指对数函数习题
指数与对数运算练习题
指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。
则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。
指数对数运算练习题 道 附答案
每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
指数对数运算练习题40道(附答案)
每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)
人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
(完整版)指数函数与对数函数练习题(40题)
(完整版)指数函数与对数函数练习题(40题)指数函数与对数函数试题训练1、若01x y <<<,则( )A .33yx< B .log 3log 3x y < C .44log log x y < D .11()()44x y <2、函数y =( )A 。
(3,+∞) B.[3, +∞) C 。
(4, +∞) D.[4, +∞)3.82log 9log 3的值是 A23, B 1 C 32D 24.化简55log 8log 2可得 A 5log 4 B 53log 2 C 5log 6 D 35.已知8log 3p =,3log 5q =,则lg 5= A35p q+ B 13pq p q ++ C 313pq pq + D22p q +6.已知1()102x f x -=-,则1(8)f -=A 2B 4C 8D 127.设log x a a =(a 为大于1的整数),则x 的值为A lg 10a aB 2lg10a aC lg 10a aD1lg10a a8.已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>>9.函数21log y x=的图像大致是10.已知01a <<,则函数x y a =和2(1)y a x =-在同一坐标系中的图象只可能是图中的11.若372log πlog 6log 0.8a b c ===,,,则( ) (A )a 〉b 〉c (B)b 〉a >c (C )c 〉a 〉b(D )b>c 〉a 12.设3log 5a =,则5log 27=CA B C D(完整版)指数函数与对数函数练习题(40题)A 3aB 3aC 3a -D 3a13.方程212233210x x +--⋅+=的解是A {2-,3}-B {2,3}-C {2,3}D {2-,3}14.若110x <<,则2(lg )x 、2lg x 、lg(lg )x 的大小关系是A 22(lg )lg lg(lg )x x x <<B 22lg (lg )lg(lg )x x x <<C 22(lg )lg(lg )lg x x x <<D 22lg(lg )(lg )lg x x x << 15.若log 4log 40(m n m <<、n 均为不等于1的正数),则A 1n m <<B 1m n <<C 1n m <<D 1m n <<16.若log (3)log (3)0m n ππ-<-<,m 、n 为不等于1的正数,则A 1n m <<B 1m n <<C 1n m << D1m n <<17.如图,指数函数x y a =,x y b =,x y c =,x y d =在同一坐标系中,则a ,b ,c ,d 的大小顺序是A a b c d <<<B aC b a d c <<<D b a c d <<<18. 如图,设a ,b ,c ,d 都是不等于1坐标系中,函数log a y x =,log b y x =,log y =log d y x =的图象如图,则a ,b ,c ,d 关系是A a b c d >>>BC a b d c >>>D b a d c >>>19。
人教B版高中数学必修第二册课后习题 第4章 指数函数、对数函数与幂函数 第4章末测评卷
第四章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y=x 53的图象大致是( )2.已知f(x)=a-x(a>0且a≠1),且f(-2)>f(-3),则实数a的取值范围是( )A.(0,+∞)B.(1,+∞)C.(-∞,1)D.(0,1)3.若函数f(x)=1+3-x的反函数为g(x),则g(10)=( )A.2B.-2C.3D.-14.函数f(x)=lo g12(2x-x2)的单调递减区间为( )A.(0,2)B.(-∞,1]C.[1,2)D.(0,1]5.函数f(x)=a x-2+3(a>0且a≠1)的图象恒过定点P,点P 又在幂函数g(x)的图象上,则g(3)的值为( ) A.4B.8C.9D.166.10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v=v 0·ln Mm 计算火箭的最大速度v(单位:m/s),其中v 0(单位:m/s)是喷流相对速度大小,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度大小为1 000 m/s,当总质比为625时,该型火箭的最大速度约为( )(附:lg e≈0.434,lg 2≈0.301) A.5 790 m/s B.6 219 m/s C.6 442 m/s D.6 689 m/s7.设a=log 32,b=ln 2,c=5-12,则( ) A.a<b<c B.b<c<a C.c<a<bD.c<b<a8.若对于任意-1)2的取值范围是( ) A.(-∞,13)B.(-∞,13]C.(-∞,1)D.(-∞,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a>0,b>0,2a+b=1,则( ) A.log 0.5a+log 0.5b 的最大值为3 B.4a +2b 的最小值为2√2 C.a ∈(0,12)D.a 2+b 2的最小值为1410.设a,b,c 都是正数,且4a =6b =9c ,则下列结论正确的是( ) A.ab+bc=2ac B.ab+bc=ac C.4b ·9b =4a ·9c D.1c=2b−1a11.已知函数f(x)={2x -4,x ≥0,-x 2-4x +1,x <0,则关于x 的方程[f(x)]2-3f(x)+2=0的解可以为( ) A.-4B.0C.-2D.log 2612.关于函数f(x)=|ln|2-x||,下列描述正确的有 ( )A.f(x)在区间(1,2)内单调递增B.y=f(x)的图象关于直线x=2对称C.若x 1≠x 2,f(x 1)=f(x 2),则x 1+x 2=4D.f(x)有且仅有两个零点三、填空题:本题共4小题,每小题5分,共20分.13.方程log 3(3x-1)=log 3(x-1)+log 3(3+x)的解为x= . 14.函数y=12x,-3≤x≤1的值域是 .15.若log a 23<1,则实数a 的取值范围是 .16.已知函数f(x)={lnx ,x >0,e x +1,x ≤0,且函数g(恰有两个不同的零点,则实数m 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)计算题: (1)√2-1-(-9.6)0+√(√2-e )44−(827)23+(32)-2.(2)lg 4+2lg 5+log 45·log 514.+a).18.(12分)已知函数f(x)=log2(12x(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若函数f(x)的定义域是R,求实数a的取值范围;(3)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.19.(12分)已知函数f(x)=lg(10x-1).(1)求函数f(x)的定义域和值域;(2)设函数g(x)=f(x)-lg(10x+1),若关于x的不等式g(x)<t恒成立,求实数t的取值范围.20.(12分)在刚刷完漆的室内放置空气净化器,净化过程中有害气体含量P(单位:mg/L)与时间t(单位:h)的关系为:P=P0e-kt,其中P0,k是正常数,如果在前5 h消除了10%的有害气体,那么(1)10 h后还剩百分之几的有害气体?(2)有害气体减少50%需要花多少时间?(精确到1 h)(参考数据:ln2≈0.693 1,ln 0.9≈-0.105 4)21.(12分)已知a>0且a≠1,函数f(x)=log a2.1-x(1)求f(x)的定义域及其零点;(2)设g(x+3,当a>1时,若对任意x1∈(-∞,-1],存在x2∈[3,4],使得f(x1)≤g(的取值范围.22.(12分)给出下面两个条件:①函数f(x)的图象与直线y=-1只有一个交点;②函数f(x)的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数f(x)的解析式确定.已知二次函数f(x)=ax2+bx+c满足f(x+1)-f(x)=2x-1,且. (1)求f(x)的解析式;,27],2f(log3的取值范围.(2)若对任意x∈[19参考答案第四章测评1.B 函数y=x 53=√x53的定义域为R,且此函数在定义域上是增函数,故排除选项A,C;当0<x<1时,x 53<x,所以x∈(0,1)时,函数y=x53图象要在函数y=x图象的下方,排除选项D.故选B.2.D3.B 令y=1+3-x,得x=-log3(y-1),∴g(x)=-log3(x-1)(x>1),∴g(10)=-2.4.D 记u(x)=2x-x2=-(x-1)2+1,u(x)的图象为抛物线,对称轴为x=1,且开口向下,令u(x)>0,解得x∈(0,2),①当x∈(0,1]时,u(x)单调递增,f(x)=lo g12u(x)单调递减,即原函数的单调递减区间为(0,1];②当x∈[1,2)时,u(x)单调递减,f(x)=lo g12u(x)单调递增,即原函数的单调递增区间为[1,2).故选D.5.C ∵f(x)=a x-2+3,令x-2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设g(x)=x a,把P(2,4)代入得2a=4,∴a=2,∴g(x)=x2,∴g(3)=32=9.故选C.6.C 由题得v=v 0·ln Mm =1000×ln625=1000×4lg5lge=1000×4×(1-lg2)lge≈6442m/s.故选C.7.C a=log 32=1log 23,b=ln2=1log 2e,而log 23>log 2e>1,所以a<b,c=5-12=√5,而√5>2=log 24>log 23,所以c<a,综上c<a<b.故选C. 8.C ∵2-1)2x<1(-1<12x=(12)x对于任意x ∈(-∞,-1]恒成立.∵-1<2,解得m<1.∴实数m 的取值范围是(-∞,1).