【精品】2018届高三数学 第57练 高考大题突破练—立体几何

合集下载

2018版高考数学浙江专用专题复习 专题9 平面解析几何

2018版高考数学浙江专用专题复习 专题9 平面解析几何

一、选择题1.过点P (2,3)向圆x 2+y 2=1作两条切线P A ,PB ,则弦AB 所在直线的方程为( ) A .2x -3y -1=0 B .2x +3y -1=0 C .3x +2y -1=0D .3x -2y -1=02.已知圆x 2+y 2-2x +my -4=0上两点M ,N 关于直线2x +y =0对称,则圆的半径为( ) A .9B .3C .2 3D .23.(2016·丽水一模)已知圆x 2+y 2=4,过点P (0,3)的直线l 交该圆于A ,B 两点,O 为坐标原点,则△OAB 的面积的最大值是( ) A. 3B .2C .2 3D .44.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7B .6C .5D .45.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2(r >0)内的一点,直线m 是以P 为中点的弦所在直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离6.(2016·嘉兴期末)已知圆心在原点,半径为R 的圆与△ABC 的边有公共点,其中A (4,0),B (6,8),C (2,4),则R 的取值范围是( ) A .[855,10]B .[4,10]C .[25,10]D .[655,10]7.(2016·西安西工大附中第一次适应性训练)直线(a +1)x +(a -1)y +2a =0(a ∈R )与圆x 2+y 2-2x +2y -7=0的位置关系是( ) A .相切B .相交C .相离D .不确定8.若圆x 2+y 2-4x -4y -10=0上至少有三个不同的点到直线l :ax +by =0的距离为22,则直线l 的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π12,π4B.⎣⎡⎦⎤π12,5π12C.⎣⎡⎦⎤π6,π3D.⎣⎡⎦⎤0,π2 二、填空题9.已知圆C 的方程为x 2+y 2-2y -3=0,过点P (-1,2)的直线l 与圆C 交于A ,B 两点,若使|AB |最小,则直线l 的方程是________.10.(2016·杭州学军中学模拟)已知动直线l :mx -y =1,若直线l 与直线x +m (m -1)y =2垂直,则m 的值为________,动直线l :mx -y =1被圆C :x 2-2x +y 2-8=0截得的最短弦长为________. 二、解答题11.如图所示,在平面直角坐标系xOy 中,平行于x 轴且过点A (33,2)的入射光线l 1被直线l :y =33x 反射,反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1,l 2都相切.(1)求l 2所在直线的方程和圆C 的方程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.答案解析1.B [以PO 为直径的圆(x -1)2+⎝⎛⎭⎫y -322=134与圆x 2+y 2=1的公共弦即为所求,直线方程为2x +3y -1=0.]2.B [由题意知,圆心⎝⎛⎭⎫1,-m2在直线2x +y =0上, ∴2-12m =0,解得m =4,∴圆的方程为(x -1)2+(y +2)2=9,圆的半径为3.]3.B [当直线l 的斜率不存在时,不符合题意,当直线l 的斜率存在时,|AB |=2r 2-d 2=24-d 2,所以S △OAB =12|AB |·d =4-d 2·d =(4-d 2)d 2≤4-d 2+d 22=2,当且仅当4-d 2=d 2,即d =2时等号成立,所以△OAB 面积的最大值是2.]4.B [由题意知以AB 为直径的圆与圆C 有公共点,且|OC |=5,于是m -1≤5≤1+m ,即4≤m ≤6.]5.C [∵P (a ,b )是x 2+y 2=r 2(r >0)内一点, ∴a 2+b 2<r .又∵m 是以P 为中点的弦所在直线. ∴m 的方程为y -b =-1b a(x -a ),即ax +by =a 2+b 2<r 2,而l 的方程为ax +by =r 2. ∴m ∥l .又圆心O (0,0)到直线l 的距离 d =|0+0-r 2|a 2+b 2=r 2a 2+b 2>r 2r =r .∴l 与圆相离.]6.A [由图象(图略)可得当圆与AC 边相切时,R 取得最小值,直线AC 的方程为2x +y -8=0,则由点到直线的距离公式可得R min =855.当圆经过点B 时,R 取得最大值,则R max =10,所以R 的取值范围是[855,10],故选A.]7.B [圆x 2+y 2-2x +2y -7=0, 即(x -1)2+(y +1)2=9,表示以O (1,-1)为圆心、3为半径的圆. 圆心到直线的距离d =|(a +1)-(a -1)+2a |(a +1)2+(a -1)2=|2a +2|2a 2+2.9-d 2=9-4a 2+8a +42a 2+2=7a 2-4a +7a 2+1,而方程7a 2-4a +7=0的判别式 Δ=16-196=-180<0,故有9>d 2,即d <3,故直线和圆相交.] 8.B [由x 2+y 2-4x -4y -10=0,得 (x -2)2+(y -2)2=18, ∴r =3 2.如图,若圆O ′上至少有三个不同的点到直线l 的距离为22,则需要直线l 在如图中的l 1和l 2之间(包括l 1和l 2),l 1和l 2为临界位置,此时圆心O ′(2,2)到直线l :ax +by =0的距离为d =2,从而易求l 1的倾斜角为π12,l 2的倾斜角为5π12,所以直线l 的倾斜角的取值范围为⎣⎡⎦⎤π12,5π12.]9.x -y +3=0解析 易知点P 在圆的内部,根据圆的性质,若使|AB |最小,则AB ⊥CP ,因为圆心C (0,1),所以k CP =2-1-1-0=-1,k l =1,因此直线l 的方程为y -2=x +1,即x -y +3=0. 10.0或2 27解析 若两直线垂直,则有m -m (m -1)=0, 解得m =0或m =2;把圆C 的方程化为标准方程为(x -1)2+y 2=9,所以圆心坐标为C (1,0),半径为3. 因为动直线l 过定点P (0,-1),所以最短弦长为过定点P 且与PC 垂直的弦,此时弦长L=2r2-|PC|2=232-(12+12)2=27. 11.解(1)易知直线l1:y=2,设l1交l于点D,则D(23,2),因为直线l的斜率为3 3,所以l的倾斜角为30°,所以l2的倾斜角为60°,所以k2=3,所以反射光线l2所在的直线方程为y-2=3(x-23),即3x-y-4=0.由题意,知圆C与l1切于点A,设圆心C的坐标为(a,b),因为圆心C在过点D且与l垂直的直线上,所以b=-3a+8,①又圆心C在过点A且与l1垂直的直线上,所以a=33,②由①②得a=33,b=-1,故圆C的半径r=3,故所求圆C的方程为(x-33)2+(y+1)2=9.综上,l2所在直线的方程为3x-y-4=0,圆C的方程为(x-33)2+(y+1)2=9.(2)设点B(0,-4)关于l对称的点为B′(x0,y0),即y0-42=33·x02,且y0+4x0=-3,解得x0=-23,y0=2,故B′(-23,2).由题意易知,当B′,P,Q三点共线时,|PB|+|PQ|最小,故|PB|+|PQ|的最小值为|B′C|-3=(-23-33)2+(2+1)2-3=221-3,由⎩⎪⎨⎪⎧y +12+1=x -33-23-33,y =33x ,得P (32,12), 故|PB |+|PQ |的最小值为221-3, 此时点P 的坐标为(32,12).。

