的交点:对于与x轴的交点,令y = 0,将其代入函数表达式中求解x的值;对于与y轴的交点,令x = 0,将其代入函数表达式中求解y的值。

3. 求解函数的零点:零点即函数与x轴的交点,此时y = 0。

将函数表达式中的y替换为0,解方程得到x的值,即为零点。

4. 求解函数的最值:当给定函数的定义域时,可以通过计算函数的斜率确定最值。

当斜率为正时,函数呈上升趋势,其最小值为定义域的最小值;当斜率为负时,函数呈下降趋势,其最大值为定义域的最大值。

5. 图像特征分析:将函数绘制在坐标系上,分析图像的特征。

通过观察斜率与截距的正负、零点的位置、曲线的开口等特征,可以判断函数的增减性、奇偶性和性质。

6. 利用函数进行问题求解:根据问题的条件,建立一个一次函数模型,利用函数进行计算和求解。

通过理解问题中的关系和函数的性质,将问题转化为求解一次函数方程或利用函数图像进行解答。

综合题中一次函数的解法与使用范围非常广泛,了解和掌握一次函数的相关知识和技巧对于完成综合题目是非常重要的。

通过图像分析、方程运算和函数性质的运用,可以更好地理解和解决一次函数相关的综合题。

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2=,B错误;y x对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y x D .A =Z ,B =Z ,:21→=-f x y x 【答案】B【解析】对于A ,221x y +=可化为21y x =±-显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( )A .f :x y x →=B .f :2x y x →=C .f :2x y x →=D .f :21x y x →=-【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x 为0,1,4,所以选项B 不能构成函数;对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数; 对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6 【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应, 对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数,对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数,综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应,所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( )A .B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()()22,f x x g x x ==C .()()2,f x x g x x =D .()()211,1f x x x g x x +--【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x=的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x +-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-,故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x =-+定义域为{|1}x x ≥,()21g x x -{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x -与()g x x =-C .()xf x x =与01()g x x=D .()33f x x x =+-2()9g x x =-【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确;对于B ,3()f x x x x -=--(,0]-∞,()g x x =-(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确; 对于C ,()1xf x x==,定义域为()(),00,∞-+∞,01()1g x x ==,定义域为()(),00,∞-+∞,定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+-[)3,+∞,2()9g x x =-(][),33,∞∞--⋃+,定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( ) A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x >C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D 【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()20213y x x=--的定义域为( )A .1,2∞⎛⎫- ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()20213y x x=--有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤, 所以22+33x ≤-≤,解得102x ≤≤, 所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2- B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x --+R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数2()1f x ax ax =++R ,则实数a 的取值范围是__________. 【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9 【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c+=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠B .()111x x x +-≠C .()111xxx +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11xt 1t所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x x x ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x x x ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x xx ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++.因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()1f x x =-()f x 在区间[)1,+∞上的单调性,并证明你的结论.【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()121212121111f x f x x x x x -=---+-, 因为[)12,1,x x ∈+∞,所以110x -≥210x -≥,又12x x <,所以120x x -<11x -21x -0, 12110x x -->,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性; 【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______.【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---, 由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦B .35,42⎛⎫- ⎪⎝⎭C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x ⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______.【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x =-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得:4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞,故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t =+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增,又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =,所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( )A .2-B .1C .2D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=, 当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(111x f x x x+=--(3)()2233f x x x -- (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数.(2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x 的定义域为{}3,3-,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()2433x f x x -=+-的图象关于_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()22244433x x x f x x ---===+-, ()()24x f x f x --==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错.选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞,,,定义域不对称,故B 错.选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错.选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定,即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________.【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53 C .32- D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-, 所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______.【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( )A .2x x +B .2x x -+C .2x x -D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =( )A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e为无理数, 2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+ C .()1e e 2x x -- D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<,∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________.【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( )A .)5,3 B .(3)(2,)-∞⋃+∞ C .()3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩32a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-,所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数.又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=,又113422<<,且()f x 在(0,)+∞上是减函数, 所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数, 所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( ) A .(1)(0)( 6.5)f f f -<<- B .( 6.5)(0)(1)f f f -<<- C .(1)( 6.5)(0)f f f -<-< D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f ==(1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦, ∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫= ⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩,则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立. (1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >-【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数, ∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <; (2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<; ∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >.(1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值;(3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x < (1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-, ∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数;(3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =-∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21xx ,即1x >-,∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足ay x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f < 【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确;则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3 D .1-,12,3【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________. 【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;。

