课件4----_圆的确定
《小班数学找圆形》课件
示范圆形在建筑、艺术和科学中的广泛 应用。
第三部分:绘制圆形
1
用圆剪纸
提供简单的手工制作方法,让学生动手实践,体验绘制圆形的乐趣。
2
数学练习
通过给出几何形状,让学生判断其中的圆形并进行标注,锻炼他们的观察力和判 断能力。
结论
圆形是常见的一种几何形状,也是美丽的一种形状
总结圆形的重要性及它在生活中的广泛应用。
2 圆的构成要素:圆心、 3 植树如画,画圆更佳:
半径、直径等
如何用圆形画出美丽
介绍圆形的基本元素和术
的图形?
语。
探讨圆形在绘画中的应用
和创造力。
第二部分:认识圆形
1
在我们身边的圆形
2
提供常见的日常场景和物品作为例子,
帮助学生理解圆形的普遍性。
3
圆的特征:圆形的优美和神奇
探索圆形的美学价值和独特魅力。
《小班数学找圆形》PPT 课件
《小班数学找圆形》是一堂寓教于乐的数学课,通过寻找和认识圆形,帮助 学生建立对几何形状的基本概念。
前言
介绍圆形的相关知识
了解圆形的基本特征和用途。
引言:我们今天要一起来找圆形!
激发学生的兴趣和好奇心,引导他们主动参与学习。
第一部分:圆的基本概念
1 什么是圆?
解释圆形的定义和特点。
在日常生活中,我们经常用到圆形,掌握圆形的知识对我们的生活很有帮助鼓励学生源自极运用圆形的知识解决问题和发现美好。
结束语
探索更多几何形状的知识,拓宽数学视野,感谢学生和老师的参与!
《圆的概念及性质》PPT课件
等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数
条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是
( C) A.1个
B.2个
C.3个
D.4个
12.(5分)如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,
HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的
是( ) B
A.a>b>c
B.a=b=c
C.a>c>b
D.b>c>a
13.(5分)将一个含有60°角的三角板,按如 图所示的方式摆放在半圆形纸片上,O为圆 心,则∠ACO=_____1_2_0_度.
14.(10分)如图,某部队在灯塔A的周围进行爆破作业,A的周围3 km内的水域为危险区域,有一渔船误入A点2 km的B处,为了尽快 驶离危险区域,该船应沿哪条射线方向航行?请说明理由.
条弧,这两条弧不可能是等弧,其中真命题的个数为( B )
A.1个
B.2个
C.3个
D.4个
10.(5分)如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=
110°,AD∥OC,则∠AOD的度数为( D )
A.70°
B.60°
C.50°
D.40°
11.(5分)下列说法:①优弧一定比劣弧长;②面积相等的两个圆是
A.45°
B.60°
C.90°
D.30°
6.(8分)如图,圆中有______1__条直径,______3__条弦,圆中以A为
一个端点的优弧有______4__条,劣弧有______4__条.
7.(4分)圆内最大的弦长为10 cm,则圆的半径( C)
A.小于5 cm
B.大于5 cm
圆的复习课课件
总结词:说明圆在实际生活中的应用
1. 日常生活用品,如碗、盘子和轮胎的设计都利用了圆的特性。
3. 物理学中的波、磁场和力场理论中经常用到圆或圆的性质。
01
02
03
04
05
06
02
圆的周长与面积
圆的面积的定义
圆的面积是指圆所占的平面的大小。
03
圆与其他几何形状的应用
在实际生活中,这些几何形状的应用非常广泛,如建筑设计、机械制造等。
01
与圆相关的其他几何形状
圆与椭圆、圆环等其他几何形状有着密切的联系。
02
圆与其他几何形状的相似性
圆与其他几何形状在某些性质上具有相似性,如周长、面积等。
03
圆的方程
标准方程是描述圆的最基本形式,包含了圆心和半径的信息。
圆的复习课PPT课件
圆的定义与性质圆的周长与面积圆的方程圆的几何证明圆的实际应用
contents
目录
01
圆的定义与性质
总结词
描述圆的基本定义
详细描述
圆是平面内所有点到一个固定点(圆心)的距离等于一个固定长度(半径)的点的集合。
ห้องสมุดไป่ตู้
详细描述
2. 建筑学中,圆或圆弧常用于设计美观和功能性的建筑结构。
公式推导
总结词:参数方程是另一种描述圆的方式,通过引入参数来表示圆的各个部分。
04
圆的几何证明
总结词
总结词
总结词
总结词
01
02
03
04
理解圆的相交性质,掌握证明方法
理解弦心距定理,掌握应用弦心距定理证明弦与圆相交的方法
高中数学第四章圆与方程4.1.1圆的标准方程课件新人教A版必修2
.