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

【高三数学试题精选】2018届高三数学立体几何测试题(有答案)

2018届高三数学立体几何测试题(有答案)
5 c 2018届高三数学末综合测试题(14)立体几何
一、选择题本大题共12小题,每小题5分,共60分.
1 .建立坐标系用斜二测画法画正△ABc的直观图,其中直观图不是全等三角形的一组是( )
解析由直观图的画法知选项c中两三角形的直观图其长度已不相等
答案c
2.已知几何体的三视图(如下图),若图中圆的半径为1,等腰三角形的腰为3,则该几何体的表面积为( )
A.4π B. 3π c.5π D.6π
解析由三视图知,该几何体为一个圆锥与一个半球的组合体,而圆锥的侧面积为π×1×3=3π,半球的表面积为2π×12=2π,∴该几何体的表面积为3π+2π=5π
答案c
3.已知a,b,c,d是空间中的四条直线,若a⊥c,b⊥c,a⊥d,b⊥d,那么( )
A.a∥b,且c∥d
B.a,b,c,d中任意两条都有可能平行
c.a∥b或c∥d
D.a,b,c,d中至多有两条平行
解析如图,作一长方体,从长方体中观察知c选项正确
答案c
4.设α、β、γ为平面,、n、l为直线,则⊥β的一个充分条是( )
A.α⊥β,α∩β=l,⊥l B.α∩γ=,α⊥γ,β⊥γ
c.α⊥γ,β⊥γ,⊥α D.n⊥α,n⊥β,⊥α。

