一次函数与正比例函数
正比例函数及一次函数
![正比例函数及一次函数](https://img.taocdn.com/s3/m/fccf15e24afe04a1b071de97.png)
,下列结论正确的是( A. 函数图象必经过点(1,2) B.函数图象经过二、四象限 C. y 随 x 的增大而减小 D. y 随 x 的增大而增大
)
问题探究
如图所示,在同一直角坐标系中,正比例函数 y k1 x 、y k2 x、 y k3 x 、y k4 x的图象分别为 l1 、 l2 、 l3 、 l4 ,
待定系数法
待定系数法 y 正比例函数中只有一个待定系数 k ,故只要有一对 x , 的值或一个非原点的点,就可以求得 k 值. 一次函数中有两个待定系数 k ,b ,需要两个独立条件 确定两个关于 k ,b 的方程,这两个条件通常为两个点或两 y 的值. 对x ,
待定系数法
1、根据函数的图象,求函数的解析式.
22Biblioteka 一次函数的性质3.已知一次函数 y 2m 4 x 3 n . n 是什么数时,y 随 x 的增大而增大; (1)当m 、 n 是什么数时,函数图象经过原点; (2)当 m 、 (3)若图象经过一、二、三象限,求 m 、 n 的取值范围.
一次函数的性质 4.函数 y kx k (k 0) 在直角坐标系中的图象可能是(
1、为缓解用电紧张的矛盾,某电力公司制定了新的用 电收费标准,每月用电量(度)与应付电费(元)的关系 如图所示.根据图象求出与的函数关系式.
一次函数图像的应用
2.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下 坡路到达点B,最后走平路到达学校C,所用的时间与路程的关 系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、 下坡路的速度分别保持和去上学时一致,那么他从学校到家需 要的时间是( ) A.14分钟 B.17分钟 C.18分钟 D.20分钟
《正比例函数与一次函数》知识点归纳
![《正比例函数与一次函数》知识点归纳](https://img.taocdn.com/s3/m/f9fbcb0efd0a79563c1e72e8.png)
《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
正比例函数、一次函数、反比例函数知识点总结
![正比例函数、一次函数、反比例函数知识点总结](https://img.taocdn.com/s3/m/50559523f18583d049645991.png)
正比例函数、一次函数、反比例函数的性质及图象一、正比例函数性质和图象:概念:一般地,形如(k是常数,且k≠0 )的函数,叫做正比例函数。
当k>0时,图象过象限; y随x的增大而。
当k<0时,图象过象限; y随x的增大而。
二、一次函数的性质和图象:概念:一般地,形如y=kx+b(k,b是常数,且k≠0 )的函数,叫做一次函数。
图像和性质:①k>0,b>O,则图象过象限②k>0,b<0,则图象过象限当k>0时, y随x的增大而。
③k<0,b>0,则图象过象限④k<0,b<0,则图象过象限当k<0时, y随x的增大而。
三、反比例函数性质和图象:1.定义:形如(k为常数,k≠0)的函数称为反比例函数。
其他形式2.图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
3.性质:当k>0时双曲线的两支分别位于,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于,在每个象限内y 值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
练习题1、若y=(m -1)x22m 是正比例函数,则m 的值为()A 、1 B 、-1 C 、1或-1D 、2或-22、下列函数中,一次函数为()A 、25y x B .25y x -1 C .245y x D .25y x3、下列函数中,反比例函数是()A 、y=x+1B 、y=C 、=1D 、3xy=2 4、正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx+k 的图象大致是()5、直线443x y与两坐标轴围成的三角形面积是()A 3 B 4C 12D 6 6、函数y 1=kx 和y 2=的图象如图,自变量x 的取值范围相同的是()7、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线上,() A 、x 1>x 2>x 3 B 、x 1>x 3>x 2 C 、x 3>x 2>x 1 D 、x 3>x 1>x 28、已知一次函数y=ax+b 图象在一、二、三象限,则反比例函数y=的函数值随x 的增大而__________。
正比例函数、一次函数和反比例函数知识点归纳
![正比例函数、一次函数和反比例函数知识点归纳](https://img.taocdn.com/s3/m/98a48d3f0975f46526d3e100.png)
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1) 图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k≠0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标) ;正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o,b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;yk<o,b>0,图像过一二四象限k<o,b>0,图像过二三四象限x倾斜度:|k|x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;平移:y=kx+b,向上平移m个单位:y=kx+b+m;向下平移n个单位:y=kx+b-n;向左平移m个单位:y=k(x+m)+b;向右平移n个单位:y=k(x-n)+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x后面,直接与x 进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。
)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。
ykx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;反比例函数知识点归纳一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.。
正比例函数与一次函数常见题型
![正比例函数与一次函数常见题型](https://img.taocdn.com/s3/m/4ba8796d580102020740be1e650e52ea5518ceea.png)
复习旧知正比例函数一次函数例题讲解1、根据概念求解例1、。
若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n 。
