12.2整式的乘法 (1)

合集下载

新华东师大课标版八年级数学上册《12章 整式的乘除 12.2 整式的乘法 多项式与多项式相乘》优质课课件_1

新华东师大课标版八年级数学上册《12章 整式的乘除  12.2 整式的乘法  多项式与多项式相乘》优质课课件_1

谢谢聆听
ma+mb+na+nb.
(2)
(3)
(m+n)(a+b) =ma+mb+na+nb
你能用前面所学的知识解释 (m+n) (a+b) =ma+mb+na+nb这个等式吗?
单项式乘以多项式法则
(m+n) (a+b) =(m+n)a+ (m+n)b
=ma +na+mb+nb
多项式的乘法法则
多项式与多项式相乘,先用一个 多项式的每一项分别乘以另一个多项 式的每一项,再把所得的积相加。
湘江中学
八年级数学(上)
huadongshidaban
数学电子教案
§12.2.3 多项式与多项式相乘
【学习目标】
1.探索多项式乘以多项式法则的过程,理解并 掌握多项式乘法法则.
2.能熟练进行多项式乘以多项式的乘法运算.
3.会进行多项式乘以多项式的计算及混合运算 .
【旧知复习】
1.单项式乘以多项式的法则.
计算:
(1)(x+y)(x–y); (2) (2a+b)2; (3) (x+y)(x2–xy+y2)
注意!
计算(2a+b)2应该这样做:
(2a+b)2=(2a+b)(2a+b) =4a2+2ab+2ab+b2 =4a2+4ab+b2
切记:(2a+b)2不等于4a2+b2 .
新知探究二 填空:
(x 2)( x 3) x2 _5_ x _6_ (x 2)( x 3) x2 _1_ x (_-6_)

12.2《整式的乘法》同步练习1

12.2《整式的乘法》同步练习1

12.2 整式的乘法一、选择题1.下列计算错误的是( )A .7323000)10(3a a a =-⋅-B .a b a b a x x x 21243-=⋅--+C .826322218)(6))(3(c b a c ab c a ab -=⋅--D .2221))((+-=--m n m n y x xy y x2.如果33827)23(b a b a Q +=+⋅,则Q 等于( )A .22469b ab a ++B .22263b ab a +-C .22469b ab a +-D .224129b ab a +-3.如果多项式乘积9)3)((2-=--x x b ax ,那么b a -等于( )A .-2B .2C .-4D .44.)(2c b a a -+-与)(2ac ab a a +--的关系是( )A .相等B .符号相反C .前式是后式的a -倍D .以上结论都不对 5.)34)(25(22b a ab b a +-+的计算结果是( )A .332220173b a ab b a +-+-B .33226201713b a ab b a +-+C .3322620133b a ab b a +-+-D .3322620173b a ab b a +-+-6.下列各式成立的是( )A .a ax ax x x a +--=+--2)12(22B .12)1(22+-=+x x xC .2222)(c b a bc a +=+D .42121-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x 7.若等式2222)5)(5()2)(83(m x x x x x x +-=-+-+-是恒等式,则m 等于( )A .3B .-3C .±2D .±3二、填空题1.____2332323=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛xy y x .2.____)()3()()2()(32232423232=⋅⋅-⋅c a ab c ab c b a c b a . 3.____)2()(32=-⋅++a c b a .4.bxy xyz xy xy 49147(____)7+--=⋅-.5.长为b a 23+,宽为b a -5的长方形的面积为________.6.梯形的上底长为)2(b a +,下底长为)32(b a +,高为)(b a +,则梯形的面积为________.7.圆环的外圆半径为b a 27+,内圆半径为b a -6,则它的面积是_____.三、计算题(一)计算题1.43223])2[(xy y x ⋅-;2.3222231)5.0(21⎪⎭⎫ ⎝⎛-⋅⋅bc ab c b a ; 3.)6(43)2(452342323y x z y x yz y x -+⋅;4.⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-+y x y xy x 222345323; 5.⎪⎭⎫ ⎝⎛-⋅+⋅---b a ab b a ab 521021)()2(522; 6.)2)(3()23)(12(62--+-+-x x x x x ; 7.)1)(1(234+-+-+m m m m m .(二)先化简,再求值.1.已知12,5-=--=+b a b a ,求)(2)()(222b a a a ab b b b ab -+--+的值.2.)3)(5()96)(2(2------x x x x x x ,其中31-=x .。