故选C.9.BC a>0,b>0,2a+b=1⇒ab≤18,则log 0.5a+log 0.5b=log 0.5ab≥3,当且仅当a=14,b=12时,等号成立,故A 错误;4a +2b =22a +2b ≥2√2,当且仅当a=14,b=12时,等号成立,故B 正确;a>0,b>0,2a+b=1⇒b=1-2a>0⇒0<a<12,故C 正确;a 2+b 2=a 2+(1-2a)2=5a 2-4a+1,0<a<12,则当a=25时,有最小值为15,故D 错误.10.ACD 设4a =6b =9c =t,t>1,则a=log 4t,b=log 6t,c=log 9t,所以b c+ba=log 6t log 9t+log 6t log 4t =lgt lg6lgt lg9+lgt lg6lgt lg4=lg9lg6+lg4lg6=lg9+lg4lg6=lg (9×4)lg6=lg62lg6=2,即b c+ba=2,所以1c+1a=2b,所以1c=2b−1a,故D 正确;由b c+ba=2,所以ab+bc=2ac,故A正确,B 错误;因为4a ·9c =4a ·4a =(4a )2,4b ·9b =(4×9)b =(62)b =(6b )2.又4a =6b =9c ,所以(4a )2=(6b )2,即4b ·9b =4a ·9c ,故C 正确.故选ACD. 11.AD [f(x)]2-3f(x)+2=0,[f(x)-1][f(x)-2]=0,得f(x)=1或f(x)=2,当x≥0时,2x -4=1或2x -4=2,解得x=log 25或x=log 26;当x<0时,-x 2-4x+1=1或-x 2-4x+1=2,解得x=-4或x=-2±√3.故在选项中方程的解可以为AD.故选AD.12.ABD 根据图象变换作出函数f(x)的大致图象,如图,由图象知f(x)在区间(1,2)内单调递增,故A 正确;函数图象关于直线x=2对称,故B 正确;令f(x 1)=f(x 2)=k,则直线y=k 与函数f(x)图象相交可能是4个交点,如图.如果最左边两个交点横坐标分别是x 1,x 2,则x 1+x 2=4不成立,故C 错误;f(x)的图象与x 轴仅有两个公共点,即函数仅有两个零点,故D 正确.故选ABD. 13.214.[12,8] 因为指数函数y=12x在区间[-3,1]上单调递减,所以当x=-3时,函数有最大值为12-3=8;当x=1时,函数有最小值为12.所以函数y 的值域为[12,8].15.0,23∪(1,+∞) 当a>1时,不等式为log a 23<log a a,∴a>23,即a>1;当0<a<1时,不等式为log a 23<log a a,∴a<23,即0<a<23.综上所述,实数a 的取值范围是0,23∪(1,+∞).16.(1,2] 由g(,即函数g(与函数y=f(x)图象交点的横坐标.当x≤0时,f(x)=e x +1单调递增,其值域为(1,2];当x>0时,f(x)=ln 与函数y=f(x)图象有2个交点,即函数g(的取值范围是(1,2]. 17.解(1)原式=√2+1-1+e-√2−23×23+49=e.(2)原式=lg4+lg25+log 45·(-log 54)=lg4×25-lg5lg4×lg4lg5=lg102-1=2-1=1.18.解(1)若函数f(x)是R 上的奇函数,则f(0)=0,即log 2(120+a)=0,解得a=0.当a=0时,f(x)=-x=-f(-x),在R 上为奇函数,所以a=0为所求. (2)若函数f(x)的定义域是R,则12x +a>0恒成立,即a>-12x 恒成立,由于-12x ∈(-∞,0),故只要a≥0即可,即实数a 的取值范围为[0,+∞).(3)由题意,知函数f(x)在[0,1]上单调递减,故f(x)在区间[0,1]上的最大值是f(0)=log 2(1+a),最小值是f(1)=log 2(12+a).由题意,得log 2(1+a)-log 2(12+a)≥2,所以{1+a >0,a +12>0,a +1≥4a +2,解得-12<a≤-13, 故实数a 的取值范围为(-12,-13].19.解(1)∵10x -1>0,∴10x >100,则x>0,∴f(x)的定义域为(0,+∞).又10x -1>0,∴f(x)的值域为R.(2)g(x)=f(x)-lg(10x+1)=lg(10x-1)-lg(10x+1)=lg (10x -110x +1)=lg (1-210x +1).∵10x >0,∴10x +1>1,∴0<210x +1<2,∴-2<-210x +1<0,∴-1<1-210x +1<1.又1-210x +1>0,∴0<1-210x +1<1.∴lg (1-210x +1)<0,∴g(x)的值域为(-∞,0).∵关于x 的不等式g(x)<t 恒成立,∴t≥0,即t 的取值范围是[0,+∞). 20.解(1)根据题意得P=P 0e -5k =P 0(1-10%),则e -5k =90%,故当t=10时,P=P 0e -10k =P 0(e -5k )2=P 0(90%)2=P 081%,故10个小时后还剩81%的有害气体. (2)根据题意得P 0e -kt=P 050%,即(e -5k)15t =12,即0.915t =0.5,故t=5log 0.90.5=5-ln2ln0.9≈33,故有害气体减少50%需要花33小时.21.解(1)由题意知,21-x>0,1-x>0,解得x<1,所以函数f(x)的定义域为(-∞,1).令f(x)=0,得21-x=1,解得x=-1,故函数f(x)的零点为-1.(2)若对于任意x 1∈(-∞,-1],存在x 2∈[3,4],使得f(x 1)≤g(≥-1.即m ∈[-1,+∞).22.解(1)因为二次函数f(x)=ax 2+bx+c 满足f(x+1)-f(x)=2x-1,f(x+1)-f(x)=a(x+1)2+b(x+1)+c-ax 2-bx-c=2ax+a+b=2x-1,所以{2a =2,a +b =-1,解得{a =1,b =-2,所以f(x)=x 2-2x+c.选①,因为函数f(x)的图象与直线y=-1只有一个交点,所以f(1)=1-2+c=-1,解得c=0,所以f(x)的解析式为f(x)=x 2-2x.选②,设x 1,x 2是函数f(x)的两个零点,则|x 1-x 2|=2,且Δ=4-4c>0,可得c<1.由题可知x 1+x 2=2,x 1x 2=c,所以|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√4-4c =2,解得c=0,所以f(x)的解析式为f(sx)=x 2-2x.(2)由2f(log3≤-2f(log3x).当x∈1,27时,log3x∈[-2,3].令h=log3x,9,27],2f(log3≤-2f(h)在h∈[-2,3]上恒则h∈[-2,3],所以对任意x∈[19成立,所以m≤[-2f(h)]min.当h=-2时,取最小值,则-2f(-2)=-16,所以实数m的取值范围为(-∞,-16].。
高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版
高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。
推导指数函数与对数函数的四则运算练习题
推导指数函数与对数函数的四则运算练习题在数学中,指数函数和对数函数是非常重要的数学概念。
它们在各种科学和工程领域中都有广泛的应用。
理解指数函数和对数函数的性质以及进行四则运算是提高数学运算能力的基础。
本文将给出一些关于指数函数和对数函数的四则运算练习题,并推导出解答过程。
1. 指数函数的四则运算练习题题目一:计算以下指数函数的值。
a) 计算 2^3b) 计算 5^(-2)c) 计算 (-2)^4d) 计算 (-3)^(-3)解答过程:a) 2^3 = 2 × 2 × 2 = 8b) 5^(-2) = 1 / (5^2) = 1 / (5 × 5) = 1 / 25c) (-2)^4 = (-2) × (-2) × (-2) × (-2) = 16d) (-3)^(-3) = 1 / ((-3)^3) = 1 / ((-3) × (-3) × (-3)) = 1 / (-27) = -1/27题目二:简化以下指数函数。
a) 简化 2^4 × 2^2b) 简化 (2^3)^2c) 简化 (5^2)^(-2)d) 简化 (4 × 3^2)^(-1)解答过程:a) 2^4 × 2^2 = 2^(4+2) = 2^6 = 64b) (2^3)^2 = 2^(3×2) = 2^6 = 64c) (5^2)^(-2) = 5^(2×(-2)) = 5^(-4) = 1 / (5^4) = 1 / (5×5×5×5) = 1 / 625d) (4 × 3^2)^(-1) = (4 × (3^2))^(-1) = (4 × 9)^(-1) = (36)^(-1) = 1 / 362. 对数函数的四则运算练习题题目一:计算以下对数函数的值。
单招指数函数与对数函数复习题
单招指数函数与对数函数复习题一、选择题1. 指数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b2. 对数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b3. 如果指数函数y = 2^x的图像向右平移2个单位,新的函数表达式是:A. y = 2^(x-2)B. y = 2^(x+2)C. y = 2^(x/2)D. y = 2^(2x)4. 对数函数y = log_2(x)的图像向上平移1个单位,新的函数表达式是:A. y = log_2(x) + 1B. y = log_2(x-1)C. y = log_2(x+1)D. y = log_2(x) - 15. 指数函数y = 3^x的增长速度比y = 2^x的增长速度:A. 更快B. 更慢C. 相同D. 无法比较二、填空题6. 指数函数y = a^x的图像在x轴的正半轴上是_________的。
7. 对数函数y = log_a(x)的图像在y轴的正半轴上是_________的。
8. 如果指数函数y = a^x经过点(1, b),则a的值为_________。
9. 对数函数y = log_a(x)的底数a的取值范围是_________。
10. 对数函数y = log_a(x)的图像与x轴的交点是_________。
三、解答题11. 求函数y = 2^x的值域。
12. 求函数y = log_2(x)的定义域。
13. 证明指数函数y = a^x (a > 0, a ≠ 1)的图像总是单调的。
14. 证明对数函数y = log_a(x) (a > 0, a ≠ 1)的图像总是单调的。
15. 解方程:2^x = 8。
四、应用题16. 某细菌的初始数量是100,如果每3小时数量翻倍,求12小时后细菌的总数。
17. 某公司的股票价格从100元开始,每年增长10%,求5年后的股票价格。
高三指数与对数练习题
高三指数与对数练习题1. 求解下列方程:(1)$2^{x+1}-5 \cdot 2^x-12=0$(2)$5^{2x+1}+5 \cdot 5^{2x}-24=0$2. 求解不等式:(1)$3^{x-1} \geq 81$(2)$2^{2x+1}-4^x<0$3. 化简下列表达式:(1)$\log_2 16-\log_2 \frac{1}{4}$(2)$\log_5 25+\log_5 0.2$4. 已知点$A(1,0)$和$B(b,1)$,若点$C(c, 2)$在直线$AB$上,求$c$的值。