2、根据函数性质求解例2、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大。
3、结合图像性质求解例3、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )A. B 。
C. D 。
4、实际问题中的图像关系例4、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )5、待定系数法求解析式例5、已知直线y kx b =+经过点(1,2)和点(1-,4),求这条直线的解析式。
6、实际问题中的一次函数例6、甲市到乙市的包裹邮资为每千克0。
9元,每件另加手续费0.2元.求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.巩固练习0 3 4 0.7 1y(元)x(分) 1、若函数(1)3y m x =++图象经过点(1,2),则m = .2、已知函数43y x =-,当 x << 时,函数图象在第四象限.3、.已知点P (3a – 1,a + 3)是第二象限内坐标为整数的点,则整数a 的值是_______.4、若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________.C. D.5、下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 为常数,且mn ≠0)的图象的是( )6.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元。
7、将函数y =2x +3的图象平移,使它经过点(2,-1).求平移后得到的直线的解析式.8、已知直线21y x =+。
一次函数知识点
![一次函数知识点](https://img.taocdn.com/s3/m/0f27699c59eef8c75fbfb3c0.png)
初中数学一次函数知识点总结:一次函数与正比例函数的概念一般的,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。
特别的,当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
二、一次函数的图像:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过第一、二、三象限;当k>0,b<0, 这时此函数的图象经过第一、三、四象限;当k<0,b>0, 这时此函数的图象经过第一、二、四象限;当k<0,b<0, 这时此函数的图象经过第二、三、四象限;当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
4.2 一次函数与正比例函数
![4.2 一次函数与正比例函数](https://img.taocdn.com/s3/m/3d9bdaea7e192279168884868762caaedd33bae5.png)
3
3
y是x的正比例函数.
(来自《点拨》)
知3-练
1 下列说法中正确的是( D )
A.一次函数是正比例函数 B.正比例函数不是一次函数 C.不是正比例函数就不是一次函数 D.不是一次函数就不是正比例函数
2 若函数y=(6+3m)x+n-4是一次函数,则满足__m__≠_-__2_; 若该函数是正比例函数,则满足___m_≠_-___2_且__n_=__4__; 若m=1,n=-2,则函数关系式是___y_=__9_x_-___6___.
(来自教材)
知3-讲
例知4识已点知函数y=(m-1)x+1-3m.
(1)当m为何值时,y是x的一次函数?
(2)当m为何值时,y是x的正比例函数?
解:(1) 根据一次函数的定义可得:m-1≠0,所以
m≠1,即当m≠1时,y是x的一次函数.
(2) 根据正比例函数的定义可得:m-1≠0且
1-3m=0,所以m= 1 ,即当m= 1 时,
知3-讲
知识点
例3 写出下列各题中y与x之间的关系式,并判断: y是否为x的一次函数?是否为正比例函数? (1)汽车以60 km/h的速度匀速行驶,行驶路程 y( km )与行驶时间x (h)之间的关系;
(2)圆的面积y(cm2)与它的半径x (cm)之间的关 系;
(3)某水池有水15 m3,现打开进水管进水,进水 速度为5 m3/h, x h后这个水池内有水ym3.
式.
1.必做: 完成教材P82,习题T1-T5 2.补充: 请完成《典中点》剩余部分习题
谢谢欣赏
总结
知1-讲
根据一次函数定义求待定字母的值时,要注意: (1) 函数关系式是自变量的一次式,若含有一次以上
正比例函数,一次函数
![正比例函数,一次函数](https://img.taocdn.com/s3/m/7370e2d076eeaeaad1f33095.png)
【例4】 在抗击“非典”过程中,某医药研究所开发了 】 在抗击“非典”过程中, 一种预防“ 非典” 的药品.经试验这种药品的效果得知 经试验这种药品的效果得知, 一种预防 “ 非典 ” 的药品 经试验这种药品的效果得知 , 当成人按规定剂量服用该药后1小时时 小时时, 当成人按规定剂量服用该药后 小时时, 血液中含药量最 达到每毫升5微克 接着逐步衰减, 微克, 高 , 达到每毫升 微克 , 接着逐步衰减 , 至 8小时时血液 小时时血液 中含药量为每毫升1.5微克 每毫升血液中含药量y(微克 微克, 微克) 中含药量为每毫升 微克,每毫升血液中含药量 微克 随时间x(小时 的变化如图3-2-9所示 在成人按规定剂量服 小时)的变化如图 所示.在成人按规定剂量服 随时间 小时 的变化如图 所示 药后: 药后: (1)分别求出 分别求出x≤1,x≥1时,y与x之间的函数关系式 之间的函数关系式. 分别求出 , 时 与 之间的函数关系式 (2)如果每毫升血液中含药量为 微克或 微克以上,对预 如果每毫升血液中含药量为2微克或 微克以上, 如果每毫升血液中含药量为 微克或2微克以上 非典”是有效的,那么这个有效时间为多少小时? 防“非典”是有效的,那么这个有效时间为多少小时 1、x ≤ 1时, y = 5x
3 k =− 2 = −3k + b 4 ⇒ 则有: 则有:−1= k + b 1 b = − 4
3 1 故M′N∶y=- x- 令x=0得y=∶ 得 4 4
1 4
P点坐标为 ,-1/4) 点坐标为(0, 点坐标为
【 例 3】 某博物馆每周都吸引大量中外游客前来参观 如 】 某博物馆每周都吸引大量中外游客前来参观.如 果游客过多, 对馆中的珍贵文物会产生不利影响.但同时 果游客过多 , 对馆中的珍贵文物会产生不利影响 但同时 考虑到文物的修缮和保存费用问题, 考虑到文物的修缮和保存费用问题,还要保证一定的门票 收入.因此 因此, 收入 因此 , 博物馆采取了涨浮门票价格的方法来控制参 观人数.在该方法实施过程中发现 在该方法实施过程中发现: 观人数 在该方法实施过程中发现 : 每周参观人数与票价 之间存在着如图所示的一次函数关系.在这样的情况下 在这样的情况下, 之间存在着如图所示的一次函数关系 在这样的情况下 , 如果确保每周4万元的门票收入 万元的门票收入, 如果确保每周 万元的门票收入 ,那么每周应限定参观人 数是多少?门票价格应是多少元 门票价格应是多少元? 数是多少 门票价格应是多少元 每周应限定参观人数为2000人, 人 每周应限定参观人数为 门票价格为20元 门票价格为 元.