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型

二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。

1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。

2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。

1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。

①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。

二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。

1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

常考二次函数综合题整理(全)

常考二次函数综合题整理(全)

常考二次函数综合题整理 题型一最短路径问题1、如图,抛物线y=﹣12x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【变式】如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;题型二最大面积(线段最长)问题2、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?并求出这个最大值.3、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH△x轴于点H,与BC交于点M,连接PC,求线段PM的最大值.【变式】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,过点P作PE△y轴于点E,连接AE.求△PAE面积S的最大值;题型三 存在点构成等腰三角形问题4、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.5、如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【变式】已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【变式】如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点()0,2C -,点A 的坐标是()2,0,P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线1x =-.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且14PE OD =,求PBE ∆的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的下方,是否存在点M ,使BDM ∆是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.题型四 存在点构成直角三角形问题6、如图,抛物线2y ax bx 4=+-经过()A 3,0-,()B 5,4-两点,与y 轴交于点C ,连接AB ,AC ,BC .()1求抛物线的表达式;()2求证:AB 平分CAO ∠;()3抛物线的对称轴上是否存在点M ,使得ABM V 是以AB 为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.【变式】如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.●题型四存在点构成等腰直角三角形问题7、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P作x轴的垂线,交线段AB于点D,再过点P做PE△x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.●题型四存在点构成平行四边形问题8、如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.()B-,对称轴为直线l,点M是线段AB的中点.0,5(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.9、如图,已知抛物线y=12x2+bx+c与直线AB:y=12x+12相交于点A(1,0)和B(t,52),直线AB交y轴于点C.(1)求抛物线的解析式及其对称轴;(2)设点M是抛物线对称轴上一点,点N在抛物线上,以点A、B、M、N为顶点的四边形是否可能为矩形?若能,请求出点M的坐标,若不能,请说明理由.10、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.11、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在x轴下方且在抛物线对称轴上,是否存在一点Q,使△BQC=△BAC?若存在,求出Q点坐标;若不存在,说明理由.12、如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.连接AC,当直线AM与直线BC的夹角等于△ACB 的2倍时,请直接写出点M的坐标【变式】如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【变式】如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE△BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与△CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.【变式】如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.题型七 存在点使三角形相似问题13、如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.14、如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【变式】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求△ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE△AC,当△DCE 与△AOC相似时,求点D的坐标.【变式】如图,抛物线y=12x2+bx+c与直线y=12x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ△PA交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.题型七二次函数与圆结合问题15、如图,△E的圆心E(3,0),半径为5,△E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与△E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.16、如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+53x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣13x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【变式】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP△x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.。

2023年中考数学考点总结+题型专训专题15 一次函数的应用与综合篇(原卷版)

2023年中考数学考点总结+题型专训专题15 一次函数的应用与综合篇(原卷版)

知识回顾专题15一次函数的应用与综合1. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,k;与y轴的交点坐标公式为:()b ,0。

2. 一次函数的平移:①左右平移,自变量上进行加减。

左加右减。

即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。

②上下平移,解析式整体后面进行加减。

上加下减。

k 的取值 b 的取值 所在象限y 随x 的变化情况大致图像0>k0>b (图像交于y 轴正半轴)一二三象限y 随x 增大而增大0<b (图像交于y 轴负半轴)一三四象限0<k0>b (图像交于y 轴正半轴)一二四象限y 随x 减小而减小0<b (图像交于y 轴负半轴)二三四象限即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。

3. 一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。

即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。

②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。

即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。

③若一次函数关于原点对称,则自变量与函数值均变成相反数。

即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。

专题:函数的值域问题

专题:函数的值域问题

专题:函数的值域问题高考要求函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 1.重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2.值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:(1)一次函数()0y kx b k =+≠的值域为R.(2)二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦., (3)反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. (4)指数函数()01xy aa a =>≠且的值域为{}0y y >.(5)对数函数()log 01a y x a a =>≠且的值域为R.(6)正,余弦函数的值域为[]1,1-,正,余切函数的值域为R.3.求值域的常见方法(1)直接观察法(基本函数法):利用已有的基本函数的值域观察直接得出所求函数的值域。

