2012年6月初中数学中考试卷(1)
2012年北京市中考数学试卷(解析版)
2012年北京市高级中等学校招生考试数 学1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。
此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒ 【解析】 B【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱 【解析】 D【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.8 5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A .16B .13C .12D .23【解析】 B【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒ 【解析】 C【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是A .180,160B .160,180C .160,160D .180,180 【解析】 A【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。
2012年黑龙江省哈尔滨市中考数学试卷-答案
黑龙江省哈尔滨市2012年初中升学考试347=,故本选项错误;a a不是同类项,不能合并,故本选项错误;在△【解析】ABC【提示】根据锐角三角函数的定义得出【解析】圆心角⊥,OP AC,则O的半径为利用同弧所对的圆心角等于所对圆周角的利用等边对等角得到一对角相等,利用三角形的内角和定理求出所对的直角边等于斜边的一半,根据【解析】平行四边形【解析】四边形∥AD BC∠=AED△在Rt ABE【提示】根据直角三角形斜边上的中线等于斜边的一半可得222(1)122x x x x x x x x x +++==+++3cos302222x =∴原式2=【提示】先将括号内的分式通分,然后进行加减,再将除法转化为乘法进行计算,然后化简【解析】(1)如图①②,画一个即可;(2)如图③④,画一个即可.【解析】ABC∠+ABC ABD和△)12 a=-< 2bxa=-=-)全校有50a )2y x =+四边形如图,(2)如图,tan BAO ∠y x =-+tan ODN ∴∠32d t ∴=-)如图,四边形4BP =-以OG 为直径的圆经过点M ,BFH ∠=BH BO 2OP =,HO BO ∴=【提示】()BA AM ⊥ANM PQ AB ⊥90ANM =︒,AQ MN =,APM BPC ∠=∠AMB ∠+∠PQ PC =(角平分线的性质))2NP =,3PC =,∴22AM A N -=PAQ AMN ∠=∠,tan ABC ∠NE KC PEN PKC ENP KCP ∴∠=∠∠=∠∥,,又,PNE ∴△:2:3CK CF =,设2CK k =,则3CK k =(0)k ≠,2k ∴过N 作NT EF ∥交CF 于T ,4,EF PM ⊥,EF NT NTC ∴∠=∠∥2,故52CT k =,∴PKC ABC ∠+∠+∠tan BDK ∴∠,tan BDK ∠4GD n =,37n n +==6AB AC AB AQ =-=DQ BQ ∴=【提示】(。
2012年中考数学试题(含答案)
2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。
2012年中考数学试题及答案(word版)
2011年初中毕业生学业考试试题卷数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟. 2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3.可以使用科学计算器.一、选择题(以下每小题均有A ,B ,C ,D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1. 5-的绝对值是( )A .5B .15C .5-D .0.5 2.如图1,在平行四边形ABCD 中,E 是AB 延长线上的一点,若60A ∠=,则1∠的度数为( ) A .120oB .60oC .45oD .30o3.2008年5月12日,在我国四川省汶川县发生里氏8.0级强烈地震.面对地震灾害,中央和各级政府快速作出反应,为地震灾区提供大量资金用于救助和灾后重建,据统计,截止5月31日,各级政府共投入抗震救灾资金22600000000元人民币,22600000000用科学记数法表示为( ) A .1022.610⨯ B .112.2610⨯ C .102.2610⨯ D .822610⨯4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()5.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( ) A .众数 B .方差 C .平均数 D .中位数6.如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A .1:2B .1:4C .D. 2︰1A .B .C .D . (图1)ABECD 17.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76 B .75 C .74 D .73 8.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .19.对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( ) A .3n B .3(1)n n + C .6nD .6(1)n n +二、填空题(每小题4分,共20分) 11.分解因式:24x -= .12.如图3,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2. 13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭.14.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23, 则n = . 15.如图4,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的 半径为2,要使⊙A 与静止的⊙B 相切,那么 ⊙A 由图示位置需向右平移 个单位.(图……(1)(2) (3)(图3)A B三、解答题 16.(本题满分10分)如图5,在平面直角坐标系xoy 中,(15)A -,, (10)B -,,(43)C -,. (1)求出ABC △的面积.(4分) (2)在图5中作出ABC △关于y 轴的对称图形111A B C △.(3分) (3)写出点111A B C ,,的坐标.(3分)17.(本题满分10分)某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 .(3分) (2)该班学生考试成绩的中位数是 .(4分)(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3分)(图5)18.(本题满分10分)如图6,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s (千米)和行驶时间t (小时)之间的关系,根据所给图象,解答下列问题: (1)写出甲的行驶路程s 和行驶时间(0)t t ≥之间的函数关系式.(3分)(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度.(4分) (3)从图象中你还能获得什么信息?请写出其中的一条.(3分) 19.(本题满分10分)如图7,某拦河坝截面的原设计方案为:A H ∥BC ,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55o ,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).(图7)A BCD H55o (图6)20.(本题满分10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述(1)请估计:当很大时,摸到白球的频率将会接近 .(精确到0.1)(3分) (2)假如你摸一次,你摸到白球的概率()P 白球 .(3分) (3)试估算盒子里黑、白两种颜色的球各有多少只?(4分) 21.(本题满分10分) 如图8,在ABCD 中,E ,F 分别为边AB ,CD 的 中点,连接E 、BF 、BD .(1)求证:ADE CBF △≌△.(5分)(2)若A D ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.(5分)(图8)A BCDEF22.(本题满分8分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同. (1)该公司2006年盈利多少万元?(6分)(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?(2分) 23.(本题满分10分) 利用图象解一元二次方程230x x +-=时,我们采用的一种 方法是:在平面直角坐标系中画出抛物线2y x =和直线3y x =-+,两图象交点的横坐标就是该方程的解.(1)填空:利用图象解一元二次方程230x x +-=,也可以这样求解:在平面直角坐标系中画出抛物线y = 和直线y x =-,其交点的横坐标就是 该方程的解.(4分) (2)已知函数6y x =-的图象(如图9所示),利用图象求方程630x x-+=的近似解(结果保留两个有效数字).(6分)(图9)24.(本题满分10分)如图10,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =, 5BC =. (1)求sin BAC ∠的值.(3分)(2)如果OD AC ⊥,垂足为D ,求AD 的长.(3分) (3)求图中阴影部分的面积(精确到0.1).(4分)(图10)25.(本题满分12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式.(3分) (2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3分)(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?(6分)贵阳市2008年初中毕业生学业考试数学参考答案及评分标准一、选择题:二、填空题:11. (x +2)(x -2) 12. 8 13. 1 14. 1 15. 2、4、6、8三、解答题:16. (1)()()平方单位或7.52153521=⨯⨯=∆ABC S ………………4分(2)如图5…………………………………3分(3)A 1(1,5),B 1(1,0),C 1(4,3)…3分17. (1)88分……………………………………3分(2)86分……………………………………4分 (3)不能说张华的成绩处于中游偏上的水平……………………………………1分 因为全班成绩的中位数是86分,83分低 于全班成绩的中位数………………………2分18. (1)s=2t ………………………………………………………………3分(2)在0< t < 1时,甲的行驶速度小于乙的行驶速度;在t > 1时,甲的行驶速度大于乙的行驶速度. ……………………………………………4分(3)只要说法合乎情理即可给分 …………………………………………3分19. 