浙教版八年级下册数学期末复习题(一)
浙教版八年级下册数学期末测试卷(含答案)
2022年八年级下数学期末测试卷一、选择题:(共10个小题,每小题3分,共30分)1.2022年第24届冬季奥运会在中国北京成功举办,使得北京市成为全世界首个双奥之城,下列图形是某几届冬奥会图标,其中是中心对称图形的是()A.B.C.D.2.下列方程中,属于一元二次方程的是()A.x+2y=0B.x2+x=2xC.3(x﹣1)﹣x=1D.x2=2x﹣13.下列运算正确的是()A.3+2=5B.25﹣5=2C.3×5=15D.63=2 4.从六边形的一个顶点出发最多能画对角线的条数为()A.5条B.4条C.3条D.2条5.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°6.一元二次方程x2﹣6x+4=0配方后可化为()A.(x﹣3)2=5B.(x﹣3)2=13C.(x+3)2=5D.(x+3)2=13 7.甲、乙两地相距100km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.B.C.D.8.某汽车厂4月生产新能源电动汽车2万台,计划5,6月份共生产新能源电动汽车4.5万台,设5、6月平均每月增长率为x,下列所列方程正确的是()A.2(1+x)2=4.5B.2(1+x)+2(1+x)2=4.5C.2(1+2x)=4.5D.2+2(1+x)+2(1+x)2=4.59.平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和2410.如图,正方形ABCD中,AC,BD相交于点O,E为线段BO上一动点(不包括O,B 两点),DF⊥CE于点F,过点A作AG⊥DF于点G,交BD于点H,连结AE,CH,则下列结论:①∠ADG=∠DCF;②DG=EF;③存在点E,使得EF=GF;④四边形AECH是菱形.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,每小题3分,共18分)114x-x的取值范围是.12.在平行四边形ABCD中,若∠B=42°,则∠D=°.13.关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为.14.一个正多边形的外角与其相邻的内角之比为1:4,那么这个多边形的边数为.15.若a2,b2﹣1,则a2﹣ab+b2=.16.如图所示的曲线是反比例函数10yx=的图象的一支,它与直线y=x交于点A,过图象上另一点B(在点A的右侧)作BC∥AO交x轴于点C,若△OBC的面积为4,则四边形OABC的面积为.三.解答题(共8小题,共52分)17.(6分)计算:(1)6212(21 2423318.(6分)解方程:(1)x2﹣4x+3=0 (2)3x2+2x﹣2=0.19.(6分)已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.20.(6分)如图,在4×6的方格纸中,A,B,C三点都在格点上,连结AB,按要求画一个以A,B,C为其中三个顶点的格点四边形.(1)以AB为边作一个对角线垂直且相等的四边形,在图甲中画出示意图;(2)以AB为对角线作一个有一组邻边垂直且相等的四边形,在图乙中画出示意图.21.(6分)某校为了解八年级学生的体能情况,抽取了部分学生进行一分钟跳绳次数的测试,并将测试成绩整理后绘制成如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).(1)参加测试的学生一分钟跳绳的平均次数至少是多少?(2)小明的跳绳次数恰好与参加测试学生跳绳次数的中位数相同,请写出小明跳绳次数所在的范围;(3)该年级共有600名学生,试估计一分钟跳绳次数不低于160次的人数.22.(7分)某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件,设每件衣服降价x元.(1)现在每天卖出件,每件盈利元(用含x的代数式表示);(2)求当x为何值时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(3)要想平均每天盈利2000元,可能吗?请说明理由.23.(7分)已知:如图,在平面直角坐标系中,一次函数y=x+1与反比例函数ayx(a≠0)的图象交于点A(2,m)和点B,与x轴交于点D.(1)求a,m的值及点B的坐标;(2)写出x+1﹣ax≤0时x的取值范围;(3)P是x轴上一点,且满足△P AB的面积等于5.求点P坐标.24.(8分)定义:如果一个凸四边形有三条边相等,那么称这个凸四边形为“准等边四边形”.如正方形就是一个“准等边四边形”.(1)如图,在给定的网格中,找到格点D.使得以A、B、C、D为顶点的四边形是准等边四边形,请按要求画两个且不全等的准等边四边形.(2)如图1,▱ABCD中,对角线CA平分∠BCD,将线段CD绕点C顺时针方向旋转一个角度α(0<α<∠B)至CE,连接AE、DE.①求证:四边形ABCE是准等边四边形;②如图2,连接BE,求证:∠BED=∠ACB;(3)如图3,在准等边四边形ABCD中,AB=BC=CD=2,∠BCD=90°,∠B=150°,请求出∠BAD的大小及该四边形的面积.参考答案与试题解析一.选择题(共10小题)1.解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.2.解:A.是二元一次方程,故本选项不合题意;B.是分式方程,故本选项不合题意;C.是一元一次方程,故本选项不合题意;D.是一元二次方程,故本选项符合题意;故选:D.332不是同类二次根式,不能加减,故选项A错误;555,故选项B错误;3515C错误;632=,故选项D错误.故选:C.4.解:由n边形的一个顶点可以引(n﹣3)条对角线,故过六边形的一个顶点可以画对角线的条数是3,故选:C.5.解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.6.解:∵x2﹣6x+4=0,∴x2﹣6x=﹣4,则x2﹣6x+9=﹣4+9,即(x﹣3)2=5,故选:A.7.解:根据题意可知时间y(小时)与行驶速度x(千米/时)之间的函数关系式为:y=100 x(x>0),所以函数图象大致是B.故选:B.8.解:根据题意得:2(1+x)+2(1+x)2=4.5.故选:B.9.解:A、根据三角形的三边关系可知:4+8=12<14,不能构成三角形,故此选项不符合题意;B、5+7=12<14,不能构成三角形,故此选项错误,不符合题意;C、9+5=14,不能构成三角形,故此选项错误,不符合题意;D、5+12=17>14,能构成三角形,故此选项正确,符合题意.故选:D.10.解:∵四边形ABCD是正方形,DF⊥CE∴∠ADC=90°,∠DFC=90°,∴∠ADG=90°﹣∠FDC=∠DCF,故①正确;在△ADG和△DCF中,,∴△ADG≌△DCF(AAS),∴DG=CF,∵E为动点,∴DE不一定等于DC,∴CF不一定等于EF,∴DG不一定等于EF,故②错误;∵DF⊥CE,AG⊥DF,∴CE//AG,∴∠ECA=∠HAC,∵四边形ABCD是正方形,∴直线BD为正方形ABCD的对称轴,AC⊥BD,OA=OC,∴AH=CH,∴∠HAC=∠HCA,∴∠ECA=∠HCA,∴OE=OH,∴四边形AECH对角线互相垂直平分,∴四边形AECH是菱形,故④正确;∴CE=AH,∴HG=AG﹣AH=AG﹣CE,而△ADG≌△DCF有AG=DF,DG=CF,∴HG=DF﹣CE=(DG+GF)﹣(CF+EF)=GF﹣EF,∵E为线段BO上一动点(不包括O,B两点),∴HG≠0,即GF﹣EF≠0,∴GF≠EF,故③不正确;∴正确的有①④,故选:B.二.填空题(共6小题)11.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.解:∵在▱ABCD中,∠B=42°,∴∠D=∠B=42°.故答案为:42.13.解:∵关于x的一元二次方程x2+6x+m=0有两个相等的实数根,∴Δ=0,即62﹣4×1×m=0,解得m=9.故答案为:9.14.解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有:x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故答案为:十.15.解:∵a=2+1,b=2﹣1,∴a+b=2+1+2﹣1=22,ab=(2+1)(2﹣1)=2﹣1=1,∴原式=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(22)2﹣3×1=8﹣3=5.故答案为:5.16.解:由解得或,∴A(10,10),过点A,B分别作x轴的垂线,垂足分别是M,N则AM=OM,BN=CN设点B的纵坐标为n(n>0),则BN=CN=n,∵点B的坐标为(10n,n),∴ON=10n,∴OC=10n﹣n,∵△OBC的面积为4,∴12OC•BN=4,即12×(10n﹣n)•n=4,解得n2,∴B(22,S△BCN=1222=1,∴S四边形OABC=S△AOM+S梯形AMNB﹣S△BCN=12×10+12(1022101=5﹣1=5.故答案为:5.三.解答题(共8小题)17.解:(1)原式=6;(2318.解:(1)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,所以x1=3,x2=1;(2)3x2+2x﹣2=0,a=3,b=2,c=﹣2,Δ=22﹣4×3×(﹣2)=28>0,x===,所以x1=,x2=.19.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,又∵E,F分别是AB,CD的中点,∴AE=BE=12AB,CF=DF=12CD,∴BE=DF,AE=CF,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS);(2)由(1)知AE=CF,△AFD≌△CEB,∴AF=CE,∴四边形AECF是平行四边形.20.解:(1)如图甲中,四边形ABDC即为所求;(2)如图乙中,四边形ACBD即为所求.21.解:(1)1003120101401516061804200231015642⨯+⨯+⨯+⨯+⨯+⨯+++++=142(次),答:参加测试的学生一分钟跳绳的平均次数至少是142次;(2)∵共抽取人数为3+10+15+6+4+2=40(人),∴将测试成绩整理从小到大排列,中位数是第20,21个数的平均数,∵由频数分布直方图得,第20,21个数都在140~160的范围,∴小明跳绳次数所在的范围是140~160;(3)600×64240++=180(人),答:估计一分钟跳绳次数不低于160次的人数有180人.22.解:(1)由题意得:每天卖出衣服的数量为:(20+2x)件,每件的盈利为:(90﹣x)﹣50=(40﹣x)元,故答案为:(20+2x),(40﹣x);(2)由题意得:(90﹣x﹣50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;(3)不可能,理由如下:依题意得:(90﹣x﹣50)(20+2x)=2000,整理得:x2﹣30x+600=0,Δ=(﹣30)2﹣4×600=900﹣2400=﹣1500<0,则原方程无实数解.则不可能每天盈利2000元.23.解:(1)∵一次函数y=x+1经过点A(2,m),∴m=2+1=3,∴A(2,3),∵点A在反比例函数y=ax(a≠0)的图象上,∴a=2×3=6,∴反比例函数为y=6x,解得或,∴B的坐标为(﹣3,﹣2);(2)观察图象可知:x+1﹣ax≤0时x的取值范围是x≤﹣3或0<x≤2;(3)设点P的坐标为(m,0),在y=x+1中,令y=0,得x=﹣1,∴点D的坐标为(﹣1,0),∵S△P AB=S△P AD+S△PBD=12×|m+1|×3+12|m+1|×2=5,∴|m+1|=2,∴m=1或﹣3,∴点P的坐标为(﹣3,0)或(1,0).24.(1)解:由图可知:AB=AC,∴只要作CD或BD中至少一条与AB相等就可,故作图(1),由四种画法,任选其中两种即可.(2)证明:①∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠BAC,∵AC平分∠BCD,∴∠ACD=∠ACB,∴∠ACB=∠BAC,∴AB=BC,由旋转得:CD=CE,∴AB=BC=CE,∴四边形ABCE是准等边四边形.②延长EC至点H,∵BC=CE=CD,∴∠CBE=∠CEB,∠CDE=∠CED,∴∠DCH=∠CDE+∠CED=2∠CED,∠BCH=∠CBE+∠CEB=2∠CEB,∴∠DCH﹣∠BCH=2∠CED﹣2∠CEB=2∠BED,∴∠BCD=2∠BED,由①得:∠ACB=∠ACD,∴∠BCD=2∠ACB,∴∠BED=∠ACB.(3)如图(3),过点B、点D分别作BC和CD的垂线交于点F,连接AF,∵BF ⊥BC ,DF ⊥CD ,∠C =90°,∴四边形BCDF 是矩形,∵CD =BC ,∴四边形BCDF 是正方形,∴DF =FB =AB =2,∵∠ABC =150°,∠FBC =90°,∴∠ABF =∠ABC ﹣∠FBC =60°,∴△ABF 是等边三角形,∴∠F AB =∠AFB =60°,AF =FB =DF ,∴∠AFD =∠AFB +∠BFD =150°,∠F AD =∠FDA , ∴∠F AD =12(180°﹣150°)=15°, ∴∠DAB =∠F AB ﹣∠F AD =60°﹣15°=45°, 过点A 作AG ⊥CD 于点G ,交BF 于点K , ∴∠KAB =30°,∵AB =2,∴BK =GC =1,∴AK =3,∴AG =AK +KG =3+2,∴GD =CD ﹣GC =2﹣1=1,∴S 四边形ABCD =S △ADG +S △ABK +S 矩形GKBC =()1113213213322⨯⨯++⨯⨯+⨯=+. ∴∠DAB =45°,四边形ABCD 的面积为3+3.。
浙教版八年级下册数学期末练习卷(含答案)
浙教版八年级下册数学期末练习卷一、选择题(共10题;共30分)1.(3分)下列式子中,x可以取−1和2的是( )A.1x−2B.x−1C.x+2D.x2−2 2.(3分)既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)如图,在▱ABCD中,∠A+∠C=80°,则∠D=( )A.140°B.40°C.70°D.80°4.(3分)将一元二次方程x2-x-1=0配成(x+p)2=q的形式,则p的值是( )A.-1B.1C.12D.−125.(3分)牛顿曾说过:“反证法是数学家最精良的武器之一”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( )A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中没有一个内角小于60°D.三角形中每个内角都大于60°6.(3分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环).及方差s2(单位:环2)如下表所示,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁A.甲B.乙C.丙D.丁7.(3分)《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x尺,则可列方程为( )A.x2+102=(x+1)2B.x2+102=x2C.(x−4)2+10=x2D.x2+102=(x−4)28.(3分)已知点A(x₁,y₁),B(x₂,y₂)在反比例函数y =6的图象上,且:x1<0<x2,则下列结论x一定正确的是( )A.y₁+y₂<0B.y₁+y₂>0C.y₁<y₂D.y₁>y₂9.(3分)如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限x的图.象经过顶点A(m,m+3)和CD上的点E,且OB−CE=1,过点E的直线l交x轴于点F,交y轴于点G(0,−3),则OF的长为( )A.4.5B.5C.5.4D.610.(3分)如图,在正方形ABCD中,已知点P是线段AB上的一个动点(点P与点A不重合),作CQ⊥DP 交AD于点Q.现以PQ,CQ为邻边构造平行四边形PECQ,连接BE,则∠BEP+∠PQC的最小值为( )A.90°B.45°C.22.5°D.60°二、填空题(共6题;共18分)11.(3分)若二次根式x−4在实数范围内有意义,则x的取值范围是 .12.(3分)下面是某班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个3538424548人数35744则该班女同学每分钟仰卧起坐个数的中位数是 .13.(3分)若n边形的每一个外角都是40°,则n的值为 14.(3分)已知关于x的一元二次方程a x2+bx+c=0满足a−b+c=0,则方程必有一个根为 .15.(3分)如图,用4张全等的直角三角形纸片拼成的图案,若直角三角形纸片的较长直角边为4,拼成的中间小正方形面积为1,则四边形ABCD的面积为 .16.(3分)如图,A,C是正比例函数y=x的图象与反比例函数y=4的图象的交点,过点A作AD⊥xx轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD的周长为 .三、解答题(共8题;共72分)17.(8分)计算.(1)(4分)8+32−18(2)(4分)12+|3−2|+(12)−118.(8分)解方程:(1)(4分)x2+6x=−3;(2)(4分)x(x−7)=8(7−x)19.(6分)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)(2分)条形统计图中被墨汁污染的人数为 人.“8本”所在扇形的圆心角度数为 °;(2)(2分)求被抽查到的学生课外阅读量的平均数和中位数;(3)(2分)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.20.(6分)如图,△ABC的中线BE、CF相交于点G,已知点P,Q分别是BG,C的中点.(1)(3分)求证:四边形EFPQ是平行四边形;(2)(3分)若FG⊥BF,请判断FP与GE的数量关系,并说明理由.21.(8分)如图,一次函数y=-x+4的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B(b,1)两点,与x轴交于点C,与y轴交于点D.(1)(3分)求点B的坐标和反比例函数的表达式;(2)(2分)直接写出当x>0时,不等式-x+4-kx>0的解集;(3)(3分)若点P在y轴上,且△APB的面积为3,求点P的坐标.22.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)(3分)求证:△ABF≌△EDF;(2)(7分)如图,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(12分)根据以下素材,探索完成任务.如何改造硬纸板制作无盖纸盒?背景学校手工社团小组想把一张长50cm,宽40cm的矩形硬纸板,制作成一个高5cm,容积4680c m3的无盖长方体纸盒,且纸盒的长不小于32cm (纸板的厚度忽略不计).方案初始方案:将矩形硬纸板竖着裁剪xcm(阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.改进方案:将矩形硬纸板竖着裁剪xcm ,横着裁剪ycm (阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.问题解决任务1判断方案请通过计算判断初始方案是否可行?任务2改进方案改进方案中,当x =y 时,求x 的值.任务3探究方案当裁剪后能制作成符合要求的纸盒时,写出y关于x 的函数关系式.24.(14分) 阅读材料:已知a ,b 为非负实数,∵a +b−2ab =(a )2+(b )2−2a ⋅b =(a −b )2≥0,∴a +b ≥2ab ,当且仅当“a =b ”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知x >0,求代数式x +4x最小值.解:令a =x ,b =4x ,则由a +b ≥2ab ,得x +4x ≥2x ⋅4x =4.当且仅当x =4x,即x =2时,代数式取到最小值,最小值为4.根据以上材料解答下列问题:(1)(3分)已知x >0,则当x = 时,代数式x +3x到最小值,最小值为 ;(2)(3分)用篱笆围一个面积为100m 2的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)(5分)已知x >0,则自变量x 取何值时,代数式xx 2−2x +9取到最大值?最大值为多少?(4)(3分)若x 为任意实数,代数式xx 2+4x +5的值为m ,则m 范围为 .答案解析部分1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】x≥412.【答案】4213.【答案】914.【答案】x=-115.【答案】2516.【答案】45+417.【答案】(1)解:原式=22+32-32=22(2)解:原式=23+2-3+2=4+318.【答案】(1)x1=−3+6,x2=−3−6(2)x1=7,x2=−819.【答案】(1)4;108(2)被调查同学阅读量的平均数为8.7本,中位数为9本(3)m的最大值为320.【答案】(1)证明:∵BE、CF是△ABC的中线,∴EF 是△ABC 的中位线,∴EF ∥BC ,EF =12BC ,∵P 、Q 分别是BG 、CG 的中点,∴ PQ 是△BCG 的中位线,∴PQ ∥BC ,PQ =12BC ,∴EF ∥OQ ,EF =PQ ,∴四边形EFPQ 是平行四边形;(2)解:FP =GE ,理由如下:∵四边形EFPQ 是平行四边形,∴GP =GE ,∵FG ⊥BF ∴∠BFG =90°,又∵P 是BG 中点,∴FP =GP =12BG .∴FP =GE .21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=kx(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).22.【答案】(1)证明:∵四边形ABCD 是矩形∴∠A =∠C ,AB =CD又∵矩形ABCD 沿BD 折叠∴∠C =∠E ,CD =ED ∴∠A =∠E ,AB =DE在△ABF 和△EDF 中{∠A =∠E ∠AFB =∠EFD AB =DE∴△ABF≌△EDF (AAS )(2)解:①四边形BFDG 是菱形,理由如下:∵四边形ABCD 是矩形∴FD ∥BG又∵DG ∥BF ,FD ∥BG ∴四边形BFDG 是平行四边形又∵四边形BFDG 是平行四边形,DF =BF ∴四边形BFDG 是菱形②∵四边形ABCD 是矩形,AB =6,AD =8∴BD =AB 2+AD 2=62+82=10,OB =12BD =5设BF =DF =x ,则AF =AD−DF =8−x 在Rt △ABF 中,A B 2+A F 2=B F 2∴62+(8−x )2=x 2解得:x =254,即BF =254∴FO =BF 2−OB 2=(254)2−52=154∴FG =2FO =15223.【答案】解:任务1:根据题意得:(50−x−2×5)×(40−2×5)×5=4680,解得:x =8.8,此时长方体盒子的长为:50−8.8−2×5=31.2(cm)<32cm ∴初始方案是不可行;任务2:当x =y 时,根据题意得:(50−x−2×5)×(40−x−2×5)×5=4680, 解得:x 1=4或x 2=66,当x 1=4时,盒子的长为50−2×5−4=36>32,符合题意; 当x 2=66时,盒子的长为50−2×5−66=−26<32,不符合题意;∴x 的值为4;任务3:y =30−93640−x,24.【答案】(1)3;23(2)解:设这个矩形的长为x 米,篱笆周长为y 米,根据题意,用篱笆围一个面积为100m 2的矩形花园,则矩形的宽为100x米,∴y =2(x +100x )≥4x ⋅100x=40,当且仅当x =100x时,取等号,即当x =10时,函数有最小值,最小值为40,∴这个矩形花园的长、宽均为10米时,所用的篱笆最短,最短的篱笆的长度是40米(3)解:∵x >0,∴y =xx 2−2x +9=1x−2+9x =1x +9x −2,又∵x +9x ≥2x ⋅9x=6,当且仅当x =9x 时,即当x =3时,(x +9x)取最小值,最小值为6,∴此时y 有最大值,最大值为y =16−2=14,∴自变量x =3时,函数y =x x 2−2x +9取最大值,最大值为14.(4)−52−1≤m ≤52−1。