答案: ±2
题型一 圆的标准方程
课堂探究
【教师备用】 1.确定圆的标准方程的条件是什么? 提示:圆心坐标和半径,其中圆心是圆的定位条件,半径是圆的定量条件.
2.方程(x-a)2+(y-b)2=m2一定表示圆吗?
提示:不一定.当m=0时表示点(a,b),当m≠0时表示圆.
【例1】 已知一个圆经过两个点A(2,-3)和B(-2,-5),且圆心在直线l:x-2y3=0上,求此圆的方程.
解:法一 设所求圆的标准方程为(x-a)2+(y-b)2=r2,
(2 a)2 (3 b)2 r2,
a 1,
由已知条件得
(2
a)2
(5
b)2
r2,
解得
b
2,
a 2b 3 0,
r2 10.
所以所求圆的方程为(x+1)2+(y+2)2=10.
b 0,
则 (5 a)2 (2 b)2 r2,
(3 a)2 (2 b)2 r2.
解得
a 4, b 0, r 5.
所以所求圆的方程为(x-4)2+y2=5.
法二 因为圆过 A(5,2),B(3,-2)两点,所以圆心一定在线段 AB 的中垂线上.
由题意得
(2
a)2
(6
b)2
r2,
解得
a=2,b=-3,r=5,
(6 a)2 (0 b)2 r 2.
故外接圆方程为(x-2)2+(y+3)2=25.
(2)设圆心为 O′,
因为|O′M|= 2 32 3 32 =5,|O′N|= (2 5)2 (3 2)2 = 34 >5,
圆的有关概念及性质PPT课件
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质
圆
第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
《确定圆的条件》-完整版PPT课件
如何解决“破镜重圆”的问
题:
(找圆心)
解决问题的关键是什么?
B
A C
O
三角形与圆的位置关系
• 分别作出锐角三角形,直角三角形,钝角三角形的外 接圆,并说明与它们外心的位置情况
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内,直角三角形的外心位 于斜边中点,钝角三角形的外心位于三角形外.
ቤተ መጻሕፍቲ ባይዱ• (1)确定圆心O.
• (2)以O为圆心,A(或OB,或OC)为半径,作⊙O即可.
F
请你证明你画的圆符合要求.
●A
证明:∵点O在AB的垂直平分线上, E
∴OA=OB. 同理,OB=OC. ∴OA=OB=OC.
●B
┏ ●O
●C
D
∴点A,B,C在以O为圆心的圆 上∴.⊙O就是所求作的圆,
这样的圆可 以作出几个? 为什么?.
如 图 , 一 根 5m
长的绳子,一
端栓在柱子上,
另一端栓着一
只羊,请画出
羊的活动区域.
5
5m 4m o
5m 4m o
大家快算算!
正确答案
小组讨论:如何确定圆心,半径?
分析:
①经过两点A,B的圆的圆心在线段AB 的垂直平分线上.
●A
②经过两点B,C的圆的圆心在线段AB
的垂直平分线上.
●B
┏ ●O
●C
圆心的确定:经过三点A,B,C的圆的
圆心应该是两条垂直平分线的交点O.
确定圆的条件
• 过已知点A,B,C(A,B,C三点不在同一条直线上)作圆.
高中数学新人教A版必修2课件:第四章圆与方程4.1.1圆的标准方程
解:(3)设圆心为 C,AB 的垂直平分线方程为 3x+2y-15=0.
由
3x 3x
2y 15 10y 9
0, 0,
得
x y
7, 3,
所以圆心 C(7,-3),又 CB= 65 ,
故所求圆的方程为(x-7)2+(y+3)2=65.
(4)以A(-1,2),B(5,-6)为直径两端点的圆的方程.
3.圆的标准方程的定义 我们把方程(x-a)2+(y-b)2=r2称为圆心为(a,b),半径长为r(r>0)的圆的方 程,把它叫做圆的标准方程. 特别地,当圆心在坐标原点,即a=b=0时,圆的标准方程为x2+y2=r2;当圆心 在坐标原点,r=1时,圆的标准方程为x2+y2=1,称为单位圆.