5. 求以下函数的值域:(1)$y=3^x$(2)$y=\log_2 x$6. 求以下方程的解集:(1)$\log_2 x + \log_2 (x+1)=3$(2)$2\log_3 x + 3\log_3 (x+1)=4$7. 某人从事研究,发现了某种细菌的增长规律,他发现,每过一个小时,细菌的数量增加到原来的2倍。
假设最初有1个细菌,经过t小时,有多少细菌?8. 某城市的人口数量每年以1.5%的速度增长,现在有10万人,求多少年后人口数量将达到20万人?9. 已知函数$f(x)=2^{x-3}+3$,求$f(0)$和$x$使得$f(x)=4$。
10. 某企业的销售额年增长率为5%,现在销售额为100万,求多少年后销售额将达到200万?解答如下:1. 解:(1)设$2^x=a$,则原方程化简为$a^2-5a-12=0$。
该方程可以因式分解为$(a-6)(a+2)=0$,解得$a=6$或$a=-2$。
由$a=2^x$,可得$2^x=6$或$2^x=-2$。
对于$2^x=6$,求解得$x=\log_2 6$;对于$2^x=-2$,无实数解。
综上所述,原方程的解为$x=\log_2 6$。
(2)设$5^x=a$,则原方程化简为$a^2+5a-24=0$。
该方程可以因式分解为$(a+8)(a-3)=0$,解得$a=-8$或$a=3$。
职高数学第四章指数函数对数函数习题及答案
实数指数幂习题练习4.1.11、填空题(1)64的3次方根可以表示为 ,其中根指数为 ,被开方数为 ;(2)12的4次算术根可以表示为 ,其中根指数为 ,被开方数为 ;(3)38的平方根可以表示为 ,其中根指数为 ,被开方数为2、将根式转化为分数指数幂的形式,分数指数幂转化为根式(1写成分数指数幂的形式(2)将分数指数幂323写成根式的形式(3参考答案:1、(1)4,3,64(2)412,4,12(3)±,2,82、(1) 139544.3练习4.1.21计算2、化简:5352523b a b a ÷÷-3、计算:2511343822(24)(24)-参考答案:1、23、82练习4.1.31、指出幂函数y =x 4和y =x 31的定义域,并在同一个坐标系中作出它们的图像2、用描点法作出幂函数y =x 31的图像并指出图像具有怎样的对称性3、用描点法作出幂函数y =x 4的图像并指出图像具有怎样的对称性参考答案:1、略2、略,关于原点对称3、略,关于y 轴对称4.2指数函数习题练习4.2.11、判断函数y=4x的单调性.2、判断函数y=的单调性3、 已知指数函数f(x)=a x 满足条件f(-2)=,求a 的值参考答案:1、增2、减3、2 练习4.2.21. 某企业原来每月消耗某种原料1000kg ,现进行技术革新,陆续使用价格较低的另一种材料替代该试剂,使得该试剂的消耗量以平均每月10%的速度减少,试建立试剂消耗量y 与所经过月份数x 的函数关系。
2.安徽省2012年粮食总产量为200亿kg .现按每年平均增长10.2%的增长速度.求该省2022年的年粮食总产量(精确到亿kg).3. 一台价值10万元的新机床.按每年8%的折旧率折旧,问20年后这台机床还值几万元 参考答案:1、y=1000(1-10%)x2、y=200(1+10.2%)103、10(1-8%)20对数习题练习4.3.11、2的多少次幂等于8?2、3的多少次幂等于81?3、将10log 10003= 对数式写成指数式参考答案:1、32、43、3101000=练习4.3.2、、lg 2lg5+=2、化简:lg x yz3、3lg2+lg125=参考答案:1、lg102、lg lg lg x y z --3、34.4 对数函数习题练习4.4.11、若函数log a y x =的图像经过点(4,2),则底a =( ).2、若函数log a y x =的图像经过点(9,3),则底a =( ).3、求函数y=lg4x 的定义域参考答案:1、22、23、x>0练习4.4.21、某钢铁公司的年产量为a 万吨,计划每年比上一年增产9%,问经过多少年产量翻一番2、某汽车的购买价为10万,计划每年比上一年折旧10%,问经过多少年其价值为原来的一半?3、天长地久酒业2012年的年产量为a 吨,计划每年比上一年增产12%,问经过多少年产量翻一番参考答案:1、略2、略3、略。
指数函数和对数函数练习题
第三章 指数函数和对数函数 §1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数 函数y =a x (a>0,a ≠1,x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ,a >0,且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯—的正实数b ,使得b n =a m ,我们把b 叫作a 的mn 次幂,记作b =mn a ;(2)正分数指数幂写成根式形式:m na =na m (a >0);(3)规定正数的负分数指数幂的意义是:m na -=__________________(a >0,m 、n ∈N +,且n >1);(4)0的正分数指数幂等于____,0的负分数指数幂__________. 3.有理数指数幂的运算性质(1)a m a n =________(a >0);(2)(a m )n =________(a >0);(3)(ab )n =________(a >0,b >0). 一、选择题1.以下说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的选项是( )A .①③④B .②③④C .②③D .③④ 2.假设2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1 B .122- C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2 D .13a 5.以下各式成立的是( ) A.3m 2+n 2=()23m n + B .(ba)2=12a 12bC.6(-3)2=()133- D.34=1326.以下结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④假设100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3 二、填空题 7.614-3338+30.125的值为________. 8.假设a >0,且a x=3,a y=5,则22y x a+=________.9.假设x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 12.化简:413322333842a a b b ab a-++÷(1-23b a)×3a .13.假设x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.§3 指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x 是自变量,函数的定义域是____. 2.指数函数y =a x (a >0,且a ≠1)的图像和性质a >1 0<a <1图像定义域 R 值域 (0,+∞) 性 质 过定点 过点______,即x =____时,y =____ 函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性 是R 上的________ 是R 上的________1.以下以x 为自变量的函数中,是指数函数的是( ) A .y =(-4)x B .y =πxC .y =-4xD .y =a x +2(a >0且a ≠1) 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠13.函数y =a |x |(a >1)的图像是( )4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x ,那么f (2)的值为( )A .-9 B.19C .-19D .95.如图是指数函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图像,则a 、b 、c 、d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c6.函数y =(12)x -2的图像( )A .第—、二、三象限B .第—、二、四象限C .第—、三、四象限D .第二、三、四象限 二、填空题7.函数f (x )=a x 的图像经过点(2,4),则f (-3)的值为________.8.假设函数y =a x -(b -1)(a >0,a ≠1)的图像不经过第二象限,则a ,b 必满足条件________.9.函数y =8-23-x (x ≥0)的值域是________. 三、解答题10.比拟以下各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2022年10月18日,美国某城市的以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积到达50 000 m 3〞,副标题是:“垃圾的体积每三年增加一倍〞.如果把3年作为垃圾体积加倍的周期,请你依据下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期(3年)数n 的关系的表格,答复以下问题.周期数n 体积V (m 3)0 50 000×20 1 50 000×2 2 50 000×22 … … n 50 000×2n(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少? (2)依据报纸所述的信息,你估量3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图像(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么? 能力提升12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图像是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)假设f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).§3 指数函数(二)1.以下肯定是指数函数的是( )A .y =-3xB .y =X (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x 2.指数函数y =a x 与y =b x 的图像如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <1 3.函数y =πx 的值域是( )A .(0,+∞)B .0,+∞)C .RD .(-∞,0)4.假设(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.