正比例函数、一次函数的图像与性质
![正比例函数、一次函数的图像与性质](https://img.taocdn.com/s3/m/22ad772d482fb4daa48d4b03.png)
正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。
函数的种类
![函数的种类](https://img.taocdn.com/s3/m/8bc29ef04b73f242326c5f9d.png)
函数的种类函数的种类从初中我们就开始学习函数,函数的种类有很多很多种从初中学的简单的一次函数、二次函数、正比例函数、反比例函数、三角函数(正弦、余弦、正切是初中所学的)到高中现在所学的指数函数、对数函数和即将要学的三角函数余切的难度渐渐在增强,下面我就来介绍一下函数的类型:一次函数一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
其中x是自变量,y是因变量,k为一次项系数,y是x的函数。
其图像为一条直线。
当b=0时,y=kx+b即y=kx,原函数变为正比例函数,其函数图像为一条通过原点正比例函数一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0)(简称f(x)),那么y就叫做x的正比例函数。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b 中,若b=0,即所谓“y轴上的截距一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0)简称f(x)(),那么y就叫做x的正比例函数。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限),K的绝对值越大,图像与y轴的距离越近。
函数值y随着自变量x的增大而增大.当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。
自变量x的值增大时,y的值则逐渐减小。
”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限),K的绝对值越大,图像与y轴的距离越近。
函数值y随着自变量x的增大而增大.当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。
自变量x的值增大时,y的值则逐渐减小。
一次函数和正比例函数
![一次函数和正比例函数](https://img.taocdn.com/s3/m/5c39862d590216fc700abb68a98271fe910eaf81.png)
一次函数和正比例函数正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程;(3)解方程,求出待定系数k;(4)将求得的待定系数的值代回解析式.一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的图象(1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.(2)一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0k<0直线y1=kx+b与y2=kx图象的位置关系:(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.(2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.直线:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定:当k1≠k2时,l1与l2相交,交点是(0,b).直线y=kx+b(k≠0)与坐标轴的交点.(1)直线y=kx与x轴、y轴的交点都是(0,0);(2)直线y=kx+b与x轴交点坐标为(,0)与y轴交点坐标为(0,b).用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.利用图象解题通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.典型例题剖析例1、已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小D.不论x如何变化,y不变答案:A例2(1)若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-1(2)已知是正比例函数,且y随x的增大而减小,则m的值为_____________.(3)当m=_______时,函数是一次函数.解;(1)由于y=(k+1)x+k2-1是正比例函数,∴,∴k=1,∴应选B.(2)是正比例函数的条件是:m2-3=1且2m-1≠0,要使y随x的增大而减小还应满足条件2m-1<0,综合这两个条件得当即m=-2时,是正比例函数且y随x的增大而减小.(3)根据一次函数的定义可知,是一次函数的条件是:解得m=1或-3,故填1或-3.例3、两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()例4、列说法是否正确,为什么?