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。

数学初二上册整式的乘法

数学初二上册整式的乘法

数学初二上册整式的乘法数学初二上册整式的乘法是指在整式之间进行乘法运算,下面将详细介绍整式的乘法运算原理及应用。

整式(也称为代数式)是由多项式经过加、减、乘及其运算得来的,它是变量及其系数的有限和。

整式的一般形式可以表示为:f(x) = aₙₓⁿ + aₙ₋₁ₓⁿ⁻¹ + ... + a₁ₓ + a₀其中,aₙₓⁿ为整数系数,x为变量,n为非负整数。

整式的乘法运算即是将两个整式相乘得到新的整式。

首先,我们来看整式乘法的步骤:Step 1:将被乘数和乘数按照竖式排列,并对齐。

例如,计算(2x + 3) * (4x - 5):```(2x + 3)* (4x - 5)```Step 2:从被乘数的个位开始,依次与乘数的每一位相乘。

```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)```Step 3:上一步的结果需要与被乘数的下一位继续相乘,并最终相加。

```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)- 10x² + 15x <-- (3 * 4x) + (2x * -5)```Step 4:将所有相乘的结果相加得到最终结果。

```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)- 10x² + 15x <-- (3 * 4x) + (2x * -5)__________- 2x² + 5x - 15```因此,(2x + 3) * (4x - 5)的结果是-2x² + 5x - 15。

整式乘法的应用非常广泛,特别在代数中的各种问题解决中起着重要作用。

在解方程、推导公式、求极限、求导数等数学运算中,整式的乘法都扮演着至关重要的角色。

华师版八年级数学上册第12章2 整式的乘法

华师版八年级数学上册第12章2 整式的乘法

知识点 3 多项式与多项式相乘
知3-讲
1. 多项式乘多项式法则 多项式与多项式相乘,先用一个 多项式的每一项分别乘以另一个多项式的每一项,再把 所得的积相加. 用字母表示为(a+b)(m+n)=am+bm+an+bn.
知3-讲
2. 多项式与多项式相乘的几何解释释 如图12.2-2,大 长方形的面积可以表示为(a+b)(p+q),也可以将大长 方形的面积看成4 个小长方形的面积之和,即ap+aq+ bp+bq,所以(a+b)(p+q)=ap+aq+bp+bq.
C. (x+3)(x-6)
D. (x-3)(x+6)
3-2. [期中·成都双流区]已知(x-1)(x+3)=x2+mx+n,则
m-n的值是( D )
A. -4
B. -1
C. 1
D. 5
整式的乘法
整式的乘法
单项式与 单项式
单项式与 多项式
多项式与 多项式
知3-讲
特别解读 1. 多项式乘多项式法则的实质是将多项式与多项式相乘转
化为几个单项式相乘的和的形式. 2. 多项式与多项式相乘的结果仍为多项式. 在合并同类项
之前,积的项数应该是两个多项式的项数之积.
知3-练
例 3 计算: (1)(x-4)(x+1); (2)(3x+2)(2x-3); (3)(x+2)(x2-2x+4). 解题秘方:紧扣多项式乘多项式法则,用“箭头 法”进行计算 .
(2)5x·13
ax·(

2.25axy)·(

3x2y2)

[5×
1 3
×(

2.25)×
(-3)] a1+1x1+1+1+2y1+2=445a2x5y3. (3)5a3b·(-3b)2+(-6ab)2·(-ab)-ab3·(-4a)2=5a3b·9b2+

八年级数学 第12章 整式的乘除12.2 整式的乘法 2单项式与多项式相乘 数学

八年级数学 第12章 整式的乘除12.2 整式的乘法 2单项式与多项式相乘 数学
第12章 整式的乘除
12.2 整式的乘法 2.单项式与多项式相乘
12/13/2021
新课导入
1、单项式乘法法则:
单项式乘以单项式:把它们的系数、相同字母分别相乘,对于 只在一个单项式里含有的字母,连同它的指数不变,作为积的 因式. 遇到积的乘方 先做乘方,再做单项式相乘;
注意:系数相乘不要漏掉负号。
12/13/2021
中考 试题
已知A=2x,B是多项式,在计算B+A时, 小马虎同学把B+A看成了B÷A,结果得x2+0.5x, 则B+A=__2_x3_+__x_2_+__2_x_. 解析:
因为 A= 2x,B÷A=x2+0.5x, 所以 B=(x2+0.5x)·2x=2x3+x2, 故 B+A=(2x3+x2)+2x=2x3+x2+2x.
当 y=-3,n=2时,原式=(-3)2×2=(-3)4=81.
12/13/2021
随堂演练
1. 计算:
(1)-2x2 ·(x-5y);
-2x3+10x2y
(3)(2x+1) ·(-6x);
-12x2-6x
(5)(-3x2)·(4x-3)
-12x3+9x2
(2)(3x2-x+1)·4x .
12x3-4x2+4x
(2)单项式乘以多项式是多项式乘法、因式分解、分 式通分、解分式方程等知识的重要基础.
12/13/2021
例1. 下列各题的解法是否正确,如果错了,指出错 在什么地方,并改正过来.
ห้องสมุดไป่ตู้ ×①
-2a2b×-1 4ab2c=1 2a3b3
1 2
a 3b 3c
×② 3 a 2 b1 - a b 2 c= - 3 a 3 b 33a2b-3a3b3c

12.2整式的乘法⑴⑵⑶⑷(1)

12.2整式的乘法⑴⑵⑶⑷(1)

⑵(-3xy)·5x2y+6x2
解: ⑴原式=-4x·2x2-4x·3x-4x·(-1) =-8x3-12x2 +4x ⑵原式=(-3xy)·5x2y+6x2·
7 2 xy -6x2·2y2 2
=-15x3y2+21x3y2-12x2y2
=6x3y2-12x2y2
例1
计算:
⑴(-4x)·(2x2+3x-1)
b a
mb ma
m
nb na
n
3.多项式与多项式相乘 多项式与多项式相乘,先用一个多项式的每一项分 别乘以另一个多项式的每一项,再把所得的积相加.
注意:
合并同类项前积的项数等于各多项式的项数之积。
例1 计算: ⑴(2x-3)(x+4) ⑶(x+y)(x2-xy+y2)
⑵(x+2y)(5a+3b)
例2 解方程:
2x(7-2x)+5x(8-x)=3x(5-3x)-39
解: 去括号,得 14x-4x2+40x-5x2=15x-9x2-39
移项,得
14x-4x2+40x-5x2-15x+9x2=-39
39x=-39 x=-1
合并同类项,得 系数化为1,得
12.2整式的乘法
1.单项式与单项式相乘 单项式与单项式相乘,只要将它们的系数、 相同字母的幂分别相乘,对于只在一个单项式中出 现的字母,则连同它的指数一起作为积的一个因 式. 2.单项式与多项式相乘
即 10x-6x2-12x-3+8x2+2x=2x2-6x+8x-24) 移项 10x-6x2-12x+8x2+2x-2x2+6x-8x=-24+3

华东师大版数学八年级上册12.2《整式的乘法》主要知识点解读

华东师大版数学八年级上册12.2《整式的乘法》主要知识点解读

《整式的乘法》主要知识点解读1.单项式乘以单项式:法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式中出现的字母,连同它的指数作为积的一个因式。

解读:(1)单项式的乘法可分为三步:①把它们的系数相乘,包括符号的计算;②同底数幂相乘;③单独字母的处理。

三部分的乘积作为计算的结果。

(2)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号再计算绝对值;相同字母相乘,是同底数幂的乘法,按法则进行计算;注意不要把只在一个单项式中含有的字母去掉。

(3)单项式与单项式相乘其结果仍是单项式。

2.单项式乘以多项式:法则:单项式乘以多项式,就是用单项式去乘多项式的每一项再把所得的积相加。

即()(,,,)m a b c am bm cm m a b c ++=++都是单项式。

解读:(1)单项式与多项式相乘,实质上是将单项式看成一个整体对多项式运用乘法分配律。

(2)单项式乘以多项式,结果是一个多项式,其项数与多项式的项数相同,计算时要注意符号问题,多项式中的每一项都包含它前面的符号,同时还要注意单项式的符号。

3.多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

解读:(1)运用多项式乘法法则,必须做到不重不漏,为此相乘时,要按一定的顺序进行,例如)m+⋅+,可先用第一个多项式中的每一项去乘第n+)(c(ba二个多项式,得)abn++(c⋅,再用单项式乘多项式的法则展开(实b⋅与)a(c+m+际上是转化成单项式乘多项式)。

(2)多项式与多项式相乘,仍得多项式,在合并之前,积的项数应该是两个多项式项数之和。