假设指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( ) A .a <2 B .a >2 C .-1<a <0 D .0<a <1 一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( ) A .Q P B .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)} 2.函数y =16-4x 的值域是( )A .0,+∞)B .0,4C .0,4)D .(0,4)3.函数y =a x 在0,1]上的最大值与最小值的和为3,则函数y =2ax -1在0,1]上的最大值是( )A .6B .1C .3 D.324.假设函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数 5.函数y =f (x )的图像与函数g (x )=e x +2的图像关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +2 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <a C .a <b <c D .b <a <c 二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,假设荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________. 9.函数y =2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试推断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为-12,12].(1)设t =2x,求t 的取值范围; (2)求函数f (x )的值域. 能力提升12.函数y =2x -x 2的图像大致是( )13.已知函数f (x )=2x -12x +1.(1)求f f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.习题课1.以下函数中,指数函数的个数是( )①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3.A .0B .1C .2D .32.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( )A .-3B .-1C .1D .33.对于每一个实数x ,f (x )是y =2x 与y =-x +1这两个函数中的较小者,则f (x )的最大值是( )A .1B .0C .-1D .无最大值4.将22化成指数式为________.5.已知a =40.2,b =80.1,c =(12)-0.5,则a ,b ,c 的大小顺序为________.6.已知12x +12x -=3,求x +1x的值.一、选择题 1.(1222-⎡⎤⎢⎥⎣⎦的值为( )A. 2 B .- 2 C.22 D .-222.化简3(a -b )3+(a -2b )2的结果是( )A .3b -2aB .2a -3bC .b 或2a -3bD .b3.假设0<x <1,则2x ,(12)x ,(0.2)x 之间的大小关系是( )A .2x <(0.2)x <(12)xB .2x <(12)x <(0.2)xC .(12)x <(0.2)x <2xD .(0.2)x <(12)x <2x4.假设函数则f (-3)的值为( ) A.18 B.12 C .2 D .85.函数f (x )=a x -b 的图像如下图,其中a ,b 均为常数,则以下结论正确的选项是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <06.函数f (x )=4x +12x 的图像( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 二、填空题7.计算:130.064--(-14)0+160.75+120.01=________________.8.已知10m =4,10n =9,则3210m n -=________. 9.函数y =1-3x (x ∈-1,2])的值域是________. 三、解答题10.比拟以下各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4; (3)1332⎛⎫⎪⎝⎭和2332⎛⎫ ⎪⎝⎭;(4)π-2和(13)-1.3 11.函数f (x )=a x (a >0,且a ≠1)在区间1,2]上的最大值比最小值大a2,求a 的值.能力提升12.已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1),商量f (x )的单调性.13.依据函数y =|2x -1|的图像,推断当实数m 为何值时,方程|2x -1|=m 无解?有一解?有两解?§4 对数(一)1.对数的概念如果a b =N (a >0,且a ≠1),那么数b 叫做______________,记作__________,其中a叫做__________,N 叫做________. 2.常用对数与自然对数通常将以10为底的对数叫做__________,以e 为底的对数叫做__________,log 10N 可简记为________,loge N 简记为________. 3.对数与指数的关系假设a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:log a Na =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数________. 一、选择题1.有以下说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③假设10=lg x ,则x =100;④假设e =ln x ,则x =e 2.其中正确的选项是( ) A .①③ B .②④ C .①② D .③④3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33C .x = 3D .x =9 5.假设log a 5b =c ,则以下关系式中正确的选项是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72C .8 D.37二、填空题7.已知log 7log 3(log 2x )]=0,那么12x-=________.8.假设log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则ba=________.三、解答题10.(1)将以下指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将以下对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x x y -⎡⎤⎢⎥⋅⎢⎥⎢⎥⎣⎦的值. 能力提升12.假设log a 3=m ,log a 5=n ,则a 2m +n 的值是( ) A .15 B .75 C .45 D .22513.(1)先将以下式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示以下各式: ①log 68;②log 62;③log 26.§4 对数(二)1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,则: (1)log a (MN )=________________;(2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式log b N =log a Nlog a b(a ,b >0,a ,b ≠1,N >0);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1). 一、选择题1.以下式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a xC.log a x n =log a n xD.log a x log a y =log a x -log a y2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.假设log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,假设1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .225 5.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.假设lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( )A .2 B.12 C .4 D.14二、填空题7.2log 510+log 50.25+(325-125)÷425=______________. 8.(lg 5)2+lg 2·lg 50=________.9.2022年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了庞大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的X 的能量,那么汶川大地震所释放的能量相当于________颗广岛X .三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.假设a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 能力提升12.以下给出了x 与10x 的七组近似对应值: 组号 一 二 三 四 五 六 七 x 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 10x 2 3 5 6 8 10 12假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( ) A .二 B .四 C .五 D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估量约经过多年少,该物质的剩余量是原来的13?(结果保存1位有效数字)(lg 2≈0.3010,lg 3≈0.477 1)§5 对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x 是自变量,函数的定义域是________.________为常用对数函数;y =________为自然对数函数.2.