浙教版八年级下册数学期末测试卷(带答案)
2022年八年级下数学期末模拟测试卷一、选择题:(共10个小题,每小题3分,共30分) 1.下列常用手机APP 的图标中,是中心对称图形的是( )A .B .C .D .2.以下等式成立的是( ) A .5)2=5B 4949+C ()233-=- D 6463.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行综合考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的各项分数依次为90、88、85分,那么小王的最后综合得分是( ) A .87 B .87.5C .87.6D .884.将一元二次方程x 2﹣8x +10=0通过配方转化为(x +a )2=b 的形式,下列结果中正确的是( ) A .(x ﹣4)2=6B .(x ﹣8)2=6C .(x ﹣4)2=﹣6D .(x ﹣8)2=545.某工厂2021年数字化改造总投入100万元,2023年总投入预计达到180万元,设年平均增长率为x ,则可列方程为( ) A .100(1+x )=180 B .100(1+2x )=180C .100(1+x +x 2)=180D .100(1+x )2=1806.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y =xπ的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1 C .y 2>y 1>y 3 D .y 3>y 1>y 2 7.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为( )A .8﹣3B .9﹣3C .33D .32第7 题图 第8题图 第9 题图8.如图,在平面直角坐标系xOy 中,△AOB 的顶点B 在x 轴正半轴上,顶点A 在第一象限内,AO =AB ,P ,Q 分别是OA ,AB 的中点,函数y =kx(k >0,x >0)的图象过点P ,连接OQ ,若S △OPQ =3,则k 的值为( ) A .1.5B .2C .3D .69.如图,小宾利用尺规进行作图:作∠ABC 的角平分线BP ,圆弧与角的两边分别交于A ,C 两点,连结AC 交BP 于点O ,在射线OP 上截取OD =OB ,连结AD ,CD .若∠ABO =20°,则∠ACD 的大小是( )A.90°B.80°C.70°D.60°10.如图,已知四边形ABCD是矩形,点M在BC上,BM=CD,点N在CD上,且DN=CM,DM与BN交于点P,则DM:BN=()A32B.12C23D.25二.填空题(共6小题,每小题3分,共18分)1131m-m能取的最小整数是.12.一个多边形的每一个外角都等于72°,则这个多边形是边形.13.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为.14.如图,在矩形ABCD中,AB=8,AD=6,将矩形沿EF翻折,使点C与点A重合,点B落在B′处,折痕与DC,AB分别交于点E,F,则DE的长为.第14 题图第16题图15.对于反比例函数y=12x-,当y>4时,x的取值范围是;当x<2且x≠0时,y的取值范围是.16.如图,对折矩形纸片ABCD,使边AD与BC重合,折痕为EF,将纸片展平后再次折叠,使点A落在EF上的点G处,折痕BH交EF于点M.若BCAB=m(m>1),则FGEM的值为.(用含m的代数式表示)三.解答题(共8小题,共52分)17.(6分)计算:(120545(2)(122218.(6分)用适当的方法解下列方程:(1)2(x﹣2)2=x﹣2 (2)x2﹣10x+8=019.(6分)某学校开展了防溺水知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了统计图(部分信息未给出).根据图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数分布直方图;(2)这次测试成绩的中位数是什么等级?(3)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?20.(6分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于点O.(1)求证:AD与BE互相平分;(2)若AB⊥AC,AC=BF,BE=8,FC=2,求AB的长.21.(6分)如图在正方形ABCD中,E是对角线AC上一点,FH⊥AC点E,交AD,AB于点F,H.(1)求证:CF=CH.(2)若AH=13CH,AB=4,求AH的长.22.(7分)如图,一次函数y1=ax+b与反比例函数y2=kx的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,求出自变量x的取值范围;(3)点P是x轴上一点,当S△P AC=45S△AOB时,请求出点P的坐标.23.(7分)某大型果品批发商场经销一种高档坚果,原价每千克64元,连续两次降价后每千克49元.(1)若每次下降的百分率相同,求每次下降的百分率;(2)若该坚果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少40千克.现该商场要保证销售该坚果每天盈利4500元,且要减少库存,那么每千克应涨价多少元?24.(8分)如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.参考答案与试题解析一.选择题(共10小题)1.解:选项A 、B 、D 不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形, 故选:C .2.解:A 、原式=5,所以A 选项正确; B 13B 选项错误; C 、原式=|﹣3|=3,所以C 选项错误; D 、原式=6,所以D 选项错误. 故选:A . 3.解:由题意可得, 小王的最后综合得分是:=88(分),故选:D .4.解:x 2﹣8x =﹣10, x 2﹣8x +16=6, (x ﹣4)2=6. 故选:A .5.解:设年平均增长率为x ,则2022的数字化改造总投入为:100(1+x )万元,2023的数字化改造总投入为:100(1+x )2万元,那么可得方程:100(1+x )2=180. 故选:D .6.解:∵反比例函数y =x中,k =π>0, ∴此函数图象的两个分支在一、三象限, ∵x 1<x 2<0<x 3,∴A 、B 在第三象限,点C 在第一象限, ∴y 1<0,y 2<0,y 3>0,∵在第三象限y 随x 的增大而减小, ∴y 1>y 2, ∴y 3>y 1>y 2. 故选:D .7.解:∵两个相邻的正方形,面积分别为3和9, 33,33333. 故选:C .8.解:作AD ⊥x 轴于D ,PE ⊥x 轴于E , ∵AO =AB ,∴OD=BD,∵P,Q分别是OA,AB的中点,∴S△AOB=2S△AOQ,S△AOQ=2S△POQ=6,∴S△AOB=12,∴S△AOD=12S△AOB=6,∵PE∥AD,∴△POE∽△AOD,∴=()2=14,∴S△POE=14S△AOD=32,∵函数y=kx(k>0,x>0)的图象过点P,∴S△POE=12|k|,∴|k|=3,∵k>0,∴k=3,故选:C.9.解:∵圆弧与角的两边分别交于A,C两点,∴AB=BC,∵∠ABO=20°,BP是∠ABC的角平分线,∴∠DBC=∠ABO=20°,AC⊥BD,∵OD=OB,∴∠DBC=∠BDC=20°,∴∠BCD=180°﹣20°×2=140°,∴∠ACD=12∠BCD=70°.故选:C.10.解:设BM=CD=a,DN=CM=b,∴BC=a+b,NC=a﹣b,∵四边形ABCD是矩形,∴∠DCB=90°,在Rt△DCM和Rt△BCN中,由勾股定理得,DM==,BN===2•,∴DM:BN=1:2,故选:B.二.填空题(共6小题)11.解:由题意,可得3m﹣1≥0,解得:m≥13,∴m能取的最小整数是1,故答案为:1.12.解:边数n=360°÷72°=5.故答案为:五.13.解:∵x=2是关于的x方程x2+mx+3=0的一个根,∴4+2m+3=0,解得m=﹣72.故答案为:﹣72.14.解:如图,在矩形ABCD中,AB=DC=8,AD=6.设DE=x,则CE=8﹣x,根据折叠的性质知:CE=8﹣x.在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8﹣x)2.解得x=74.即DE的长为74.故答案是:74.15.解:反比例函数y=12x的图象为:由图象可以看出,在直线y=4的上方,函数图象所对应的取值为﹣3<x<0;在直线x=2的左边,图象所对应的y的值在第四象限的取值为y<﹣6,在第二象限y的值为y>0;故答案为:﹣3<x<0;y<﹣6或y>0.16.解:已知BCAB=m(m>1),设BC=m,则AB=1,对折矩形纸片ABCD,使边AD与BC重合,折痕为EF,则AE=BE=12,∠GEB=90°,由点A落在EF上的点G处,折痕BH交EF于点M,可知,AB=BG=1,∠ABH=∠GBH在Rt△BEG中,BE=12,BG=1,∴∠EGB=30°,EG33,∴∠EBG=60°,即∠ABH=∠GBH=30°,∵EF=BC=m,∴FG=EF﹣EG=m 3,在Rt△BEM中,EM 3BE3,∴FGEM==23m﹣3.故答案为:3﹣3.三.解答题(共8小题)17.解:(1)原式=5;(2218.解:(1)∵2(x﹣2)2=x﹣2,∴2(x﹣2)2﹣(x﹣2)=0,则(x﹣2)(2x﹣5)=0,∴x﹣2=0或2x﹣5=0,解得x1=2,x2=2.5;(2)∵x2﹣10x+8=0,∴x2﹣10x=﹣8,则x2﹣10x+25=﹣8+25,即(x﹣5)2=17,∴x﹣5=17则x1=17x2=51719.解:(1)被抽查的学生人数是30÷15%=200(人).合格人数为200﹣30﹣80﹣40=50(人).补全频数分布直方图如图:(2)200个数据从小到大排列处在中间位置的两个数是第100、101位的两个数的平均数,所以这次测试成绩的中位数会落在良好等级;(3)(人).答:该校获得优秀的学生有300人.20.(1)证明:如图,连接BD、AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分;(2)解:∵FB=CE,∴BE=2BF+FC,∴BF==3,∴AC=BF=3,BC=BF+FC=3+2=5,∵AB⊥AC,∴由勾股定理得:AB===4.21.解:(1)证明:∵四边形ABCD为正方形,∴∠F AE=∠HAE,∵FH⊥AC,∴∠FEA=∠HEA=90°,在△FEA和△HEA中,,∴△FEA≌△HEA(ASA),∴FE=EH,∴AC垂直平分FH,∴CF=CH,(2)设AH=x,则CH=3x,HB=4﹣x∵四边形ABCD为正方形,∴BC=AB=4,∠B=90°,在Rt△CBH中,由勾股定理得,CH2=HB2+BC2,即(3x)2=(4﹣x)2+42,解得:x=或x=(舍去),故AH=.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=kx得8=2k,解得k=16,∴反比例函数的解析式为y=16x;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=45S△AOB=45×30=24,∴2S△AOP=24,∴2×12OP×y A=24,即2×12OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)设每次下降的百分率为a,根据题意,得:64(1﹣a)2=49,解得:a1=1.875(舍去),a2=0.125=12.5%,答:每次下降的百分率为12.5%;(2)设每千克应涨价x元,由题意,得:(10+x)(500﹣40x)=4500,整理,得2x2﹣5x﹣25=0,解得:x1=5,x2=﹣2.5(不合题意舍去),答:该商场要保证每天盈利4500元,那么每千克应涨价5元.24.(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E在BC的延长线上,点G在DC的延长线上,∴AB∥DG∥EF,∴∠B=∠E,在△ABH和△HEF中,,∴△ABH≌△HEF(SAS).(2)如图2,设FH交CG于点P,连结CF,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∵BH=CH,∴AH⊥BC,∴∠AHB=90°,由(1)得,△ABH≌△HEF,∴∠HFE=∠AHB=90°,∵DG∥EF,∴∠DPF=180°﹣∠HFE=90°,∴PF⊥CG,∵CG=FG,∠G=∠E=∠B=60°,∴△GFC是等边三角形,∴PC=PG=12 CG;∵BC=AB=2,∴CG=EF=BH=12BC=1,∴PC=12;∵CD=AB=2,∴PD=12+2=,∵CF=CG=1,∴PF2=CF2﹣PC2=12﹣(12)2=,∴DF===.(3)如图3,作FM⊥BG于点M,则∠BMF=90°,∵EH⊥BC,即EH⊥BG,∴EH∥FM,∵∠CEF=∠ACB=60°,∴EF∥MH,∴四边形EHMF是平行四边形,∵∠EHM=90°,∴四边形EHMF是矩形,∴EH=FM;∵EF=EC,∠CEF=60°,∴△CEF是等边三角形,∴CE=CF,∵∠EHC=∠FMC=90°,∴Rt△EHC≌Rt△FMC(HL),∴CH=CM=12 CG;∵CG=CE=BH,∴CH=12 BH,∴CM=CH=BC=×2=,∴CF=CG=2CM=2×=,∴FM2=()2﹣()2=,∵BM=2+=,∴BF====.。
【浙教版】初二数学下期末试题(带答案)
一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.平均数是54 D.方差是292.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5 B.86.5 C.90 D.90.53.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③4.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.85.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 7.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 8.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 9.3 )A .3B .3C .﹣3D .3310.如图,已知正方形ABCD 的边长为4,点Р是对角线BD 上一动点(不与D ,B 重合),PF CD ⊥于点F ,PE BC ⊥于点E ,连接AP ,EF .则下列结论错误的是( )A .2PD EC =B .AP EF =,且AP EF ⊥C .四边形PECF 的周长是8D .12BD EF AB ≤< 11.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形12.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=0二、填空题13.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.14.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 8.9 环,方差分别是 S 甲2=1.7,S 乙 2=1.2,则关于甲、乙两人在这次射击训练中成绩稳定是___________.(填“甲”或“乙”)15.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.16.在平面直角坐标系中,有直线1l :25y x =+和直线2l :1y x 53=+,直线2l 的有一个点M ,当M 点到直线1l 的距离小于5,则点M 的横坐标取值范围是________. 17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的图形就用了这种分割方法若5AE =,正方形ODCE 的边长为1,则BD 等于___________.18.如果最简二次根式123b a ++和3a b +是同类二次根式,则ab =____________. 19.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.20.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.三、解答题21.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.22.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.23.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元. 甲种客车 乙种客车载客量(人/辆) 30 45租金(元/辆) 200280 (1)求出y (元)与x (辆)之间函数关系式;(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?24.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.25.计算:202023125|12|8(3)-+--+---26.如图,ABC 中,90C ∠=︒,16AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交AC 于点D ,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54, 方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D . 2.A解析:A【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A .【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.3.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确; ③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.4.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B .【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大. 5.D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 6.B解析:B【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.8.A解析:A【分析】根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.9.D解析:D【分析】直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数;【详解】. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键; 10.A解析:A【分析】由三个直角的四边形是矩形,由此判断四边形PECF 是矩形,得到EC PF =,再结合正方形的性质,解得PD =,由此判断A ;过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,由角平分线的性质得到PN PE =,继而结合勾股定理证明AP EF =、证明四边形PEFM 是平行四边形,即可得到EF PM AP ==,设BE x =,结合勾股定理证明222PM A M P A +=,即可判断B ;根据等腰直角三角形的性质计算四边形PECF 的周长即可判断C ;设BE x =,由勾股定理解得EF 的长,再结合04x ≤≤,解得EF 与BD AB 、的数量关系即可判断D .【详解】解:A. ,PE BC PF CD ⊥⊥90PEC PFC ∴∠=∠=︒90C ∠=︒∴四边形PECF 是矩形EC PF ∴=正方形ABCD 中45PDF ∠=︒PD ∴==故A 错误;B.过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,BD 平分ABC ∠,PN AB ⊥,PE BC ⊥PN PE ∴=222222,AP AN PN EF EC PE =+=+且,AN EC PN PE ==AP EF ∴=//,//PM EF PE CD∴四边形PEFM 是平行四边形EF PM AP ∴==设BE x =,则,42PE FC MF x DM x ====-,4EC PF x ==-22(4)AP EF PM x x ===+-222216(42)AD MD AM x +==+-222AP PM AM +=AP PM ∴⊥AP EF ∴⊥故B 正确;C. BPE 为等腰直角三角形PE BE ∴=4PE PF BE EC BC ∴+=+==故四边形PECF 的周长为2()8PE PF +=, 故C 正确;D.设BE x =EF ∴=2222(4)28+16=2(2)4x x x x x +-=--+04x ≤≤42EF ∴≥12EF BD ∴≥ 4EF <EF AB ∴<12BD EF AB ∴≤< 故D 正确,故选:A.【点睛】本题考查四边形的综合题,涉及勾股定理、矩形的判定与性质、正方形的判定与性质、平行四边形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.11.C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.12.C解析:C【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(3﹣m)2,整理即可解答.【详解】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.二、填空题13.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5.【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.14.乙【分析】根据方差的定义方差越小数据越稳定即可求解【详解】因为S 甲2=17>S乙2=12方差小的为乙所以关于甲乙两人在这次射击训练中成绩稳定是乙故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一解析:乙【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】因为S甲2=1.7>S乙2=1.2,方差小的为乙,所以关于甲、乙两人在这次射击训练中成绩稳定是乙.故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A地共用时此时两车间距离减少求得乙车的速度为由经过时两车相遇求得甲车的速度再求得甲车到达B地时所用时间即可求解【详解】甲车开车半小时后解析:80【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A地共用时1h,此时两车间距离减少80km,求得乙车的速度为80/km h,由经过3h时,两车相遇,求得甲车的速度,再求得甲车到达B地时,所用时间,即可求解.【详解】甲车开车半小时后返回再到达出发点A地共用时1h,而此时两车间距离减少48040080-=(km),则乙车的速度为80/km h,3h时,两车距离为0,即两车相遇,()31803480v -+⨯=甲,解得:120v =甲(/km h ),∴甲车到达B 地时,共用时48015120t =+=(h ), 此时,乙车行驶了580400⨯=(km ),则乙车离A 地的路程为48040080-=(km ),故答案为:80.【点睛】本题考查了函数图象的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x 和y 表示的数量关系.16.【分析】利用点到直线的距离公式得到M 的坐标之间的关系式与直线联立解方程组即可得到界点值根据题目要求写出符合题意的范围即可【详解】设点M(mn)直线与坐标轴的交点为EA 与坐标轴的交点为EF 过点A 作AB 解析:33m -<<【分析】利用点到直线的距离公式,得到M 的坐标之间的关系式,与直线2l 联立,解方程组即可得到界点值,根据题目要求,写出符合题意的范围即可.【详解】设点M(m ,n),直线1l 与坐标轴的交点为E ,A ,2l 与坐标轴的交点为E ,F ,过点A 作AB ⊥EF ,垂足为B ,过点M 作MC ⊥EA ,垂足为C ,过点M 作MD ⊥y 轴,垂足为D ,根据题意,得OE=5,OA=52,OF=15,AF=OF-OA=252,∴=, ∴1122EF AB AF OE ⋅=⋅,∴11255222AB ⨯=⨯⨯,∴AB=4, ∴sin ∠AEB=AB AE=510 4 552=22,∴∠AEB=45°,∴MC=CE,∴ME=10,∴222MD ED ME+=,∴22(5)10m n+-=,∴221(55)103m m+--=,∴29m=,∴3m=±,∵M点到直线1l5∴点M的横坐标取值范围是33m-<<.故答案为33m-<<.【点睛】本题考查了交点坐标的确定,图形的面积,三角函数的定义,不等式解集的确定,熟记坐标与线段的关系,三角函数的定义是解题的关键.17.【分析】设BD=x正方形ODCE的边长为1则CD=CE=1根据全等三角形的性质得到AF=AEBF=BD根据勾股定理即可得到结论【详解】解:设正方形ODCE 的边长为1则CD=CE=1设BD=x∵△AF解析:32【分析】设BD=x,正方形ODCE的边长为1,则CD=CE=1,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【详解】解:设正方形ODCE的边长为1,则CD=CE=1,设BD=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE=5,BF=BD=x,∴AB=x+5,AC=5+1=6,BC=x+1,∵在Rt△ABC中,AC2+BC2=AB2,∴(x+1)2+62=(x+5)2,∴x=32,故答案为:32.【点睛】本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.18.0【分析】根据最简二次根式及同类二次根式的定义得求出ab的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键解析:0【分析】根据最简二次根式及同类二次根式的定义得12233ba a b+=⎧⎨+=+⎩,求出a、b的值代入计算即可.【详解】由题意得12233ba a b+=⎧⎨+=+⎩,解得10 ba=⎧⎨=⎩,∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.19.【分析】连接并延长交于Q由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q∵矩形全等于矩形∴∴∵点H为的中点解析:42【分析】连接GH并延长GH交CD于Q,由矩形的性质得出20AB CD BG===,12BC FG==,////,90FG AE CD GCQ∠=,由平行线的性质得出HFG HDQ∠=∠,由ASA证得HFG HDQ≌,得出12DQ FG==,HG HQ=,8CG BG BC=-=,8CQ CD DQ=-=,则GCQ是等腰直角三角形,得出282GQ CQ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH并延长GH交CD于Q,∵矩形ABCD全等于矩形BEFG,∴20AB CD BG===,12BC FG==,////FG AE CD,90GCQ∠=,∴HFG HDQ∠=∠,∵点H为DF的中点,∴HF HD=,在HFG和HDQ中,HFG HDQHF HDGHF QHD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA≌,∴12DQ FG==,HG HQ=,20128CG BG BC=-=-=,20128CQ CD DQ=-=-=,∴GCQ是等腰直角三角形,∴282GQ CQ==在Rt GCQ中,HG HQ=,∴11824222CH GQ==⨯=故答案为:2【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.20.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.三、解答题21.(1)9.6度;(2)9度;9度;(3)7603.2度.【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.22.(1)A 众数85,B 平均数83,中位数80;(2)A 队;(3)226A S =,2106B S =,A 队选手成绩较为稳定.【分析】(1)根据条形统计图即可求出A 队的众数,将B 队的分数从小到大排列即可求出B 队的中位数,然后根据平均数公式即可求出B 队的平均分;(2)结合两队成绩的平均数和中位数即可得出结论;(3)根据方差公式:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦计算出A 、B 两队的方差,从而得出结论.【详解】解:()1由条形统计图可知:A 队的众数为85,将B 队的分数从小到大排列为70,75,80,95,95∴B 队的中位数为80, B 队的平均分为(70+75+80+95+95)÷5=83补全图表如下:()2两队成绩的平均分一样,但A 队成绩的中位数高,故A 队成绩较好()3()()()()()222222175838083858385839083265A S =⎡-+-+-+-+⎤⎦=⎣-, ()()()()()222222170839583958375838083106,5B S =-+-+-+-+-=⎡⎤⎣⎦ ∵26106<,因此A 队选手成绩较为稳定.【点睛】此题考查的是平均数、众数、中位数和方差的意义和求法,掌握平均数、众数、中位数和方差的定义和公式是解决此题的关键.23.(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.24.(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】 解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE =∴122OE DE ==,在Rt BOE △中,22224(2)14BO BE OE =-=-=, ∴2214BC BO ==,∴11214224722BECD S BC DE =⋅=⨯⨯=菱形. 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.25.2-.【分析】由二次根式的性质、乘方、算术平方根、绝对值、以及立方根进行化简,然后进行计算,即可得到答案.【详解】解:202023125|12|8(3)-+--+---=15(21)(2)3-+--+--=42123-+--=2-.【点睛】本题考查了二次根式的性质、乘方、算术平方根、绝对值、以及立方根,解题的关键是熟练掌握运算法则进行化简.26.(1)见解析;(2)6CD =【分析】(1)分别以A ,B 为圆心,大于12AB 为半径画弧,两弧交于点M ,N ,作直线MN 即可. (2)设CD=x ,则AD=BD=16-x ,在Rt △BCD 中,利用勾股定理构建方程即可解决问题.【详解】(1)如图直线MN 即为所求.(2)∵MN 垂直平分线段AB ,∴DA=DB,设CD=x,则AD=BD=16-x,在Rt△BCD中,∵BD2=BC2+CD2,∴()222-=+,x x168x=,解得6∴CD=6.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质,勾股定理的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
浙教版八年级下册数学期末测试卷完整版
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个四边形切掉一个角后变成()A.四边形B.五边形C.四边形或五边形D.三角形或四边形或五边形2、已知代数式3﹣x与﹣x2+3x的值互为相反数,则x的值是()A.﹣1或3B.1或﹣3C.1或3D.﹣1和﹣33、下列二次根式中,取值范围是的是()A. B. C. D.4、下列命题中正确的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且平分的四边形是正方形5、 ABCD中,A: B: C: D的值可以是()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.3:2:3:26、如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OA⊥OB,tanA= ,则k的值为( )A.﹣2B.4C.﹣4D.27、已知一个菱形的周长是,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.8、如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N.则DM+CN的值为(用含a的代数式表示)( )A.aB.C. aD.9、若关于x的一元二次方程x2-2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥l10、若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.五边形C.四边形D.六边形11、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;② = ;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A.①②③④B.①②④C.②③④D.①③④12、将方程x2+8x+9=0左边变成完全平方式后,方程是()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+4)2=﹣713、下列说法正确的是().A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式 C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8 D.若甲组数据的方差s2=0.01,乙组数据的方差s 2=0.1,则乙组数据比甲组数据稳定14、反比例函数y= 与一次函数y=﹣kx﹣k在同一直角坐标系中的图象可能是()A. B. C. D.15、若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、若2016﹣=x,则x的取值范围是________.17、如图,正方形的边长为1,将其绕顶点C按逆时针方向旋转一定角度到位置,使得点B落在对角线上,则阴影部分的面积是________.18、如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2.其中正确结论的是________.19、在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的中位数为________.20、如图,每个正方形由边长为1的小正方形组成,正方形中黑色、白色小正方形的排列规律如图所示,在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,当偶数n=________时,P2=5P1.21、用反证法证明命题“三角形中至少有一个内角大于或等于60°,第一步应假设________22、如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为________度.23、方程x2﹣2=0的根是________.24、如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为________cm2。
【浙教版】八年级数学下期末试题(及答案)
一、选择题1.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 2.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4-B .1-C .0D .13.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,24.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C.D.7.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.8.在数轴上,点A表示-2,点B表示4.,P Q为数轴上两点,点Р从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是()A.B.C .D .9.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠10.若二次根式1x -有意义,则x 的取值范围是( ) A .x <1B .x >1C .x≥1D .x≤111.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125312.若实数m 、n 满足|m ﹣4n -0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .57C .12D .12或7二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____.15.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x =上,如果正方形ABCD边长是1,那么点F的坐标是______.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3...在直线l上,点B1,B2,B3..在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3...,依次均为等腰直角三角形,直角顶点都在x轴上,则第2021个等腰直角三角形A2021B2020B2021顶点B2021的横坐标为__________.17.如图,正方形ABCD中,5AD=,点E、F是正方形ABCD内的两点,且4AE FC==,3BE DF==,则EF的平方为________.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.19.222233+=333388+=4441515+= (77)a ab b+(a、b均为实数)则=a__________,=b__________.20.如图所示的网格是正方形网格,则CBD ABC∠+∠=______°(点A,B,C,D是网格线交点)三、解答题21.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.22.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一 分数段 70x <7080x ≤< 8090x ≤< 90100x ≤≤初一人数 1 mn12 初二人数22412分析数据: 表二 种类 平均数 中位数 众数方差 初一 90.5 91.5y84.75 初二90.5x100123.05得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 23.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积. 25.计算:(183(26)27+(2)11513(1)(0.5) 2674⨯-÷;(3)5 2311x yx y+=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.2.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.3.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.4.B解析:B 【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定. 【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B. 【点睛】考核知识点:均数、众数、中位数、方差的意义.5.A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.7.B解析:B【分析】根据一次函数y=kx+b的图象经过第一、二、四象限,可以得到k和b的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k中b,-k的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.8.