(3)整式的乘法运算的结果一定注意要合并同类项。

八年级数学上册 12.2 整式的乘法教学课件 (新版)华东师大版

八年级数学上册 12.2 整式的乘法教学课件 (新版)华东师大版
(3) a2+b2= (a+b2)(+ -2ab)= (a-b2) +2ab
A (3)如果a+
1
a
=3,则a2+
1
a2
=(
)
(A) 7 (B) 9 (C) 10 (D) 11
解:
因为
a+
1
a
=3
所以
(a+
1
a
2
) =9
所以
a2
+2+
1
a2
=9

a2 +
1
a2
=7
让我们一起来回顾: 2.单项式与单项式相乘
练习
(4)(2x + 3y)(3x−2y)
(5) (2x y)( x2 2xy y2)
(6)x2(x 1) 2x(x2 2x 2)
学海无涯
再见
驶向成功 的彼岸
直长 挂风 云破 帆浪 济会 沧有 海时
解: (1) (x 2)( x 3)
= x x+x (3)+2 x+2 (3)
= x2 3x 2x 6
= x2 x 6
注意:1、两项相乘时先定符号,积的符号由这两 项的符号决定。同号得正,异号得负.
2、最后的结果要合并同类项.
计算:
随堂
(3)(x−2y)(x+5y)
一般形式: an am an m ( n ,m 为正整数)
2.幂的乘方,底数不变,指数相乘.
一般形式: (a m )n a mn (m,n为正整数)
3、.积的乘方等于各因数乘方的积.
一般形式: (ab)n an bn (n为正整数)

八年级数学上册第十二章整式的乘除12.2整式的乘法第1课时课件

八年级数学上册第十二章整式的乘除12.2整式的乘法第1课时课件

◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
◎第三阶

◆知识导航
◆典例导学◆反馈演ຫໍສະໝຸດ (◎第一阶◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航

华师大版数学八年级上册12.2《整式的乘法》教学设计

华师大版数学八年级上册12.2《整式的乘法》教学设计

华师大版数学八年级上册12.2《整式的乘法》教学设计一. 教材分析《整式的乘法》是华师大版数学八年级上册第12章第2节的内容。

本节内容主要介绍了整式乘法的基本概念和运算法则,包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等。

通过本节的学习,学生能够掌握整式乘法的基本运算方法,并为后续的因式分解、方程求解等知识打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了整数、分数和小数的四则运算,具备了一定的代数基础。

但是,对于整式乘法这种抽象的运算,学生可能还存在一定的困难。

因此,在教学过程中,需要引导学生从具体的事物中抽象出整式乘法的概念,并通过大量的练习来巩固和提高。

三. 教学目标1.知识与技能:让学生掌握整式乘法的基本概念和运算法则,能够熟练地进行整式乘法的运算。

2.过程与方法:通过实例演示和练习,让学生体会从具体到抽象的过程,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:整式乘法的基本概念和运算法则。

2.难点:整式乘法的运算过程和技巧。

五. 教学方法采用“问题驱动”的教学方法,通过引导学生提出问题、分析问题、解决问题的过程,让学生主动参与到学习中来。

同时,运用“小组合作”的教学方法,让学生在小组内进行讨论和交流,共同完成学习任务。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括整式乘法的概念、运算法则、实例演示等。

2.练习题:准备一些整式乘法的练习题,包括不同类型的题目,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际生活中的例子,如面积计算、体积计算等,引导学生提出问题:如何计算这些图形的面积或体积?通过问题的提出,让学生思考和感受整式乘法的实际意义。

2.呈现(10分钟)利用PPT呈现整式乘法的概念和运算法则,通过简洁的语言和生动的例子,让学生理解和掌握整式乘法的运算方法。

12-2 整式的乘法 知识讲解

12-2 整式的乘法 知识讲解