对于一些比较简单的函数,如正比例、反比例、一次函数、指数函数、对数函数、等等,其值域可通过观察直接得到。

例1、求函数1,[1,2]y x x =∈的值域。

专题四函数性质的综合问题(2021年高考数学一轮复习专题)

专题四函数性质的综合问题(2021年高考数学一轮复习专题)

专题四函数性质的综合问题一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【解析】 由题意易知f (x )在(0,+∞)上是减函数,又因为|a |=ln 3>1,b =(ln 3)2>|a |,0<c =ln 32<|a |,所以f (c )>f (|a |)>f (b ).又由题意知f (a )=f (|a |),所以f (c )>f (a )>f (b ).故选C.题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .【解析】解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛4-25f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛+211-f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫⎝⎛21-f =-18. 解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以⎪⎭⎫ ⎝⎛25f =32-25-⎪⎭⎫⎝⎛=-18.题型三 函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f (x )满足f (x )+f (2-x )=0,现给出下列命题:①函数f (x )是以2为周期的周期函数;②函数f (x )是以4为周期的周期函数;③函数f (x -1)为奇函数;④函数f (x -3)为偶函数,其中真命题的个数是( ) A .1 B .2 C .3D .4【解析】 偶函数f (x )满足f (x )+f (2-x )=0,所以f (-x )=f (x )=-f (2-x ),f (x +2)=-f (x ), f (x +4)=-f (x +2)=f (x ),可得f (x )的最小正周期为4,故①错误,②正确; 由f (x +2)=-f (x ),可得f (x +1)=-f (x -1).又f (-x -1)=f (x +1),所以f (-x -1)=-f (x -1),故f (x -1)为奇函数,③正确; 若f (x -3)为偶函数,则f (x -3)=f (-x -3),又f (-x -3)=f (x +3),所以f (x +3)=f (x -3),即f (x +6)=f (x ),可得6为f (x )的周期,这与4为最小正周期矛盾,故④错误,故选B.题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.【例1】设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = .【解析】函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),所以g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .【解析】由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数. 由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),所以f (x )是最小正周期为8的偶函数,所以f (17)=f (1+2×8)=f (1)=2.结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( ) ①f (4)=0;②f (x )是以4为周期的函数;③f (x )的图象关于x =1对称;④f (x )的图象关于x =2对称. A .1 B .2 C .3 D .4【解析】 因为f (x )是(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),f (0)=0,因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的周期函数,f (4)=f (0)=0, 因为f (x +2)=-f (x ),所以f [(x +1)+1]=f (-x ),令t =x +1,则f (t +1)=f (1-t ),所以f (x +1)=f (1-x ), 所以f (x )的图象关于x =1对称,而f (2+x )=f (2-x )显然不成立.故正确的命题是①②③,故选C.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)【解析】:由f (a -3)+f (9-a 2)<0得f (a -3)<-f (9-a 2).又由奇函数性质得f (a -3)<f (a 2-9).因为f (x )是定义域为(-1,1)的减函数,所以⎩⎪⎨⎪⎧-1<a -3<1,-1<a 2-9<1,a -3>a 2-9,解得22<a <3.2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98D .98【解析】:由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3)=f (-1). 由f (1)=2×12=2得f (-1)=-f (1)=-2,所以f (2 019)=-2.故选A.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4D .-4【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.(2020·广东六校第一次联考)定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则⎪⎭⎫⎝⎛212019f =( ) A.94 B.14 C .-94D .-14【解析】:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以⎪⎭⎫ ⎝⎛212019f =⎪⎭⎫ ⎝⎛21-2020f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f .因为在[0,1]上有f (x )=x 2,所以⎪⎭⎫ ⎝⎛21f =221⎪⎭⎫ ⎝⎛=14, 故⎪⎭⎫ ⎝⎛212019f =-14,故选D. 5.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<⎪⎭⎫ ⎝⎛31f 的x 的取值范围是( )A.⎪⎭⎫ ⎝⎛3231, B.⎪⎭⎫⎢⎣⎡3231, C.⎪⎭⎫⎝⎛3221,D.⎪⎭⎫⎢⎣⎡3221,【解析】:因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x -1)<⎪⎭⎫⎝⎛31f ,所以|2x -1|<13,所以13<x <23.6.(2020·石家庄市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎥⎦⎤ ⎝⎛231,B.⎥⎦⎤⎢⎣⎡2523,C.⎪⎭⎫⎢⎣⎡323,D .[2,3)【解析】因为0≤x ≤1时,f (x )=4x -1,所以f (x )在区间[0,1]上是增函数,又函数f (x )是奇函数,所以函数f (x )在区间[-1,1]上是增函数,因为f (x )=f (2-x ),所以函数f (x )的图象关于直线x =1对称,所以函数f (x )在区间(1,3)上是减函数,又⎪⎭⎫ ⎝⎛21f =1,所以⎪⎭⎫ ⎝⎛23f =1,所以在区间(1,3)上不等式f (x )≤1的解集为⎪⎭⎫⎢⎣⎡323,,故选C.6.(2020·黑龙江齐齐哈尔二模)已知函数f (x )是偶函数,定义域为R ,单调增区间为[0,+∞),且f (1)=0,则(x -1)f (x -1)≤0的解集为( ) A .