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x)=6-x,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q从返回运动,点P表示的数为-2-x,点Q表示的数为2x-4,∴PQ=2x-4-(-2-x)=3x-2,∴当x=4时,y=12-2=10,只有B图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.9.D解析:D【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.10.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.12.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣4n-0,∴|m﹣3|=04n-0,∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当42234+5,则△ABC的周长=3+4+5=12,当42243-7,则△ABC的周长=7=7,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--=222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C 解析:93,22⎛⎫ ⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.16.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.2【分析】延长BE 交CF 于G 再根据全等三角形的判定得出△BCG 与△ABE 全等得出AE=BG=4由BE=3得出EG=1同理得出GF=1再根据勾股定理得出EF 的平方【详解】解:延长BE 交CF 于G 如图:∵解析:2【分析】延长BE 交CF 于G ,再根据全等三角形的判定得出△BCG 与△ABE 全等,得出AE=BG=4,由BE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的平方.【详解】解:延长BE 交CF 于G ,如图:∵AB=5,AE=4,BE=3,222345+=,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,在Rt △ABE 和Rt △CDF 中,543AB CD AE CF BE DF ==⎧⎪==⎨⎪==⎩,∴Rt △ABE ≅Rt △CDF ,∴∠1=∠5,∵四边形ABCD 是正方形,∴∠ABC=∠BCD=90︒,∴∠4+∠5=90︒,∠4+∠3=90︒,∠1+∠2=90︒,∴∠3=∠5,∠4=∠2,在△CBG 和△BAE 中,3524AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CBG ≌△BAE (ASA ),∴AE=BG=4,CG=BE=3,∴EG=4-3=1,同理可得:GF=1,∴EF 2=EG 2+GF 2=2,故答案为:2.【点睛】本题考查了正方形的性质及全等三角形的判定与性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 51【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得BD ==BE ==,DE ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.三、解答题21.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.22.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x、y;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x≤<范围内的共有2名,∴m=2∵成绩在8090x≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93,∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占3 20根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.23.(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME∥DN,∴四边形DEMN是平行四边形,∵BD=2AB,BD=2BO,∴AB=OB,又∵M是AO的中点,∴BM⊥AO,∴∠EMN=90°,∴四边形DEMN是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)5 2311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x +1=5,解得x=4,所以方程组的解为41x y =⎧⎨=⎩; (4)原方程组整理为457233x y x y +=-⎧⎨+=-⎩①②, ①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x +3=﹣3,解得x=﹣3,所以原方程组的解为31x y =-⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组. 26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE≌△DCG,EF=GF,∴BE=CG,∠B=∠GCD,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。
浙教版数学八年级下册期末测试卷(含解析)
浙教版数学八年级下册期末测试卷一、选择题(共10题;共30分)1.(3分)下列方程中,一定是关于x 的一元二次方程的是( )A .x 2=0B .1x 2+1x−2=0C .a x 2+bx +c =0D .x 2+2x =x 2−12.(3分)下列图标中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.(3分)下列运算错误的是( )A .2+3=5B .2⋅3=6C .6÷2=3D .(−2)2=24.(3分)用配方法解一元二次方程x 2−2x =3,配方后得到的方程是( )A .(x−1)2=4B .(x +1)2=4C .(x +2)2=1D .(x−2)2=15.(3分)若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中( )A . 至少有一个角是钝角或直角B .没有一个角是锐角C .每一个角都是钝角或直角D .每一个角是锐角6.(3分) 体育委员小聪要帮体育老师分析本班的跳远成绩,将各统计量计算好后却发现由于场地布置失误,导致每位同学的成绩都少记录了3cm ,则实际成绩与记录成绩相比( )A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变7.(3分)读诗词,列方程:大江东去浪淘尽,千古风流人物;而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符.(诗词大意:周瑜英年早逝,逝世时的年龄是一个两位数,十位数字比个位数字小3,个位数字的平方刚好是周瑜逝世时的年龄),设周瑜逝世时的年龄的个位数字为x ,则列出的方程正确的是( )A .10x +(x−3)=x 2B .10(x−3)+x =(x−3)2C .10x +(x−3)=(x−3)2D .10(x−3)+x =x 28.(3分)已知反比例函数y =k x的图象与函数y =16x 的图象没有交点.若点(−32,y 1)、(−67,y 2)、(13,y 3)在这个反比例函数y=kx的图象上,则下列结论中正确的是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 9.(3分)如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长为( )A.35B.352C.95D.95210.(3分)如图,在边长为10的正方形ABCD对角线上有E,F两个动点,且AB=2EF,点P是BC中点,连接AE,PF,则AE+PF最小值为( )A.55B.105C.52D.10二、填空题(共6题;共18分)11.(3分)若式子2−x在实数范围内有意义,则x的取值范围是 .12.(3分)射击小组6位同学在一次组内测试的成绩(单位:环)分别为86,82,85,83,85,93.关于这组数据的中位数为 .13.(3分)已知反比例函数y=2k−3x的图像位于第二、四象限,则k的取值范围是 . 14.(3分)对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{(x+1)2,x2}=4,则x= .15.(3分)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为 .16.(3分)数学兴趣小组的同学拿出如图所示的矩形纸片ABCD,其中ABBC =712,他们将纸片对折使AD、BC重合,展开后得折痕MN,又沿BM折叠使点C落在C′处,展开后又得到折痕BM,再沿BE折叠使点A落在BM上的A′处,大家发现了很多有趣的结论.就这个图形,请你探究DEAE的值为 .三、解答题(共7题;共52分)17.(4分)计算:(1)(2分)18−32;(2)(2分)(3−1)2−(2+3)(3−2).18.(6分)解方程:(1)(3分)2x﹣6=(x﹣3)2(2)(3分)x2﹣4x﹣7=019.(7分)广大青少年的身体和心理健康已经成为社会关注的话题,而学生的身体和心理健康教育需要学校和家庭共同承担.某校在八、九年级家长中进行了“青少年身心健康知识”调查活动,并将调查结果用计算机折合成分数(百分制),从八、九年级的家长调查卷中各随机抽取了10名家长的折合分数,分数用x 表示,共分成四组,数据整理如下:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100八年级10名家长的分数是:80,85,88,89,89,100,98,98,98,95.九年级10名家长的分数在C组中的数据是:90,91,93.抽取的八、九年级家长分数统计表:年级平均数中位数众数方差八年级9292b40.8九年级92c10039.1根据以上信息,解答下列问题:(1)(3分)直接写出上述a ,b ,c 的值:a = ,b = ,c = ;(2)(2分)该校八、九年级分别有500名、400名家长参加了此次调查活动,请估计两个年级分数低于90分的家长总人数;(3)(2分)根据以上数据,你认为该校八、九年级哪个年级家长对“青少年身心健康知识”了解得更好?请说明理由(写出一条理由即可).20.(6分)如图,矩形AEBO 的对角线AB 、OE 交于点F ,延长AO 到点C ,使OC =OA ,延长BO 到点D ,使OD =OB ,连接AD 、DC 、BC .(1)(3分)求证:四边形ABCD 是菱形.(2)(3分)若OE =20,∠BCD =60°,则菱形ABCD 的面积为 .21.(9分)如图,一次函数y=-x+4的图象与反比例函数y=k x(k≠0)在第一象限的图象交于A(1,a)和B(b ,1)两点,与x 轴交于点C ,与y 轴交于点D .(1)(3分)求点B 的坐标和反比例函数的表达式;(2)(3分)直接写出当x>0时,不等式-x+4-k x>0的解集;(3)(3分)若点P 在y 轴上,且△APB 的面积为3,求点P 的坐标.22.(10分) 小华在学完了八下教材《一元二次方程根与系数的关系(韦达定理)》一节内容后,对一元三次方程根与系数的关系产生了浓厚兴趣,决定一探究竟.下面是他收集的素材,汇总如下,请根据素材帮助他完成相应任务:探究一元三次方程根与系数的关系素材一元三次方程的定义我们把两边都是整式,只含有一个未知数,并且未知数的最高次数是3次的方程叫做一元三次方程,它的一般形式为a x 3+b x 2+cx +d =01(b、c、d为常数,且a≠0).素材2一元三次方程的解法若一元三次方程a x3+b x2+cx+d=0(a≠0)的左边在实数范围内可因式分解为a(x−p)(x−q)(x−r)(p、q、r为实数),即原方程化为:a(x−p)(x−q)(x−r)=0,则得方程的根为x1=p,x2=q,x3=r.素材3一元二次方程根与系数的关系的探究过程设一元二次方程a x2+bx+c=0(a≠0)有两个根x1,x2,则方程可化为a(x−x1)(x−x2)=0,即a x2−a(x1+x2)x+a x1x2=0,与原方程系数进行比较,可得根与系数的等量关系为:x1+x2=−ba,x1x2=ca.问题解决任务1感受新知若关于x的三次方程a x3+b x2+cx+d=0(a、b、c、d为常数)的左边可分解为a(x−1)(x+2)(x−3),则方程a x3+b x2+cx+d=0的三个根分别为x1=▲,x2=▲,x3=▲.任务2探索新知若关于x的三次方程a x3+b x2+cx+d=0的三个根为x1,x2,x3,请探究x1+x2+x3,x1⋅x2⋅x3与系数a、b、c、d之间的等量关系.任务3应用新知利用上一任务的结论解决:若方程2x3+x2−7x−6=0的三个根为α、β、γ,求1αβ+1βγ+1αγ的值.23.(10分)对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.(1)(2分)判断命题“另一组邻边也相等的奇特四边形为正方形”是真命题还是假命题?(2)(4分)如图,在正方形ABCD中,E是AB边上一点,F是AD延长线一点,BE=DF,连接EF,EC,FC,取EF的中点G,连接CG并延长交AD于点H.探究:四边形BCGE是否是奇特四边形,如果是证明你的结论,如果不是请说明理由.(3)(4分)在(2)的条件下,若四边形BCGE的面积为16,则BC+BE的值是多少?答案解析部分1.【答案】A2.【答案】B3.【答案】A【解析】【解答】解:A、2与3不是同类二次根式,不能直接合并,故本选项符合题意;B、2× 3= 6,计算符合题意,故本选项不符合题意;C、6÷ 2= 3,计算符合题意,故本选项不符合题意;D、(- 2)2=2,计算符合题意,故本选项不符合题意;故答案为:A.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.4.【答案】A5.【答案】D【解析】【解答】解:利用反证法证明"四边形中至少有一个角是钝角或直角"时应该假设结论不成立:四边形里没有一个角是钝角或直角.故答案为:D.【分析】在反证法的步骤中,第一步是假设结论不成立,即至少有一个角是钝角或直角,否定为没有一个角是钝角或直角.6.【答案】C【解析】【解答】解:∵每位同学的成绩都少记录了3cm,∴实际成绩与记录成绩相比,众数增加3cm,方差不变,平均数增加3cm,中位数增加3cm,故答案为:C.【分析】根据众数,方差,中位数和平均数所表示的意义进行判断即可.7.【答案】D【解析】【解答】解:设周瑜逝世时的年龄的个位数字为x,可得瑜逝世时的年龄的十位数字为x-3,结合题意可得:10(x-3)+x=x2,故答案为:D.【分析】设周瑜逝世时的年龄的个位数字为x,可得瑜逝世时的年龄的十位数字为x-3,最后根据“个位数字的平方刚好是周瑜逝世时的年龄”,列出方程,即可得出答案.8.【答案】B9.【答案】D【解析】【解答】解:如图,取CE的中点F,连结DF,∵AD 是△ABC 的中线,∴BD =CD ,∴DF 是△BEC 的中位线,∴DF =12BE ,DF ∥BE ,∵AD =BE =6,AD ⊥BE ,∴DF =3,DF ⊥AD .由勾股定理,得AF =AD 2+DF 2=62+32=35.∵BE 平分∠ABC ,BE ⊥AD ,∴∠ABH =∠DBH ,∠BAD =90°−∠ABH ,∠BDA =90°−∠DBH ,∴∠BAD =∠BDA ,∴AB =DB .根据等腰三角形“三线合一”,得AH =DH .∵BE ∥DF ,∴AH HD =AEEF=1∴E 是AF 的中点,∴HE 是△ADF 的中位线,∴AE =EF =12AF =352,∵CE 的中点F ,∴FC =EF =352,∴AC =CF +EF +AE =952.故答案为:D .【分析】取CE 的中点F ,连结DF ,先利用中位线的性质求出DF =3,DF ⊥AD ,利用勾股定理求出AF 的长,再证出HE 是△ADF 的中位线,求出AE =EF =12AF =352,再结合CE 的中点F ,求出FC =EF =352,最后利用线段的和差求出AC =CF +EF +AE =952即可.10.【答案】A【解析】【解答】解:如图,取CD 的中点为Q ,连结PQ ,QE.∵P 、Q 分别为CB 、CD 的中点∴PQ 为△CDB 的中位线∴PQ ∥BD ,且PQ =12BD∵正方形边长为10∴BD =102∴PQ =52又∵EF =52∴PQ=EF∴四边形PQEF 为平行四边形∴PF=QE ∴AE+PF=AE+QE当AE 和QE 在同一直线上是,AE+QE 最小,即为线段AQ ∴AQ =AD 2+DQ 2=102+52=125=55故答案为:A.【分析】求两条线段和的最小值,常见于“将军饮马”模型,图形基本特征是两定(点)和一动(点).因此首先需要将图中的两条线段AE 和PF 连结起来,方法是通过作CD 的中点Q ,形成中位线PQ ,计算发现PQ 和EF 的位置关系平行,数量关系相等,因此四边形EFPQ 为平行四边形,所以PF=QE ,即将PF 转化为QE 线段.此时,AE+PF 转化为AE+QE ,AE+QE 即满足了两定(点)和一动(点)的特征,当Q 、E 、A 共线时,求Rt △QDA 的斜边AQ 的值,即为AE+PF 的最小值.11.【答案】x ≤2【解析】【解答】解:∵式子2−x 在实数范围内有意义,∴2-x≥0,解得x≤2,故答案为:x≤2.【分析】根据二次根式的被开方数是非负数求解即可.12.【答案】8513.【答案】k<32【解析】【解答】根据题意得2k-3<0,解得k<32.故答案是:k<32.【分析】根据反比例函数的性质得2k-3<0,然后解不等式即可.14.【答案】2或−315.【答案】19416.【答案】97【解析】【解答】解:如图,BE交MN于点F,作FG⊥BA′于点G,由折叠得点A与点B关于直线MF对称,∴MN垂直平分AB,∴∠BNM=90°,AN=BN,∵四边形ABCD是矩形,∴∠ABC=∠C=90°,AD∥BC,AD=BC,∴四边形BCMN是矩形,∴MN∥BC,MN=BC,∴MN∥AD,MN=AD,∵ABBC=712,∴2BNMN=712,∴BN MN =724,设BN=7m ,则MN=AD=24m ,∴BM =BN 2+MN 2=(7m )2+(24m )2=25m ,∵∠ABE=∠A′BE ,FN ⊥BA ,FG ⊥BA′,∴FN=FG ,∵12BM•FG =12FM•BN =S △BMF ,∴FG FM =BN BM =7m 25m =725,∴FN FM =725,∴FN =77+25MN =732×24m =214m ,∵BF EF =BN AN=1,∴EF=BF ,∴AE =2FN =2×214m =212m ,∴DE =24m−212m =272m ,∴DE AE =272m 212m =97,故答案为:97.【分析】先求得BN 与MN 的比,设BN=7m ,用m 表示出MN ,再根据勾股定理求BM ,由角平分线的性质得FN=FG ,由12BM•FG =12FM•BN =S △BMF ,求得FN 与FM 的比,可得出用m 表示FN ,进而可用m 表示AE 与DE ,就可求得DE 与AE 的比.17.【答案】(1)解:18−32=32−32=0;(2)解:(3−1)2−(2+3)(3−2)=3+1−23−(3−2)=4−23−1=3−23.18.【答案】(1)x1=3,x2=5(2)x1=2+11,x2=2−11 19.【答案】(1)40;98;92(2)解:八年级有500×510=250(人),九年级有400(10%+20%)=120(人),八九年共有250+120=370(人).答:估计两个年级分数低于90 分的家长总人数为320 人;(3)解:九年级家长对“青少年身心健康知识”了解得更好,理由如下:平均数和中位数相同的情况下,九年级测试成绩的众数更高,且方差小于八年级,即九年级家长的分数更稳定且满分更多,所以九年级家长了解的更好.【解析】【解答】解:(1)八年级测试成绩98出现了3次,次数最多,b=98;九年级C类有3人,所以C类占总人数的310×100%=30%,则D类占1-20%-10%-30%=40%,所以a=40,九年级的中位数为:c=91+932=92;故答案为:40,98,92;【分析】(1)观察题中所给的数据,根据中位数和众数的定义求出b,c的值,再由扇形统计图求出a的值即可;(2)利用样本估计总体的思想,先分别用总人数乘以两个年级分数低于90分的百分比求出八、九年级的家长人数,然后相加即可解答;(3)在中位数和平均数相同的情况下,比较方差的大小,方差越小,成绩越稳定即可求解.20.【答案】(1)证明:∵CO=AO,DO=BO,∴四边形ABCD是平行四边形,∵四边形AEBO是矩形,∴∠AOB=90°,∴BD⊥AC,∴四边形ABCD是菱形;(2)2003【解析】【解答】解:(2)∵四边形AEBO是矩形,∴AB=BC=OE=20,∵四边形ABCD是菱形,∠BCD=60°,∴∠BCO =30°,∠AOB =90°,∴OB =12BC =12×20=10,在Rt △BOC 中,由勾股定理得:OC =BC 2−OB 2=202−102=103,∴BD =2OB =2×10=20,AC =2OC =2×103=203,∴S 菱形ABCD =12AC ⋅BD =12×20×203=2003.故答案为:2003.