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版1.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2.(2018年天津卷)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=BAD=90°.(((求证:AD(BC((((求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.3.(2018年北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD,平面ABCD,P A,PD,P A=PD,E,F分别为AD,PB的中点.,,)求证:PE,BC,,,)求证:平面P AB,平面PCD,,,)求证:EF,平面PCD.4.(2018年新课标1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA,(1)证明:平面ACD⊥平面ABC,DA,求三棱锥Q−ABP的(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23体积.5.(2018年新课标3卷)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点,(1)证明:平面AMD⊥平面BMC,(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由,6.(2018年新课标2卷)如图,在三棱锥P−ABC中,AB=BC=2√2,PA=PB=PC= AC=4,O为AC的中点.(1)证明:PO⊥平面ABC,(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.参考答案1.(Ⅰ)见解析;(Ⅱ)√3913.【来源】2018年全国普通高等学校招生统一考试数学(浙江卷)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得AB 1⊥A 1B 1,AB 1⊥B 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ,找出直线AC 1与平面ABB 1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出AB 1⊥A 1B 1,AB 1⊥A 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面ABB 1的一个法向量,然后利用AC 1⃑⃑⃑⃑⃑⃑⃑ 与平面ABB 1法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解. 详解:方法一:(Ⅰ)由AB =2,AA 1=4,BB 1=2,AA 1⊥AB,BB 1⊥AB 得AB 1=A 1B 1=2√2,所以A 1B 12+AB 12=AA 12.故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1, BB 1⊥BC,CC 1⊥BC 得B 1C 1=√5, 由AB =BC =2,∠ABC =120°得AC =2√3,由CC 1⊥AC ,得AC 1=√13,所以AB 12+B 1C 12=AC 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.,Ⅱ)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连结AD .由AB 1⊥平面A 1B 1C 1得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角.学科.网由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得cos∠C 1A 1B 1=√6√7sin∠C 1A 1B 1=√7,所以C 1D =√3,故sin∠C 1AD =C 1D AC 1=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913. 方法二:,Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A(0,−√3,0),B(1,0,0),A 1(0,−√3,4),B 1(1,0,2),C 1(0,√3,1),因此AB 1⃑⃑⃑⃑⃑⃑⃑ =(1,√3,2),A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(1,√3,−2),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,−3), 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1B 1. 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(Ⅱ)设直线AC 1与平面ABB 1所成的角为θ.由(Ⅰ)可知AC 1⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,1),AB ⃑⃑⃑⃑⃑ =(1,√3,0),BB 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2), 设平面ABB 1的法向量n =(x,y,z).由{n ⋅AB ⃑⃑⃑⃑⃑ =0,n ⋅BB 1⃑⃑⃑⃑⃑⃑⃑ =0,即{x +√3y =0,2z =0, 可取n =(−√3,1,0). 所以sinθ=|cos⟨AC 1⃑⃑⃑⃑⃑⃑⃑ ,n⟩|=|AC 1⃑⃑⃑⃑⃑⃑⃑⃑⋅n||AC 1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|n|=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.(Ⅰ)证明见解析;(Ⅱ)26;(Ⅲ)4. 【来源】2018年全国普通高等学校招生统一考试文科数学(天津卷) 【解析】分析:(Ⅰ(由面面垂直的性质定理可得AD ⊥平面ABC (则AD ⊥BC ((Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD所成的角.计算可得1226MNcos DMN DM ∠==.则异面直线BC 与MD 所成角(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得4CM sin CDM CD ∠==.即直线CD 与平面ABD所成角的正弦值为4. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==所以,异面直线BC 与MD所成角的余弦值为26. (Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中, sin CM CDM CD ∠==所以,直线CD 与平面ABD 所成角的正弦值为4. 点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力. 3.,Ⅰ,见解析 ,Ⅱ,见解析 ,Ⅲ,见解析【来源】2018年全国普通高等学校招生统一考试文科数学(北京卷)【解析】分析:(1)欲证PE ⊥BC ,只需证明PE ⊥AD 即可;(2)先证PD ⊥平面PAB ,再证平面P AB ,平面PCD ;(3)取PC 中点G ,连接FG,DG ,证明EF//DG ,则EF//平面PCD . 详解:(Ⅰ),PA =PD ,且E 为AD 的中点,∴PE ⊥AD . ∵底面ABCD 为矩形,∴BC ∥AD , ,PE ⊥BC .(Ⅱ)∵底面ABCD 为矩形,∴AB ⊥AD . ,平面PAD ⊥平面ABCD ,,AB ⊥平面PAD . ,AB ⊥PD .又PA ⊥PD ,,PD ⊥平面PAB ,,平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接FG,GD .BC.,F,G分别为PB和PC的中点,∴FG∥BC,且FG=12∵四边形ABCD为矩形,且E为AD的中点,BC,,ED∥BC,DE=12,ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,,EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,,EF∥平面PCD.点睛,证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1,线面平行的性质定理,,2,三角形中位线法,,3,平行四边形法. 证明线线垂直的常用方法,,1)等腰三角形三线合一;(2,勾股定理逆定理;(3,线面垂直的性质定理;,4,菱形对角线互相垂直.4.(1)见解析.(2)1.【来源】2018年全国普通高等学校招生统一考试文科数学(新课标I卷)【解析】分析:(1)首先根据题的条件,可以得到∠BAC=90,即BA⊥AC,再结合已知条件BA,AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB⊂平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC,(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,∠BAC=90°,BA⊥AC,又BA,AD,且AC∩AD=A,所以AB⊥平面ACD,又AB⊂平面ABC,所以平面ACD⊥平面ABC,,2)由已知可得,DC=CM=AB=3,DA=3√2,又BP=DQ=23DA,所以BP=2√2,作QE,AC,垂足为E,则QE=∥13DC,由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1,因此,三棱锥Q−ABP的体积为V Q−ABP=13×QE×S△ABP=13×1×12×3×2√2sin45°=1,点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 5.(1)证明见解析(2)存在,理由见解析【来源】2018年全国卷Ⅲ文数高考试题文档版【解析】分析:(1)先证AD⊥CM,再证CM⊥MD,进而完成证明。

2018年高考数学立体几何试题汇编

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217B .25C .3D .218.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.全国1卷理科理科第7小题同文科第9小题18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.全国2卷理科:9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .1B .5 C .5 D .2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.全国3卷理科3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.2018年江苏理科:10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.2018年北京:(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3 (D )4(16)(本小题14分)如图,在三棱柱ABC -111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.2018年浙江:3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.2 B.4 C.6 D.819.(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2018年上海17.已知圆锥的顶点为P ,底面圆心为O ,半轻为2 1.设圆锥的母线长为4,求圆锥的体积2.设4,,PO OA OB =是底面半径,且90o AOB ∠=,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小。