如图7,过点A 作A E ⊥BC 于点E ,过点D 作DF ⊥BC 于点F . ………2分在Rt △ABE 中, 分6.............................................................................65.174cos 6cos cos ≈=∠=∴=∠o ABE AB BE ABBEABE ∵AH ∥BC∴DF = AE ≈ 5.77 …………………………………………………7分 ()分米分中,在 ...10..................................................2.41.65-4.04BE -BF EF AD 9..........................................................04.455tan 77.5tan ,tan Rt ≈===∴≈≈∠=∴=∠∆oDBF DF BF BFDFDBF BDF20. (1)0.6 …………………………………………………………………3分(2)0.6 …………………………………………………………………3分 (3)40×0.6=24,40-24=16 ………………………………………2分21. (1)在平行四边形ABCD 中,∠A =∠C ,AD =CD ,∵E 、F 分别为AB 、CD 的中点∴AE=CF ……………………………………………………2分()分中,和在 ...5......................................................................SAS CFB AED CF AE C A CB AD CFB AED ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆ (2)若AD ⊥BD ,则四边形BFDE 是菱形. …………………………1分77.574sin 6sin ,sin ≈=∠=∴=∠o ABE AB AE AB AEABE 分4.....................................................................77.574sin 6sin ≈=∠=∴oABE AB AE (图7)A BCD H 55o.5............................................................ .BFDE BFDE DF,EB EB//DF 3...................................................................... BE AB 21DE ,AB E ..2..........).........90ADB AB Rt ABD BD AD 分是菱形四边形是平行四边形四边形且由题意可知分的中点是分是斜边(或,且是,证明:∴∴===∴=∠∆∆∴⊥ o22. (1)设每年盈利的年增长率为x ,………………………………..1分 根据题意得1500(1﹢x )2 =2160 ………………………..….3分 解得x 1 = 0.2, x 2 = -2.2(不合题意,舍去)…………....4分 ∴1500(1 + x )=1500(1+0.2)=1800 ……………………5分 答:2006年该公司盈利1800万元. …………………………6分(2) 2160(1+0.2)=2592答:预计2008年该公司盈利2592万元. ……………………2分 23. (1)32-x ………………………………………………………4分(2)由图象得出方程的近似解为: 分6......................................................4.44.121≈-≈,xx24. (1)∵AB 是⊙O 的直径,点C 在⊙O 上∴∠ACB = 90o ....................................................1分 ∵AB =13,BC =5 分3 (13)5sin ==∠∴AB BC BAC (2)在Rt △ABC 中,分分......3...................................................................... 6AC 21AD 1................................................125132222==∴--=-=BC AB AC (3)()分平方单位.4....................4.3612521213212≈⨯⨯-⎪⎭⎫⎝⎛⨯=π阴影部分S11 ()()()()()()分元有最大值,且最大值是元时,天当每个房间的定价为每就是说,,此时,有最大值时,当分分分分.....6.............................. .15210410 410200.210 4 (1521021010)11080042101 2.......................................106020106020033.........................120004010110602002 3. (10)601.25222w x w x x x x x x x w x x x x z x y =+=+--=++-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=++-=⎪⎭⎫ ⎝⎛-+=-=。
安徽省2012年中考数学真题试卷(含答案和解析)
2012年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.下面的数中,与-3的和为0的是3 B.-3 C.| D.-1A.2.下面的几何体中,主(正)视图为三角形的是00A0A B C D3.计算(-2x,)-的结果是A.-2x5B.-8x6C.-2x6D.-8x54.下面的多项式中,能因式分解的是A.m2+nB.m2-m+lC.m2-nD.m2-2m+l5.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(l-10%+15%)万元26.化简壬+三的结果是x-11-xA.x+1B. x-1C.-xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为A.2a2B.3a2C. 4a2D.5a‘8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为9.如图,A点在半径为2的。
0上,过线段0A上的一点P作直线1,与。
过A点的切线交于点B,且Z APB=60°.设OP=x,则APAB的面积y关于x的函数图象大致是A B C D10,在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是4A.10B.4V5C.10或4V5D.10或2V17二、填空题(本大题共4小题,每小题5分,满分20分)11.2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是.12.甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为s$=36,s乒25.4,s$=16.则数据波动最小的一组是.13.如图,点A、B、C、D在。
2012中考数学试题及答案
2012中考数学试题及答案2012年中考数学试题是每年中学生们备战中考的重要资源之一。
在本篇文章中,我们将为您提供2012年中考数学试题及答案,帮助您更好地了解试题的类型和解题方法。
1. 选择题:A. 单项选择题:1. 若一个扇形的半径为8 cm,弧长为12 cm,则该扇形的圆心角为:A) 45° B) 60° C) 90° D) 120°解析:我们知道,扇形的圆心角等于扇形所对的圆心弧的度数,而弧长占的圆周长的比值就是扇形的圆心角占的整圆的比值。
因此,设该扇形的圆心角为x,则12cm/2πr = x/360°。
代入r=8 cm,解得x = 90°。
所以答案选C。
2. 若x+2 = 5,则x的值为:A) 5 B) 3 C) 4 D) 7解析:将x+2=5两边同时减去2,得x=3。
所以答案选B。
B. 完形填空:下面是一道完形填空题,请根据上下文和所给选项,选择最佳答案。
Jonas felt nervous as he 1 to the front of the classroom. His legs feltweak and shaky. He could hear his classmates 2 softly to each other, but the teacher's 3 was low and pleasant. He looked out at the rows of faces, all ofthem 4 at him. His heart was pounding, and he felt as if he could hardly breathe. But he liked that 5 . It made him feel alive.1. A) went B) go C) was going D) is going2. A) talk B) talked C) were talking D) talking3. A) voice B) noise C) sound D) words4. A) lay B) sat C) stood D) walking5. A) situation B) idea C) feeling D) chance解析:根据上下文,我们可以知道Jonas走到了教室前面,所以选项A) went符合语境。
2012年河北中考数学真题卷含答案解析
2012年河北省初中毕业生升学文化课考试数学5A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,为负数的是( )A.0B.-2C.1D.122.计算(ab)3的结果是( ) A.ab 3B.a 3bC.a 3b 3D.3ab3.下图中几何体的主视图是( )4.下列各数中,为不等式组{2x -3>0,x -4<0解的是( )A.-1B.0C.2D.45.如图,CD 是☉O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E,则下列结论正确的是( ) A.AE>BEB.AD⏜=BC ⏜ C.∠D=12∠AEC D.△ADE ∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.每2次必有1次正面向上 B .可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上7.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG⏜是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x-2)2=3C.(x-2)2=5D.(x+2)2=59.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D,C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°10.化简2x2-1÷1x-1的结果是()A.2x-1B.2x3-1C.2x+1D.2(x+1)11.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A.7B.6C.5D.4第11题图第12题图(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两12.如图,抛物线y1=a(x+2)2-3与y2=12条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确结论是()A.①②B.②③C.③④D.①④第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-5的相反数是.14.