整式的乘法【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++. 【典型例题】类型一、单项式与单项式相乘1、 计算:(1)()()121232n n xy xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭ (2)322325(3)(6)()(4)a b b ab ab ab a -+----.【答案与解析】解:(1)()()121232n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭()()()()121232n nx x x y y z +⎡⎤⎛⎫=-⨯-⨯-⋅⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦ 413n n x y z ++=-(2)322325(3)(6)()(4)a b b ab ab ab a -+----3222325936()16a b b a b ab ab a =+--333333334536167a b a b a b a b =--=-.【总结升华】凡是在单项式里出现过的字母,在其结果也应全都有,不能漏掉.注意运算顺序,有同类项,必须合并.类型二、单项式与多项式相乘2、计算:(1)(2)2(1)3(5)x x x x x x --+--(2)2322(32)3(21)a a a a a a +--+-+【思路点拨】先单项式乘多项式去掉括号,然后移项、合并进行化简.【答案与解析】解:(1)(2)2(1)3(5)x x x x x x --+--2(2)(2)(2)(3)(3)(5)x x x x x x x x =+-+-+-+-+--2222222315411x x x x x x x x =----+=-+.(2)2322(32)3(21)a a a a a a +--+-+ 2322232(2)(3)(3)2(3)()(3)a a a a a a a a =++-+-+-+--+-3232326436333a a a a a a a a =+---+-=---.【总结升华】(1)本题属于混合运算题,计算顺序仍然是先乘除、后加减,先去括号等.混合运算的结果有同类项的需合并,从而得到最简结果.(2)单项式与多项式的每一项都要相乘,不能漏乘、多乘.(3)在确定积的每一项的符号时,一定要小心.3、化简求值:(1)已知()2352122=-+-,求代数式a b ab a a b a b 的值 (2)已知33202()48+=+++-,求a b a ab a b b 的值.(3)已知210+-=m m ,求3222010++m m 的值.【答案与解析】解:(1)()3522426311112222-+-=--+ab a a b a b a b a b a b 当22a b =时,原式=231112221241222-⨯-⨯+⨯=--+= (2)3332232()482248+++-=+++-a ab a b b a a b ab b法1:20+=a b ,则2=-a b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业
习题
2
解:(1) (3a 2 5b ) 2a 2 3a 2 2a 2 5b 2a 2 6a 4 10a 2 b ( )
1 (2) 2a ( ab b 2 ) 5a ( a 2 b ab 2 ) 2 a 3 b 2a 2 b 2 5a 3 b 5a 2 b 2
a 边长是a的正方形的面积是a· a,反过来说,a· a a 也可以看作是边长为a的正方形的面积.
3a· 的几何意义:可看作是边长分 2a 别为3a和2a的长方形的面积.
3a
2a
3a· 5ab的几何意义:可以看做是长为a,宽为5b,高为 3a的长方体的体积,也可以看做是长为5a,宽为b,高 为3a的长方体的体积. 5a
提升
设法找出一对单项式M,N ,使 它们满足 :
3 x( M 5 x ) 6 x y N
2 3
M 2 xy
3 2
N 15 x
小结
1、注意不要漏乘任何一项;
2、注意“-”的问题;
3、在几个单项式乘以多项的混合运算中, 要注意运算顺序,完成乘法后,要合并同 类项,得出最简结果; 4、非零单项式乘以不含同类顶的多项式, 其积仍是多项式,积的项数与多项式的项 数应相同。
2 2
c (2ab )
2
12a 4b4c
3、3x (4 x
y ) 2 yz
24x y z
3 2
光速约为 3 108 米/秒,太阳光射到地球上的时间约 4、 为
5 10 秒,则地球与太阳的距离约为多少米?