[-2,0] B .[-1,1]C .(-∞,0]∪[1,2]D .(-∞,-1]∪[0,1]【解析】:由题意可知,函数f (x )在(-∞,0]上单调递减,且f (-1)=0,令x -1=t ,则tf (t )≤0,当t ≥0时,f (t )≤0,解得0≤t ≤1;当t <0时,f (t )≥0,解得t ≤-1,所以0≤x -1≤1或x -1≤-1,所以x ≤0或1≤x ≤2.故选C. 7.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ) A .4和6 B .3和1 C .2和4D .1和2【解析】:设g (x )=a sin x +bx ,则f (x )=g (x )+c ,且函数g (x )为奇函数.注意到c ∈Z ,所以f (1)+f (-1)=2c 为偶数.故选D.8.(2020·甘肃甘谷一中第一次质检)已知定义在R 上的函数f (x )满足条件:①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2);③函数f (x +2)的图象关于y 轴对称,则下列结论正确的是( )A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (7)<f (6.5)D .f (4.5)<f (6.5)<f (7)【解析】:因为对任意的x ∈R ,都有f (x +4)=f (x ),所以函数是以4为周期的周期函数,因为函数f (x +2)的图象关于y 轴对称,所以函数f (x )的图象关于x =2对称, 因为x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2).所以函数f (x )在[0,2]上为增函数, 所以函数f (x )在[2,4]上为减函数.易知f (7)=f (3),f (6.5)=f (2.5),f (4.5)=f (0.5)=f (3.5),则f (3.5)<f (3)<f (2.5),即f (4.5)<f (7)<f (6.5).9.(2020·甘肃静宁一中一模)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<⎪⎭⎫ ⎝⎛25f <⎪⎭⎫ ⎝⎛27fB .⎪⎭⎫ ⎝⎛27f <⎪⎭⎫ ⎝⎛25f <f (1)C .⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫ ⎝⎛25fD .⎪⎭⎫ ⎝⎛25f <f (1)<⎪⎭⎫ ⎝⎛27f【解析】:函数f (x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f (x )的图象关于x =2对称,则⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛23f ,⎪⎭⎫ ⎝⎛27f =⎪⎭⎫ ⎝⎛21f ,函数y =f (x )在[0,2]上单调递增,则有⎪⎭⎫ ⎝⎛21f <f (1)<⎪⎭⎫ ⎝⎛23f ,所以⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫⎝⎛25f .故选C. 10.(2020·辽宁沈阳东北育才学校联考(二))函数f (x )是定义在R 上的奇函数,且f (-1)=0,若对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,则不等式f (x )<0的解集为( )A .(-∞,-1)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)【解析】:令F (x )=xf (x ),因为函数f (x )是定义在R 上的奇函数,所以F (-x )=-xf (-x )=xf (x )=F (x ), 所以F (x )是偶函数,因为f (-1)=0,所以F (-1)=0,则F (1)=0,因为对任意x 1,x 2∈(-∞,0),且x 1≠x 2时,都 有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,所以F (x )在(-∞,0)上单调递减,所以F (x )在(0,+∞)上单调递增,所以不等式f (x )<0的解集为(-∞,-1)∪(0,1),故选C.二、填空题1.若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为 .【解析】:由f (x )=x 3-8(x ≥0),知f (x )在[0,+∞)上单调递增,且f (2)=0.所以,由已知条件可知f (x -2)>0⇒f (|x -2|)>f (2).所以|x -2|>2,解得x <0或x >4. 2.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________; 【解析】 易知函数f (x )的定义域为R ,且f (x )为偶函数.当x ≥0时,f (x )=ln(1+x )-11+x 2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1.3.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)= . 【解析】:因为f (x )为偶函数,所以f (-1)=f (1).又f (x )的图象关于直线x =2对称,所以f (1)=f (3).所以f (-1)=3.4.已知定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2020)=________.【解析】因为定义在R 上的函数f (x )满足f (x +2)=1f (x ),所以f (x +4)=1f (x +2)=f (x ),所以函数f (x )的周期为4.当x ∈[0,2)时,f (x )=x +e x ,所以f (2020)=f (505×4+0)=f (0)=0+e 0=1. 5.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )= .【解析】:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为 .【解析】:因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为f (x )-f (-x )x =2·f (x )x <0,即⎩⎪⎨⎪⎧x >0,f (x )<0或⎩⎪⎨⎪⎧x <0,f (x )>0,解得x ∈(-1,0)∪(0,1). 三、解答题1.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论.【解析】:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)f (x )为偶函数.证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.2.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且⎪⎭⎫ ⎝⎛23f =12.(1)求实数a ,b 的值;(2)求函数f (x )的值域.【解析】:(1)因为f (x )+f (-x )=0,所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ),即函数f (x )是周期为2的周期函数,所以f (0)=0,即b =-1.又⎪⎭⎫⎝⎛23f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f =1-a =12,解得a =14. (2)当x ∈[0,1)时,f (x )=a x +b =x⎪⎭⎫⎝⎛41-1∈⎥⎦⎤⎢⎣⎡043-,,由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎪⎭⎫ ⎝⎛430,, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎪⎭⎫⎝⎛4343-,.。