对数函数的图像与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图像定义域______ 值域 ______单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图像过点______,即log a 1=0 函数值x ∈(0,1)时, x ∈(0,1)时,特点y ∈______; x ∈1,+∞)时, y ∈______. y ∈______; x ∈1,+∞)时, y ∈______.对称性 函数y =log a x 与y =1log ax 的图像关于______对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数. 一、选择题1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .3,+∞)C .(4,+∞)D .4,+∞)2.设集合M ={y |y =(12)x ,x ∈0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N是( )A .(-∞,0)∪1,+∞)B .0,+∞)C .(-∞,1D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),假设f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图像是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.假设log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)二、填空题7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________. 8.已知函数y =log a (x -3)-1的图像恒过定点P ,则点P 的坐标是________.9.给出函数,则f (log 23)=________. 三、解答题10.求以下函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为3,63],求函数f (x )的最值.(2)求使f (x )-g (x )>0的x 的取值范围. 能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =1log a x ,y =2log a x ,y =3log a x ,y =4log a x 的图像,则a 1,a 2,a 3,a 4的大小关系是( ) A .a 4<a 3<a 2<a 1 B .a 3<a 4<a 1<a 2 C .a 2<a 1<a 3<a 4 D .a 3<a 4<a 2<a 113.假设不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.§5 对数函数(二)1.函数y =log a x 的图像如下图,则实数a 的可能取值是( )A .5 B.15 C.1e D.122.以下各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.假设函数y =f (x )的定义域是2,4],则y =f (12log x )的定义域是( )A .12,1 B .4,16]C .116,14 D .2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .0,+∞)C .(1,+∞)D .1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图像经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点______________________________ __________________________________________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c2.已知函数y =f (2x )的定义域为-1,1],则函数y =f (log 2x )的定义域为( )A .-1,1B .12,2]C .1,2D .2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( )A .f (2)>f (-2)B .f (1)>f (2)C .f (-3)>f (-2)D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14 B.12 C .2 D .45.已知函数f (x )=lg 1-x1+x ,假设f (a )=b ,则f (-a )等于( )A .bB .-bC.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( )A .y =13log x (x >0) B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),假设x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是________.9.假设log a 2<2,则实数a 的取值范围是______________.三、解答题10.已知f (x )=log a (3-ax )在x ∈0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=12log 1-ax x -1的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)假设当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立.求实数m 的取值范围.能力提升12.假设函数f (x )=log a (x 2-ax +12)有最小值,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(1,2)C .(1,2)D .2,+∞)13.已知log m 4<log n 4,比拟m 与n 的大小.习题课1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( )A .m <n <pB .m <p <nC .p <m <nD .p <n <m2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg (2-x )的定义域是( ) A .(1,2) B .1,4]C .1,2)D .(1,2]4.给定函数①y =12x ,②y =12log (x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________.6.假设log 32=a ,则log 38-2log 36=________.一、选择题1.以下不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.假设log 37·log 29·log 49m =log 412,则m 等于( ) A.14 B.22C. 2 D .4 3.设函数假设f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.假设函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.假设函数假设f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (18log x )<0的解集为( )A .(0,12)B .(12,+∞) C .(12,1)∪(2,+∞) D .(0,12)∪(2,+∞) 二、填空题7.已知log a (ab )=1p ,则log ab a b=________. 8.假设log 236=a ,log 210=b ,则log 215=________.9.设函数假设f (a )=18,则f (a +6)=________. 三、解答题10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},假设A ∩B =∅,求实数a 的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比拟12f (0)+f (1)]与f (12)的大小; (2)探究12f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立. §6 指数函数、幂函数、对数函数增长的比拟1.当a >1时,指数函数y =a x 是________,并且当a 越大时,其函数值增长越____.2.当a >1时,对数函数y =log a x (x >0)是________,并且当a 越小时,其函数值________.3.当x >0,n >1时,幂函数y =x n 是________,并且当x >1时,n 越大,其函数值__________.一、选择题1t 1.99 3.0 4.0 5.1 6.12v 1.5 4.40 7.5 12 18.01A .v =log 2tB .v =12log t C .v =t 2-12 D .v =2t -2 2.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s (千米)与时间t (小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,假设要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,一般车0.2元/辆次.假设当天一般车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式为( )A .y =0.2x (0≤x ≤4 000)B .y =0.5x (0≤x ≤4 000)C .y =-0.1x +1 200(0≤x ≤4 000)D .y =0.1x +1 200(0≤x ≤4 000)5.已知f (x )=x 2-bx +c 且f (0)=3,f (1+x )=f (1-x ),则有( )A .f (b x )≥f (c x )B .f (b x )≤f (c x )C .f (b x )<f (c x )D .f (b x ),f (c x )大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l 1=5.06x -0.15x 2和l 2=2x ,其中x 为销售量(单位:辆).假设该公司在这两地共销售15辆车,则可能获得的最大利润是( )A .45.606B .45.6C .45.56D .45.51二、填空题7.一种特意侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB 内存(1MB =210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2022年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2022年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________.