2018版高考数学(江苏专用理科)专题复习:专题9 平面解析几何 第57练 Word版含解析

2018版高考数学(江苏专用理科)专题复习:专题9 平面解析几何 第57练 Word版含解析

1221则直线l2的方程为________________.2.过点P(1,2)作直线l,若点A(2,3),B(4,-5)到它的距离相等,则直线l的方程是________________.3.(2016·如东高级中学期中)已知直线l过直线x-y+2=0和2x+y+1=0的交点,且与直线x-3y+2=0垂直,则直线l的方程为______________.4.过点(1,2)的直线l与x轴的正半轴、y轴的正半轴分别交于A,B两点,O为坐标原点,当△AOB的面积最小时,直线l的方程是________________.5.光线沿直线y=2x+1的方向射到直线y=x上被反射后光线所在的直线方程是________________.6.(2016·无锡模拟)在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位,沿y轴正方向平移5个单位,得到直线l1,再将直线l1沿x轴正方向平移1个单位,沿y轴负方向平移2个单位,又与直线l重合,则直线l与直线l1的距离是________.7.已知点P(a,b),Q(b,a)(a,b∈R)关于直线l对称,则直线l的方程为________________.8.(2016·常州模拟)在△ABC中,点A(3,2),B(-1,5),点C在直线3x-y+3=0上,若△ABC的面积为10,则点C的坐标为____________.9.直线ax+by-1=0(ab≠0)与两坐标轴围成的三角形的面积为____________.10.(2016·福州模拟)若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴,y 轴上的截距之和的最小值为________.11.(2016·苏州模拟)已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,1),则过两点P1(a1,b1),P2(a2,b2)的直线方程是______________________.12.在直线方程y=kx+b中,当x∈-3,4]时,恰好y∈-8,13],则此直线方程为__________________.13.设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最远时,直线l的方程为__________________.14.设直线l的方程为(a+1)x+y-2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,则直线l的方程为__________________________.(2)若a>-1,直线l与x、y轴分别交于M、N两点,O为坐标原点,则△OMN的面积取最小值时,直线l对应的方程为________________.答案精析1.3x +4y -3=02.4x +y -6=0或3x +2y -7=03.3x +y +2=0 4.2x +y -4=05.y =x 2-12解析 在直线y =2x +1上取点(0,1),(1,3),关于直线y =x 的对称点(1,0),(3,1),过这两点的直线为y -01-0=x -13-1,即y =x 2-12. 6.115解析 设直线l :ax +by +c =0,依题意可得l 1:a (x -3)+b (y -5)+c =0,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位得直线l :a (x -4)+b (y -3)+c =0,故a =-34b ,则直线l 与直线l 1的距离d =|-3a -5b +c +4a +3b -c |a 2+b 2=|a -2b |a 2+b 2=|-34b -2b |(-34b )2+b 2=115. 7.x -y =0 解析 由题意知,k PQ =-1,故直线l 的斜率k =1,又直线l 过线段PQ 的中点M (a +b 2,a +b2),故直线l 的方程为y -a +b 2=x -a +b 2,即x -y =0.8.(-1,0)或(53,8)解析 设点C 到直线AB 的距离为h ,由题意知AB =(-1-3)2+(5-2)2=5,∴S △ABC =12AB ·h =52h =10,∴h =4,即点C 到直线AB 的距离为4.易求得直线AB 的方程为3x +4y -17=0.设点C 的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ 3x 0-y 0+3=0,|3x 0+4y 0-17|5=4,解得⎩⎨⎧ x 0=-1,y 0=0或⎩⎪⎨⎪⎧x 0=53,y 0=8,即点C 的坐标为(-1,0)或(53,8).9.12|ab |解析 令x =0,得y =1b ,令y =0,得x =1a ,S =12|1a ||1b |=12|ab |.10.4解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.11.2x +y +1=0解析 ∵点A (2,1)在直线a 1x +b 1y +1=0上,∴2a 1+b 1+1=0.由此可知,点P 1(a 1,b 1)的坐标满足2x +y +1=0.∵点A (2,1)在直线a 2x +b 2y +1=0上,∴2a 2+b 2+1=0.由此可知,点P 2(a 2,b 2)的坐标也满足2x +y +1=0.∴过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程是2x +y +1=0. 12.3x -y +1=0或3x +y -4=0解析 方程y =kx +b ,即一次函数y =kx +b ,由一次函数单调性可知:当k >0时,函数为增函数,∴⎩⎨⎧ -3k +b =-8,4k +b =13,解得⎩⎨⎧ k =3,b =1.当k <0时,函数为减函数,∴⎩⎨⎧ 4k +b =-8,-3k +b =13,解得⎩⎨⎧ k =-3,b =4.∴此直线方程为3x -y +1=0或3x +y -4=0.13.3x -2y +5=014.(1)x -y =0或x +y -2=0(2)x +y -2=0解析 (1)当直线l 经过坐标原点时,由该直线在两坐标轴上的截距相等可得a +2=0,解得a =-2. 此时直线l 的方程为-x +y =0,即x -y =0;当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由直线在两坐标轴上的截距相等可得2+aa +1=2+a ,解得a =0,此时直线l 的方程为x +y -2=0.所以直线l 的方程为x -y =0或x +y -2=0.(2)由直线方程可得M (2+aa +1,0),N (0,2+a ),因为a >-1,所以S △OMN =12×2+aa +1×(2+a )=12×[(a +1)+1]2a +1=12(a+1)+1a+1+2]≥122(a+1)·1a+1+2]=2.当且仅当a+1=1a+1,即a=0时等号成立.此时直线l的方程为x+y-2=0.。

2018届高考数学(理)热点题型:立体几何(含答案解析)

2018届高考数学(理)热点题型:立体几何(含答案解析)