一次函数与几何综合(题型齐全)

一次函数与几何综合(题型齐全)

一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。

或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。

函数新定义综合题型

函数新定义综合题型

新定义函数综合1、对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=()0x >和()142y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+()a x b b a ≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足143≤≤t ?2、对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数,在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数1yx=-(0x<)和y=2x-3(x<2)是不是有上界函数?如果是有上界函数,求其上确界;(2)如果函数y=2x-3 (a≤x≤b, b<a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2-2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.3、若y是关于x的函数,H是常数(H>0),若对于此函数图象上的任一两点(x1,y1),(x2,y2),都有|y1-y2|≤H,则称该函数为有界函数,其中满足条件的所有常数H的最小值,称为该函数的界高。

例如:下面所表示的函数的界高为4.(1)若函数y=kx+1(-2≤x≤1)的界高为4,求k的值;(2)已知m>-2,若函数y=x2(-2≤x≤m)的界高为4,求实数m的取值范围;(3)已知a>0,函数y=x2-2ax+3a(-2≤x≤1)的界高为25/4,求a的值。

初三数学函数综合题型及解题方法讲解

初三数学函数综合题型及解题方法讲解

二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4,因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。

同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。

应用的定理是:两点之间线段最短。

AAB B M或者 MA ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。

(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。

中考复习:二次函数综合能力提升——各种题型逐一突破

中考复习:二次函数综合能力提升——各种题型逐一突破

二次函数综合能力提升 ——各类题型逐一突破一、【二次函数的定义】二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式;(2)是一个自变量的二次式;(3)二次项系数不为0(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 例1、下列函数中,是二次函数的是 . ①y=x 2-2x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ;⑧y=-∏x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

4、若函数y=(m -2)x m2 -2+5x+1是关于x 的二次函数,则m 的值为 。

5、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).v 1 2 3 4 5 6 7 8E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的 取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.二、【二次函数y=ax 2+bx+c 的图象特征与a 、b 、c 的关系】* a 决定开口方向,a > 0,开口向上;a < 0,开口向下。