4.几种特殊位置的圆的标准方程
4.1.1 圆的标准方程
课标要求:1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.2. 能根据所给条件求圆的标准方程.3.会判断点与圆的位置关系.
自主学习
知识探究
1.确定圆的几何要素 在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了.因 此,确定一个圆最基本的要素是圆心和半径,即位置和大小. 2.圆的定义 平面内与定点的距离等于定长的点的集合是圆.其中定点就是圆心,定长 就是半径长.
条件
方程形式
单位圆(圆心在原点,半径长 r=1)
x2+y2=1
过原点(圆心(a,b),半径长 r= a2 b2 ) 圆心在原点(即 a=0,b=0,半径长为 r,r>0)
(x-a)2+(y-b)2=a2+b2 x2+y2=r2
圆心在x轴上(即b=0,半径长为r,r>0) 圆心在y轴上(即a=0,半径长为r,r>0) 圆心在x轴上且过原点(即b=0,半径长r=|a|)
第9讲圆的基本性质复习课件(共46张PPT)
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
圆的定义确定基本要素---精品管理资料
圆的概念及确定1.圆定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心.(确定圆的位置)线段OA叫做半径。
(确定圆的大小)记法:以点O为圆心的圆,记作“⊙O",读作“圆O”注意:(1)圆指的是“圆周”而不是“圆面”。
(2)半径指的是线段,为了方便也把半径的长称为半径.圆的确定:(1)一个圆心一个半径(2)圆心、圆上一个一个的已知点(3)直径2。
圆的集合定义:(1)角平分线上的点到角两边的距离相等。
到角两边距离相等的点在角的平分线上。
所以:角平分线可以看做是到角的两边距离相等的点的集合。
(2)线段的垂直平分线上的点到线段的两个端点的距离相等.到线段的两个端点的距离相等的点在线段的垂直平分线上。
线段的垂直平分线可以看做是和线段两个端点距离相等的点的集合。
*把一个图形看成是满足某种条件的点的集合,必须符合:a.图形上的每一点都满足某个条件,b。
满足某个条件的每一个点,都在这个图形上.(3)圆上各点到定点(圆心O)的距离都等于定长(半径r),到定点的距离等于定长的点都在同一个圆上。
(圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形)圆的集合定义:圆是到定点的距离等于定长的点的集合。
点和圆的位置关系有:点在圆内、圆上,圆外三种,设⊙O的半径为r,点P和圆心O的距离为d,则有:点在圆内;点在圆上;点在圆外。
6。
理解定理,不在一直线上的三点确定一个圆,并掌握不在同一条直线上三点作圆的方法。
7。
会用尺规作经过不在同一直线上三点的圆.8。
了解三角形外心的概念。
9。
过三点的圆确定一个圆有两个基本条件:圆心(定点),确定圆的位置;半径(定长),确定圆的大小。
只有当圆心和半径都确定时,圆才能确定.此外,下列条件都可以确定圆心和半径,因而都能确定圆:(1)经过不在一直线上的三点的圆;(2)已知圆心和圆上一点的圆;(3)以已知线段为直径的圆。
六年级上册数学第五单元圆的认识-课件
圆在生活中的应用
为什么车轮都要做成圆 的?车轴装在哪里?
分别用硬纸板做成下面的图形。
A
A
描出滚动过程中A点留下的痕迹。 A
描出滚动过程中A点留下的痕迹。
A
A
A
分析
中中 心心 与与 边路 缘面 距距 离离 相相 等等
中心与边缘距离不相等 中心与路面距离不相等
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距 离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与 平面的距离保持不变,因此,当车辆在平坦的路上行驶时, 坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学 道理.
“一切立体图形中最美的是球,一切平 面图形中最美的是圆”。这是古希腊的 数学家毕达哥拉斯的一句话。
作业布置:
练习十三:第1题、第5题、第9题
谢谢同学们
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢He
who
falls
today
may
rise
。
圆是轴对称图形吗?
折一折看
圆是轴对称图形。
圆每部分的名称的认识
折一折
折过若干次 后,可以发 现什么?