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z), ∴⎩⎪⎨⎪⎧n·BC →=0,n·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF∥B 1C.(2)求二面角E­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB→,AD→,AA1→为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B 1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为⎝⎛⎭⎪⎫12,12,1.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E→=⎝⎛⎭⎪⎫12,12,0,A1D→=(0,1,-1),由n1⊥A1E→,n 1⊥A1D→得r1,s1,t1应满足的方程组⎩⎨⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1→=(1,0,0),A1D→=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E­A1D­B1的余弦值为|n1·n2||n1|·|n2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB =1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则 ⎩⎪⎨⎪⎧n·PD →=0,n·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n·PB →|n||PB→|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM∥平面PCD ,此时AM AP =14. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点. (1)求证:DE∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF⊥DB?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN⊥AB,垂足为点N.∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB∥CD,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF⊥BD, 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n·PC →=0,n·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n·m |n||m|=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817.热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 的位置,OD ′=10.(1)证明:D′H⊥平面ABCD ; (2)求二面角B -D′A-C 的正弦值.(1)证明 由已知得AC⊥BD,AD =CD. 又由AE =CF 得AE AD =CFCD,故AC∥EF. 因此EF⊥HD,从而EF⊥D′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D′H 2+OH 2=32+12=10=D′O 2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H , 所以D′H⊥平面ABCD.(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz. 则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD′的一个法向量, 则⎩⎪⎨⎪⎧m·AB →=0,m·AD′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD′的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m·n |m||n|=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D′A-C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE⊥AC.即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE⊥平面A 1OC.又CD∥BE,所以CD⊥平面A 1OC. (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

2018届高三数学(理)三轮复习高考大题专攻练 立体几何 含解析

2018届高三数学(理)三轮复习高考大题专攻练 立体几何 含解析

高考大题专攻练立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC.(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D -AE-C的余弦值.【解题导引】(1)若证明平面ACD⊥平面ABC可根据面面垂直的判定在平面ACD内找一条线垂直平面ABC,从而转化为线面垂直,再利用线线垂直确定线面垂直.(2)利用(1)中的垂直关系建立空间直角坐标系,求平面ADE和平面ACE的法向量,求法向量的余弦值得二面角的余弦值.【解析】(1)如图,取AC中点O,连接OD,OB.由∠ABD=∠CBD,AB=BC=BD知△ABD≌△CBD,所以CD=AD.由已知可得△ADC为等腰直角三角形,D为直角顶点,则OD⊥AC,设正△ABC边长为a,则OD=AC=a,OB=a,BD=a,所以OD2+OB2=BD2,即OD⊥OB.又OB∩AC=O,所以OD⊥平面ABC,又OD⊂平面ACD,所以平面ACD⊥平面ABC.(2)如图,以OA,OB,OD所在直线分别为x轴,y轴,z轴建立空间直角坐标系,当E为BD中点时,平面AEC把四面体ABCD分成体积相等的两部分,故可得A,D,C,E,则=,=.设平面ADE的一个法向量为n1=,则即令z1=1,则x1=1,y1=,所以n1=.同理可得平面AEC的一个法向量n2=,所以cos<n1,n2>===.因为二面角D -AE-C的平面角为锐角,所以二面角D -AE-C的余弦值为.2.如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=CD.(1)求证:BF∥平面CDE.(2)求平面BDF与平面CDE所成锐二面角的余弦值.【解析】(1)因为AF∥DE,AF⊄平面CDE,DE⊂平面CDE,所以AF∥平面CDE,同理,AB∥平面CDE,又AF∩AB=A,所以平面ABF∥平面CDE,又BF⊂平面ABF,所以BF∥平面CDE.(2)因为正方形ADEF与梯形ABCD所在平面互相垂直,正方形ADEF 与梯形ABCD交于AD,CD⊥AD,所以CD⊥平面ADEF,因为DE⊂平面ADEF,所以CD⊥ED,因为ADEF为正方形,所以AD⊥DE,因为AD⊥CD,所以以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,则设AD=1,则D(0,0,0),B(1,1,0),F(1,0,1),A(1,0,0),=(1,1,0),=(1,0,1),取平面CDE的一个法向量=(1,0,0),设平面BDF的一个法向量为n=(x,y,z),则即取n=(1,-1,-1),cos<,n>=,所以平面BDF与平面CDE所成锐二面角的余弦值为.高考大题专攻练立体几何(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB.(2)求直线CE与平面PBC所成角的正弦值.【解题导引】(1)取PA的中点F,连接EF,BF,证明四边形BCEF为平行四边形,证明CE∥BF,从而证明CE∥平面PAB.(2)取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ,证明MQ∥CE,MQ与平面PBC所成的角,就等于CE与平面PBC所成的角.过Q作QH⊥PB,连接MH,证明MH就是MQ在平面PBC 内的射影,这样只要证明平面PBN⊥平面PBC即可.【解析】(1)如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA中点,所以EF∥AD且EF=AD,又因为BC∥AD,BC=AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以直线CE与平面PBC所成角的正弦值是.2.如图几何体是圆柱体的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G为的中点.(1)设P是上一点,AP⊥BE,求∠CBP的大小.(2)当AD=2,AB=3,求二面角E-AG-C的大小.【解题导引】(1)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH,可得四边形BEHC 为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM ⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.方法二:以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z 轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==,取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.方法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.则∠EBP=90°,由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面AC G的一个法向量n=(3,-,-2).。

2018年高考题和高考模拟题数学(理)——专题05立体几何分类汇编(解析版)

2018年高考题和高考模拟题数学(理)——专题05立体几何分类汇编(解析版)

5.立体几何1.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.学/科-网+4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。

2018全国高考立体几何(完整答案)2

2018全国高考立体几何(完整答案)2

全国高考立体几何一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB 所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC 的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q 为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE 沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B ﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD ⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N 的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC 的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF ∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f(x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案一.解答题(共40小题)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。

2018年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学试题分类汇编之立体几何(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学试题分类汇编之立体几何(word版可编辑修改)的全部内容。

