指数函数及其性质教案doc
高中数学《指数函数及其性质》教案
高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的探究和运用能力。
二、教学内容1. 指数函数的定义与表达式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的图像与性质5. 实际问题中的指数函数应用三、教学重点与难点1. 重点:指数函数的定义、性质及其应用。
2. 难点:指数函数图像的特点,以及如何运用指数函数解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生探究指数函数的性质。
2. 利用数形结合的方法,让学生直观地理解指数函数的图像与性质。
3. 通过实际问题的引入,培养学生的应用能力。
五、教学过程1. 导入:回顾初中阶段学习的指数知识,引发学生对指数函数的好奇心。
2. 新课讲解:介绍指数函数的定义、表达式,分析指数函数的单调性和奇偶性。
3. 案例分析:分析实际问题中的指数函数应用,让学生体会数学与生活的联系。
4. 课堂练习:设计相关练习题,巩固学生对指数函数的理解。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评价1. 通过课堂提问、练习题和课后作业,评估学生对指数函数定义、性质的理解程度。
2. 观察学生在解决问题时的思维过程,评价其运用指数函数解决实际问题的能力。
3. 鼓励学生参与课堂讨论,评价其合作交流和探究能力。
七、教学资源1. 教材:高中数学教材相关章节。
2. 课件:制作精美的课件,辅助讲解指数函数的性质。
3. 练习题:设计具有梯度的练习题,巩固学生对指数函数的理解。
4. 实际问题:收集与生活相关的指数问题,激发学生的学习兴趣。
八、教学进度安排1. 第1-2课时:讲解指数函数的定义与表达式,分析单调性和奇偶性。
2. 第3课时:探讨指数函数的图像与性质。
3. 第4课时:分析实际问题中的指数函数应用。
九、课后作业1. 复习指数函数的定义、性质及其图像。
指数函数及其性质教案
指数函数及其性质教案一、教学目标1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性、周期性等;3. 学会运用指数函数解决实际问题;4. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义:形如y=a^x(a>0且a≠1)的函数称为指数函数;2. 指数函数的表达形式:指数函数可以写成y=e^(xln(a))的形式;3. 指数函数的单调性:当a>1时,指数函数在定义域上单调递增;当0<a<1时,指数函数在定义域上单调递减;4. 指数函数的奇偶性:指数函数既不是奇函数也不是偶函数;5. 指数函数的周期性:指数函数没有周期性;6. 指数函数的应用:解决实际问题,如人口增长、放射性衰变等。
三、教学重点与难点1. 教学重点:指数函数的定义、表达形式、单调性和应用;2. 教学难点:指数函数的单调性和应用。
四、教学方法1. 讲授法:讲解指数函数的定义、表达形式、单调性和应用;2. 案例分析法:分析实际问题,引导学生运用指数函数解决问题;3. 练习法:布置课后作业,巩固所学知识。
五、教学安排1. 第一课时:讲解指数函数的定义和表达形式;2. 第二课时:讲解指数函数的单调性;3. 第三课时:讲解指数函数的奇偶性和周期性;4. 第四课时:讲解指数函数的应用;六、教学评估1. 课堂提问:检查学生对指数函数定义和表达形式的理解;2. 课堂练习:让学生解答相关例题,检验对单调性的掌握;3. 课后作业:评估学生对奇偶性、周期性和应用的理解。
七、教学策略1. 针对不同学生的学习基础,提供多层次的学习资源;2. 利用多媒体工具,如图表、动画等,直观展示指数函数的性质;3. 鼓励学生参与课堂讨论,增强互动性。
八、教学延伸1. 探讨指数函数与其他类型函数的关系;2. 研究指数函数在数学和其他学科中的应用;3. 引入指数对数函数,比较其性质和应用。
九、课后作业1. 练习题:巩固指数函数的基本概念和性质;2. 研究题:探究指数函数在实际问题中的应用;3. 拓展题:深入了解指数函数的更深层次性质。