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为.第14题图第16题图16.在1×2的正方形网格格点上放三枚棋子,按如图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①.用n个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n的值为.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)计算:|-5|-(√2-3)0+6×(13-12)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD—DC—CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB∶AD∶DC=10∶5∶2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7=;(1)a=,x乙(2)请完成图中表示乙成绩变化情况的折线;甲、乙两人射箭成绩折线图(3)①观察折线图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.5B22.(本小题满分8分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m(x>0)的图象经过点xD,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).23.(本小题满分9分)如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为,AE和ED的位置关系为;图1(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连结GH,HD,分别得到了图2和图3.①在图2中,点F在BE上,△EGF与△EAB的相似比是1∶2,H是EC的中点.求证:GH=HD,GH⊥HD.②在图3中,点F在BE的延长线上,△EGF与△EAB的相似比是k∶1,若BC=2,请直接写出CH的长为多少时,恰好使得GH=HD且GH⊥HD(用含k的代数式表示).图2图324.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例.每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a ,4ac-b24a).25.(本小题满分10分)如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的☉P随点P的运动而变化,当☉P与四边形ABCD的边(或边所在的直线)相切时,求t的值.26.(本小题满分12分).如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=513探究如图1,AH⊥BC于点H,则AH=,AC=,△ABC的面积S△ABC=.图1拓展如图2,点D在AC上(可与点A,C重合),分别过点A,C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,CF=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图22012年河北省初中毕业生升学文化课考试一、选择题1.B因为小于零的数是负数,显然-2是负数,故选B.2.C根据积的乘方运算法则:积的乘方,先把积中的每一个因式分别乘方,再把所得的幂相乘即得(ab)3=a3b3,故选C.3.A主视图即从正面看几何体得到的平面图形,根据题意可知A正确.4.C解不等式2x-3>0,得x>32;解不等式x-4<0,得x<4,所以原不等式组的解集为32<x<4,所给选项中满足条件的只有2,故选C.5.D由已知易得AE=BE、AD⏜=BD⏜,又因为AB不是直径,所以BD⏜≠BC⏜,∠D≠12∠AEC,所以AD⏜≠BC⏜,因此A、B、C均错误.因为∠A和∠C是同弧所对的圆周角,所以∠A=∠C,同理∠B=∠D,所以△ADE∽△CBE,故选D.6.B掷一枚均匀的硬币,正面向上和反面向上的事件均为随机事件.A、C、D选项均不对,只有B正确.7.D尺规作图作一个角等于已知角,是利用图形的全等得到的,根据题意可知,若MD=NE,则需要以点E为圆心,DM为半径作弧,故选D.8.A x2+4x+1+3=3,x2+4x+4=3,即(x+2)2=3,故选A.9.B由题目条件易得MN∥EF,∠A=70°,则∠NMD=70°,又因为折叠关系,有∠NMD=∠FMN=70°,所以∠AMF=40°.故选B.评析本题通过图形的折叠考查学生观察、操作及分析问题的能力,由图形折叠找到相等的线段和相等的角是解决问题的关键.题目属中等难度题.10.C2x2-1÷1x-1=2(x+1)(x-1)·x-11=2x+1,故选C.11.A设两个正方形重叠部分的面积为m,则a=16-m,b=9-m,a-b=(16-m)-(9-m)=7,故选A.12.D因为抛物线y2的图象均在x轴的上方,所以无论x取何值,y2的值总是正数,故①正确;将点A的坐标(1,3)代入y1=a(x+2)2-3,可得a=23,故②错误;当x=0时,y1=-13,y2=112,所以y2-y1=112+13=356,故③错误;当y1=3时,x=1或x=-5,所以AB=6,当y2=3时,x=1或x=5,所以AC=4,即2AB=3AC,故④正确.故选D.评析本题考查二次函数的图象和性质,考查根据二次函数的解析式识图的能力.图形复杂,关系众多,属难度较大题.二、填空题13.答案5解析符号不同,绝对值相同的两个数互为相反数,所以-5的相反数是5.14.答案52解析∠AOC和∠BOD是对顶角,故∠AOC=∠BOD,即∠AOC=∠BOD=38°,在Rt△AOC 中,两锐角互余,故∠A=52°.15.答案1解析(x-y)2+(y-x)+1=(y-x)2+(y-x)+1,将y=x-1代入上式可得(x-1-x)2+(x-1-x)+1=1.16.答案34解析由题意可知棋子可能的位置有四个,其中能构成直角三角形的位置有三个,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.17.答案21解析根据题意得到的20个数的乘积为21×32×43×54×…×2120=21.评析本题以报数游戏为背景,考查学生的阅读能力、交叉约分的计算能力.题目信息量大,计算复杂,属中等难度题.18.答案6解析若使相邻的两个六边形有一条公共边,则两个六边形的边构成了一个120°角,而多个六边形按这种方式拼接,围成的多边形是一个正多边形,且每一个内角均为120°,故此多边形一定是正六边形,需要六个这样的多边形才能拼成,所以n=6.评析本题考查多边形内角和的相关知识,从题目已知条件中获取信息,发现规律,运用发现的规律解决新的问题,考查学生分析、解决问题的能力.三、解答题19.解析|-5|-(√2-3)0+6×(13-12)+(-1)2=5-1+(2-3)+1(5分)=4.(8分)20.解析(1)设AB=10x km,则AD=5x km,CD=2x km.∵四边形ABCD是等腰梯形,DC∥AB,∴BC=AD=5x.∴AD+DC+CB=12x.∴外环公路总长和市区公路长的比为12x ∶10x=6∶5.(3分)(2)由(1)可知,市区公路的长为10x km,外环公路的总长为12x km.由题意,得10x 40=12x 80+110.(6分) 解这个方程,得x=1.∴10x=10.答:市区公路的长为10 km.(8分)21.解析 (1)4;6.(2分)(2)如图.甲、乙两人射箭成绩折线图(3分)(3)①乙.(4分)s 乙2=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.(5分)由于s 乙2<s 甲2,所以上述判断正确.(6分) ②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(8分)22.解析 (1)由题意得,AD=BC=2,故点D 的坐标为(1,2).(2分)∵反比例函数y=m x的图象经过点D(1,2), ∴2=m 1,∴m=2. ∴反比例函数的解析式为y=2x.(4分) (2)当x=3时,y=3k+3-3k=3,∴一次函数y=kx+3-3k(k ≠0)的图象一定过点C.(6分)(3)设点P 的横坐标为a,其取值范围为23<a<3.(8分) 详解:过C 分别作CM ⊥x 轴,CN ⊥y 轴,M 、N 分别为垂足,且分别交反比例函数图象于P 1、P 2点.由题意可知P 1(3,23),P 2(23,3).由于一次函数y=kx+3-3k(k ≠0)中y 随x 的增大而增大,∴k>0. ∴点P 的横坐标的取值范围是23<a<3. 评析 本题是一次函数和反比例函数的综合问题,考查学生运用相关函数知识解决问题的能力.23.解析(1)AE=ED;AE⊥ED.(2分)(2)①证明:由题意得,∠B=∠C=90°,AB=BE=EC=DC.∵△EGF与△EAB位似且相似比是1∶2,∴∠GFE=∠B=90°,GF=12AB,EF=12EB.∴∠GFE=∠C.∵EH=HC=12EC,∴GF=HC,FH=FE+EH=12EB+12EC=12BC=EC=CD.∴△HGF≌△DHC.(5分)∴GH=HD,∠GHF=∠HDC.又∵∠HDC+∠DHC=90°,∴∠GHF+∠DHC=90°.∴∠GHD=90°,∴GH⊥HD.(7分)②CH的长为k.(9分)评析本题考查全等三角形、相似(位似)三角形的相关知识.由特殊图形猜想结论,通过推理论证得到一般结论是解决此类问题的基本思路,题目较难.24.解析(1)设一张薄板的边长为x cm,它的出厂价为y元,基础价为n元,浮动价为kx元,则y=kx+n.(2分)由表格中的数据,得{50=20k+n,70=30k+n.解得{k=2,n=10.所以y=2x+10.(4分)(2)①设一张薄板的利润为P元,它的成本价为mx2元,由题意,得P=y-mx2=2x+10-mx2.(5分)将x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402.解得m=125,所以P=-125x2+2x+10.(7分)②因为a=-125<0,所以,当x=-b2a=-22×(-125)=25(在5~50之间)时,P最大值=4ac-b24a =4×(-125)×10-224×(-125)=35.即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.(9分)(注:边长的取值范围不作为扣分点)评析本题通过构建一次函数、二次函数的模型解决实际问题,通过求二次函数解析式,判断函数的最大值,解决题目中最大利润问题,题目中的条件多,信息量大,能够将各数量之间的关系用恰当的函数解析式表示出来是解决问题的关键.25.解析(1)∵∠BCO=∠CBO=45°,∴OC=OB=3.又∵点C在y轴的正半轴上,∴点C的坐标为(0,3).(2分)(2)当点P在点B右侧时,如图1.图1若∠BCP=15°,得∠PCO=30°,故OP=OCtan30°=√3,此时t=4+√3.(4分)当点P在点B左侧时,如图2.图2由∠BCP=15°,得∠PCO=60°,故PO=OCtan60°=3√3.此时t=4+3√3.∴t的值为4+√3或4+3√3.(6分)(3)由题意知,若☉P与四边形ABCD的边相切,有以下三种情况:①当☉P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1.(7分)②当☉P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4.(8分)③当☉P与AD相切时,由题意,∠DAO=90°,∴点A为切点,如图3.图3PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,解得t=5.6.∴t的值为1或4或5.6.(10分)评析本题借助直角坐标系中的动点问题综合考查三角函数、直线与圆相切的位置关系等知识,灵活运用分类讨论思想,通过观察、归纳得到满足条件的所有结论,对学生的分析、推理能力要求较高,属难度较大题目.26.解析探究12;15;84.(3分)拓展(1)由三角形面积公式,得S△ABD=12mx,S△CBD=12nx.(4分)(2)由(1)得m=2S △ABD x ,n=2S △CBD x ,∴m+n=2S △ABD x +2S △CBD x =168x.(5分) 由于AC 边上的高为2S△ABC 15=2×8415=565,∴x 的取值范围是565≤x ≤14. ∵(m+n)随x 的增大而减小,∴当x=565时,(m+n)的最大值为15;(7分) 当x=14时,(m+n)的最小值为12.(8分)(3)x 的取值范围是x=565或13<x ≤14.(10分) 发现 AC 所在的直线,(11分)最小值为565.(12分) 评析 本题是几何图形的探究题,需要根据题目的条件探索发现某种数学关系的存在,并利用探索发现的数学关系解决相应的问题,考查学生多角度、多层次地思考问题的能力,同时考查学生的探究创新能力,属难度较大题.。