(1)直线y=3x+1与y=-3x+1平行;(2)直线重合;(3)直线y=-x-3与y=-x平行;(4)直线相交.解:(1)该说法不正确,∵k1≠k2,∴两直线相交;(2)该说法不正确,∵k1=k2,但b1≠b2,∴两直线平行;(3)该说法正确,∵k1=k2,b1≠b2,∴两直线平行;(4)该说法不正确,∵k1=k2,b1=b2,∴两直线重合.例5、如果直线y=kx+b经过第一、三、四象限,那么直线y=-bx+k经过第__________象限.例6、直线y=kx+b过点A(-2,0),且与y轴交于点B,直线与两坐标轴围成的三角形面积为3,求直线y=kx+b的解析式.解:设点B的坐标为(0,y),则|OA|=2,|OB|=|y|,有S=·|OA|·|OB|=×2×|y|=3.所以y=±3.所以点B的坐标是(0,3)或(0,-3).(1)当直线y=kx+b过点A(-2,0)和点B(0,3)时,所以y=+3.(2)当直线y=kx+b过点A(-2,0),B(0,-3)时,所以y=-3.因此直线解析式为y=+3或y=-3.例7、如图所示,阅读函数图象,并根据你所获得的信息回答问题:(1)折线OAB表示某个实际问题的函数的图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x轴、y轴所表示的意义,并写出A、B 两点的坐标;(3)求出图象AB的函数解析式,并注明自变量x的取值范围.解:本题为开放题,现举一例如下:小明从家骑车去离家800米的学校,用了5分钟,之后又立即用了10分钟步行回到家中,此时x轴表示时间,y轴表示离家的距离,A(5,800),B(15,0).图象AB的解析式为y=-80x+1200(5≤x≤15).例8、某商店销售A、B两种品牌的彩色电视机,已知A、B两种彩电的进价每台分别为2000元、1600元,一月份A、B两种彩电的销售价每台为2700元、2100元,月利润为1.2万元(利润=销售价-进价).为了增加利润,二月份营销人员提供了两套销售策略:策略一:A种每台降价100元,B种每台降价80元,估计销售量分别增长30%、40%.策略二:A种每台降价150元,B种每台降价80元,估计销售量都增长50%.请你研究以下问题:(1)若设一月份A、B两种彩电销售量分别为x台和y台,写出y与x的关系式,并求出A种彩电销售的台数最多可能是多少?(2)二月份这两种策略是否能增加利润?(3)二月份该商店应该采用上述两种销售策略中的哪一种,方能使商店所获得的利润较多?请说明理由.解:(1)依题意,有(2700-2000)x+(2100-1600)y=12000,即700x+500y=12000.则因为y为整数,所以x为5的倍数,故x的最大值为15,即A种彩电销售的台数最多可能为15台.(2)策略一:利润W1=(2700-100-2000)(1+30%)x+(2100-80-1600)(1+40%)y=780x+588y;策略二:利润W2=(2700-150-2000)(1+50%)x+(2100-80-1600)(1+50%)y=825x+630y.因为700x+500y=12000,所以780x+588y>12000,825x+630y>12000.故策略一、策略二均能增加利润.故策略二使该商店获得的利润多,应采用策略二.怎样求一次函数解析式?求字母系数或函数解析式在已知函数解析式中,设置未知的系数,要求该函数是一次函数或具备一次函数的某些性质,据此确定解析式中的未知系数的值或者未知系数的取值范围.求解此类题时,应牢抓一次函数的定义、图象及性质,特别注意容易出错的地方,如系数k≠0,图象经过的象限与k、b的关系等.例1、函数y=(k-5)x|k|-4+2是一次函数,求此函数的解析式.解:由一次函数的定义,知自变量x的指数等于1,系数不为零,即解得k=-5.因此此函数的解析式为y=-10x+2.例2、已知一次函数y=mx+2x-2,要使函数值y随x的增大而增大,则m的取值范围是()A.m≥-2B.m>-2C.m≤-2D.m<2解: B.例3、已知一次函数y=kx+1(k≠0)的函数值y随x的增大而减小,则一次函数y=x +k的图象大致是图中的()解: B.求函数图象与坐标轴围成的三角形面积由于一次函数的图象是直线,所以当它与两坐标轴相交时,可能产生一个三角形,于是就出现了把一次函数与三角形内容相联系的许多问题,大多以考查三角形的周长,面积问题为主.求解此类题时,要多注意利用点的坐标来表示三角形的底与高.例4、直线y=x+4和直线y=-x+4与x轴所围成的三角形的面积是()A.32B.64C.16D.8解: C.利用函数图象解方程组、不等式例5、作出函数y=3x+1的图象,根据图象,回答:(1)x取什么值时,函数值y大于零?(2)x取什么值时,函数值y小于零?(3)x取什么值时,函数值y 小于-2?解:(1)当时,y>0;(2)当时,y<0;(3)当x<-1时,y<-2.待定系数专题概说:待定系数法是求函数解析式的最重要的方法,求解时首先设出函数解析式,再根据已知建立未知系数的方程(组),进而解方程(组)获得未知系数的值,应注意题目中的某些隐含条件的限制作用.例6、已知直线y=kx+b过点A(-1,5),且平行于直线y=-x+2.(1)求直线的解析式;(2)B(m,-5)在这条直线上,O为原点,求m的值及S△AOB.解:(1)由两直线平行,得k=-1.易求b=4.