2018年高考数学试题分类汇编之立体几何一、选择题1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。

(A )1(B )2 (C )3(D )42.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1(B)2 (C)3(D )43.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为,,过直线的平面截该1O 2O 12O O 圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .C .D .12π10π5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为,圆柱表面上的点在左A N 视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短B M N 路径的长度为A .B .C .D .236.(全国卷一文)(10)在长方体中,,与平面所成的角1111ABCD A B C D -2AB BC ==1AC 11BB C C 为,则该长方体的体积为30︒A .B .C .D .87.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在M 正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,A N B 从到的路径中,最短路径的长度为M NA .B .C .3D .2172528.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D9.(全国卷二文)(9)在正方体中,为棱的中点,则异面直线与所1111ABCD A B C D -E 1CC AE CD 成角的正切值为A B .C D10.(全国卷二理)(9)在长方体中,,则异面直线与1111ABCD A B C D -1AB BC ==1AA =1AD 1DB 所成角的余弦值为A .BCD 1511.(全国卷三文)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是12.(全国卷三文)(12)设,,,是同一个半径为4的球的球面上四点,为等边A B C D ABC △三角形且其面积为,则三棱锥体积的最大值为D ABC -A .B .C .D .13.(全国卷三理)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是14.(全国卷三理)(10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为则三棱锥D ABC -体积的最大值为A .B .C .D .二、填空题1.(江苏)(10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .2.(天津文)(11)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.3.(天津理)(11) 已知正方体的棱长为1,除面外,该正方体其余各面1111ABCD A B C D -ABCD 的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥的体积为 .M EFGH -4.(全国卷二文)(16)已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为S SA SB SA 30︒,若的面积为,则该圆锥的体积为__________.SAB △85.(全国卷二理)(16)已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥S SA SB 78SA 底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.SAB △三、解答题1.(北京文)(18)(本小题14分)如图,在四棱锥P—ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证:EF ∥平面PCD 。

高三数学-2018年高考立体几何题 精品

高三数学-2018年高考立体几何题 精品

2018年高考立体几何题1. 在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.(2018年江苏省试题)2.三棱锥P-ABC 中,侧面PAC 与底面ABC 垂直,PA=PB=PC=3, (1) 求证:AB ⊥ BC ; (2) 设AB=BC=32,求AC 与平面PBC 所成角的大小. (2018文科试题)3.如图,已知四棱锥P -ABCD ,PB ⊥AD ,侧面PAD 为边长为2的正三角形,底面ABCD 为菱形,侧面PAD 与平面ABCD 所成的二面角为120o 。

(1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成的二面角的大小。

(2018年全国理科试题)4.在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=M 、N 分别为AB 、SB 的中点。

(1) 证明AC ⊥SB ;(2) 求二面角N -CM -B 的大小; (3) 求点B 到面CMN 的距离。

(2018年福建省理科试题)5.在三棱锥S -ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=M 、N 分别为AB 、SB 的中点。

(1)证明AC ⊥SB ;(2)求二面角S -CM -A 的大小; (3)求点B 到面SCM 的距离。

(2018年福建省文科试题)· B 1P ACD A 1C 1D 1BO H·CBSABCP6.如图,已知正方形ABCD 和矩形ACEF 所在平面互相垂直,AF=1,M 是线段EF 的中点。

(1) 求证:AM ∥平面BDE ; (2) 求证:AM ⊥平面BDF ; (3) 求二面角A -DF -B 的大小;(2018年浙江试题)7.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,点F 是棱CD 上的动点。

高三数学一轮复习立体几何知识点突破训练含答案解析

高三数学一轮复习立体几何知识点突破训练含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!第八章⎪⎪⎪立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.。

【高三数学试题精选】2018年全国高考理科数学立体几何试题汇编

【高三数学试题精选】2018年全国高考理科数学立体几何试题汇编

2018年全国高考理科数学立体几何试题汇编5A1B1c1D1中,AB=2,AD=1,A1A=1,证明直线Bc1平行于平面DA1c,并求直线Bc1到平面D1Ac的距离【答案】因为ABcD-A1B1c1D1为长方体,故 ,故ABc1D1为平行四边形,故 ,显然B不在平面D1Ac上,于是直线Bc1平行于平面DA1c;直线Bc1到平面D1Ac的距离即为点B到平面D1Ac的距离设为考虑三棱锥ABcD1的体积,以ABc为底面,可得而中, ,故所以, ,即直线Bc1到平面D1Ac的距离为5.(cE-c1的正弦值(Ⅲ) 设点在线段c1E上, 且直线A与平面ADD1A1所成角的正弦值为 , 求线段A的长【答案】8.(1,0,0),则 =(1,0, ), = =(-1,0, ), =(0,- , ),设 = 是平面的法向量,则 ,即 ,可取 =( ,1,-1),∴ = ,∴直线A1c 与平面BB1c1c所成角的正弦值为9.(A1B1c1中,AA1c1c是边长为4的正方形, 平面ABc⊥平面AA1c1c,AB=3,Bc=5(Ⅰ)求证AA1⊥平面ABc;(Ⅱ)求二面角A1-Bc1-B1的余弦值;(Ⅲ)证明在线段Bc1存在点D,使得AD⊥A1B,并求的值【答案】解(I)因为AA1c1c为正方形,所以AA1 ⊥Ac因为平面ABc⊥平面AA1c1c,且AA1垂直于这两个平面的交线Ac,所以AA1⊥平面ABc(II)由(I)知AA1 ⊥Ac,AA1 ⊥AB 由题知AB=3,Bc=5,Ac=4,所以AB⊥Ac 如图,以A为原点建立空间直角坐标系A- ,则B(0,3,0),A1(0,0,4),B1(0,3,4),c1(4,0,4),设平面A1Bc1的法向量为 ,则 ,即 ,令 ,则 , ,所以同理可得,平面BB1c1的法向量为 ,所以由题知二面角A1-Bc1-B1为锐角,所以二面角A1-Bc1-B1的余弦值为(III)设D 是直线Bc1上一点,且所以解得 , ,所以由 ,即解得因为 ,所以在线段Bc1上存在点D,使得AD⊥A1B5。