三、解答题9.用模型f (x )=ax +b 来描述某企业每季度的利润f (x )(亿元)和生产本钱投入x (亿元)的关系.统计说明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).又定义:当f (x )使f (1)-y 1]2+f (2)-y 2]2+f (3)-y 3]2的数值最小时为最正确模型.(1)当b =23,求相应的a 使f (x )=ax +b 成为最正确模型; (2)依据题(1)得到的最正确模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.10.依据市场调查,某种商品在最近的40天内的价格f (t )与时间t 满足关系f (t )=,销售量g (t )与时间t 满足关系g (t )=-13t +433(0≤t ≤40,t ∈N ).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =该商品的日销售量Q (件)与时间t (天)的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的方法,实践说明:礼品价值为1元时,销售量增加10%,且在肯定范围内,礼品价值为(n +1)元时,比礼品价值为n 元(n ∈N +)时的销售量增加10%.(1)写出礼品价值为n 元时,利润y n (元)与n 的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如下图,开始时桶1中有a L 水,t min 后剩余的水符合指数衰减函数y 1=a e -nt ,那么桶2中的水就是y 2=a -a e -nt ,假定5 min 后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有a 4L 第三章 章末检测一、选择题(本大题共12小题,每题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于( )A .MB .NC .0,4)D .0,+∞)2.函数y =3|x |-1的定义域为-1,2],则函数的值域为( )A .2,8B .0,8]C .1,8D .-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( ) A .1 B .2 C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.假设100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比拟13.11.5、23.1、13.12的大小关系是( ) A .23.1<13.12<13.11.5 B .13.11.5<23.1<13.12 C .13.11.5<13.12<23.1 D .13.12<13.11.5<23.17.式子log 89log 23的值为( ) A.23 B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ; ②lg a b=lg a -lg b ; ③12lg(a b )2=lg a b ; ④lg(ab )=1log ab 10. 其中正确的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上全部的点( ) A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图像的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每题5分,共20分)13.已知函数f (x )=⎩⎨⎧(12)x , x ≥4f (x +1), x <4,则f (2+log 23)的值为______. 14.函数f (x )=log a 3-x 3+x (a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =12log (x 2-3x +2)的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈-3,0]的值域;(2)假设关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比拟f (x )与g (x )的大小. 20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)假设t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)推断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)推断函数f (x )的单调性;(3)假设对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
高教版中职数学《数学基础模块下册》章节复习题5指数函数与对数函数
《数学基础模块下册》复习题5:指数函数与对数函数【知识巩固】1.下列式子计算正确的是( ). A.(−1)2=−1 B.(−1)0=−1 C.(a 12)2=a (a >0)D.()1 0a a a -=≠ 2.下列描述正确的是( ).A.√−273=3B.16的四次方根是±2C.√−325=±2D.√81=−93.若指数函数() 1)xfx a =-是R 上的减函数,则a 的取值范围是( ). A.a >2 B.a <2 C.0<a <1 D.1<a <24.下列各指数函数中,在区间(−∞,+∞)上为增函数的是( ). A.y =1.5xB.y =(π5)xC.y =0.2xD.y =(13)x5.不在指数函数y =5x 的图像上的点是( ). A.(0,1)B.(1,5)C.(−1.−5)D.(−1,−15)6.函数y =lg x ( ).A.在区间(−∞,+∞)上是增函数B.在区间(−∞,+∞)上是减函数C.在区间(0,+∞)上是增函数D.在区间(−∞,0)上是减函数7.函数y =log 12(1−2x )的定义域是( ).A.(−∞,+∞)B.(−∞,12)∪(12,+∞)C.[12,+∞)D.(−∞,12)8.已知3x−1=19,则x =( ). A.2 B.-2 C. 1 D.-19.若log 4x =−3,则x =( ). A.12B.164C.-12D.−3410.若1<x <y ,则下列式子正确的是( ). A.3y <3xB.3x <3yC.log 4y <log 4xD.log 14y <log 14x11.若a 12<a −12,则a 的取值范围是( ). A.a ≥0 B.a >0C.0<a <1D.0≤a ≤112.已知a =(23)−12,b =(23)13,c =1,则它们的大小关系是( ).A.b >c >aB.a >b >cC.b >a >cD.c >a >b 13.(1g5)3+lg2×lg5+lg2=( ). A.1 B.-1C.2D.-214.下列不等式成立的是( ). A.log 32<log 23<log 25 B.log 32<log 25<log 23C.log 23<log 32<log 25D.log 23<log 25<log 3215.已知函数f (x )={3x , x <1−x, x >1,则f (12)=( ).A.3B.√3C.12D.−1216.√734写成分数指数幂为_______________. 17.(25)−3=1258的对数式为______________.18.0.2512+(181)−14+(π−3)0______________.19.log 28+2lg 1100−log 327______________.20.将三个数5−12、1512、log 512按照从小到大的顺序排列为___________________.21.已知指数函数y =a x (a >0且a ≠1)的图像经过点P(2,9),求x =−2时y 的值.22.作出下列各函数的图像. (1)y =4x ;(2)y =log 12x .23.计算下列各式的值. (1)2log 242+12log 2436;(2)lg2+2lg3−lg60−lg30.24.计算下列各式的值.(1).√(−4)24+27−13⋅(π−√2)0+log 1327 ;(2).(√273×√54)÷√2.25.求下列函数的定义域.(1)y =log 0.5(1−x); (2)y =2−x+lg 3.26.某工厂的机器设备的初始价值为100万元,由于磨损,每一年比上一年的价值降低10%, 使用10年后,该机器设备的价值多少万元(保留到小数点后第2位)?【能力提升】1.求下列函数的定义域. (1)y =ln (x 2−x );(2)y =√2−lg x.2求函数()2454x x f x -+=的值域.3.若√4a 2−4a +1=1−2a ,求实数a 的取值范围.4.若0≤x ≤2,求函数0.53x y =+的最大值和最小值.5.按复利计算利息的一种储蓄产品,设本利和为y,存期为x,若本金为a 元,每期利率为r. (1)试写出本利和y 随存期x 变化的函数关系式.(2)如果本金a=1000元,每期利率r=2.25%,试计算5期后本利和是多少(保留到小数点后第2位).6.声强级L I (单位:d B)由公式L I =10lg (I 10−12)给出,其中I 为声强(单位:W/m 2),一般正常人听觉能忍受的最高声强为1W/m 2,能听到的最低声强为10−12W/m 2,那么,人听觉的声强级范围是多少?。
微积分练习指数对数1