【分析】(1)先证出四边形ABCD 是平行四边形,再结合BD ⊥AC ,即可证出四边形ABCD 是菱形;(2)先利用含30°角的直角三角形的性质求出OB =12BC =12×20=10,利用勾股定理求出OC 的长,再求出对角线BD 和AC 的长,最后利用菱形的面积等于对角线乘积的一半求解即可.21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=k x(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).【解析】【解答】解:(2)把A(1,a)代人反比例函数y=3x,得a=3,∴点A 的坐标为(1,3) ,由题图可知,当x>0时,不等式-x+4-k x>0的解集为1<x<3.【分析】(1)点在函数图象上,只需要将点的坐标代入解析式中求解;(2)不等式 -x+4-k x >0 ,可以看成是函数y 1=-x+4,y 2=k x,y 1>y 2的问题,通过数形结合的方法确定x 的取值范围;(3)S △APB =S △BPD -S △APD ,根据三角形面积公式列式可求出PD 的长度,从而确定P 点的坐标;22.【答案】解:任务1:x 1=1,x 2=−2,x 3=3.任务2:由题意可知,原方程可化为:a(x−x 1)(x−x 2)(x−x 3)=0,展开整理得:a x 3−a(x 1+x 2+x 3)x 2+a(x 1x 2+x 1x 3+x 2x 3)x−a x 1x 2x 3=0,与原方程a x 3+b x 2+cx +d =0比较可得:x 1+x 2+x 3=−b a ,x 1⋅x 2⋅x 3=−d a⑤任务3:利用上题结论可知:α+β+γ=−12,αβγ=−−62=3,……2分∴1αβ+1βγ+1αγ=α+β+γαβγ=−123=−1623.【答案】(1)解:假命题,如图,∵AB =AC ,∠ABD =∠ACD ,又∵DC =DB ,而四边形ABDC 不是正方形.(2)解:四边形BCGE 是奇特四边形,∵四边形ABCD 是正方形,∴BC =DC ,∠EBC =∠FDC =90°,在△EBC 和△FDC 中,{BC =DC∠EBC =∠FDC BE =DF ,∴△EBC≌△FDC(SAS),∴CE =CF ,∠BCE =∠DCF ,∴∠ECF =90°,∵G 是EF 的中点,∴EG =GC ,∠EGC =90°,∴∠EGC =∠B =90°,∴四边形BCGE 是奇特四边形.(3)解:过点G 作MN ∥AB ,GQ ∥AD ,∴△GQE≌△GMC(AAS),∴GQ =GM ,∴四边形BMGQ 是正方形,∴S四边形BCGE=S正方形BMGQ,∵四边形BCGE的面积为16,∴S正方形BMGQ=16,∴GQ=GM=AN=4,∵G是EF的中点,∴AN=FN=4,∴AF=8,∵BE=DF,BC=AD,∴BE+BC=AF=8.【解析】【分析】(1)假命题,根据命题中条件画出图形验证即可;(2)先根据正方形的性质得到BC=DC,∠EBC=∠FDC=90°,再利用SAS证明△EBC≌△FDC,根据全等三角形的性质得到CE=CF,∠BCE=∠DCF,进而得到∠ECF=90°,然后利用直角三角形中斜边上的中线等于斜边的一半得到EG=GC,∠EGC=90°,再根据奇特四边形的定义即可判断;(3)过点G作MN∥AB,GQ∥AD,利用AAS证明△GQE≌△GMC,则GQ=GM,进而可得四边形BMGQ是正方形,利用等量代换得到S四边形BCGE=S正方形BMGQ=16,得出正方形BMGQ的边长为4,进而得出AF=8,即可得到BC+BE的值.。
【浙教版】八年级数学下期末试题(带答案)
8.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:
所挂物体的质量m/kg
0
1
2
3
4
5
弹簧的长度y/cm
10
12.5
15
17.5
20
22.5
下列说法错误的是()
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量
A.4B.0C.3D.-1
4.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )
A.平均数B.众数C.中位数D.方差
5.如图,在四边形ABCD中,AD∥BC,∠B=60°,∠D=90°,AB=4,AD=2,点P从点B出发,沿B→A→D→C的路线运动到点C,过点P作PQ⊥BC,垂足为Q.若点P运动的路程为x,△BPQ的面积为y,则表示y与x之间的函数关系图象大致是()
18.若a的倒数是 , 的相反数是0,c是-1的立方根,则 =____________.
19.如图, 两点分别位于山脚的两端,小明想测量 两点间的距离,于是想了个主意,先在地上取一个可以直接达到 两点的点C,找到 的中点D、E,并且测出 的长为 ,则 两点间的距离为_________ .
20.如图,点 是等边 内的一点, , , .若点 是 外的一点,且 ,则 的度数为_____.
16.如图,平面直角坐标系 中, , , 为 的中点, 是 上的一个动点, 周长最小时,点 的横坐标是______.
17.生活中,有人喜欢把传送的便条折成形状 ,折叠过程如图所示(阴影部分表示纸条的反面):
已知由信纸折成的长方形纸条(图①)长为 ,宽为 .如果能折成图④的形状,且为了美观,纸条两端超出点 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点 与点 的距离(用 表示)为______ .
【完整版】浙教版八年级下册数学期末测试卷
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、□ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DFB.AE=CFC.AF//CED.∠BAE=∠DCF2、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、在一次11人参加的歌咏比赛中,预赛成绩各不同,要取前6名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这11名同学成绩的()A.平均数B.众数C.中位数D.方差4、下列说法中正确命题有( )①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为A.0个B.1个C.2个D.3个5、如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A.1<x<3B.x<1或x>3C.0<x<1D.0<x<1或x>36、关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠27、若一元二次方程﹣3x2+6x+m=0的一个根为x1=3,则该方程的另一个根是()A.x2=﹣1 B.x2=﹣3 C.x2=﹣5 D.x2=58、在一幅长80cm、宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图如下图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x 2+130x-1 400=0B.x 2+65x-350=0C.x 2-130x-1 400=0D.x 2-65x-350=09、已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5B.(x﹣p)2=9C.(x﹣p+2)2=9D.(x﹣p+2)2=510、用配方法解方程时,原方程应变形为()A. B. C. D.11、下列计算正确的是()A. =-2B. =2C. = 2D. =12、如图,以等边三角形ABC的边AC为边,向外做正方形ACDE,则(1)∠BCE=105°;(2)∠BAE=150°;(3)BE=BD;(4)∠DBE=30°;其中结论正确的有()个A.4B.3C.2D.113、若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C.D.14、某校是海安三门球特色学校,现准备从该校九年级四个班中选出一个班的7名学生组建三门球队,根据各班选出的学生,测量其身高,计算得到的数据如下表所示,表:九年级(1~4班)学生平均身高统计表学生平均身高(单标准差位:m)九(1)班 1.57 0.3九(2)班 1.57 0.7九(3)班 1.6 0.3九(4)班 1.6 0.7要求各班选出的学生身高较为整齐,且平均身高约为1.6m.学校应选择()A.九(1)班B.九(2)班C.九(3)班D.九(4)班15、如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2B.3C.4D.5二、填空题(共10题,共计30分)16、化简=________.17、如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y= (x>0)的图象经过OA的中点C,交AB于点D,连结CD,若△ACD的面积是2,则k的值是________。
浙教版八年级下册数学期末测试卷及含答案(全国通用)
浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,函数与函数的图象相交于点.若,则x的取值范围是()A. 或B. 或C. 或D. 或2、如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2 .若∠EOF=45°,则F点的纵坐标是()A. B.1 C. D. ﹣13、下列二次根式中,最简二次根式是()A. B. C. D.4、要反映我市某一周每天的最高气温的变化趋势,宜采用()A.扇形统计图B.条形统计图C.折线统计图D.频数分布统计图5、已知四边形,对角线与交于点O,从下列条件中:①;②;③;④.任取其中两个,以下组合能够判定四边形是平行四边形的是()A.①②B.②③C.②④D.①④6、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD 于F,则PE+PF等于()A. B. C. D.7、用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°8、如图▱ABCD中,AD=5,AB=3,AE平分∠BAD且交BC于点E,则线段EC的长为()A.1B.2C.3D.49、在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(mm)与面条的粗细s(mm²)(横截面积)的对应数据如下表.根据表中数据,可得y关于s的函数表达式为( )面条的总长度y(mm) 100 200 400 800 2000面条的粗细s(mm2) 12.80 6.40 3.20 1.60 0.64A.y=B.y=C.y=D.y=10、某市连续7天的最高气温为:,,,,,,.这组数据的平均数是().A. B. C. D.11、下列说法正确的是()A.随机事件发生的可能性是50%B.一组数据2,2,3,6的众数和中位数都是2C.为了解某市5万名学生中考数学成绩,可以从中抽取10名学生作为样本 D.若甲组数据的方差S 2甲=0.31,乙组数据的方差S 2乙=0.02,则乙组数据比甲组数据稳定12、如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的个数为()A.1B.2C.3D.413、若,则x y=( )A.9B.-9C.D.-14、已知,在平行四边形ABCD中,对角线AC与BD相交于点O,下列说法中错误的是()A.若AC= BD,则四边形ABCD为矩形B.若AC⊥BD,则四边形ABCD为菱形C.若AB= BC,AC= BD,则四边形ABCD为正方形 D.若OA= OB,则四边形ABCD为正方形15、在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为________17、如图,在△AOB中,∠AOB=90°,点4的坐标为(2,1),BO=2 ,反比例函数的图象经过点B,则k的值为________18、计算= ________19、如图,已知菱形ABCD的面积为6cm2, BD的长为4cm,则AC的长为________cm.20、方程(x+3)(x+2)=x+3的解是________.21、如图,正方形ABCD中,点E是CD边上一点,连结BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下五个结论:①;②;③;④;⑤若,则,你认为其中正确是________(填写序号)22、如图,在△ABC中,∠ACB=52°,点D,E分别是AB,AC的中点.若点F在线段DE上,且∠AFC=90°,则∠FAE的度数为________ °.23、一个长方形的长和宽分别为和,则这个长方形的面积为________.24、若,则=________。
浙教版八年级数学下册期末试卷及答案
浙教版八年级数学下册期末试卷及答案浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分)1.二次根式 a+3 中,字母 a 的取值范围是A) a。
-3 (B) a ≥ -3 (C) a。
3 (D) a ≥ 3答案:B解析:二次根式 a+3 中,要求a+3 ≥ 0,所以a ≥ -3.2.在下列关于平行四边形的各命题中,假命题是A) 平行四边形的对边相等 (B) 平行四边形的对角相等C) 平行四边形的对角线互相平分 (D) 平行四边形的对角线互相垂直答案:A解析:平行四边形的对边相等是正确的,其他三个选项都是正确的。
3.一元二次方程 x^2 - 4x - 6 = 0,经过配方可变形为A) (x - 2)^2 = 10 (B) (x - 2)^2 = 6C) (x - 4)^2 = 6 (D) (x - 2)^2 = 2答案:B解析:将 x^2 - 4x - 6 = 0 移项得 x^2 - 4x = 6,再将 x^2 - 4x 补全平方得 (x - 2)^2 - 4 = 6,即 (x - 2)^2 = 10.4.在下列图形中,中心对称图形是A) 等边三角形 (B) 平行四边形C) 等腰梯形 (D) 正五边形答案:B解析:平行四边形有中心对称轴。
5.若 6^(2x-1) = 36,则 2^(x+1) 的值是:A) 4 (B) 8 (C) 32 - 8 (D) 3 + 3 = 6答案:A解析:6^(2x-1) = 36,两边取对数得 (2x-1)log6 = log36,化简得 x = 2,代入 2^(x+1) 中得 2^(3) = 8.6.下列计算正确的是A) 3 + 2 = 5 (B) 3 - 2 = 1答案:A解析:3 + 2 = 5 是正确的,3 - 2 = 1 也是正确的。
7.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为A) 正三角形 (B) 正方形C) 正五边形 (D) 正六边形答案:C解析:正三角形、正方形、正六边形的内角和分别为180°、360°、720°,它们的公因数是 60°,所以另外一个正多边形的内角和也是 60°,即正五边形。
八年级下数学期末复习测试卷(浙教版)
八年级下数学期末复习测试卷(浙教版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在,1,﹣3,0这四个实数中,最大的数是()A.B.1C.﹣3D.02.(3分)在①线段;②角;③等腰三角形;④正三角形;⑤平行四边形;⑥矩形;⑦菱形;⑧正多边形;⑨圆中,既是轴对称图形,又是中心对称图形的是()A.①④⑦⑧⑨B.①⑤⑥⑨C.①⑥⑦⑧D.①⑥⑦⑨3.(3分)下列运算结果正确的()A.B.(3)2=18C.D.4.(3分)下列命题中真命题有()个①全等三角形对应边、对应角分别相等②直角三角形的两个内角互余③平行四边形的对边相等④多边形的内角和等于180°.A.1个B.2个C.3个D.4个5.(3分)若x1,x2是方程x2=16的两根,则x1+x2的值是()A.16B.8C.4D.06.(3分)某射击运动员训练射击5发子弹,成绩(单位:环)分别为:8,7,9,10,9,则该运动员练习射击成绩的众数是()A.7B.8C.9D.107.(3分)如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD 的周长是()A.12B.24C.20D.168.(3分)如图,图(2)中的点数比图(1)中的点数多3,图(3)中的点数比图(2)中的点数多5,图(4)中的点数比图(3)中的点数多7,…,如此排下去,第n个图中的点数比第(n﹣1)个图中的点数多()A.2n+1B.2n﹣1C.3n D.3n﹣19.(3分)如图,矩形ABCD中,对角线AC=4,△AOB是等边三角形,则AD的长为()A.2B.3C.2D.210.(3分)如图,一次函数y=﹣x+6的图象分别交x、y轴于点A、B,与正比例函数y =x的图象交于第一象限内的点C,则△OBC的面积为()A.12B.24C.27D.48二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知y+5与x成正比例,且x=2时,y=9,则y与x之间的函数关系式为.12.(3分)向阳村2013年的人均收入为7200年,2015年的人均收入为8450元,则人均收入的年平均增长率是.13.(3分)如图,在△ABC中,AB=AC=8cm,点D在BC上,DE∥AC交AB于点E,DF∥AB交AC于F,则DE+DF=.14.(3分)如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP 的最小值为4,则BC的长度为.15.(3分)已知,直线y=2x﹣2与x轴交于点A,与y轴交于点B.点C是直线AB上不同于点B的点,且CA=AB.一次函数y1=kx+1与直线AB交于点E.若点E在线段AC 上,则k的取值范围是.16.(3分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G、F,H为CG的中点,连接DE、EH、DH、FH.下列结论:①EG≠DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC.其中结论正确的有(填写序号).三.解答题(共9小题,满分72分)17.(6分)计算:|﹣|﹣.18.(6分)已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.19.(6分)如图,△ABC中,∠B=90°,AB=8cm,BC=6cm.点P从点A开始,沿AB 边向点B以每秒1cm的速度移动,点Q从点B开始,沿着BC边向点C以每秒2cm的速度移动.如果P,Q同时出发,当点Q移动到点C后停止,点P也随之停止.问:(1)经过几秒钟后,P、Q两点间的距离为.(2)经过几秒钟后,四边形APQC的面积是9cm2?20.(9分)某校为调查“停课不停学”期间九年级学生平均每天上网课时长,随机抽取了50名九年级学生做网络问卷调查,共四个选项:A(4小时以下)、B(4~5小时)、C(5~6小时)、D(6小时以上),每人只能选一项.并将调查结果绘制成如图不完整的统计表和统计图.被调查学生平均每天上网课时间统计表:时长所占百分比A a%B22%C40%D b%合计100%根据以上信息,解答下列问题:(1)a=,b=;(2)补全条形统计图;(3)该校有九年级学生720名,请你估计全校九年级学生平均每天上网课时长在5小时及以上的共多少名?(4)在被调查的对象中,平均每天观看时长超过6小时的,有2名来自九(1)班,1名来自九(5)班,其余都来自九(2)班,现教导处准备从D选项中任选两名学生进行电话访谈,请用列表法或画树状图的方法求所抽取的2名学生恰好来自同一个班级的概率.21.(7分)已知关于x的一元二次方程x2﹣(2m﹣3)x+m2=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x1(1+x2)+x2=0,求m的值.22.(8分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2000元;奖励工资,每销售一件产品,奖励20元.(1)设某营销员月销售产品x件,他应得的工资为y元,求y与x之间的函数关系式;(2)利用所求函数关系式,解决下列问题:①该销售员某月工资为4000元,他这个月销价了多少件产品?②要使月工资超过5000元,该月的销售量应当超过多少件?23.(8分)如图,正方形ABCD中,,O是BC边的中点,点E是正方形内一动点,OE=4,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,求点F到直线BC的距离.24.(10分)【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.(1)【实践探究】在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN=45°,若tan∠BAN=,求证:M是CD的中点.(3)【拓展】如图③,在矩形ABCD中,AB=12,AD=16,点M、N分别在边DC、BC 上,连接AM、AN,已知∠MAN=45°,BN=4,则DM的长是.25.(12分)在平面直角坐标系中,直线y=2x+4分别交x轴和y轴于点A、点D,点B在x轴的正半轴上,OB=OD,点C在AD的延长线上,连接BC,过点A作AG⊥BC,垂足为点G,∠ACB=2∠BAG.(1)如图1,求点C的坐标;(2)如图2,点P在射线DA上(点P不与点D重合),过点P作PQ⊥BC,垂足为点Q(点Q在线段BC上),点P的横坐标为t,线段PQ的长度为d,求d与t的函数关系式(不要求写自变量的取值范围);(3)如图3,在(2)的条件下,过点C作CH⊥AB,垂足为H,交AG于点R,点L为直线AC左侧一点,连接LA、LC和LR,LR与AC交于点I,LA=LC,∠ALR=2∠GAB,以BQ为斜边向右作等腰直角三角形BQF,点E为PQ中点,连接OE和OF,若∠OFB =∠ACB+∠DOE,求AL•tan∠FOB的值.。
浙教版八年级(下)期末考试数学试题(含答案)