高三数学-2018年高考数学立体几何整理 精品

高三数学-2018年高考数学立体几何整理 精品

2018年高考立体几何整理一、选择题1、已知m,n 是两条不同直线,α,β,Υ是三个不同平面.下列命题中正确的是 (A )若α⊥Υ,β∥Υ,则α∥β (B)若m ⊥α,n ⊥α,则m ∥n (C )若m ∥α,n ∥α,则m ∥n (D )若m ∥α,m ∥β,则a ∥β2、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.5C.5D.53、用与球心距离为1的平面去截面面积为π,则球的体积为A.323π B.83π C. D. 34、已知直线m 、n 和平面α、β满足m ⊥n ,α⊥β,m α⊥则A. n ⊥βB. n ∥β或n βC. n ⊥αD. n ∥α或n α5、长方体ABCD -A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则顶点A 、B 间的球面距离是 A.42π B.22πC.π2D.π226、设直线m 与平面α相交但不.垂直,则下列说法中正确的是 A. 在平面α内有且只有一条直线与直线m 垂直 B. 过直线m 有且只有一个平面与平面α垂直 C. 与直线m 垂直的直线不可能...与平面α平行 D. 与直线m 平行的平面不.可能与平面α垂直 7、已知三棱柱ABC -111C B A 的侧棱与底面边长都相等,1A 在底面ABC 内的射影为△ABC 的中心,则A 1B 与底面ABC 所成角的正弦值等于(A)31(B)32 (C) 33(D) 328、正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为A. 3B. 6C. 9D.189、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A.1B. 2C. 3D. 210、设M 是球O 的半径OP 的中点,分别过M 、O 作垂直于OP 的平面,截球面得到两个圆,则这两个圆的面积比值为(A )14(B )12(C )23(D )3411、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角的直线有且只有(A )1条 (B )2条 (C )3条 (D )4条12、若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积为(A (B )(C )(D )13、设a b ,是两条直线,α,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,14、对两条不相交的空间直线a 和b ,必定存在平面α,使得A BCD A BCDEF(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥ 15、设有直线m 、n 和平面α、β。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018届高三数学 第57练 高考大题突破练—立体几何

2018届高三数学 第57练 高考大题突破练—立体几何

第练高考大题突破练——立体几何
.一个几何体的三视图如图所示,其中正视图与侧视图是腰长为的等腰直角三角形,俯视图
是正方形.
()请画出该几何体的直观图,并求出它的体积;
()用多少个这样的几何体可以拼成一个棱长为的正方体—?如何组拼?试证明你的结论;
()在()的情形下,设正方体—的棱的中点为, 求平面与平面所成二面角的余弦值.
.如图所示,四棱锥-中,⊥,⊥,⊥底面,==
==,为的中点,点在上且=.
()证明:∥平面;
()求直线与平面所成的角..在直三棱柱-中,=,=,=,∠=°,,分别是,的中点.
()证明:平面⊥平面;
()证明:∥平面;
()设是的中点,求三棱锥-的体积..(·浙江)如图,在三棱台中,平面⊥平面,∠=°,===,=,=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第57练高考大题突破练——立体几何
1.一个几何体的三视图如图所示,其中正视图与侧视图是腰长为6的等腰直角三角形,俯视图是正方形.
(1)请画出该几何体的直观图,并求出它的体积;
(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1?如何组拼?试证明你的结论;
(3)在(2)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC 所成二面角的余弦值.
2.如图所示,四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面ABCD ,PA =AD =DC =12AB =1,M 为PC 的中点,N 点在AB 上且AN =1
3
NB .
(1)证明:MN ∥平面PAD ;
(2)求直线MN 与平面PCB 所成的角.
3.在直三棱柱ABC -A 1B 1C 1中,AC =4,CB =2,AA 1=2,∠ACB =60°,E ,F 分别是A 1C 1,
BC 的中点.
(1)证明:平面AEB ⊥平面BB 1C 1C ; (2)证明:C 1F ∥平面ABE ;
(3)设P 是BE 的中点,求三棱锥P -B 1C 1F 的体积.
4.(2016·浙江)如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求二面角BADF的平面角的余弦值.
答案精析
1.解 (1)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的正方形,高PD =6,故所求体积是V =13
×62
×6=72.
(2)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,即由四棱锥D 1-ABCD ,D 1-BB 1C 1C ,D 1-BB 1A 1A 组成.其拼法如图2所示.
(3)因为△AB 1E 的边长AB 1=62,B 1E =35,AE =9,所以S △AB 1E =27,而S △ABC =18,所以平面AB 1E 与平面ABC 所成二面角的余弦值为1827=2
3
.
2.证明 方法一 (1)过点M 作ME ∥CD 交PD 于E 点,连接AE , ∵AN =13NB ,∴AN =14AB =1
2DC =EM ,
又EM ∥DC ∥AB ,∴EM ∥AN , ∴四边形AEMN 为平行四边形, ∴MN ∥AE ,
又∵AE ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .
(2)过N 点作NQ ∥AP 交BP 于点Q ,
NF ⊥CB 于点F ,连接QF ,过N 点作NH ⊥QF 于点H ,
连接MH ,易知QN ⊥平面ABCD ,
∴QN ⊥BC ,又NF ⊥BC ,NF ∩QN =N ,NF ⊂平面QNF ,QN ⊂平面QNF , ∴BC ⊥平面QNF ,∴BC ⊥NH , ∵NH ⊥QF ,BC ∩QF =F ,
BC ⊂平面PBC ,QF ⊂平面PBC ,
∴NH ⊥平面PBC ,
∴∠NMH 为直线MN 与平面PCB 所成角,
通过计算可得MN =AE =22,QN =34,NF =3
4
2, ∴NH =
QN ·NF QF =QN ·NF QN 2+NF 2=6
4
, ∴sin ∠NMH =NH
MN