所以y=-x+4;(2)把B(m,-5)代入y=-x+4,得m=9.可求y=-x+4与y轴的交点为C(0,4),则S△AOB=S△ACO+S△BC O.所以S=×|-1|×4+×9×4=20.如图所示.数形结合本章自始自终都是用数形结合的思想方法研究问题,平面直角坐标系的建立是实现数与形转化的重要工具,数形结合使抽象的数形象化、直观化,化数为形,以形思数,常常是解决问题的关键,数形结合思想不仅为分析问题,解决问题提供了有利条件,而且是开发智力、培养能力的重要途径.例7、为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中,使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示.(1)分别求出通话费y1、y2与通话时间之间的函数解析式;(2)请你帮用户计算一下,在一个月内使用哪种卡便宜?解:(1)设y1=k1x+b,y2=k2x.由图象可知,y1=k1x+b,经过点A(0,29),B(30,35).所以解得所以y1=+29(0≤x≤43200),y2=k2x的图象过点(30,15).所以30k2=15.所以k2=.所以y2=(0≤x≤43200);(2)当y1=y2时,即,得;当y1>y2时,即,得,即当x≤96时,y1>y2;当y1<y2时,即,得,即当x≥97时,y1<y2.所以,当通话时间为小于97分钟时,“如意卡”便宜;当通话时间大于或等于97分钟时,“便民卡”便宜.分类讨论在解答某些数学问题时,有时会遇到很多种情况,需要对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法,分类讨论是一种重要的数学方法,不重复、不遗漏是对分类的基本要求.例8、如果一次函数y=kx+b的自变量x的取值范围是-2≤x≤4,相应函数的范围是-9≤y≤11,求此函数的解析式.解:(1)当k>0时,y随x的增大而增大,一定是当x=-2时,y=-9;当x=4时,y=11.所以有解得所以;(2)当k<0时,y随x的增大而减小,一定是当x=-2时,y=11;当x=4时,y=-9.所以有解得所以.综上所述两种情况,符合条件的解析式为.函数思想函数思想就是用运动和变化的观点去观察、分析具体问题中的数量关系,通过函数形式,把这种数量关系表示出来并加以研究,从而使问题获得解决,在解决问题时,根据问题的条件去构造函数关系,并借助已知函数的性质和图象,获得解决问题的途径.例9、小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从现在起每个月存18元,争取超过小张.请你在同一平面直角坐标系中分别画出小张和小王存款数和月份数的函数关系的图象,在图上找一找半年以后小王的存款数是多少,能否超过小张?至少几个月后小王的存款能超过小张?解:设小张存款数为y1元,小王存款数为y2元,月份数为t.则y1=50+12t,y2=18t.在同一平面直角坐标系中画出两个系数的图象如图所示.当t=6时,y1=50+12×6=122,y2=18×6=108,在图上也可以看出半年后小王的存款数是108元,不能超过小张.我们过x轴上(6,0)点作x轴的垂线交两条直线于P1、P2点,显然P2点位置较高,即表示此时小张的存款数比小王的存款数多.由y1<y2,即50+12t<18t,.∵t为整数,∴t≥9.由图象可知至少9个月后小王的存款才能超过小张.。
一次函数与正比例函数
![一次函数与正比例函数](https://img.taocdn.com/s3/m/8bd2497f4028915f814dc2a3.png)
知识点:一次函数与正比例函数的概念
内容一:某弹簧的自然长度为3 cm.在弹性限度内,所挂物体的 质量x每增加1 kg,弹簧长度y增加0.5cm.
(1)计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹 簧的长度, 并填入下表:
(2)你能写出y与x之间的关系式吗?
x/kg 0 1 2 3 4 5 y/cm 3 3.5 4 4.5 5 5.5
第四章
一次函数
4.2 一次函数与正比例函数
新课引入
生活中充满着许许多多变化的量,你了解这些变量之 间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的 质量,输液时间与相应时间内水滴的数目……了解这些 关系,可以帮助我们更好地认识世界.函数是刻画变量之 间关系的常用模型,其中最为简单的是一次函数,那么 什么是一次函数?用一次函数可以解决哪些问题呢?你想 了解这些吗?
我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,西乡 地面温度为20 ℃,设高出地面x km处的温度为y ℃.
(1)写出y与x之间的函数关系式. (2)已知西乡午子山主峰高出地面约500 m,求这时山顶的温度大 约是多少℃? (3)此刻,有一架飞机飞过西乡上空,若机舱内仪表显示飞机外 面的温度为-34℃,求飞机离地面的高度为多少千米?
知识点:一次函数与正比例函数的概念
内容二:某辆汽车油箱中原有汽油60 L,汽车每行驶50 km耗油6 L. (1)完成下表:
汽车行驶路程x\km 0 50 100 150 200 300
耗油量y\L
0 6 12 18 24 30)之间的关系式吗?