浙教版八年级(下)期末考试数学试题(含答案)浙教版八年级数学第二学期期末统考试题及答案考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题前,必须在答题卡填写校名、班级、姓名和考号。
3.答案都必须做在答题卡标定的位置上,答错位置无效。
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项。
注意可以用多种不同的方法来选取正确答案。
1.下列图形中,不是中心对称图形的是()。
A.正方形B.矩形C.菱形D.梯形2.二次根式$\frac{1}{2x-1}$中字母$x$的取值范围是()。
A.$x\geq2$B.$x>2$C.$x\geq\frac{1}{1}$D.$x>\frac{2}{2 }$3.用配方法将方程$x^2+6x-11=0$变形,正确的是()。
A.$(x-3)^2=20$B.$(x-3)^2=2$ C.$(x+3)^2=2$ D.$(x+3)^2=20$4.能证明命题“$x$是实数,则$(x-3)>0$”是假命题的反例是()。
A.$x=1$B.$x=2$C.$x=3$D.$x=4$5.一组数据:$x$,2,3,6,8的平均数是6,则这组数据的极差是()。
A.9B.7C.6D.16.在下列命题中,真命题是()。
A.一组对边平行的四边形是平行四边形。
B.有一个角是直角的四边形是矩形。
C.有一组邻边相等的平行四边形是菱形。
D.对角线互相垂直平分的四边形是正方形。
7.已知一元二次方程$x^2-8x+12=0$的两个解恰好是等腰$\triangle ABC$的底边长和腰长,则$\triangle ABC$的周长为()。
A.14B.10C.11D.1或108.用反证法证明命题:“若整系数一元二次方程$ax^2+bx+c=0(a\neq0)$有有理根,那么$a$,$b$,$c$中至少有一个是偶数”时,下列假设正确的是( )。
浙教版八年级下学期数学期末考试综合复习题
浙教版八年级放学期数学期末考试综合复习题一、心 一 (每 3 分,共 36 分)1、 以下 算正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A )13 213)B32221C ) 3552 5D ) 3662、 八年 某班 50 位同学中, 1 月份出生的 率是0.20 ,那么 个 班 1 月份诞辰的同学有 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A )10 位B )11 位C )12 位D )13 位3、 小明在 算 遇到以下状况, 果正确的选项是⋯⋯⋯⋯()A )4949 B )36 3644C )2aa 0D )以上都不是a4、 假如等 三角形的3,那么 各 中点所成的三角形的周 () A )9B)6C) 3D )925、 方程 x x 10 的根是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A )0B ) 1C )0或 1D )无解6、以下各数中,可以用来 明命 “任何偶数都是 4 的倍数” 是假命 的反例是()A )5B )2C )4D )87、 “I am a good student.” 句 中,字母” a “出 的 率是() A )2B)2C)1D)11518118、 若平行四 形的一5, 它的两条 角可以是()A)12和2B)3和4C)4和6D)4和89、以下 法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、 角 相等的四 形是矩形B 、有一 相等的矩形是正方形C 、菱形的四条 、 四个角都相等D 、三角形一 上的中 等于 的一半。
10、一 周围 有 度相等的花 的地毯,如 所示,它的8m ,25m ,假如地毯中央 方形 案的面18m 。
花 的 是()A)2m B)1m C)1.5m D)0.5m 11.用两个全等的直角三角形拼以下图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.此中必定能拼成的图形是().(A)①②③ (B)①④⑤ (C)①②⑤ (D)②⑤⑥12.一张矩形纸片按如图甲或乙所示对折,而后沿着图丙中的虚线剪下,获得①,②两部分,将①睁开后获得的平面图形是().(A)三角形(B)矩形(C)菱形(D)梯形二、耐心填一填(每题 3 分,共 36 分)1、二次根式a 1 中的字母 a 的取值范围是 __________2、计算 3 2=__________3、某食品店连续两次涨价 10%后价格是 121 元,那么原价 _____4、如图,两根高分别为 4 米和 7 米的竹竿相距 6 米,一根绳索拉直系在两根竹竿的顶端,则这根绳索长为 __________米5、如图, AB//CD, ∠ BAE=120°,∠DCE=130°,则∠ AEC=_____4m7m6mA B120°E130°C D6.把“直角三角形、等腰三角形、 ?等腰直角三角形”填入以下相应的空格上:(1)正方形可以由两个可以完好重合的_________拼合而成;(2)菱形可以由两个可以完好重合的_________拼合而成;(3)矩形可以由两个可以完好重合的________拼合而成.7.已知正方形的面积为4,则正方形的边长为 ______,对角线长为 ______.8.菱形的两条对角线分别是6cm,8cm,则菱形的边长为 ____,面积为 ____.9.若一个多边形的内角和为 1 080 °,则这个多边形的边数是_______.10.平行四边形两邻角的均分线订交所成的角为_________.11.如图,在平行四边形ABCD中,∠ A 的均分线交 BC于点 E.若 AB=10cm,AD=14cm,则 BE=______,EC=.12.认真观察以下计算过程:112121, 121 11;同样111212321,12321 111;由此猜想。
【浙教版】八年级数学下期末试题(附答案)(1)
一、选择题1.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375 350 375 350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁2.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是933.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( ) 考试分数(分) 20 16 12 8 人数241853A .20,16B .l6,20C .20,l2D .16,l24.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S 2乙,则下列说法正确的是( ) A .S 2甲<S 2乙 B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小5.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <26.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .7.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .8.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定9.函数2y x=-x 的取值范围是( ).A .2x >B .2x ≠C .2x <D .0x ≠10.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .2020511.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③12.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .18二、填空题13.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.14.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分.15.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.16.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.18.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.19.已知223y x x =--,则()x x y +的值为_________.20.平面直角坐标系中,点()()4,2,2,4A B -,点(),0P x 在x 轴上运动,则AP BP +的最小值是_________.三、解答题21.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 97 78 80 初二(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?22.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a 、b 、c 的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?23.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 24.如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,并且AE CF =,连接DE ,BF .(1)求证:△≌△DOE BOF ;(2)若BD EF=,连接EB,DF,判断四边形EBFD的形状,并说明理由.25.计算:2116(2019)|527|32π-⎛⎫⨯+---- ⎪⎝⎭.26.在锐角ABC∆中,∠BAC=45°.(1)如图1,BD⊥AC于D,在BD上取点E,使DE=CD,连结AE,F为AC的中点,连结EF并延长至点M,使FM=EF,连结CM、BM.①求证:△AEF≌△CMF;②若BC=2,求线段BM 的长.(2)如图2,P是△ABC内的一点,22AB=(即28AB=),AC=32PA+PB+PC 的最小值,并求此时∠APC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.2.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.3.A解析:A 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16. 故选:A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.4.C解析:C 【解析】 【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可. 【详解】 甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S 甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94] =54; S 乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9] =2120; ∵54>2120∴S 甲2>S 乙2 故选C . 【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.D解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.6.B解析:B 【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】=+的图像经过一、二、三象限,函数y kx bk b∴>>,0,0∴k-<=-的图像经过一、三、四象限,∴函数y bx k故选:B.【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.7.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、当k<0,k+1>0时,l1:y kx三象限,故选项A正确,不符合题意;=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、当k<0,k+1<0时,l1:y kx四象限,故选项B正确,不符合题意;=的图象经过一、三象限,l2:y=kx+x-k的图象经过当k>0,k+1>0,-k<0时,l1:y kx一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.8.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.9.C解析:C 【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围. 【详解】 结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x < 故选:C . 【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.10.B解析:B 【分析】结合题意分析每个正方形的边长,从而发现数字的规律求解 【详解】解:由题意可得:第1个正方形1234A A A A的边长为012A A∵1212B A A A = ∴112A B =∴第2个正方形1234B B B B由题意,以此类推,21C B =22C B =∴第3个正方形1234C C C C25== …∴第n个正方形的边长为1n - ∴第2020个正方形的边长为2019 故选:B . 【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.11.D解析:D【分析】①设∠EDC=x ,则∠DEF=90°-x 从而可得到∠DBE=∠DEB=180°-(90°-x )-45°=45°+x ,∠DBM=∠DBE-∠MBE=45°+x-45°=x ,从而可得到∠DBM=∠CDE ;③由△BDM ≌△DEF ,可知DF=BM ,由直角三角形斜边上的中线的性质可知BM=12AC ; ④可证明△BDM ≌△DEF ,然后可证明:△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积;【详解】解:①设∠EDC=x ,则∠DEF=90°-x ,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.12.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒, ∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.二、填空题13.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 14.784【解析】【分析】设男生的平均分为x 分根据男生总分和女生总分的和是全体学生的总分结合全班45名同学平均分是80分其中女生有20名她们的数学平均分为82分我们可以构造出一个关于x 的方程解方程即可求解析:78.4【解析】【分析】设男生的平均分为x 分,根据男生总分和女生总分的和是全体学生的总分,结合全班45名同学,平均分是80分,其中女生有20名,她们的数学平均分为82分,我们可以构造出一个关于x 的方程,解方程即可求出x 的值.【详解】设男生的平均分为x 分,则2582204580x +⨯=⨯,解得78.4x =.即这个班男同学的数学平均分为78.4分.故答案为78.4.【点睛】本题考查了加权平均数,其中根据男生总分和女生总分的和是全体学生的总分,结合已知条件,构造关于x 的方程是解题的关键.15.(00)或(22)或(-2-2)【分析】作出图形分别以ABP 为直角顶点三种情况讨论利用勾股定理即可求解【详解】令则令则∴A(0)B(4)∵点P 在一次函数的图象上∴设点的坐标为(xx)==①当∠ABP解析:(0,0)或(2,2)或(-2,-2)【分析】作出图形,分别以A 、B 、P 为直角顶点三种情况讨论,利用勾股定理即可求解.【详解】令0x =,则4y =,令0y =,则4x =-,∴A(4-,0),B(0,4),∵点P 在一次函数 y x =的图象上,∴设点P 的坐标为(x ,x),2AB =224432+=,()222242816PB x x x x =+-=-+,2PA =()22242816x x x x ++=++, ①当∠ABP=90︒时,根据勾股定理得:222AB PB PA +=,即223228162816x x x x +-+=++, 解得:2x =∴点P 的坐标为(2,2);②当∠BAP=90︒时,根据勾股定理得:222AB PA PB +=,即223228162816x x x x +++=-+, 解得:2x =-∴点P 的坐标为(-2,-2);③当∠APB=90︒时,此时点P 与点O 重合,∴点P 的坐标为(0,0);综上,点P 的坐标为(0,0)或(2,2)或(-2,-2).【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,采用了分类讨论的思想,与方程相结合是解决问题的关键.16.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.17.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.25【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:25【点睛】本题考查了二次根式有意义解析:25【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3, 所以22()(23)525x x y +=+==.故答案为:25.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4 解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理AP BP+的最小值为:故答案为:【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP+的值最小是解题的关键.三、解答题21.(1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序;(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:8097903++=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是初二(1)班;(2)∵初二(1)班的平均分为:802843875235⨯+⨯+⨯++=84.7分;初二(2)班的平均分为:972783805235⨯+⨯+⨯++=82.8分;初二(3)班的平均分为:902783855235⨯+⨯+⨯++=83.9;∴排名最好的是初二一班,最差的是初二(2)班;(3)加强动作整齐方面的训练,才是提高成绩的基础.【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.22.(1)a=10,b=8,c=8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.23.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .24.(1)见解析;(2)矩形,见解析【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 即可证明△BOE ≌△DOF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF , 根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形, 再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:四边形ABCD 是平行四边形, OB OD ∴=,OA OC =. 又AE CF =,OA AE OC CF ∴-=-,即OE OF =,在DOE △和BOF 中,OE OF DOE BOF OD OB =⎧⎪∠=∠⎨⎪=⎩,∴△≌△DOE BOF .(2)四边形EBFD 是矩形,理由如下: BD ,EF 相交于点O ,OD OB =,OE OF =,∴四边形EBFD 是平行四边形.又BD EF =,∴四边形EBFD 是矩形.【点睛】本题考查了三角形全等的性质和判定,平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.25.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|543⨯+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.(1)①见解析;②2,此时∠APC =90°【分析】(1)①根据SAS 证明△AEF ≌△CMF 即可;②证明△BCM 是等腰直角三角形,由勾股定理求解即可;(2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE,推荐FP =,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于H ,求得EH =AH =2,CH =5,在Rt △EHC中,可得CE C 、P 、F 、EPA +PB +PC 的最小值为CE ,故可得结论.【详解】(1)①∵F 为AC 的中点,∴AF =CF在△AEF 和△CMF 中EF FM AFE CFM AF CF =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△CMF②由(1)得△AEF ≌△CMF ,∴AE =CM ,∠DAE =∠FCM ,∵BD ⊥AC ,∠BAC =45°,∴AD =BD在△AED 和△BCD 中90DE DC ADE BDC AD BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△AED ≌△BCD ,.∴AE =BC ,∠DAE =∠DBC ,∴BC =CM ,∠FCM =∠DBC ,∵∠BCF +∠DBC =90°,∴∠BCF +∠FCM =90°,∴△BCM 是等腰直角三角形, 由勾股定理得,22448(22)BM BC CM =+=+=或 (2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,易知△AFP 是等腰直角三角形,∴2FP AP ,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于 H .在Rt △ EAH 中,228AE AB == ,∵∠H =90° , ∠EAH =45°, ∵222EH AH AE +==8,∴EH =AH =2,∴CH =5,在 Rt △EHC 中,2242529CE EH CH =+=+∵2+PC =FP +EF +PC ≥CE ,∴点C 、P 、F 、E 2PA +PB +PC 的最小值为CE ,此时,∠AFP+∠AFE=90°,∠BPC +∠APF=180°,∵∠AFP=∠APF=45°,∴∠AFE=∠BPC=135°,∴∠APB=∠BPC=135°∴∠APC =360°-135°-135°=90°∴+PB+PC,此时∠APC=90°【点睛】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,中点的性质,勾股定理,判断出两对三角形全等是解本题的关键.。