Miscellaneous Exercise 31、Given that y = 3(4)x+2, find, without using a calculator, the value of (a) y when x = -0.5, (b) x when y = 6.2、Given that y = ax b + 2 and that y = 5 when x = 2 and y = 29 when x = 4, find the value of a and of b.3、Given that log32 = 0.631, use the substitution y = 3x to solve the following equations: (a) 3x + 10 = 2(3x+1) (b) 9x + 2(3x ) = 3x+2 - 124、Find x such that(a) 2e x = 3 - e x+1 (b) e -x (2e -x + 1) = 155、(a) Given that log 3 (x-1) = 2, evaluate lg x.(b) Solve the equation lg (3x+2) + 6 lg 2 = 2 + lg (2x + 1)(c) Find the value of x which satisfies the equation equation e 2x - e x -6 = 0.6、(a) Given that 2x 4y = 128 and that ln (4x - y) = ln 2 + ln 5, calculate the value of x and of y. (b) Solve the equation(i) lg (1 - 2x) - 2 lg x = 1 - lg (2 - 5x), (ii) 3y+1 = 4y .7、(a) If log 2 k = 2 log 2 6 + log 2 10 - 3, find k.(b) Solve the simultaneous equations 8*4y = 22x-1, 3y x 3 = 81. 8、Without using a calculator, solve the following equations:(a) (5x+1)2 = 0.2x 5 (b) log x 27 = 1.5 (c) log 9(3x+1) = x 2 (d) log 2 (log x 9) =1 (e) log 2 x log 8 x = 12 (f) e 4-x = e 2*e x2-4 (g) log 3 (x-2) = 3 - log 3 (x+4) (h) 43x + log 2 (1/8) = 5 (i) log 2 x 2 - log 2 (2x + 5) = 2 (j) log 2 x = 4 log x 29、Solve the following equations:(a) 3x+1 = 8 (b) e 3/x = 4 (c) log x 5 = 3 (d) lg (lnx) = 0.1 (e) 5x = e 2x+1 (f) ln (e 2x - 5) = 210、Given that log 2 x = a and log 8 y = b, express x 2y and x/y as powers of 2. Given further that x 2y = 32 and x/y = 0.5, find the value of a and of b.11、Given that log 3 2 = 0.631, evaluate log 3 6, log 3 (2.25) and 3log6.12、Given that log 2 a = p, express log 2 (4a 3) and log 8a in terms of p.13、Given that log 2 x = p and log 4 y = q, express the following in terms of p and q:(a) log 2 xy (b) log 4 x/y (c) log x 4y (d) x 2y 14、Given that ln 2 = a and ln 5 = b, express ln3e 10 in terms of a and b. Find also the number x such that ln x =22b a. 15、Given that log b (xy 2) = m and log b (x 3y) = n, express log b y/x and log b xy in terms of m and n.16、(a) Solve the equation 2 lg 5 + lg (x+1) = 1 + lg (2x+7).(b) A liquid cools from its original temperature of 90 ℃ to a temperature T ℃ in x minutes. Given that T = 90(0.98)x , find the value of(i) T when x = 10, (ii) x when T = 27.(c) The curves y = e x+1 and y = e 4-2x meet at P. Find the coordinates of P. 17、(a) The mass, m grams, of a radioactive substance, present at time t days after first being observed, is given by the formula m = 24 e -0.02t . Find(i) the value of m where t = 30,(ii) the value of t when the mass is half of its value at t = 0.(b) Solve the equation lg (20+5x) - lg (10-x) = 1.(c) Given that x = lg a is a solution of the equation 102x+1 - 7(10x ) = 26,find the value of a. 18、(a) Use a spreadsheet program such as Microsoft Excel to complete the following table:x -20 -15 -10 -5 0 5 10 15 20y = 3+e-2xWhat is the value that y approaches as x becomes very large? Does y approach any value when x is very small?(b) Repeat (a) with y = 5+ 2e-x and y = 4 + e-x.(c) If y = 3 + 2e x, does y approach any value as x becomes very large? Does y approach any value as x becomes very small?(d) State the value that y = 5 - e3x approaches as x becomes very small.(e) If y = a + be cx, how do the values of a, band c affect the value of y as x becomes(i) very large? (ii) very small?19、(a) An object is heated in an oven until it reaches a temperature of X degrees Celsius. It is then allowed to cool. Its temperature, @ degrees Celsius, when it has been cooling for time t minutes, is given by the equation @ = 18 + 62e-1/8 . Find(i) the value of X, (ii) the value of @ when t = 16, (iii) the value of t when @ = 48.State the value which @ approaches as t becomes very large.(b) Solve the equation(i) lg x + lg [5(x+1)] = 2, (ii) 3y+1 = 0.45.20、The equation 22x+p - 2x+p = 9(2x) - 2 has a solution x = 1. Find(a) the value of p, (b) the other solution of the equation.21、(a) Solve the following equations:(i) log x-2 (2x2 - 10x + 13) = 1 (ii) 2 log y 5 - log y 10 + log y 40 = 4(b) Given that lg (xy) - 2 = 3 lg y - lg x + lg 4, express y in terms of x.*22、(a) Find the positive values of x for which 9x2/3 + 4x-2/3 = 37.(b) If lg 2 = m, express log8 5 in terms of m.*23、(a) Solve the equation lg (3x - 24-x) = 2 +1/3 lg 8 - x/4 lg 16.(b) Without using a calculator, evaluate (lg 5)2 + lg 2 lg 50.24、(a) Given that p n = 16 p, express log2 p in terms of n.(b) Without using a calculator, solve 4x - 3x+1/2 = 3x-1/2 - 22x-1.*25、(a) Given that ln y = 2 ln (x-1) + c and that y = 20 when x = 3, find the value of x when y = 45.(b) Given that a>b>1 and 2 loga b + 4 logb a = 9, find b in terms of a.*26、(a) Solve for x in terms of a given that loga 5 + 2 = loga (x+a) +loga (x-3a).(b) Find the exact value of x if (3x)lg 3 = (4x)lg 4.27、(a) The result ' lg xy = lg x + lg y ' is not always true! Give a pair of values of x and y such that the result will not hold. (Hint: Notice that, under 2(c) in the ' Important Notes ' ,we state the result with a certain qualification! )Similarly, give values of x, y and r such that the following results fail:(i) lg (x/y) = lg x - lg y (ii) lg x r = r lg x(b) Are the following results true for any real value of a, m and n? If not,give a counter example (i.e. Give values of a, m and n which cause the result to fail ).(i) m a = n a→m = n (ii) a m = a n→m=n28、Use a graph plotter to plot the graph of(a) y = 10x, (b) y = e x, (c) y = 2x, (d) u = lg x, (e) y = ln x, (f) y = log2 x.Note the shapes of the graphs in (a) to (c) and (d) to (f). Do you notice any relationship between the graphs of (a) and (d), (b) and (e)?(We shall examine the graphs of exponential and logarithmic functions and their relationship more closely in Chapter 19.)。