y=0.12x
解:(1)甲旅行社:y=640×0.85x=544x,(1分) 乙旅行社:当0≤x≤20时,y=640×0.9x=576x; 当x>20时,y=640×0.9×20+640×0.75(x-20)=480x+1920, 即 y= 547860xx( +019≤2x0≤(20x)>20);(4 分) (2)甲旅行社:当x=32时,y=544×32=17408, 乙旅行社:当x=32时,y=480×32+1920=17280, ∵17408>17280, ∴胡老师应选择乙旅行社.(7分)
正比例函数与一次函数
![正比例函数与一次函数](https://img.taocdn.com/s3/m/80b4b106f12d2af90242e656.png)
一次函数:1、一次函数与正比例函数:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,叫做正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、一次函数图象:⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.3、一次函数性质:一次 函数 ()0k kx b k =+≠k ,b符号0k >0k < 0b >0b <0b =0b >0b <0b = 图象Ox y yx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小(1)一次函数图象的位置在一次函数y kx b =+中: ⑴当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限. ⑵当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号. (2)一次函数图象的增减性 在一次函数y kx b =+中:⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.4、用待定系数法求一次函数解析式:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.yxO 5、特殊一次函数:含有绝对值的一次函数对于含有绝对值的一次函数,其图象是由若干条线段和射线组成的折线,我们通常采用零点讨论法,即先找出绝对值的零解,然后将数轴划分为若干个区间,接下来就可以在各个区间中确定每个绝对值中式子的符号,进而去掉绝对值符号.例题:【例1】 下列函数中,哪些是一次函数?哪些是正比例函数?⑴15x y +=-⑵5xy =- ⑶21y x =-- ⑷35xy =--⑸()()212y x x x =--- ⑹21x y -=【例2】 已知28(3)1my m x -=-+,当m 为何值时,y 是x 的一次函数?【例3】 一次函数(0)y kx b k =+≠的图像是 ;当0k >,0b >时,直线y kx b =+过 象限; 当0k >,0b <时,直线y kx b =+过 象限; 当0k <,0b >时,直线y kx b =+过 象限; 当0k<,0b <时,直线y kx b =+过 象限.(0)y kx b k =+≠的图像与x 轴、y 轴的交点分别为 、 ;其中 、 分别叫做该一次函数在x 轴、y 轴上的截距.【例4】 已知一次函数(5)1y a x a =-+-的图象如图所示,则a 的取值范围是 .【例5】 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的( )xyOxyO x yOO yxA B C D【例6】 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?O2121-1xy 【例7】 若一次函数22222mm y x m --=+-的图象经过第一、第二、三象限,求m 的值.【例8】 已知0abc =/,并且a b b c c ap c a b+++===,则直线y px p =+一定通过 象限.【例9】已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.【例10】已知函数图象如图所示,则此函数的解析式为( )A .2y x =-B .2(10)y x x =--<<C .12y x =-D . 1(10)2y x x =--<<【例11】已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.【例12】如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( ) A .4 B .- 4 C .14 D . 14-【例13】一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【例14】已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.t/minS/km301694012O【例15】右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.练习题:1、已知函数1(2)k y k x -=- (k 为常数)是正比例函数,则k = .2、已知y +m 与x +n (m,n 为常数)成比例,试判断y 与x 成什么函数关系?3、已知1(2)2m y m x m -=-++是一次函数,求它的解析式.4、如图所示,在同一直角坐标系中,一次函数1y k x =,2y k x =,3y k x =,4y k x =的图像分别是1l ,2l ,3l ,4l ;那么1k ,2k ,3k ,4k 的大小关系是 . O yxl 4l 3l 2l 1Oyxl 4l 3l 2l 15、如图,一次函数1y ax a =+的图象大致是( )AB C DyxO y x O y x O O x y6、函数y ax b =+①和y bx a =+②(0ab ≠)在同一坐标系中的图像可能是( )7、若一次函数2(1)12ky k =-+-的图象不经过第一象限,则k 的取值范围是 .8、已知一次函数(3)(2)y k x k =-+- (k 为常数)的图象经过一、二、三象限,求k 取值范围.☆9、若11,A x y (),22(,)B x y 为一次函数,31y x =-的图象上的两个不同点,且120x x ≠,设111y M x +=,221y N x +=,则( ) A . M N > B . M N < C . M N = D . 以上都不对10、已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.11/已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.12、求证:点A (2,2),B (1-,72),C (12,3-)在一条直线上.13、已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式.A .B .C .D .②②②②①①①①O x y O x y O x y y x OF时间(小时)距离(千米)O ED C B4653212051015253014、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .yxO3214321A15、小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (时)之间关系的函数图象.⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?⑵小明出发两个半小时离家多远?⑶小明出发多长时间距家12千米?16、某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表: 生产甲产品件数(件) 生产乙产品件数(件) 所用总时间(份) 10 10 350 3020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:⑴小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? ⑵小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?。