【浙教版】八年级数学下期末试卷附答案
一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,222.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.1003.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大5.甲、乙两车分别从A地出发匀速行驶到B地,在整个行驶过程中,甲、乙两车离开A城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .46.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 7.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)8.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .9.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b10.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOMAOESS=.其中正确结论的个数是( )A .5个B .4个C .3个D .2个11.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠12.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .4二、填空题13.一组数据1,0,2,1的方差S 2=_____.14.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.15.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___. 16.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.17.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.18.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.19.如果代数式1x -有意义,那么实数x 的取值范围是____20.已知ABC 为等边三角形,且边长为4,P 为BC 上一动点,且PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E 两点,则PD +PE =______________.三、解答题21.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?22.某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C 组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:平均数中位数众数最高分笔试成绩81m9297面试成绩80.5848692根据以上信息,回答下列问题:(1)这批大学生中笔试成绩不低于88分的人数所占百分比为.(2)m=分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是成绩,理由是.(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?23.在ABC 中,已知:∠A=60度,∠B=x 度,∠C=y 度,请写出y 关于x 的函数式,并画出函数图象24.如图,已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF BC ⊥交BC 延长线于点F ,求证:四边形ABFD 是等腰梯形.25.先化简,再求值:211(1)a a a -++,其中21a =-. 26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.2.A解析:A 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案. 【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元. 故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.5.B解析:B 【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题. 【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩ =8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t , 即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确; ④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确,综上所述,正确的有①②,共2个,故选:B.【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.6.D解析:D【分析】过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,设菱形的边长为t,则OA=AB=t,在Rt△ABH中利用勾股定理得到(3﹣t)2+(3)2=t2,解方程求出t,得到A(2,0),再利用P为OB的中点得到P(32,3),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(32,32),设直线AC的解析式为y=kx+b,把A(2,0),P(32,32),代入得:203322k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.7.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.8.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A、根据图象知给自变量一个值,可能有2个函数值与其对应,故A选项不是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B选项是函数,C、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C选项是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D选项是函数,故选:A.【点睛】此题主要考查了函数概念,任意画一条与x轴垂直的直线,始终与函数图象有一个交点,那么y是x的函数.9.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b=-a-b+a=-b,故选:A.【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.10.C解析:C【分析】证明△OFB≌△CFB,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM,故结论④是错误的;证NE∥BM,AN=NO=OM,所以BM=3NE,AO=2OM,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED与AC的交点为N,设AE=OE=2x,则NE=x,BE=4x,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.11.D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.12.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC === ∴2222345CD DE EC =+=+= ∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+=∴22224845AC EC AE =+=+=cm ,故②错误; ∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD =∴5BD CD AD ===∵DF AB ⊥∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误;∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】 本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解.二、填空题13.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可.【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5.【点睛】 本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 14.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17, 则该小组组员年龄的中位数为12(15+16)=15.5岁, 故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.15.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 16.【分析】设点P 的坐标为过点B 作轴于点C 由旋转的性质得到再根据角的和差解得继而证明由全等三角形对应边相等解得进一步得到点的坐标为由此知点在直线上运动设直线与x 轴交于点E 与y 轴交于点F 作点O 关于直线的对解析:【分析】设点P 的坐标为()0,m ,过点B 作BC y ⊥轴于点C ,由旋转的性质得到PA PB =,90BPA ∠=︒再根据角的和差解得PBC APO ∠=∠,继而证明(AAS)BPC PAO △≌△,由全等三角形对应边相等解得,BC OP PC AO ==,进一步得到点B 的坐标为(,8)m m +,由此知点B 在直线8y x =+上运动,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',由三角形三边关系可得O B BA '+的最小值为O A ',继而证明四边形O EOF '为正方形,得到O '的坐标为(8,8)-,再利用勾股定理解得O A '的长,即可解题.【详解】解:∵点P 为y 轴上一动点,∴设点P 的坐标为()0,m ,如图所示,过点B 作BC y ⊥轴于点C ,∵线段PA 绕着点P 按逆时针方向旋转90°到PB ,,90PA PB BPA ∴=∠=︒,又BC y ⊥轴,90POA ∠=︒,90BCP POA ∴∠=∠=︒,∴在BCP 中,18090BPC PBC BCP ∠+∠=︒-∠=︒,又18090BPC APO BPA ∠+∠=-∠=︒︒,PBC APO ∴∠=∠, ∴在BPC △和PAO 中,BCP POA PBC APO PB AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BPC PAO ∴△≌△,,BC OP PC AO ∴==,又(0,),(8,0)P m A ,,8BC OP m PC AO ∴====,∴点B 的坐标为(,8)m m +,设,8x m y m ==+,8y x ∴=+,∴点B 在直线8y x =+上运动,如图所示,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',则O B OB '=,EF 垂直平分OO ',BO BA O B BA '∴+=+,又O B BA O A ''+,O B BA '∴+的最小值为O A ',即BO BA +的最小值为O A ',又8OE OF ==,45FEO ∴∠=︒,∴四边形O EOF '为正方形, ∴O '的坐标为(8,8)-,O A '∴===故BO BA +的最小值为,故答案为【点睛】本题考查轴对称—最短路线问题、坐标与图形变化—旋转、全等三角形的判定与性质、勾股定理、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键. 17.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF ,从而可求出∠DEH ,∠CEF 的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒, 故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键. 18.【分析】由四边形ABCD 是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA ∠BEC=∠BCA 继而得到∠ACB=2∠BAC 再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠ABC=∠D=102°,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠BCA,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠BAC,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.19.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.20.【分析】作出底边上的高AF连接AP分等边三角形为△APB和△APC根据三角形的面积不变可求得PD+PE的值【详解】连接AP作AF⊥BC于点F∵AB =ACAF⊥BC∴CF=BF=2AF=∵∴∴故填:【解析:【分析】作出底边上的高AF,连接AP,分等边三角形为△APB和△APC,根据三角形的面积不变可求得PD+PE的值.【详解】连接AP,作AF⊥BC于点F,∵AB=AC,AF⊥BC,∴CF=BF=2,AF=22AB BF=23-,ABC 11S=BC AF=423=4322⋅⨯⨯,∵ABC ABP ACPS=S+S,∴11AB PD+AC PE=4322⋅⋅,∴PD+PE=23,故填:23.【点睛】本题考查等边三角形的性质,勾股定理,解题的关键是“等面积法”.三、解答题21.(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%,∴本次共抽取的学生人数为15÷25%=60(人),则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时). 故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)30%;(2)82.5,笔试,笔试成绩大于中位数82.5分,面试成绩小于中位数84分;(3)92,乙同学不能被录用,理由见解析.【分析】(1)用不低于88分的人数除以总人数即可得;(2)根据中位数的概念可得m 的值,再结合中位数的意义可判断笔试成绩与面试成绩的排名情况;(3)先结合笔试成绩的中位数及88分的个数、最高分可判断出D 组分数的分布情况,再由乙同学不是最高分即可得答案,利用加权平均数的概念求解可得.【详解】(1)这批大学生中笔试成绩不低于88分的人数所占百分比为4530+×100%=30%, 故答案为:30%;(2)∵共有3+9+13+5=30个数据,其中第15、16个数据分别为82,83,∴中位数m =82832+=82.5(分), 该同学成绩排名靠前的是,理由如下:∵其笔试成绩大于中位数82.5分,面试成绩小于中位数84分,∴该同学成绩排名靠前的是笔试成绩,故答案为:82.5,笔试,笔试成绩大于中位数82.5分,面试成绩小于中位数84分. (3)∵笔试成绩的众数为92分,结合C 组中88分的有3个,最高分为97分, ∴D 组的5个数据中4个数92分,1个97分,∴乙同学笔试成绩不是最高分,∴乙同学的笔试成绩为92分, 乙同学的最终得分为923882805325⨯+⨯+⨯++=85.2(分), ∵85.2<86,∴乙同学不能被录用.【点睛】本题主要考查频数分布直方图,解题的关键是根据频数分布直方图得出解题所需数据及众数、中位数的概念.23.120(0120)y x x =-+<<,图象见解析.【分析】先根据三角形的内角和定理可得y 关于x 的函数关系式,再根据0,0x y >>可得自变量x 的取值范围,然后利用描点法画出函数图象即可得.【详解】由三角形的内角和定理得:180A B C ∠+∠+∠=度,60A ∠=度,B x ∠=度,C y ∠=度,60180x y ∴++=,解得120y x =-+,又00x y >⎧⎨>⎩, 01200x x >⎧∴⎨-+>⎩, 解得0120x <<,列表如下: x40 60 y80 60【点睛】本题考查了三角形的内角和定理、画一次函数的图象,熟练掌握函数图象的画法是解题关键.24.见解析.【分析】首先证明四边形ABDE 是平行四边形,即可得AB=DE ,等量代换可得CD=DE ,根据直角三角形斜边中线的性质定理可得DF =CD =DE ,进而可得AB=DF ,再说明线段AB 和DF 不平行即可求证结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB CD =.∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB DE =.∴CD DE =.∵EF BC ⊥,∴DF =CD =DE .∴AB DF =.∵CD 、FD 交于点D ,∴线段AB 与线段FD 不平行.∴四边形ABFD 是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.25.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++, 21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键. 26.5【分析】过点C作CE⊥AB于点E,连接AC,根据题意直接得出AE,EC的长,再利用勾股定理得出AC的长,进而求出答案.【详解】如图所示:过点C作CE⊥AB于点E,连接AC,由题意可得:EC=BD=1.2m,AE=AB−BE=AB−DC=1.3−0.8=0.5m,∴AC=2222+=+=m,1.20.5 1.3CE AE∴1.3÷0.2=6.5s,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。
【浙教版】八年级数学下期末试卷含答案