2012年河南省中考数学试卷答案与解析
WORD格式-专业学习资料-可编辑2012年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后的括号内..D4.(3分)(2012•河南)某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,6.(3分)(2012•河南)如图所示的几何体的左视图是().D()WORD格式-专业学习资料-可编辑,;8.(3分)(2012•河南)如图,已知AB是⊙O的直径,AD切⊙O于点A,=.则下列结论中不一定正确的是()=所对的圆心角,∠是=时9.(3分)(2012•河南)计算:+(﹣3)2=10.于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°.EF=同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是.=.故答案为:13.(3分)(2012•河南)如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为4.y=AM=AM=×=转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是6.=10=,即=DE D=与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF 为直角三角形时,BD的长为1或2.×=FAC=×=1=1FAC=×=1=216.(8分)(2012•河南)先化简,然后从﹣<x<的范围内选取一个合适的整数作÷…<,且=机抽样调查了该市部分18﹣65岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:(1)这次接受随机抽样调查的市民总人数为1500;(2)图1中的m的值是315;(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;(4)若该市18﹣65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是“对吸烟危害健康认识不足”的人数.WORD格式-专业学习资料-可编辑×=50.4一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为1时,四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.AM=AD=1AM=1=地停留半小时后返回A地.如图是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).=D=,=≈=24套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?桌凳数量的由题意得:案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH,CG和EH的数量关系是CG=2EH,的值是.(2)类比延伸WORD格式-专业学习资料-可编辑如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是ab(用含a、b的代数式表示).的情形,=3的情形,=m==..===.故答案为:===ab23.(11分)(2012•河南)如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.WORD格式-专业学习资料-可编辑)由x xAEO==x x m m x+1PC=﹣(﹣m﹣(+(+.ACP==,﹣==.=时,解得=时,解得。
2012年中考数学样题参考答案.doc
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012年河南省中考数学试题(含答案)(word版)
2012年河南省初中学业水平暨高级中等学校招生试卷数学注意事项:1、 本卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝色、黑色水笔或者圆珠笔直接打在试卷上。
2、 答卷前请将密封线内项目填写清楚。
参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24--,24b ac b a a()一、选择题(每小题分,共24分)1、下列各数中,最小的是(A )-2 (B)-0.1 (C)0 (D)|-1|2、如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是3、一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为 (A )56.510-⨯ (B )66.510-⨯(C )76.510-⨯(D )66510-⨯4、某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185,则有这组数据中得到的结论错误的是 A .中位数为170 B 众数为168.C .极差为35D .平均数为1705、在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为A .2(2)2y x =++ B .2(2)2y x =--C .2(2)2y x =-+D .2(2)2y x =+-6、如图所示的几何体的左视图是7、如图函数2y x =和4y ax =+的图象相交于A(m,3),则不等式24x ax <+的解集为 A .32x <B .3x <C .32x >D .3x >8、如图,已知AB 为O 的直径,AD 切O 于点A, EC CB =则下列结论不一定正确的是 A .BA DA ⊥B .OC AE ∥ C .2COE CAE ∠=∠D .OD AC ⊥二、填空题(本题共10小题,每题5分,共50分)9、计算:02((3)+-=10、如图,在△ABC ,90C ∠=,°50CAB ∠=,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径,画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边与点D ,则A D C ∠的度数为11、母线长为3,底面圆的直径为2的圆锥的侧面积为12、一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012中考数学试题及答案
2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。
答案:5或-513. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的平方根和立方根相等,这个数是______。
答案:0或115. 如果一个数的对数是2,那么这个数是______。
答案:10016. 一个数的平方是36,那么这个数是______或______。
答案:6或-617. 一个数的倒数是2/3,这个数是______。
答案:3/218. 如果一个数的立方是-27,那么这个数是______。
2012年广东省中考数学试卷(含答案)
2012年广东省初中毕业生学业考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答 的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. -5的绝对值是 ( )A. 5B. -5C. 15D. -152. 地球半径约为6400000米,用科学记数法表示为 ( )A. 0.64×107B. 6.4×106C. 64×105D. 640×104 3. 数据8、8、6、5、6、1、6的众数是 ( ) A. 1 B. 5 C. 6 D. 84. 如图所示几何体的主视图是 ( )5. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是 ( ) A. 5 B. 6 C. 11 D. 16二、填空题(本大题共5小题,每小题4分,共20分) 6. 分解因式:2x 2-10x = . 7. 不等式3x -9>0的解集是 .8. 如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 .第8题图 第10题图9. 若x 、y 为实数,且满足|x -3|+y +3=0,则(xy)2012的值是 .10. 如图,在▱ABCD 中,AD =2,AB =4,∠A =30°.以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 (结果保留π).三、解答题(一)(本大题共5小题,每小题6分,共30分)11. 计算:2-2sin 45°-(1+8)0+2-1.12. 先化简,再求值:(x +3)(x -3)-x (x -2),其中x =4.13. 解方程组:⎩⎪⎨⎪⎧x -y =4 ①3x +y =16 ②.14. 如图,在△ABC 中,AB =AC ,∠ABC =72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.第14题图15. 已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.第15题图四、解答题(二)(本大题共4小题,每小题7分,共28分) 16. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次.若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率; (2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17. 如图,直线y =2x -6与反比例函数y =kx (x >0)的图象交于点A (4,2),与x 轴交于点B.(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.第17题图18. 如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin 26.6°≈0.45,cos 26.6°≈0.89,tan 26.6°≈0.50).第18题图19. 观察下列等式:第1个等式:a 1=11×3=12×(1-13);第2个等式:a 2=13×5=12×(13-15);第3个等式:a 3=15×7=12×(15-17);第4个等式:a 4=17×9=12×(17-19);……(1)按以上规律列出第5个等式:a 5= = ;(2)用含n 的代数式表示第n 个等式:a n = = (n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ).(1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式x 2-3xy x 2-y 2+yx -y有意义的(x ,y )出现的概率;(3)化简分式x 2-3xy x 2-y 2+yx -y ,并求使分式的值为整数的(x ,y )出现的概率.21. 如图,在矩形纸片ABCD 中,AB =6,BC =8.把△BCD 沿对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点G ,E 、F 分别是C ′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D ′处,点D ′恰好与点A 重合.(1)求证:△ABG ≌△C ′DG ; (2)求tan ∠ABG 的值; (3)求EF 的长.第21题图22. 如图,抛物线y =12x 2-32x -9与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、A C.(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与A 、B 不重合),过点E 作直线l 平行BC ,交AC 于点D.设AE 的长为m ,△ADE 的面积为S ,求S 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值,此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).第22题图2012年广东省中考数学试卷参考答案与试题解析1. A2. B3. C4. B5. C6. 2x (x -5)7. x >38. 50°9. 1 10. 3-π311.解:原式=2-2×22-1+12(3分) =2-2-1+12(4分)=-12.(6分)易错分析容易把2-1计算成-2,从而导致结果错误.12.13. 解:①+②,得4x =20,解得x =5,(2分) 把x =5代入①,得5-y =4,解得y =1,(4分)∴方程组的解是:⎩⎪⎨⎪⎧x =5y =1.(6分)14.解:(1)作解图如下:第14题解图(2)∵AB =AC ,∠ABC =72°, ∴∠C =∠ABC =72°,(3分)∵BD 平分∠ABC , ∴∠DBC =36°,(4分) ∴∠BDC =180°-72°-36°=72°.(6分)15. 证明:∵AB ∥CD , ∴∠ABO =∠CDO ,(1分)∵BO =DO ,∠AOB =∠COD , ∴△AOB ≌△COD (ASA ),(3分) ∴AB =CD ,(4分)∴四边形ABCD 是平行四边形.(6分) 16.解:(1)设这两年我国出境旅游总人数的年平均增长率为x ,依题意得: 5000×(1+x )2=7200,(2分)解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去)答:这两年我国出境旅游总人数的年平均增长率为20%.(4分) (2)7200×(1+20%)=8640(万人次).答:2012年我国公民出境旅游总人数约为8640万人次.(7分) 17.解:(1)把点A (4,2)代入反比例函数解析式y =kx ,得2=k4,解得k =8;(2分) 把y =0代入直线y =2x -6,得 2x -6=0,解得x =3,∴点B 的坐标是(3,0).(4分)第17题解图(2)存在.设点C 的坐标为(m ,0),过点A 作AD ⊥x 轴,垂足为D ,则点D (4,0), ∴BD =1,CD =|m -4|,(5分) ∵AB =AC ,∴BD =CD ,即|m -4|=1,解得m =5或3(此时与B 点重合,舍去). ∴点C 的坐标是(5,0).(7分)18.解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =xtan 26.6°≈2x .(2分)在Rt △ABC 中,tan α=34,∴BC =43x ,(4分)∵BD -BC =CD ,CD =200, ∴2x -43x =200,解得x =300.(6分)答:小山岗的高AB 约为300米.(7分) 19.解:(1)19×11;12×(19-111).(2分)(2)1(2n -1)(2n +1);12(12n -1-12n +1).(4分) (3)a 1+a 2+a 3+…+a 100 =11×3+13×5+15×7+…+1199×201=12×(1-13)+12×(13-15)+12×(15-17)+…+12×(1199-1201)(6分) =12×(1-13+13-15+15-17+……+1199-1201) =12×(1-1201) =100201.(7分) 20.解:(1)列表法:即所有(x ,(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1).(3分)(2)要使分式x 2-3xy x 2-y 2+yx -y 有意义,即x 、y 满足x +y ≠0且x -y ≠0.由(1)知所有可能结果共有9种,满足条件的结果共有4种,(4分) ∴P (分式有意义)=49.(5分)(3)x 2-3xy x 2-y 2+y x -y=x 2-3xy (x +y )(x -y )+xy +y 2(x +y )(x -y ) =x -yx +y.(6分)∵分式x 2-3xy x 2-y 2+y x -y 的值为整数,∴x -y 是x +y 的整数倍,∴满足条件的结果共有2种,(8分) ∴P (分式的值为整数)=29.(9分)21.(1)证明: ∵四边形ABCD 是矩形, ∴AB =CD ,∠BAG =∠C =90°, ∵把△BCD 沿对角线BD 折叠, ∴∠C ′=∠C =∠BAG =90°,C ′D =AB ,(1分) ∵∠AGB =∠C ′GD ,∴△ABG ≌△C ′DG (AAS ).(3分)(2)解:设AG =x ,则有DG =BG =8-x , ∴(8-x )2=62+x 2,解得x =74,(4分)∴tan ∠ABG =AG AB =746=724.(6分)(3)解:∵把△FDE 沿EF 折叠,使点D 落在点D ′,点D ′与点A 重合, ∴EF ⊥AD ,DH =AH =4, ∴EF ∥AB ,∴HF 是△ABD 的中位线,即HF =3.(7分)由(1)中的△ABG ≌△C ′DG 可知∠ABG =∠C ′DG ,∴HE =DH ·tan ∠C ′DG =DH ·tan ∠ABG =4×724=76,(8分)∴EF =HF +HE =3+76=256.(9分)22.。
2012年陕西省中考数学试卷-答案
【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。
2012年河南省中考数学试卷(含解析)
2012年河南省中考数学试卷一、选择题1.下列各数中,最小的数是()A.-2B.-0.1C.0D.|-1|2.如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10-5B.6.5×10-6C.6.5×10-7D.65×10-64.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170B.众位数为168C.极差为35D.平均数为1705.在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()C.y=(x-2)A.y=(x+2)2+2B.y=(x-2)2-2D.y=(x+2)2-22+26.如图所示的几何体的左视图是()A.B.C.D.7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>38.如图,已知AB是⊙O的直径,AD切⊙O于点A,=.则下列结论中不一定正确的是()A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC二、填空题9.计算:+(-3)2=__________.10.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为__________.三、解答题11.母线长为3,底面圆的直径为2的圆锥的侧面积为__________.四、填空题12.一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是__________.13.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为__________.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是__________.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为__________.五、解答题16.先化简,然后从-<x<的范围内选取一个合适的整数作为x的值代入求值.17.5月31日是世界无烟日.某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18-65岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:(1)这次接受随机抽样调查的市民总人数为__________;(2)图1中的m的值是__________;(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;(4)若该市18-65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是“对吸烟危害健康认识不足”的人数.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为__________时,四边形AMDN是矩形;②当AM的值为__________时,四边形AMDN是菱形.19.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地.如图是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?20.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB 方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).21.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?22.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是__________,CG和EH的数量关系是__________,的值是__________.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是__________(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是__________(用含a、b的代数式表示).23.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x 轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.2012年河南省中考数学试卷试卷的答案和解析1.答案:A试题分析:试题分析:根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.试题解析:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>-2,所以>-0.1所以最大,故D不对;又因为负实数都小于0,所以0>-2,0>-0.1,故C不对;因为两个负实数绝对值大的反而小,所以-2<-0.1,故B不对;故选A.2.