2
3 108 5 102 1.5 1011
想一想
在 12( 的方法较简单?
积的一个因式.
例题
例2:卫星绕地球运动的速度(即第一宇
宙速度)约为7.9×103米/秒,则卫星运 行3×102秒所走的路程约是多少?
解: 7.9 103 3 103 23.7 105 2.37 106 答:卫星运行3×102 秒所走的路 程约是2.37×106 米.
单项式相乘的几何意义
提升 1、已知 9a n6b2n 与 2a 3 m 1b2 n 的积是 5a 4 b 的同类项,求 m, n 的值.
2、设 1 2 3 n k ,

( x n y ) ( x n1 y 2 ) ( x n 2 y 3 ) ( xy n ) 的值.
4 (3)(a 3 )2 a 5 ( ×) (4)(3ab2 )2 6a 2b( × )
2.计算:
(1) 10 10 10
2 4
107
4

( a b )8 ;
(2)a b) (a b) (a b) (
3
(3) 2 x 2 y 3 )2 (
4x 4 y 6
2
6 a 3 b 3a 2 b 2
例题 例6:解不等式
x( x y 1) x( x y ) 6
解: x xy x x xy 6
2 2
x xy x x xy 6
2 2
x 6
演练
1、计算:
1
3 x y (2 xy 3 xy )
2 3 2 3 3 4
(5a 2b3 ) (4b2c) [(5) (4)] a 2 (b3 b2 ) c 20a 2b5c (3)
单项式相乘的法则
法则:单项式和单项式相乘,只要 将它们的系数、相同字母的幂分别 相乘,对于只在一个单项式中出现
的字母,则连同它的指数一起作为
3a 3a 5a
a
5b
b
例题 例3:计算:
3a b 2ab ( 5a b )
3 2 2 2
解:原式
[5 2 ( 5)] (a a a ) ( b b b )
3 2 2 2
50a b
6 5
演练
1、4mn3 3mn2 2、3a
2
12m2 n5
12.2 整式的乘法(1)
单项式与单项式相乘
引言
你们在想要攀登到科学顶峰之前, 务必把科学的初步知识研究透彻。还 没有充分领会前面的东西时,就决不
要动手搞往后的事情。 ——巴甫洛夫
复习
1.判断下列计算是否正确,如有错误加以改正
(1)a 3 a 5 a15 ( × )(2)a a 2 a 5 a 7 (√ )
2a 2 3a 2a 2 (5b)
6a3 10a 2b
(2a ) (3ab 5ab ) 6a b 10a b
2 2 3 3 2 3 3
例题
例5:计算:
(1) (3a 5b) 2a
2 2
1 (2) 2a ( ab b 2 ) 5a(a 2b ab 2 ) 2
.
例题
例1:计算:
(1)2 x 3 5 x 2 ;(2) x 2 y ( 2 xy 3 ) ; 3 (3)( 5a 2b3 ) (4b2c )
2 x3 5 x 2 2 x3 5 x2 (2 5) ( x3 x 2 ) 10x5 解:(1)
(2) 3x y (2 xy ) [3 (2)] ( x x) ( y y ) 6 x y
2 3
3 5 ) 中,你是怎样计算的?用什么样 4 6
用乘法分配律:
2 3 5 2 3 5 12( ) 12 12 ( ) 12 3 4 6 3 4 6
图中大长方形的面积怎么求?
大长方形的面积有两种表示方法一是长为a+b+c,宽为m, 面积是 m(a+b+c);二是三个小长方形的面积和,即am+bm+ cm.它们都是大长方形的面积,所以它们是相等的,即m(a+b+ c)=am+bm+cm.
单项式与多项式相乘的法则
概括:单项式与多项式相乘,只要 将单项式分别乘以多项式的各项,再
将所得的积相加.
用式子表示为:m(a+b+c)=ma+ mb+mc
例题
2a 2 (3a 2 5b) 例4 计算:(1)
(2a 2 ) (3ab2 5ab3 ) (2)
解: 2a 2 (3a 2 5b)
x( x 2 1) 2 x 2 ( x 1) 3 x(2 x 5) 3x3 4 x2 14 x
1 2 2 x 2 x[ x 3( x 1)] 2 3 1 其中 x 2
3
4 x 2 6 x, 2
3、解不等式:
x 2 (1 x x 2 ) 2 x( x3 x 2 x 1) x 2
3 2
6x y 9x y
4 3 4
2
2
3
6 x3 2 x 2 y 2 xy 2 2 x (3 x xy y )
2 2
a 2b2 2 ( 1 ab ) ( 4a b) 4
4a b 简求值:
1
2
相关文档
最新文档