指数函数对数函数专练习题(含答案)
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.对图象的影响在第一象限内,从顺时针方向看图象,逐渐在第四象限内,从顺时针方向看图象,逐渐指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b ba >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
指数函数与对数函数练习题
指数函数与对数函数练习题1. 已知指数函数 $y = 2^{x-1}$,求下列函数的定义域和值域:a) $f(x) = y + 3$b) $g(x) = -y$c) $h(x) = y^2$解:a) $f(x) = y + 3$函数 $f(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $(-\infty,+\infty)$。
b) $g(x) = -y$函数 $g(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $(-\infty,0]$。
c) $h(x) = y^2$函数 $h(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。
值域为 $[0,+\infty)$。
2. 解下列对数方程:a) $\log_2(x+3) = 2$解: 首先将方程转化为指数形式,得到 $2^2 = x+3$。
然后解方程,得到 $4 = x+3$,进而得到 $x = 1$。
b) $\log_3(x-4) = -1$解: 首先将方程转化为指数形式,得到 $3^{-1} = x-4$。
然后解方程,得到 $\frac{1}{3} = x-4$,进而得到 $x = \frac{13}{3}$。
c) $\ln(x+2) = 3$解: 首先将方程转化为指数形式,得到 $e^3 = x+2$。
然后解方程,得到 $x = e^3 - 2$。
3. 判断下列函数的奇偶性:a) $f(x) = 2^x$解: 将函数 $f(x)$ 替换为 $f(-x)$,得到 $f(-x) = 2^{-x}$。
比较$f(x)$ 和 $f(-x)$,发现它们不相等,因此函数 $f(x)$ 不是奇函数也不是偶函数。
湘教版高中数学必修第一册课后习题 第4章 幂函数、指数函数和对数函数 4.3.1 对数的概念
4.3 对数函数4.3.1 对数的概念 A 级必备知识基础练1.方程2log 3x =14的解是( )A.19B.√3C.√33D.92.(多选题)下列结论正确的是( ) A.log 24=2 B.2.10.5>2.1-1.8 C.3log 32=2D.-log 55=13.813+log 122等于( )A.0B.1C.2D.34.若a>0,a 2=49,则lo g 23a= . 5.解答下列各题.(1)计算:log 2164;log 3.12(log 1515).(2)已知log 4x=-32,log 3(log 2y)=1,求xy 的值.6.求下列各式的值:(1)lo g 1162;(2)log 7√493;(3)log 2(log 93).B 级关键能力提升练7.若log a 3=m,log a 5=n(a>0且a≠1),则a 2m+n 的值是( ) A.15 B.75C.45D.2258.已知f(x 6)=log 2x,则f(8)=( ) A.43B.8C.18D.129.(多选题)下列函数与y=x 相等的是( ) A.y=√x 33B.y=√x 2C.y=log 77xD.y=7log 7x10.已知f(x)={1+log 2(2-x ),x <1,2x -1,x ≥1,则f(-2)+f(2)的值为( )A.6B.5C.4D.311.已知lo g 12(log 2x)=lo g 13(log 3y)=1,则x,y 的大小关系是( ) A.x<y B.x=y C.x>yD.不确定12.若log 3(a+1)=1,则log a 2+log 2(a-1)= .C 级学科素养创新练13.已知二次函数f(x)=(log 3a)x 2+2x+4log 3a(a>0)的最大值是3,求a 的值. 答案:1.A ∵2log 3x =14=2-2,∴log 3x=-2,∴x=3-2=19.2.ABC log 24=2,故A 正确;根据函数y=2.1x 是增函数可知2.10.5>2.1-1.8,故B 正确;根据指对恒等式可知3log 32=2,故C 正确;-log 55=-1,故D 不正确.故选ABC. 3.B 813=23×13=2.设lo g 122=x,则(12)x=2,即2-x =2,则-x=1,x=-1,即lo g 122=-1.故813+lo g 122=2-1=1.故选B.4.1 ∵a 2=49且a>0,∴a=23,∴lo g 2323=1.5.解(1)因为2-6=164,所以log 2164=-6.log 3.12(log 1515)=log 3.121=0. (2)因为log 4x=-32,所以x=4-32=2-3=18.因为log 3(log 2y)=1, 所以log 2y=3. 所以y=23=8. 所以xy=18×8=1.6.解(1)设lo g 1162=x,则(116)x =2,即2-4x =2,∴-4x=1,x=-14,即lo g 1162=-14.(2)设log 7√493=x,则7x=√493=723. ∴x=23,即log 7√493=23.(3)设log 93=x,则9x =3,即32x =3,∴x=12.设log 212=y,则2y =12=2-1,∴y=-1.∴log 2(log 93)=-1.7.C 由log a 3=m,得a m =3,由log a 5=n,得a n =5, 则a 2m+n =(a m )2·a n =32×5=45. 8.D 令x 6=8,则x 2=2,因为x>0,所以x=√2,故f(8)=log 2√2.设log 2√2=y,则2y=√2,即2y=212,则y=12,故f(8)=12.9.AC 函数y=√x 33=x 的定义域为R,故与y=x 相等;函数y=√x 2=|x|≥0,与y=x 对应关系不同,故不是同一个函数;函数y=log 77x =x,且定义域为R,对应关系相同,故与y=x 相等;y=7log 7x =x 的定义域为(0,+∞),与函数y=x 的定义域不相同,故不是同一个函数.故选AC. 10.B 由题意得f(-2)+f(2)=(1+log 24)+2=5,故选B. 11.A 因为lo g 12(log 2x)=1,所以log 2x=12.所以x=212=√2.又因为lo g 13(log 3y)=1,所以log 3y=13.所以y=313=√33.因为√2=√236=√86<√96=√326=√33,所以x<y.故选A. 12.1 由log 3(a+1)=1得a+1=3,即a=2, 所以log a 2+log 2(a-1)=log 22+log 21=1+0=1. 13.解因为二次函数f(ax =16log 32a -44log 3a=4log 32a -1log 3a=3,所以4lo g 32a-3log 3a-1=0. 所以log 3a=1或log 3a=-14.因为log 3a<0,所以log 3a=-14.所以a=3-14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数对数函数单元测试
姓名 班级
一、选择题:(每空3分) y
1. 对数函数=y x a log ;=y x b log ; 图象如右图:x a
则下列关系正确的是: ( )
A 、a>b>1
B 、a>1>b
C 、1>b>a
D 、b>1>a =y x b log 2.下列各式成立的是( )
(A )31
log 9log )319(log 555+=+ (B )4
lg 6lg )46lg(=- (C )13
15
log 3log 15log 5
55==- (D )288log 2= 3.如果指数函数x a y =的图象过点(2,16),则a =( )
(A ) 2 (B )-2 (C )4 (D )-4 4.函数y=lg (8-x )的定义域为( )
(A ) R (B )(0,+∞) (C )(-∞ , 8 ) (D )(-22, 22) 5、.函数()x f =4)2
1
(+x
的定义域为: ( )
A 、R
B 、[)+∞-,2
C 、(]2,∞-
D 、[)+∞,0 6.23202
3
)39()50(6
2⋅+-+⋅--=( )
(A )3
11 (B )9210
(C )4
11 (D )41
7.若4log ,4log ,4log 3.073===c b a ,则下列不等式正确的是( )
(A )c b a >> (B )c a b >> (C )b a c >> (D )a c b >> 8.函数=+=)1()(,lg )(x
f x f x x f 则( )
(A ) 1 (B )10 (C )0 (D )-1
二、填空:(每空3分)
1、指数式与对数式互化:482
3
=: 225log 5= ;
2、335255÷∙= ;
3、用“>、<、=”填空:31log
2
5
1
l o g 2 , 6
.031⎪⎭
⎫ ⎝⎛
6
.031-⎪⎭
⎫ ⎝⎛;
4、272
log 3= ;
5、已知:421≥⎪⎭⎫ ⎝⎛x
,则x 范围为: ; 6.已知0≠x
,则=⋅⋅-613x x x _____________________
7. =----012)10(])3
1[(__________________________
8.设n m y x ==-+113,3,则=+y
x 3
____________________
三、解答题(每题5分)
9.计算:12
4
3
3282⋅⋅ 25.03
15
.00625.0)
27()
25.0(-+-
32226log 218log +- 1.0lg 5
1
log 25log 2155-+-。
625log 81log 9log 533∙∙ 化简:)0(10
753
2>⋅⋅x x
x x x
四.应用题.(16分)
由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的
价格降低1
3
,问现在价格为8100元的计算机经过x 年后,价格应降为y 元,列
出函数关系式,当x=15时,y=?。