指数函数图像与性质教学设计精选10篇
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
指数函数及其性质教案
数学与信息科学学院教案课题指数函数及其性质专业数学与应用数学指导教师潘超班级2008级1班姓名杜雪萍学号200802410702011年5月22日课题:§2.1.2指数函数及其性质(第一课时). 课型:新授课. 一、教学目标1、知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.2、能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力.3、情感目标:认识事物的普遍联系与相互转化,激发学生学习数学的兴趣,努力培养学生的创新意识.二、教学重点和难点重点:指数函数的定义、图象和性质.难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系.三、教学过程(一)引入新知,形成概念回顾课本48页问题1和问题2的两个解析式x y 073.1=和573021t p ⎪⎭⎫ ⎝⎛=.提问:(1)这两个解析式是不是函数? 回答:是.(2)这两个函数有什么共同特征? 回答:底数是常数,指数是自变量. (3)那这两个函数是我们学过的哪种函数?教师引导:我们学过的函数有一次函数b kx y +=,反比列函数xk y =,二次函数c bx ax y ++=2.学生通过对比发现给出的两个函数不属于一次函数,反比列函数,二次函数,是一个新的函数.用字母a 代替其中的常数,x 代替其中的自变量,那么上述两式就可以表示成x a y =. 的形式,其中自变量x 是指数,底数a 是一个大于0而不等于1的常数. (二)指数函数的定义一般的,函数0(>=a a y x ,且)1≠a 叫做指数函数,其中x 是自变量,函数的定义域是R .探究1:为什么要规定0>a ,且1≠a ?(1)若0<a ,x a 有时会没有意义,如:当2-=a ,21=x ,则在实数范围内无意义; (2)若0=a ,x a 有时会没有意义,如1-=x , 则在实数范围内无意义; (3)若1=a ,对任意R x ∈,1=x a ,对它没有研究的必要. 探究2:下列函数哪些是指数函数,为什么?(1) x y 4=; (2)4x y =; (3) xy 4-=; (4)14+=x y .指数函数判断条件:是否形如x a y =的函数,其中系数为1,底数满足0>a ,且1≠a ,指数位置是自变量x . (三)指数函数的图象和性质1、xy 2=和xy ⎪⎭⎫ ⎝⎛=21的图象用描点法画出xy 2=和xy ⎪⎭⎫⎝⎛=21的图象.观察思考:(讨论) 问题 :(1)函数xy 2=的图象与函数xy ⎪⎭⎫ ⎝⎛=21的图象有什么关系?可否利用x y 2=的图象画出xy ⎪⎭⎫⎝⎛=21的图象?回答:能,函数xy 2=的图象与函数xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(2)两个函数图象有什么共同点 ?回答:它们的图象都在x 轴的上方,且都过同一个点(0,1).教师:图象在x 轴上方说明0>y ,向下与x 轴无限接近;过点(0,1)说明0=x 时,1=y .(3)两个函数图象有何不同之处?回答:当底数为21时图象下降,当底数为2为时,函数图象上升.教师:说明当21=a 时函数在R 上为减函数,当2=a 时函数在R 上为增函数.其中21=a 时10<<a ,而2=a 时1>a . 设想:是否所有10<<a 的指数函数在R 上都为减函数,1>a 的指数函数在R 上都为增函数. 证明:(1)当10<<a ,对任意1x ,R x ∈2,21x x >, (2)当1>a 时,对任意1x ,R x ∈2, 21x x >,∴212121x x x x a a a y y -== ∴212121x x x x a a a y y -==∵1<a 且021>-x x ∵1>a 且021>-x x∴121<y y ∴121>y y ∴21y y < ∴21y y > ∴指数函数x a y =在R 上是减函数. ∴指数函数x a y =在R 上是增函数.