答案:C试题分析:试题分析:根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.试题解析:根据中心对称和轴对称的定义可得:A、既不是轴对称图形也不是中心对称图形,故A选项错误;B、既不是轴对称图形也不是中心对称图形,故B选项错误;C、是中心对称图形也是轴对称图形,故C选项正确;D、是中心对称图形而不是轴对称图形,故D选项错误.故选:C.3.答案:B试题分析:试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.0000065=6.5×10-6;故选:B.4.答案:D试题分析:试题分析:根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.试题解析:把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185-150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选D.5.答案:B试题分析:试题分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.试题解析:函数y=x2-4向右平移2个单位,得:y=(x-2)2-4;再向上平移2个单位,得:y=(x-2)2-2;故选B.6.答案:D试题分析:试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.试题解析:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选D.7.答案:A试题分析:试题分析:先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A 的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.8.答案:D试题分析:试题分析:分别根据切线的性质、平行线的判定定理及圆周角定理对各选项进行逐一判断即可.试题解析:∵AB是⊙O的直径,AD切⊙O于点A,∴BA⊥DA,故A正确;∵=,∴∠EAC=∠CAB,∵OA=OC,∴∠CAB=∠ACO,∴∠EAC=∠ACO,∴OC∥AE,故B正确;∵∠COE是所对的圆心角,∠CAE是所对的圆周角,∴∠COE=2∠CAE,故C正确;只有当=时OD⊥AC,故本选项错误.故选D.9.答案:试题分析:试题分析:本题涉及零指数幂、乘方等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1+9=10.故答案为10.10.答案:试题分析:试题分析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.试题解析:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.11.答案:试题分析:试题分析:圆锥的侧面积=底面周长×母线长÷2.试题解析:底面圆的直径为2,则底面周长=2π,圆锥的侧面积=×2π×3=3π.故答案为3π12.答案:试题分析:试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.试题解析:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:=.故答案为:.13.答案:试题分析:试题分析:设OM的长度为a,利用反比例函数解析式表示出AM的长度,再求出OC的长度,然后利用三角形的面积公式列式计算恰好只剩下k,然后计算即可得解.试题解析:设OM=a,∵点A在反比例函数y=,∴AM=,∵OM=MN=NC,∴OC=3a,∴S△AOC=•OC•AM=×3a×=k=6,解得k=4.故答案为:4.14.答案:试题分析:试题分析:在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=10-2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.Rt△ABC中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10-2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,∴S△A′DE=DE×A′D=×(10-2×3)×3=6,故答案为:6.15.答案:试题分析:试题分析:首先由在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,即可求得AC的长、∠AEF与∠BAC 的度数,然后分别从从∠AFE=90°与∠EAF=90°去分析求解,又由折叠的性质与三角函数的知识,即可求得CF的长,继而求得答案.根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°-∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=3×=,∠BAC=60°,如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC=×=1,∴BD=DF==1;如图②若∠EAF=90°,则∠FAC=90°-∠BAC=30°,∴CF=AC•tan∠FAC=×=1,∴BD=DF==2,∴△AEF为直角三角形时,BD的长为:1或2.16.答案:试题分析:试题分析:先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.试题解析:原式=÷…3分=•=…5分∵-<x<,且x为整数,∴若使分式有意义,x只能取-1和1…7分当x=1时,原式=.【或:当x=-1时,原式=1】…8分17.答案:试题分析:试题分析:(1)由条形图可得认为政府对公共场所吸烟的监管力度不够的有420人,有扇形统计图可得认为政府对公共场所吸烟的监管力度不够占28%,总数=420÷28%;(2)用总人数×认为对吸烟危害健康认识不足的人数所占百分比即可;(3)认为“烟民戒烟的毅力弱”所对应的圆心角的度数=360°×认为“烟民戒烟的毅力弱”的人数所占百分比即可;(4)利用样本估计总体的方法,用200万×样本中认为对吸烟危害健康认识不足的人数所占百分比.试题解析:(1)这次接受随机抽样调查的市民总人数为:420÷28%=1500;(2)利用总人数×认为对吸烟危害健康认识不足的人数所占百分比,得出:m=1500×21%=315;(3)根据360°×认为“烟民戒烟的毅力弱”的人数所占百分比,得出“烟民戒烟的毅力弱”所对应的圆心角的度数为:360°×=50.4°;(4)根据200万×样本中认为对吸烟危害健康认识不足的人数所占百分比,得出“对吸烟危害健康认识不足”的人数为:200×21%=42(万人).18.答案:试题分析:试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:1;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.19.答案:试题分析:试题分析:(1)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90)(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;(2)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到2小时时骑摩托车所行驶的路程,再根据路程与时间算出摩托车的速度,再用总路程90千米÷摩托车的速度可得乙从A地到B地用了多长时间.(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴y=-60x+180(1.5≤x≤3);(2)当x=2时,y=-60×2+180=60.∴骑摩托车的速度为60÷2=30(千米/时),∴乙从A地到B地用时为90÷30=3(小时).20.答案:试题分析:试题分析:设AB=x米.根据∠AEB=45°,∠ABE=90°得到BE=AB=x,然后在Rt△ABD中得到tan31°=.求得x=24.然后在Rt△ABC中,利用勾股定理求得AC即可.设AB=x米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x米在Rt△ABD中,tan∠D=,即tan31°=.∴x=≈=24.即AB≈24米在Rt△ABC中,AC=≈=25米.答:条幅的长度约为25米.21.答案:试题分析:试题分析:(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B 型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.试题解析:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200-a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200-a)=-40a+44000.∵-40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200-a=120,即总费用最低的方案是:购买A型80套,购买B型120套.22.答案:试题分析:试题分析:(1)本问体现“特殊”的情形,=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;(2)本问体现“一般”的情形,=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示.试题解析:(1)依题意,过点E作EH∥AB交BG于点H,如右图1所示.则有△ABF∽△EHF,∴,∴AB=3EH.∵▱ABCD,EH∥AB,∴EH∥CD,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH.===.故答案为:AB=3EH;CG=2EH;.(2)如右图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB.∴==m,∴AB=mEH.∵AB=CD,∴CD=mEH.∵EH∥AB∥CD,∴△BEH∽△BCG.∴==2,∴CG=2EH.∴==.故答案为:.(3)如右图3所示,过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD.∵EH∥CD,∴△BCD∽△BEH,∴==b,∴CD=bEH.又=a,∴AB=aCD=abEH.∵EH∥AB,∴△ABF∽△EHF,∴===ab,故答案为:ab.23.答案:试题分析:试题分析:(1)已知直线AB的解析式,首先能确定A、B点的坐标,然后利用待定系数法确定a、b的值;若设直线AB与y轴的交点为E,E点坐标易知,在Rt△AEO中,能求出sin∠AEO,而∠AEO=∠ACP,则∠ACP的正弦值可得.(2)①已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△PCD中,根据(1)中∠ACP的正弦值,即可求出PD的表达式,再根据所得函数的性质求出PD长的最大值.②在表达△PCD、△PBC的面积时,若都以PC为底,那么它们的面积比等于PC边上的高的比.分别过B、D作PC的垂线,首先求出这两条垂线段的表达式,然后根据题干给出的面积比例关系求出m 的值.(1)由x+1=0,得x=-2,∴A(-2,0).由x+1=3,得x=4,∴B(4,3).∵y=ax2+bx-3经过A、B两点,∴∴,则抛物线的解析式为:y=x2-x-3,设直线AB与y轴交于点E,则E(0,1).∵PC∥y轴,∴∠ACP=∠AEO.∴sin∠ACP=sin∠AEO===.(2)①由(1)知,抛物线的解析式为y=x2-x-3.则点P(m,m2-m-3).已知直线AB:y=x+1,则点C(m,m+1).∴PC=m+1-(m2-m-3)=-m2+m+4=-(m-1)2+Rt△PCD中,PD=PC•sin∠ACP=[-(m-1)2+]•=-(m-1)2+∴PD长的最大值为:.②如图,分别过点D、B作DF⊥PC,BG⊥PC,垂足分别为F、G.∵sin∠ACP=,∴cos∠ACP=,又∵∠FDP=∠ACP∴cos∠FDP==,在Rt△PDF中,DF=PD=-(m2-2m-8).又∵BG=4-m,∴====.当==时,解得m=;当==时,解得m=.。