最新二次函数与几何综合压轴题题型归纳

最新二次函数与几何综合压轴题题型归纳

课题函数的综合压轴题型归类教学目标1、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系2、掌握特殊图形面积的各种求法重点、难点1、利用图形的性质找点2、分解图形求面积教学内容一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总4、二次函数与X轴的交点为整数点问题。

(方法同上)例:若抛物线y二mx2• 3m 1 x 3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:2已知关于x的方程mx -3(m-1)x • 2m-3 = 0(m为实数),求证:无论m为何值,方程总有一个固定的根。

解:当m = 0时,x =1;当m^O 时,A= (m—3f±0,x= _1)一中 ',捲=2—?、x? =1 ;2m m综上所述:无论m为何值,方程总有一个固定的根是1。

6、函数过固定点问题,举例如下:已知抛物线y =x2-mx • m-2 (m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。

解:把原解析式变形为关于m的方程y-x2,2=m1-x ;2y_x +2=0 的/曰7,解得:丿y = T;1 —x = 0.X =1学生:___________ 科目:数学教师:•••抛物线总经过一个固定的点(1, - 1 )。

(题目要求等价于:关于m的方程y—x2二ml—x不论m为何值,方程恒成立)小结:关于x的方程ax = b有无数解u7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线h、丨2,点A在丨2上,分别在l i、丨2上确定两点M、N,使得AM MN之和最小。

(2)如图,直线、I2相交,两个固定点A、B,分别在h、J上确定两点M、N,使得BM MN AN之和最小。

(3)如图,A、B是直线l同旁的两个定点,线段a,在直线I上确定两点E、F (E在F的左侧),使得四边形AEFB的周长最小。

二次函数综合题型归纳总结

二次函数综合题型归纳总结

二次函数综合题型归纳总结
二次函数综合题型归纳总结
一、一元二次函数的性质及极值问题
1、一元二次函数关于y轴对称,关于原点对称,函数图象关于y轴对称;
2、一元二次函数若a>0,则函数在原点处取极小值,且在x轴上两端取极大值;若a<0,则函数在原点处取极大值,且在x轴上两端取极小值;
3、一元二次函数的极值点处的x坐标= -b/2a;
4、一元二次函数的极值点处的y坐标= f(-b/2a) = a(-b/2a)2+b(-b/2a)+c;
二、一元二次函数的根的解法
1、利用因式分解法解一元二次函数;
2、利用二元一次方程的解法解一元二次函数;
三、给定函数的两个极值点求函数图象
1、利用极值点求函数的a、b、c的值;
2、利用求得的a、b、c值构造一元二次函数,即可画出函数图象;。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

函数单调性奇偶性综合性质题型总结

函数单调性奇偶性综合性质题型总结

函数综合性质归纳题型总结 一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。

2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。

此时也说函数是这一区间上的单调函数。

在单调区间上,增函数的图像是上升的,减函数的图像是下降的。

[多选] 例1.下列给定函数中,在区间)10(,上单调递减的函数是( )A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(-=x x h D 、12)(+=x x w【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(-=x x h 在]1(,-∞上是减函数,12)(+=x x w 在R 上是增函数,则)(x g 和)(x h 在区间)10(,上单调递减的函数,选BC 。