认一认
圆心
认一认
圆心
连接圆心和圆上任意一点的线段叫做半径。
0 1 2 3 4
量一量
012345
圆心到圆上任意一点的距离都相等。
想一想
认Hale Waihona Puke 认直径 d直径 d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挑 战 一 下
2、某市出租车计费方法如图所示,请根据 图象回答下面的问题: ( )某外地客人坐出租车游览本 ( 34 )用恰当的方式表示费用 y与 5 元?在 市,车费为 31元,试求出他乘车的 ( 1)出租车的起步价是 ____ 路程 s之间的关系。 3km 里程。 _____ 内只收起步价? 解:因为 x ≤ 3时的图像平行与x轴,且过(0,5),所
A
N E O
。 。
F C
B
M
分别作直线MN⊥AB, EF⊥AC,则MN是AB 的 垂直平分线 ;EF是AC的 垂直平分线
(3)AB、AC的中垂线的交点O到B、C的距离 相等
画一画 A N
已知:不在同一直线上的三点A、B、C 求作: ⊙O使它经过点A、B、C 作法:1、连接AB,作线段AB的垂直
F
E O
点评(1)根据图像反映的信息解答有关问 题时,首先要弄清楚两坐标轴的实际意义,抓 O 2 5 住几个关键点来解决问题; x/时 (2)特别注意,第5问中由y=3对应的x值有两个; (3)根据函数图像反映的信息来解答有关问题,比较形象、直观,从中能 进一步感受“数形结合思想”。
3
十、求函数解析式的方法:
谈谈你的收获!
小结:
1作圆
过一个点-----可以作无数个圆 A
过两个点-----可以作无数个圆 过三个点----不在同一直线上的三个点确定一个圆
在同一直线上的三个点不能作圆 O
2三角形的外接圆
圆的内接三角形
一个 无数个
B
C
3 外心:
确定方法:三边(或任意两边)垂直平分线的交点
性质 : 到三个顶点距离相等 位置: 1锐角三角形:内部 2直角三角形:斜边中点 3钝角三角形:外部
直角三角形的外心位于直角三角形斜边中点.
钝角三角形的外心位于三角形外.
讨论
过如下三点能不能做一个圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
练习拓展
某一个城市在一块空地新建了三个居民小区,它们 分别为A、B、C,且三个小区不在同一直线上,要想规 划一所中学,使这所中学到三个小区的距离相等。请问
C
O
⊙O即为所求。
练一练
已知△ABC,用直尺和圆规作出过点A、B、C 的圆
A
O
C
B
定义
一个三角形的外接圆
经过三角形各个顶点的圆叫做三角形
的外接圆,外接圆的圆心叫做三角形的外
有几个? 心,这个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的外接圆, △ABC是⊙O的内接三角形,点O是
△ABC的外心
平分线MN; 2、连接AC,作线段AC的垂直平分线
B
M
C
EF,交MN于点O;
3、以O为圆心,OB为半径作圆。所 以⊙O就是所求作的圆。
现在你知道怎样将一个如图所示的破损圆 盘复原吗?
方法: 1、在圆弧上任取三
A
B
点A、B、C。
2、作线段AB、BC的 垂直平分线,其交点O
即为圆心。
3、以点O为圆心,OC 长为半径作圆。
(2)当x为何值时,四边形APCD的面积等于3/2。
D C
P
A
B
探究活动
某市要建一个圆形公园,要求公园刚好把动物 园A,植物园B和人工湖C包括在内,又要使这个圆形
的面积最小,请你给出这个公园的施工图。(A、B、
C不在同一直线上)
植物园 人工湖
动物园
18、已知:函数y = (m+1) x+2 m﹣6 (1)若函数图象过(﹣1 ,2),求此函数的解析式。 (2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式。 (3)求满足(2)条件的直线与此同时y = ﹣3 x + 1 的交点 并求这两条直线 与y 轴所围成的三角形面积
-4
3.一个函数图像过点(-1,2),且y随x增大而减少, 则这个函数的解析式是___ y=-x+1
如图,在平面直角坐标系中,点A的坐标是(4,0), 点P在直线y=-x+m上,且AP=OP=4,求m的值。
y
P
o A
x
1.如图,在边长为 的正方形ABCD的一边BC上, 有一点P从点B运动到点C,设BP=X,四边形APCD 的面积 为y。 (1)写出y与x之间的关系式,并画出它的图象。
以 y=5 (x ≤x=31 3);因为当 x> 3时是一次函数, 解:当 时,31= 2x-1 解得:x=16,所以 所以,设:解析式为 y=kx+b,把 ( 2)起步价里程走完之后, 车费为 31元时,他乘车的路程时 16千米。 2元 : x=3,y=5;x=5,y=9 代人得 每行驶 1km需_______ 车费? 解得:
●
(2) 由题意,m +1= 2
解得 m = 1 ∴ y =S△ =
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0, 则在直角坐标系内它的大致图象是( A )
(A) (B) (C) (D) 2、一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能 是( A )
同学们这所中学建在哪个位置?你怎么确定这个位置呢?