2012中考数学试卷及答案
2012年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一项符合题意,请用2B 铅笔在答题卡上规定的位置进行填涂。
)1.16-的相反数是A. 16B. 6C.-6D. 16-2.若|2|a -与2(3)b +互为相反数,则a b 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体 4.“一方有难。
八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元B. 120.43710⨯元C.104.3710⨯元D.943.710⨯元 5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值为A.2007B.2008C.2009D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数 8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A. 1201803x x =+B. 1201803x x =-C. 1201803x x =+D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
初中 数学 中考试题
2012年中考模拟题数 学 试 卷考试时间120分钟 试卷满分120分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共36分) 12的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间2.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +3.若m +n =3,则222426m mn n ++-的值为( ) A.12B.6C.3D.04.二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是()A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩5. 如图所示的几何体的主视图是()6.下列运算中,正确的是( )A.x+x=2xB. 2x -x=1C.(x 3 )3=x 6D. x 8÷x 2=x 47.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 ( ) A. B .5C.DA .B .C .D .8.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A .2DE=3MN ,B .3DE=2MN ,C . 3∠A=2∠FD .2∠A=3∠F9.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D10.如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为弧AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是()A .15B .20C .15+ D .15+11.一个口袋中装有除颜色外都相同的小球,其中有两个红球、三个白球和四个黑球,从中任意摸取两球,模到两红球的概率为( )A .321 B .361 C .641 D .72112.12.巳知一元二次方程20(0)ax bx c a ++=≠的两个实效根12x x 、满足12=4x x +和12=3x x ⋅,那么二次函救20(0)y ax bx c a =++=>的图象有可能是( )11图5二、填空题(共5小题,每题3分,满分15分.) 13. 分解因式:321a a a +--= 14. a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).15. 如图4所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°,则C ∠= 度.16.已知如图5, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)17. 如图6,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.三、解答题(满分69分.请将答案填入答题卡的相应位置) 18.(6分)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,ABCD1(图4)AF 图6请按要求完成下列各题:(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 。
2012年陕西省中考数学试题(含解析)
2012陕西省中考数学试题及解析 第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a 4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分)89 92 95 96 97 评委(位)1 2 2 1 1 A .92分 B .93分 C .94分 D .95分 5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC ED C S S :( ) A .1∶2 B .2∶3 C .1∶3 D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6)7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50°8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1) 9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:()2cos45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy . 13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B .用科学计算器计算:7sin 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料. 15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可). 16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 . 三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分)化简:22a bb a b a b a b a b --⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =;(2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,, cos 650.4226tan 65 2.1445︒≈︒≈,)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .(1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长.24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O C D、、三点的抛物线的表达式;若不存在,说明理由.25.(本题满分12分)如图,正三角形ABC的边长为3+3.(1)如图①,正方形EFPN的顶点E F、在边AB上,顶点N在边AC上.在正三角形E F P N,且使正方形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形''''E F P N的面积最大(不要求写作法);''''(2)求(1)中作出的正方形''''E F P N的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE EF、在边AB上,点P N、上,求这两个正方形面积和的最大值及最小值,并、分别在边CB CA说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数,小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比=∆∆ABC ED C S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A 【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =,可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A . 7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B .8、【答案】D 【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H .在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 O P H O P E ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】-52+1【解析】原式2=2-322+1=-52+12⨯⨯12、【答案】()2-xy x y 【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.47 14、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x≤ 解得133x ≤所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可)【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6k y x y x ⎧⎪⎨⎪⎩,,得22-6+=0x x k .因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解.所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆ .所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC . 方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'BD y ⊥轴于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=B C BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4B D ,由勾股定理,得'=41AB .