一、选择题1.数据5,2,3,0,5的众数是( ) A .0B .3C .6D .52.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .83.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是934.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,25.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm6.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .2C .32D .57.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1D .当1x >时,0y >9.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( ) A .8B .16C .82D .16210.下列各式中,错误的是( ) A .2(3)3=B .233-=-C .2(3)3=D 2(3)3-=-11.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2B 33cm 2C .3cmD .33cm12.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( ) A .a b c += B .::4:5:3a b c = C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=二、填空题13.商店某天销售了11件衬衫,其领口尺寸统计如下表: 领口尺寸(单位:cm ) 38 39 40 41 42 件数14312则这11件衬衫领口尺寸的中位数是________cm .14.对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.15.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.16.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 17.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .18.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.19.1x +x 的取值范围是________.20.已知△ABC 中,AB=AC=5,BC=6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.三、解答题21.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.22.下表是随机抽取的某公司部分员工的月收入资料.月收入/元45000180001000055005000340030002000人数111361112(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.23.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.24.在Rt ABC中,90ACB︒∠=,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连接DE.(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.25.计算:38|12|8+---.26.如图,已知△ABC 是等腰直角三角形,动点 P 在斜边 AB 所在的直线上,以 PC 为直角边作等腰直角△PCQ ,其中∠PCQ =90°,探究并解决下列问题:(1)如图 1,若点 P 为线段 AB 上一动点时, ①求证:△ACP ≌△BCQ ;②试求线段 PA ,PB ,PQ 三者之间的数量关系; (2)如图 2,若点 P 在 AB 的延长线上,求证:BQ ⊥AP ; (3)若动点 P 满足13PA PB =,请直接写出PC AC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据众数的概念直接求解,判定正确选项. 【详解】数据5出现了2次,次数最多,所以众数是5. 故选:D . 【点睛】考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.2.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.3.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.4.A解析:A 【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案. 【详解】 根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分; 众数是80, 故选A . 【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.5.C解析:C 【分析】过点E 作EH BC ⊥,由三角形面积公式求出EH=AB=6,由图2可知当14x =时,点P 与点D 重合,则12AD =,可得出答案. 【详解】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⋅=⨯⨯=,解得:EH=AB=6, ∴BE=10×1=10,228BH AE BE AB ==-=,由图2可知:当14x =时,点P 与点D 重合,4ED ∴=,8412BC AD ∴==+=,矩形的面积=12672⨯=. 故选:C . 【点睛】本题考查动点问题的函数图象,三角形的面积等知识,从图像中得出当10x =,14x =时,点P 的位置,熟练掌握数形结合思想方法是解题的关键.6.A解析:A 【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定. 【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性, 截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为 故选A . 【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.7.D解析:D 【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上, ∴4=k-2k , 解得,k=-4. 故选:D . 【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键.8.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C . 【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.9.A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积. 【详解】∵正方形ABCD 中,对角线4AC =, ∴AB 2+BC 2=AC 2, ∴2AB 2=42, ∴AB 2=8. 故选:A . 【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键.10.D解析:D 【分析】根据算术平方根的意义,可得答案. 【详解】解:A 、2(3=,故A 计算正确,不符合题意;B 、3=-,故B 计算正确,不符合题意;C 、23=,故C 计算正确,不符合题意;D 3=,故D 计算错误,符合题意; 故选:D . 【点睛】(a≥0).11.C解析:C 【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长. 【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形. ∵菱形的边长是3cm ,∴这个菱形的较短的对角线长是3cm . 故选:C . 【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.12.B【分析】根据三角形三边关系可分析出A的正误;根据勾股定理逆定理可分析出B的正误;根据三角形内角和定理可分析出C、D的正误;【详解】解:A、a b c+=,不能组成三角形,不是直角三角形;B、222a c b+=,符合勾股定理的逆定理,是直角三角形;C、由∠A+∠B=2∠C,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D、由∠A:∠B:∠C=5:12:13,可得最大角131807830C∠=︒⨯=︒,不是直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理.二、填空题13.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.165125千米【解析】【分析】根据加权平均数的定义列式进行求解即可【详解】估计被抽检电动汽车一次充电后平均里程数为:165125(千米)故答案为165125千米【点睛】本题考查了条形统计图的知识以解析:165.125千米.【解析】【分析】根据加权平均数的定义列式进行求解即可.【详解】估计被抽检电动汽车一次充电后平均里程数为:150415510160161652017014175121804410162014124⨯+⨯+⨯+⨯+⨯+⨯+⨯=++++++165.125(千米), 故答案为165.125千米.【点睛】本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.15.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.16.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值, 此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 17.10【分析】连接对角线BD 交AC 于点O 证四边形BDEG 是平行四边形得EG =BD 利用勾股定理求出OD 的长BD =2OD 即可求出EG 【详解】解:连接BD 交AC 于点O 如图:∵菱形ABCD 的边长为13cm ∴A解析:10【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【详解】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD 的边长为13cm ,∴AB//CD ,AB =BC =CD =DA =13cm ,∵ 点E 、F 分别是边CD 、BC 的中点,∴ EF//BD ,∵AC 、BD 是菱形的对角线,AC =24cm ,∴AC ⊥BD ,AO =CO =12AC =12cm ,OB =OD , 又∵AB//CD ,EF//BD ,∴DE//BG,BD//EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13cm,CO=12cm,∴OB=OD=2213125-=cm,∴BD=2OD=10cm,∴EG=BD=10cm;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.18.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC 交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.19.x≥-1【分析】根据二次根式的被开方数是非负数列出不等式x+1≥0通过解该不等式即可求得x的取值范围【详解】解:根据题意得x+1≥0解得x≥-1故答案为:x≥-1【点睛】此题考查了二次根式的意义和性解析:x≥-1【分析】根据二次根式的被开方数是非负数列出不等式x+1≥0,通过解该不等式即可求得x的取值范围.【详解】解:根据题意,得x+1≥0,解得,x≥-1.故答案为:x≥-1.【点睛】此题考查了二次根式的意义和性质.概念:式子a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.20.4【分析】过A作AP⊥BC于P根据勾股定理以及垂线段最短即可得到结论【详解】解:过A作AP⊥BC于P∵AB=AC=5∴BP=BC=3在Rt△ABP中由勾股定理得AP=4∵点P是线段BC上一动点∴AP解析:4【分析】过A作AP⊥BC于P,根据勾股定理以及垂线段最短即可得到结论.【详解】解:过A作AP⊥BC于P,∵AB=AC=5,∴BP=1BC=3,2在Rt△ABP中,由勾股定理得,AP=4∵点P是线段BC上一动点,∴AP≥4所以,AP的最小值为4故答案为:4.【点睛】本题考查了等腰三角形的性质以及勾股定理,求出AP=4是解题的关键.三、解答题21.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 22.(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;【详解】解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++(元)中位数:这组数据共有26个,第13 、14个数据分别为3400,3000, 所以样本的中位数为:3400300032002+=(元) (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.由题意可知,样本中的26名员工,只有3位员工的收入在6150以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点睛】本题考查的知识点是平均数与中位数,掌握平均数与中位数的求法是解此题的关键. 23.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12,∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】 本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.24.(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ;(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点,∴CE =12AB =AE . ∵△ACD 是等边三角形,∴AD =CD .在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE =30°.∵∠DCB =150°,∴∠EDC +∠DCB =180°.∴DE ∥CB .(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°,∵∠DCB =150°,∴∠DCB +∠B =180°,∴DC ∥BE ,又∵DE ∥BC ,∴四边形DCBE是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.25.321.【分析】根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式22212=+321=.【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.26.(1)①见解析;②PA2+PB2=PQ2;(2)见解析;(31010【分析】(1)①在Rt△ABC和Rt△PCQ中,可证得∠ACP=∠BCQ,从而证明全等;②把PA2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)连接BQ,由(1)中①的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用PAPB=13,可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得PCAC的值.【详解】解:(1)①∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∠ACB-∠PCB=∠PCQ-∠PCB,∴∠ACP=∠BCQ,∴△ACP≌△BCQ;②连接BQ,∵△ACP≌△BCQ,∴AP=BQ,∠CBE=∠A=45°,∴∠PBQ=90°,∴PB2+BQ2=PQ2,即PA2+PB2=PQ2;(2)证明:连接BQ,∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∵∠ACP=∠ACB+∠BCP,∠BCQ=∠PCQ+∠BCP,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠A=45°,∵∠ABQ=∠ABC+∠CBQ=90°,∴BQ⊥AP;(3)过点C作CD⊥AB于点D,∵PA PB =13, ∴点P 只能在线段AB 上或在线段BA 的延长线上,①如图3,当点P 在线段AB 上时,∵ PA PB =13, ∴PA =14AB =12CD =PD , 在Rt △CPD 中,由勾股定理可得CP =22CD DP += 2212CD CD ⎛⎫+ ⎪⎝⎭=5CD , 在Rt △ACD 中,由勾股定理可得AC = 22AD CD +=22CD =2CD ,∴PC AC =522CD CD =10; ②如图4,当点P 在线段BA 的延长上时,∵ PA PB =13, ∴PA =12AB =CD , 在Rt △CPD 中,由勾股定理可得CP 22CD DP +()222CD CD +5,在Rt △ACD 中,由勾股定理可得AC 22AD CD +22CD 2CD , ∴PC AC 52CD CD10 综上可知PC AC 1010. 【点睛】 本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理的应用,注意分类思想的理解与运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级下册数学期末复习题(一)
初二下学期期末数学综合复习资料(一)
_____班 姓名__________ 学号___________ 成绩_________
一、选择题(每题2分,共36分)
1、如果x
--21是二次根式,那么x 应满足的条件是( ) A 、x ≠2的实数 B 、x <2的实数
C 、x >2的实数
D 、x >0且x ≠2的实数
2、一个多边形的内角和与外角和相等,则这个多边形是( )
A 、三角形
B 、四边形
C 、五边形 D、六边形
3、在12、3
2x 、5.0中、22y x -、x 73中,最简二次根式的个数有( ) A、4 B、3 C 、2 D 、1
4、即是轴对称图形,又是中心对称图形的是( )
A 、菱形 B、等腰梯形 C、平行四边形 D、等腰三角形
5、下面结论正确的是( )
A 、无限小数是无理数
B 、无理数是开方开不尽的数
C 、带根号的数是无理数
D 、无限不循环小数是无理数
6、一个多边形的内角和与外角的和为540°,则它是( )边形。
A 、5
B 、4
C 、3
D 、不确定
7、计算38-的值为( )
A 、-2 B、2 C、±2 D、22-
8、矩形各内角的平分线能围成一个( )
A、矩形 B、菱形 C、等腰梯形 D、正方形 9、二次根式2
1x +中x 的取值范围是( )
A、x >-1 B 、x <-1 C 、x ≠-1 D 、一切实数
10、平行四边形、矩形、菱形、正方形共有的性质是( )
A 、对角线相等
B 、对角线互相平分
C 、对角线互相垂直
D 、对角形互相垂直平分
11、计算2)3(π-的值是( ) A 、π-3 B 、-0.14 C 、 3-π D 、 2)3(π-
12、矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是( )
A 、5cm
B 、10cm
C 、cm 52
D 、2.5cm
13、16
1的算术平方根是( )
A 、41
B 、4
1- C 、21 D 、±21 14、直角梯形的一个内角为120°,较长的腰为6cm ,一底为5cm ,则这个梯形的面积为
( )
A 、23221cm
B 、23239cm
C 、2325cm
D 、 23221cm 或232
39cm 15、将1
1)1(---c c 中的根号外的因式移入根号内后为( ) A 、c -1 B 、
1-c C 、 1--c D 、 c --1 16、下面四组二次根式中,同类二次根式是( )
A 、18
1163和- B 、a c b b a 435)1(9+和 C 、)(625y x y x x y ++和 D 、1
75)1(1253++c c 与 17、不能判定四边形ABCD 为平行四边形的题设是( )
A 、A
B =CD AB ∥CD B 、∠A =∠
C ∠B =∠D
C 、AB =A
D BC =CD D 、AB =CD AD =BC
18、若12,121
2+++=x x x 则等于( )
A 、2
B 、22+
C 、2
D 、12-
二、填空题(每题3分,共15分)
1、一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。
2、比较大小:34________45--
3、一个多边形的每一个内角等于144°,则它是_______边形。
4、计算:=+-20022002)562()562(_________________。
5、在实数范围内分解因式632-y =______ _______。
三、计算(每题4分,共32分)
1、 2
2108117- 2、--+-a ac b b 242 )04(2422≥----ac b a ac b b 3、50)2
131
(6-+⋅ 4、2731331103.0+--
5、132
121
23+-++- 6、)12()1(1
21
2+----x (x <1) 7、)623)(623(-++- 8、b a b
b a a +--
四、梯形ABCD 中,AD ∥BC ,∠A =90°,∠ADC =150°,对角线BD ⊥DC ,若AD =8,求BC 的长。
(6分)
D C B A F
E D
C B A
五、如图:AC 是平行四边形ABCD 的对角线,E 、F 两点在AC 上,且AE =CF 。
求证:四边形BFDE 是平行四边形(5分) 六、若223+=x ,223-=y 。
求
y x xy y x y x y x --+-+-2的值。
(6分)
(第一套)
一、CBCAD ,CADDB ,CBCDD ,BCC
二:1、10cm ,96cm 2;2、<;3、10;4、1;5、)2)(2(3-+y y ;
三:1、45;2、a ac b 42-;3、243-;4、330
17-;5、0;6、1-x ; 7、534-;8、b
a b a -+; 四、BC =32
五、连结BD ,可证对角线互相平分。
六、0。