●
A
●
B
●
C
数学乐园
图中工具的CD边所在直线恰好垂直平分AB边, 怎样用这个工具找出一个圆的圆心。
A
D
B
·圆心
C
挑战自我
已知:o为△ABC的外心, (1) 若∠A=70°,求∠BOC=?
(2) 若BC=4√3 , O到BC距离为2,求∠BAC=?
确定圆的条件
兰高中学 于红丽
生活中的学问 一位考古学家在长沙马王堆汉墓挖掘时,发现一圆 形瓷器碎片,你能帮助这位考古学家画出这个碎片所在
的整圆,以便于进行深入的研究吗?
想一想
要确定一个圆必须 满足几个条件?
知识回顾
1、过一点可以作几条直线?
2、过几点可确定一条直线?
过几点可以确定一个圆呢?
确定圆的条件
y y y y
o
x
o
x
o
x
o
x
A
B
C
D
三、能力提升1
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时 后,油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。 解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
解:(1)由题意: 2=﹣(m+1)+2m﹣6 解得 m = 9 ∴ y = 10x+12 解得: x =1 , y = ﹣2 ∴ 这两直线的交点是(1 ,﹣2) y = 2x﹣4 与y 轴交于( 0 , 4 ) y = ﹣3x + 1与y 轴交于( 0 , 1)
1 1
(3) 由题意得
y
o -2
﹣ 4
(2)、取t=0,得Q=40;取t=8,得Q=0。描出点 A(0,40),B(8,0)。然后连成线段AB即是所 求的图形。 图象是包括 两端点的线段
注意:(1)求出函数关系式时,
必须找出自变量的取值范围。 (2)画函数图象时,应根据 函数自变量的取值范围来确定图 象的范围。
Q 40 20 0
.A
.B
分别代入上式,得
解得
图象是包括 两端点的线段
解析式为:Q=-5t+40
(0≤t≤8)
Q 40
(2)取点A(0,40),B(8,0), 然后连成 线段AB,即是所求的图形。
点评:画函数图象时,应根据函数自变量的 取值范围来确定图象的范围,比如此题中, 因为自变量0≤t≤8,所以图像是一条线段。 0
8
t
先设出函数解析式,再根据条 件确定解析式中未知的系数, 从而具体写出这个式子的方法,
--待定系数法
练习: 1、直线y=kx+b经过一、二、四象限,则 K < 0, b > 0.
此时,直线y=bx+k的图象只能是( D )
5、柴油机在工作时油箱中的余油量Q(千克)与工作 时间t(小时)成一次函数关系,当工作开始时油箱中有 油40千克,工作3.5小时后,油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式. Q=-5t+40 (2)画出这个函数的图象。 (0≤t≤8)
8 t
y
1.一次函数 y 1=kx+b与y 2=x+a的 图像如图所示,则下列结论(1) k<0;(2)a>0;(3)当x<3时,y 1<y 2 1 中,正确的有____ 个 2.如图,已知一次函数y=kx+b的 图像,当x<1时,y的取值范围是 y<-2 ____
y 2=x+a x o y o 2 3 y 1=kx+b x
O
B
C
外心是△ABC 三条边的垂直平 一个圆的内接 分线的交点,它到三角形的三
三角形有几个?
个顶点的距离相等。
三角形的外心是否一定在三角 形的内部?
A
O
O C
B C
A
B
直角三角形外心是斜边AB 的中点
钝角三角形外心在 △ABC的外面
A A
●
A
●
O
C B ┐
O C B
●
O
B
C
锐角三角形的外心位于三角形内.
所以:函数进行式是y=2x-1( x >3)
能力提升2
2.某医药研究所开发了一种新药,在实际验药时发现,如果成人按 规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时) 的变化情况如图所示,当成年人按规定剂量服药后。 6 (1)服药后____ 毫克。 2 时,血液中含药量最高,达到每毫升_______ (2)服药5时,血液中含药量为每毫升____ 3 毫克。 y=3x (3)当x≤2时,y与x之间的函数关系式是_____ 。 y=-x+8 。 (4)当x≥2时,y与x之间的函数关系式是_________ (5)如果每毫升血液中含药量3毫克 y/毫克 或3毫克以上时,治疗疾病最有效, 6 那么这个有效时间是___ 4 小时。.