(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。

函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。

但在某个区间上单调,在整个定义域上不一定单调。

如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。

2、任意性:①“任意取1x 、2x ”,不能取两个特殊值;②1x 、2x 有大小,通常规定012>-=∆x x x ;③1x 、2x 必须同属于定义域的某个子区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数综合题重点题型归纳1、已知函数x x x f -=3)(. (Ⅰ)求曲线)(x f y =在点M ()(,t f t )处的切线方程;(Ⅱ)设a >0. 如果过点(a , b )时作曲线y =f (x )的三条切线,证明: ).(a f b a <<-2、设函数()e e x x f x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.3、已知函数32()1f x x ax x =+++,a ∈R . (1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.4、设函数xxx f cos 2sin )(+=.(Ⅰ)求)(x f 的单调期间; (Ⅱ)如果对任何0≥x ,都有ax x f ≤)(,求a 的取值范围.5、设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x < (I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()21224In f x ->6、已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, ()f x 的单调性、极值; (2)求证:在(1)的条件下,1()()2f xg x >+; (3)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.7、已知函数()32f x x x ax b =-++(a,b ∈R)的一个极值点为1x =.方程20ax x b ++=的两个实根为,αβ()αβ<, 函数()f x 在区间[],αβ上是单调的.(1) 求a 的值和b 的取值范围; (2) 若[]12,,x x αβ∈, 证明:()()121f x f x -≤8、设函数()3233f x x bx cx =++在两个极值点12x x 、,且12[10],[1,2].x x ∈-∈, (I )求b c 、满足的约束条件,并在直角坐标平面内,画出满足这些条件的点(),b c 的区域; (II)证明:()21102f x -≤≤-9、A 是定义在[2,4]上且满足如下条件的函数()x ϕ组成的集合:①对任意的[1,2]x ∈,都有(2)(1,2)x ϕ∈;②存在常数(01)L L <<,使得对任意的12,[1,2]x x ∈,都有1212|(2)(2)|||x x L x x ϕϕ-≤-.(I)设(2)[2,4]x x ϕ=∈ ,证明:()x A ϕ∈(II)设()x A ϕ∈,如果存在0(1,2)x ∈,使得00(2)x x ϕ=,那么这样的0x 是唯一的;(III) 设()x A ϕ∈,任取1(1,2)x ∈,令1(2)n n x x ϕ-=,1,2,n = ,证明:给定正整数k ,对任意的正整数p ,成立不等式121||||1k k pk L x x x x L-+-≤--。

函数综合题重点题型归纳【答案】1、解:(Ⅰ)求函数)(x f 的导数:13)(2-='x x f曲线))(,()(t f t M x f y 在点=处的切线方程为:))(()(t x t f t f y -'==即 .2)13(32t x t y --= (Ⅱ)如果有一条切线过点(a ,b ),则存在t ,使322)13(t a t b --=于是,若过点(a ,b )可作曲线)(x f y =的三条切线,则方程03223=++-b a at t 有三个相异的实数根,记 ,32)(23b a at t t g ++-=则 at t t g 66)(2-=')(6a t t -=当t 变化时,)()(t g t g ',变化情况如下表:由(t g 当0=+b a 时,解方程2300)(at t t g ===,得,即方程0)(=t g 只有两个相异的实数根; 当0)(=-a f b 时,解方程a t a t t g =-==,得20)(,即方程0)(=t g 只有两个相异的实数根 综上,如果过),(b a 可作曲线)(x f y =三条曲线,即0)(=t g 有三个相异的实数根,则⎩⎨⎧<->+0)(0a fb b a 即 ).(a f b a <<- 2、解:(Ⅰ)()f x 的导数()e e x x f x -'=+.由于e e 2x -x +=≥, 故()2f x '≥.(当且仅当0x =时,等号成立).(Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20x xg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,.3、解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a>,()0fx '=求得两根为x 即()f x 在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增 (2)2313--,且23a>解得:74a ≥4、解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++ 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ········································ 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-.故当[)0arccos3x a ∈,时,()0h x '>因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax > 于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=> ⎪⎝⎭ ≥.因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ·················12分5、解: (I )()2222(1)11a x x a f x x x x x++'=+=>-++ 令2()22g x x x a =++,其对称轴为12x =-。

由题意知12x x 、是方程()0g x =的两个均大于1-的不相等的实根,其充要条件为480(1)0a g a ∆=->⎧⎨-=>⎩,得102a <<⑴当1(1,)x x ∈-时,()0,()f x f x '>∴在1(1,)x -内为增函数; ⑵当12(,)x x x ∈时,()0,()f x f x '<∴在12(,)x x 内为减函数; ⑶当2,()x x ∈+∞时,()0,()f x f x '>∴在2,()x +∞内为增函数; (II )由(I )21(0)0,02g a x =>∴-<<,222(2)a x x =-+2()()()22222222221(2)1f x x aln x x x x ln x ∴=++=-++2设()()221(22)1()2h x x x x ln x x =-++>-,则()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++⑴当1(,0)2x ∈-时,()0,()h x h x '>∴在1[,0)2-单调递增; ⑵当(0,)x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减。