3
2
,∴∠NMH =60°, ∴直线MN 与平面PCB 所成角为60°.
方法二 (1)以A 为原点,以AD ,AB ,
AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系Axyz ,如图所示,
过点作ME ∥CD ,ME 交PD 于点E ,连接AE ,
由已知可得A (0,0,0),B (0,2,0),D (1,0,0),C (1,1,0),P (0,0,1),
M (12,12,12),E (12,0,12),N (0,12
,0).
∵NM →=(12,0,12),AE →=(1
2,0,12),
∴MN ∥AE ,∵MN ⊄平面PAD ,AE ⊂平面PAD , ∴MN ∥平面PAD .
(2)不妨设a =(1,y ,z ),且a ⊥平面PCB , 则a ⊥BC →,a ⊥BP →

而BC →=(1,-1,0),BP →
=(0,-2,1),
∴⎩
⎪⎨
⎪⎧
1-y =0,-2y +z =0⇒⎩
⎪⎨
⎪⎧
y =1,z =2,
∴a =(1,1,2).
∴cos 〈a ,NM →
〉=a ·NM →
|a ||NM →|=1
2+0+16·
22=32.
即向量a 与NM →
的夹角为30°,
∴直线MN 与平面PCB 所成的角为60°. 3.(1)证明 在△ABC 中, ∵AC =2BC =4,∠ACB =60°, ∴AB =23,∴AB 2
+BC 2
=AC 2
, ∴AB ⊥BC ,
由已知得AB ⊥BB 1,且BC ∩BB 1=B , 又∵BC ⊂平面BB 1C 1C ,
BB 1⊂平面BB 1C 1C ,
∴AB ⊥平面BB 1C 1C , 又AB ⊂平面ABE , ∴平面ABE ⊥平面BB 1C 1C .
(2)证明 取AC 的中点M ,连接C 1M ,FM , 在△ABC 中,FM ∥AB , 而FM ⊄平面ABE ,
AB ⊂平面ABE ,
∴直线FM ∥平面ABE ,
在矩形ACC 1A 1中,E ,M 分别是A 1C 1,AC 的中点,∴C 1M ∥AE , 而C 1M ⊄平面ABE ,AE ⊂平面ABE , ∴C 1M ∥平面ABE ,
∵C 1M ∩FM =M ,C 1M ⊂平面FMC 1,FM ⊂平面FMC 1, ∴平面ABE ∥平面FMC 1, 又C 1F ⊂平面FMC 1, 故C 1F ∥平面ABE .
(3)解 取B 1C 1的中点H ,连接EH , 则EH ∥AB ,且EH =1
2AB =3,
又AB ⊥平面BB 1C 1C , ∴EH ⊥平面BB 1C 1C , ∵P 是BE 的中点, ∴11111
2
P B C F E B C F V V --=
=12×111
3
B C F S ·EH =12×13×2×3=33
. 4.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示.
因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCFE ,因此BF ⊥AC .
又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,且CK ∩AC =C ,CK ,AC 都在平面ACFD 内, 所以BF ⊥平面ACFD .
(2)解 方法一 过点F 作FQ ⊥AK 于Q ,连接BQ . 因为BF ⊥平面ACFD ,AK 在平面ACFD 内,所以BF ⊥AK , 则AK ⊥平面BQF ,BQ 在平面BQF 内,所以BQ ⊥AK . 所以∠BQF 是二面角BADF 的平面角. 在Rt △ACK 中,AC =3,CK =2,得FQ =31313.
在Rt △BQF 中,FQ =313
13,BF =3,
得cos ∠BQF =
34
. 所以,二面角BADF 的平面角的余弦值为
34
. 方法二 因为△BCK 为等边三角形,取BC 的中点O ,连接KO ,则KO ⊥BC , 又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC .
以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系
Oxyz .
由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫1
2
,0,32,
F ⎝ ⎛⎭
⎪⎫-1
2,0,
32. 因此,AC →=(0,3,0),AK →=(1,3,3),AB →
=(2,3,0).
设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧ AC →·m =0,AK →·m =0,
得⎩⎨
⎧ 3y 1=0,
x 1+3y 1+3z 1=0,
取m =(3,0,-1); 由⎩⎪⎨⎪⎧
AB →·n =0,AK →·n =0,
得⎩⎨

2x 2+3y 2=0,
x 2+3y 2+3z 2=0,
取n =(3,-2,3). 于是,cos 〈m ,n 〉=
m ·n |m |·|n |=3
4
.
所以,二面角BADF 的平面角的余弦值为
34
.。

相关文档
最新文档