一次函数和正比例函数的区别
![一次函数和正比例函数的区别](https://img.taocdn.com/s3/m/2cff5f12effdc8d376eeaeaad1f34693dbef1050.png)
一次函数和正比例函数的区别一、区别:
1、解析式不同
一次函数:y=kx+b(k≠0)
正比例函数:y=kx(k≠0)
2、函数图像不同
正比例函数图像一定经过原点,一次函数则不一定
联系:正比例函数是特殊的一次函数。
即,b=0时,一次函数变成了正比例函数。
二、联系:
①一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x 是自变量,y是因变量。
特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x 的正比例函数(direct proportion function)。
②一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式。
即一次函数y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)。
当k>0时(一三象限),k的绝对值越大,图像与y轴的距离越近;函数值y随着自变量x的增大而增大。
当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。
自变量x 的值增大时,y的值则逐渐减小。
正比例解析式
![正比例解析式](https://img.taocdn.com/s3/m/94edc14c78563c1ec5da50e2524de518964bd3cd.png)
正比例解析式
正比例函数的解析式:y=kx+b(k、b为常数,且k≠0)。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。
函数的性质初中
![函数的性质初中](https://img.taocdn.com/s3/m/71058b713d1ec5da50e2524de518964bcf84d266.png)
函数的性质初中1、正比例函数Y=KX(K不等于0)K>0,图像经一、三象限,Y随X的增大而增大。
K<0,图像经二、四象限,Y随X的增大而减小。
(图象是经过圆点的一条直线)2、一次函数Y=aX+b(a不等于0)a>0,b>0,图像经一、二、三象限,Y随X的增大而增大。
a>0,b<0,图像经一、三、四象限,Y随X的增大而增大。
a<0,b>0,图像经一、二、四象限,Y随X的增大而减小。
a<0,b<0,图像经二、三、四象限,Y随X的增大而减小。
(图象为一条直线)注:当b=0,一次函数就便成了等比例函数3、y=ax²+bx+c(a,b,c为常数,a≠0)1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b²)/4a]。
当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b²-4ac>0时,抛物线与x轴有2个交点。
Δ=b²-4ac=0时,抛物线与x轴有1个交点。
Δ=b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²+bx+c。
当y=0时,二次函数为关于x的一元二次方程(以下称方程)。
即ax²+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数与一次函数教学目标掌握函数的概念,函数解析式中自变量与因变量的意义,熟悉一次函数与正比例函数。
重难点分析重点:1、函数的概念;2、正比例函数的概念与表达式;3、一次函数的概念与表达式;4、函数与坐标平面内点的关系。
难点:1、正比例函数、一次函数的判别;2、自变量、函数值、点的坐标的关系。
知识点梳理1、常量与变量:在一个变化过程中,我们称数值发生变化的量为变量,数值不发生变化的量为常量。
2、函数:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
注意:(1)在某一变化过程中有两个变量x与y。
(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定。
(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的取值为3或-3,不唯一,则y不是x的函数。
3、函数的三种表示形式:(1)列表法:用表格列出自变量与函数的对应值,表示两个变量之间的函数关系,这种表示函数的方法叫做列表法。
(2)图象法:用图象表示两个变量之间的函数关系,这种表示函数的方法叫做图象法。
(3)解析法:用数学式子表示函数关系的方法叫做解析法。
4、函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b.即当x=a时,y=b,那么b叫做自变量x的值为a时的函数值。
5、一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数。
特别地,当b=0时,称y是x的正比例函数。
知识点1:常量与变量【例1】指出下列各关系式中的常量与变量(1)圆的周长公式C =2πr 中,变量是 ,常量是 ; (2)求余角的公式x y o-=90中,变量是 ,常量是 ; (3)△ABC 的底边长为a ,底边上的高为h ,则△ABC 的面积S =21ah ,若h 为定长,则此式中,变量是 ,常量是__________。
知识点2:函数的概念【例1】函数13+=x y 中自变量的取值范围是________。
【例2】下列各式是关于x 的函数的是______________。
(1)1+=x y (2)xy 11-= (3)x y =2 (4)x y =3(5)122=+y x (6)21x y -= (7)322+-=x x y【随堂练习】1、下列变量间的关系不是函数关系的是【 】A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边的长与面积D .圆的周长与半径2、下列各表达式不能表示y 是x 的函数的是【 】A .y =3x 2B .y =1xC .y =±x (x >0)D .y =3x +1【例3】下列各曲线中表示y是x的函数的是【】A. B. C.D.【随堂练习】1、下列各曲线中,不能表示y是x的函数的是【】A. B. C.D.知识点3:函数的表示【例1】某书每本定价8元,若购书不超过10本,按原价付款,若一次购书10本以上,超过10本部分打八折,设一次购书量为x本,付款金额为y元,请填写下表:x(元) 2 7 10 22y(元)16y是x的函数吗?如果是,请尝试写出y与x的函数关系式。