()1112ln 2(,0),()224x h x h -∴∈->-=当时故()22122()4In f x h x -=>.6、解:(1) x x x f ln )(-=,xx x x f 111)(-=-=' ……1分 ∴当10<<x 时,/()0f x <,此时()f x 单调递减当e x <<1时,/()0f x >,此时()f x 单调递增 …………3分∴()f x 的极小值为1)1(=f ……4分(2) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1,∴ 0)(>x f ,min ()1f x =令21ln 21)()(+=+=x x x g x h ,21ln ()xh x x-¢=, …………6分 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增 ………7分∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+(3)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-xax 1-=① 当0≤a 时,(0,]x e Î ,所以()0f x ¢< , 所以)(x f 在],0(e 上单调递减, 31)()(min =-==ae e f x f ,ea 4=(舍去),所以,此时)(x f 无最小值. …10分②当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a上单调递增3ln 1)1()(min =+==a a f x f ,2e a =,满足条件. ……11分③ 当e a≥1时,(0,]x e Î ,所以()0f x ¢<,所以)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去),所以,此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.……14分7、 (本小题主要考查函数和方程、函数导数、不等式等知识, 考查函数与方程、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力) (1) 解:∵()32f x x x ax b =-++, ∴()'232fx x x a =-+.∵()32f x x x ax b =-++的一个极值点为1x =, ∴()'2131210f a =⨯-⨯+=.∴ 1a =-. ∴()()()'2321311f x x x x x =--=+-,当13x <-时, ()'0fx >;当113x -<<时,()'0f x <;当1x >时, ()'0f x >;∴函数()f x 在1,3⎛⎤-∞- ⎥⎝⎦上单调递增, 在1,13⎡⎤-⎢⎥⎣⎦上单调递减,在[)1,+∞上单调递增.∵方程20a x x b ++=的两个实根为,αβ, 即20x x b --=的两根为,αβ()αβ<,∴αβ==. ∴1,b αβαβ+==-,αβ-= ∵ 函数()f x 在区间[],αβ上是单调的, ∴区间[],αβ只能是区间1,3⎛⎤-∞-⎥⎝⎦,1,13⎡⎤-⎢⎥⎣⎦,[)1,+∞之一的子区间.由于1,αβ+=αβ<,故[]1,,13αβ⎡⎤⊆-⎢⎥⎣⎦.若0α<,则1αβ+<,与1αβ+=矛盾.∴[][],0,1αβ⊆.∴方程20x x b --=的两根,αβ都在区间[]0,1上. …6分令()2g x x x b =--, ()g x 的对称轴为[]10,12x =∈, 则()()00,10,140.g b g b b =-≥⎧⎪=-≥⎨⎪∆=+>⎩解得104b -<≤. ∴实数b 的取值范围为1,04⎛⎤- ⎥⎝⎦. 说明:6分至8分的得分点也可以用下面的方法.∵11,22αβ≥且函数()f x 在区间[],αβ上是单调的,∴[]1,,13αβ⎡⎤⊆-⎢⎥⎣⎦ 由1,31,140.b αβ⎧≥-⎪⎪≤⎨⎪∆=+>⎪⎩即1,31,140.b ≥-≤⎪+>⎪⎪⎪⎩解得104b -<≤. ∴实数b 的取值范围为1,04⎛⎤- ⎥⎝⎦ (2)证明:由(1)可知函数()f x 在区间[],αβ上单调递减, ∴函数()f x 在区间[],αβ上的最大值为()f α, 最小值为()f β.∵[]12,,x x αβ∈,∴()()()()12f x f x f f αβ-≤-()()3232b b αααβββ=--+---+()()()3322αβαβαβ=-----()()()21αβαβαβαβ⎡⎤=-+--+-⎣⎦()1b =-()1b =-. …10分令t =则()2114b t =-()1b -()3154t t =-.设()()3154h t t t =-, 则()()'21534h t t =-. ∵104b -<≤, ∴01t <≤. ∴()()'21534h t t =-0>. ∴函数()()3154h t t t =-在(]0,1上单调递增. ∴()()11h t h ≤=.∴()()121f x f x -≤.8、分析(I )这一问主要考查了二次函数根的分布及线性规划作可行域的能力。

相关文档
最新文档