所以='=41AB AB .17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a a b a b a b ---=2aa b-.18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠ ,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒,c o s 65B D C D x ==︒.∴100cos 65sin 65x x +︒=︒.∴100207sin 65cos 65x =≈︒-︒(米).∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种. ∴P (点数和为2)= 136. (2)由右表可以看出,点数和大于7的结果有15种.骰子2 骰子1 1 2 3 4 5 6 1 2 3 4 5 672 3 4 5 6 7 8 3 4 5 6 7 89 4 5 6 7 8 910 5 6 7 8 9 10 11 6 7 8 9 10 11 12∴P (小轩胜小峰)=1536=512. 23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形 ∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b . (3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅.∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则12-23=03-3=-3.m n m n⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''E F P N 即为所求. (2)设正方形''''E F P N 的边长为x . ∵△ABC 为正三角形, ∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对, 2.20x ≈也正确)(3)如图②,连接NE EP PN ,,,则=90NEP ∠︒. 设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥,它们的面积和为S ,则=2NE m ,=2PE n . ∴()2222222=+=2+2=2+PN NE PE m n m n .∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小.ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,=33-3m 最大. ∴()=3-=3-33-3=6-33n m 最小最大.∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年6月初中数学试卷一.填空题(共6小题)1.某种数字游戏规律如下表所示:按此规律,则表格中最右一栏中的x的值等于_________.2.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖_________块.3.(2007•日照)把正整数:1,2,3,4,5,…,按如下规律排列:按此规律,可知第n行有_________个正整数.4.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_________枚.5.按如下规律摆放三角形:则第(7)堆三角形的个数为_________.6.按如下规律摆放三角形,则第(5)堆三角形的个数为_________.二.解答题(共24小题)7.(2011•黔东南州)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线与BC相交于点D,抛物线y=ax2+bx经过A、D两点.(1)求抛物线的解析式;(2)连接AD,试判断△OAD的形状,并说明理由.(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图所示,在直角三角形ABC中,已知AB=3cm,AC=4cm,BC=5cm.现将三角形ABC沿着垂直于BC的方向平移6cm,到三角形DEF的位置,求三角形ABC所扫过的面积.9.先化简,再求值:,其中x=﹣1.10.先化简再求值:选一个使原代数式有意义的数代入中求值.11.(2011•重庆)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.12.(2011•玉溪)如图,点B、C、D、E在同一条直线上,已知AB=FC,AD=FE,BC=DE,探索AB与FC的位置关系?并说明理由.13.(2011•襄阳)如图,点D,E在△ABC的边BC上,连接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③:①③⇒②;②③⇒①(1)以上三个命题是真命题的为_________(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).14.(2011•湛江)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).(1)作出△ABC向右平移5个单位的△A1B1C1;(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标.15.(2011•鞍山)如图:方格纸中的每个小方格都是边长为1个单位的小正方形,四边形ABCD和四边形A1B1C1D1的顶点均在格点上,以点O为坐标原点建立平面直角坐标系.(1)画出四边形ABCD沿y轴正方向平移4格得到的四边形A2B2C2D2,并求出点D2的坐标.(2)画出四边形A1B1C1D1绕点O逆时针方向旋转90°后得到的四边形A3B3C3D3,并求出A2、B3之间的距离.16.(2011•郴州)作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.17.(2011•张家界)将16个相同的小正方形拼成正方形网格,并将其中的两个小正方形涂成黑色,请你用两种不同的方法分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形.18.(2011•昭通)如图所示,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的图形△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的图形△A2B2C2,并求出C所走过的路径的长.19.(2011•孝感)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是_________对称图形,都不是_________对称图形.(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.20.(2011•张家界)如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.21.(2011•漳州)某校“我爱学数学”课题学习小组的活动主题是“测量学校旗杆的高度”.以下是该课题小组研究报请你根据表格中记录的信息,计算旗杆AG的高度.(取1.7,结果保留两个有效数字)22.(2011•永州)如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线;(2)若OA=10,BC=16,求BE的长.23.(2011•漳州)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.24.(2006•肇庆)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.25.如图,一轮船自西向东航行,在A处测得某岛C的北偏东60°的方向上,船前进8海里后到达B处,再测得C 岛在北偏东30°方向上,问船再前进多少海里与C岛最近?最近距离是多少?若C岛的周围7海里以内有暗礁,轮船继续向东航行是否会有触礁的可能?(≈1.732)26.(2007•天水)如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船速度的2倍,军舰在由B到C航行的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里,≈2.45)27.某校食堂中午有甲乙两种盒饭,其中甲种盒饭成本价3元,售价5元;乙种盒饭成本价2.5元,售价4元.某班生活委员为全班50名同学在运动会当天中午订购了盒饭,而且两种都订购,班长让生活委员花费的金额为不少于210元且不大于212元.(1)该班生活委员有几种订购方案?(2)在(1)中的方案中,哪种方案食堂获得的利润最大,最大利润是多少?(3)如果全校的10个班级都按(2)中方案订购盒饭,那么学校将食堂在这一天所获得的最大利润全部用于改善教学环境,购进一批40元一盆和35元一盆的两种花若干盆,学校有几种购花方案?28.(2011•资阳)已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA'的点P的坐标.29.某公司甲、乙两仓库内分别存有电泵80台和70台,现需要将库存的电泵调往A厂100台和B厂50台,已知从甲、乙两仓库运送电泵到A、B两厂的运费(元/台)如下表:(1)设从甲仓库运送到A厂的电泵为x台,求总运费y(元)与x(台)之间的函数关系式,并写出x的取值范围;(2)若总运费不超过1936元,则有几种不同的调运方案(只需写出几种方案即可),并说明此时哪一种方案运费最低及最低时的调运方案.30.(2011•自贡)如图,梯形ABCD中,AB∥CD,AC⊥BD于点0,∠CDB=∠CAB,DE⊥AB,CF⊥AB,E.F为垂足.设DC=m,AB=n.(1)求证:△ACB≌△BDA;(2)求四边形DEFC的周长.答案与评分标准一.填空题(共6小题)1.某种数字游戏规律如下表所示:按此规律,则表格中最右一栏中的x的值等于6022.考点:规律型:数字的变化类。
专题:图表型。
分析:根据题意,观察可得A、B两行数字变化规律及总共的数字个数,类比可得C行的变化规律,进而可得最后的一个数字.解答:解:观察可得:A行,第一个数为2,每一个比下一个小1,最后一个数为2009,共2008个数;B行,第一个数为1,每一个比下一个小1,最后一个数为2008,共2008个数;在C行,第一个数为1,每一个比下一个小3,其第n个数为3×n﹣2,则其最后一个数为2008×3﹣2=6022;故表格中最右一栏中的x的值等于6022.点评:处理此类问题,要仔细观察、认真分析,发现规律,最后要注意验证所找出的规律.2.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖42块.考点:规律型:图形的变化类。
分析:第一个图案有白色地面砖2+4块,第二个有2+4+4块,第三个有2+4+4+4块,利用这个规律即可求解.解答:解:∵第一个图案有白色地面砖2+4块,第二个有2+4+4块,第三个有2+4+4+4块,∴第10个图案中有白色地面砖有2+4×10=42块.故答案为:42.点评:此题主要考查了图形的变化规律,学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.3.(2007•日照)把正整数:1,2,3,4,5,…,按如下规律排列:按此规律,可知第n行有2n﹣1个正整数.考点:规律型:数字的变化类。
专题:规律型。
分析:第2行有2个数,第3行有4=22个数,第4行有8=23个数.所以第n行有2n﹣1个正整数.解答:解:根据以上分析第n行有2n﹣1个正整数.故答案为2.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.4.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子65枚.考点:规律型:图形的变化类。