【随堂练习】1、某风景区集体门票的收费标准是:20人以内(含20人),每人25元,超过20人,超过的部分每人10元.(1)写出应收门票费y(元)与游览人数x(人)之间的函数关系式;(2)利用(1)中函数关系式计算,某班54名学生去该风景区游览时,购门票共花了多少元?2、一辆汽车由北京驶往相距120 km的天津,它的平均速度是50 km/h,则汽车距天津的路程s(km)与行驶时间t(h)的关系式为【】A.s=120-50t B.s=50tC.s=50t-120 D.s=50t+1203、一个小球在一个斜坡上向下滚动,其速度每秒钟增加2 m.到达坡底时,小球的速度达到40 m/s.(1)请问小球速度v(m/s)与时间t(s)之间的函数关系式是怎样的?(2)求t的取值范围;(3)求3.5 s时小球的速度;(4)求几秒时小球的速度为16 m/s。
【例2】如图所示的是汽车行驶的路程s(千米)与时间t(分)的函数关系的图象.根据图中提供的信息回答下列问题.(1)汽车在前9分钟内的平均速度是;(2)汽车在中途停留的时间为;(3)汽车第25分钟时距出发地千米.【随堂练习】1、某运输公司的一艘轮船在长江上航行,往返于A、B两地,假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从A出发,逆水航行到B,停留一段时间(卸货、装货、加燃料等),又顺水航行返回A,若该轮船从A出发后所用的时间为x(小时),轮船距A的距离为y(千米),则下列各图中,能够反映y与x之间函数关系的大致图象是【】2、在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是【】3、在一昼夜中正常人的体温是随时间变化而变化的,如图所示是某人一昼夜体温变化的图象.根据图象回答下列问题:(1)这个人的最高体温和最低体温分别是多少摄氏度?在什么时刻达到最高或最低?o),将相应数据填入下表:(2)若用x表示时间(时),y表示体温(Cx/时2481216182022y/℃(3)y是x的函数吗?知识点4:一次函数与正比例函数的基本概念【例1】下列关系中的两个量成正比例的是【 】A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高【随堂练习】1、在下列函数关系中,属于正比例函数关系的是【 】A .圆的面积S 与它的半径rB .面积是常数时,长方形的长a 与宽bC .路程s 是常数时,速度v 和时间tD .三角形的一边长是常数时,它的面积S 与这一边上的高h 2、下列说法中不成立的是【 】A .在13-=x y 中1+y 与x 成正比例;B .在2xy -=中y 与x 成正比例 C .在)1(2+=x y 中y 与1+x 成正比例; D .在3+=x y 中y 与x 成正比例【例2】下列函数中,哪些是一次函数?哪些是正比例函数?(1)y =3x -; (2)xy 8-=; (3)y =8x 2+x (1-8x ); (4)y =1+8x【随堂练习】1、下列函数中,是一次函数但不是正比例函数的是【 】A.3x y =-B.3y x =-C.12x y += D.2212x y x +=2、下列关于x 的函数中,是一次函数的是【 】 A.222-=x y B.11+=x y C.2x y = D.221+-=x y3、下列函数中,表示y 是x 的一次函数的是【 】 ①6-=x y ;②13--=x y ;③x y 6.0-=;④x y -=7 A 、①②③ B 、①③④ C 、①②③④ D 、②③④4、已知下列函数:(1)y =-8x ;(2)y =-8x;(3)y =8x 2;(4)y =8x +1.其中是一次函数的有【 】A .0个B .1个C .2个D .3个5、下列表示y 是x 的函数中,是正比例函数的为【 】 A .2x y = B .x y 2=C .2x y =D .21+=x y【例3】若函数23y x b =+-是正比例函数,则b =________。
【例4】如果y =(k -3)x |k |-2+2是一次函数,那么k 的值是________。
【随堂练习】1、已知函数y =(a +1)x +a -1,当a ________时,它为一次函数;a ________时,它为正比例函数。
2、已知y =(m 2-m )x+m 2 -1是正比例函数,则m =________。
3、在一次函数y =2x -1中,当x =-4时,y =________;当y =4时,x =________。
4、在25-+=a x y 中,若y 是x 的正比例函数,则常数a =________。
【例5】已知2-y 与x 成正比例,当1=x 时,5=y ,那么y 与x 的函数关系式是________。
【随堂练习】1、已知y 与x 成正比例,且5=x 时,2-=y ,那么y 与x 的函数关系式是________。
2、已知y 与1+x 成正比例,当1=x 时,3=y ,那么y 与x 的函数关系式是________。
【例6】若点A (2,4)在函数kx y =的图象上,则下列各点在此函数图象上的是【 】 A .(1,2) B .(﹣2,﹣1) C .(﹣1,2) D .(2,﹣4)【例7】下列各点中,在函数62-=x y 的图象上的是【 】 A .(-2,3) B .(3,-2) C .(1,4) D .(4,2)【例8】已知正比例函数y =kx ,当x =-2时,y =6。
(1)求比例系数k 的值; (2)当x =-3时,求y 的值; (3)当y =-3时,求x 的值。
【随堂练习】1、已知一个正比例函数的图象经过点)3,2(-,则这个正比例函数的表达式是 .2、如果正比例函数kx y =的图象经过点(1,﹣2),那么k 的值等于 .【例9】已知),1(1y ,),21(2y 两点都在一次函数321-=x y 的图象上,则1y _____2y (填“>”“<”或“﹦”)【随堂练习】1、已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线23+-=x y 上,则1y ,2y ,3y 的值的大小关系是【 】A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 1>y 2>y 3【例10】写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数? (1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系; (2)地面气温是28C o,如果每升高1km ,气温下降5C o,则气温x (C o)•与高度y (km )的关系。
【随堂练习】1、一根弹簧长15 cm ,它所挂物体的质量不能超过18 kg ,并且每挂1 kg 的物体,弹簧就伸长12cm.写出挂上物体后,弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式,并判断y 是否是x 的一次函数。
2、某学生的家离学校2km ,他以16km/min 的速度骑车到学校,写出他与学校的距离s (km )和骑车的时间t(min)的函数关系式为 ,s 是t 的 函数。
3、将长为30 cm,宽为10 cm的矩形白纸按如图所示的方法黏合起来,黏合部分的宽是3 cm.设x张白纸黏合后的总长度是y cm.(1)写出y与x之间的函数关系式,并判断y是否是x的一次函数;(2)当x=20时,求y的值。