(四)课堂练习1、(课本56页)例6.已知指数函数x a x f =)(0(>a ,且)1≠a 的图象经过点),(π3,求)0(f ,)1(f ,)3(-f 的值.分析:要求)0(f ,)1(f ,)3(-f 的值,我们需要先求出指数函数x a x f =)(的解析式,也就是要先求出a 的值.根据函数图象过点),(π3这一条件,可以求出底数a 的值.解:因为x a x f =)(的图象经过点),(π3,所以π=)3(f . 即π=3a ,解得31π=a ,于是3)(x x f π=.所以,1)0(0==πf ,331)1(ππ==f ,ππ1)3(1==--f .2、(课本58页)练习2.求下列函数的定义域:(1)23-=x y ;(2)xy 121⎪⎭⎫ ⎝⎛=.分析:(1)只要指数位置上的2-x 有意义,则原函数有意义. (2)只要指数位置上的x1有意义,则原函数有意义.解:(1)由 2-x 有意义,得 02≥-x 即 2≥x ,∴原函数定义域为}2|{≥x x . (2)由x1 有意义,得0≠x ,∴ 原函数的定义域为 R x x ∈|{且}0≠x .(五)归纳小结1、本节课的主要内容是:指数函数的定义、图象和性质;2、本节学习的重点是:掌握指数函数的图象和性质;3、学习的关键是:彻底弄清并掌握指数函数的图象和性质,才能灵活运用性质解决实际问题. (六)布置作业1、课本58页练习1;2、课本59页第5题. (七)板书设计。
指数函数及其性质教案
2017临清市教学能手参评教案《指数函数及其性质》(第一课时)临清市第一中学齐永明教学设计:指数函数及其性质(第一课时)一、教材依据:人教A版必修1第二章基本初等函数(I)二、教学分析:1.1学情分析学生已经学过了函数的定义,研究了函数的单调性、奇偶性,初中也学习过正比例函数、反比例函数、一次函数、二次函数等一些初等函数,能画出它们的图象,通过图象初步研究了它们的定义域、值域、单调性、奇偶性,也已经学习了指数的运算,已经把幂的运算由整数推广到了实数,为指数函数的学习打下了基础。
1.2教学设想指数函数是学生进入高中,在学习了函数的定义域、值域、奇偶性、单调性等性质后接触的第一个基本初等函数,学会对其研究的方法,对后续学习研究对数函数、幂函数、三角函数等具有指导意义。
因此,在学习指数函数的过程中,除了要让学生学习指数函数的定义、图象、性质及其应用,并且整体把握指数函数外,更重要的是让学生学会研究一类函数的方法,学会研究的角度。
基于此种设想,在以下六个角度展开课堂:①在比较中引入新概念②引导学生学习研究函数的方法③注重对学生分析解决问题能力的培养④把数学思想方法渗透在例题讲解过程中⑤通过计算器、几何画板丰富学生的学习方式⑥抓住对学生进行德育工作的好时机。
1.3教学目标:知识与能力:了解指数函数模型的实际背景,认识数学对于现实生活的联系;了解指数函数的定义,会画出指数函数的图象,了解图象的特征,会用指数函数的性质解决部分习题。
过程与方法:渗透由一般到特殊、由特殊到一般、数形结合等数学思想,让学生学会研究函数的一般方法与过程。
情感态度价值观:通过指数函数的特点,渗透德育教育,让学生深切感受到点滴努力加上长期坚持会发展到“前途无量”。
1.4教学重点与难点重点:指数函数的概念和性质的推导与掌握难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质三、教学过程附:《指数函数及其性质》(第一课时)导学案谢谢审阅,望不吝赐教!齐永明。
指数函数及其性质教案
“指数函数及其性质教案”教学目标:1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性和周期性;3. 能够应用指数函数的性质解决实际问题。
教学内容:一、指数函数的定义与表达形式1. 引入指数函数的概念;2. 介绍指数函数的一般形式;3. 解释指数函数的参数含义。
二、指数函数的单调性1. 探讨指数函数的单调性;2. 证明指数函数的单调性;3. 应用指数函数的单调性解决实际问题。
三、指数函数的奇偶性1. 探讨指数函数的奇偶性;2. 证明指数函数的奇偶性;3. 应用指数函数的奇偶性解决实际问题。
四、指数函数的周期性1. 探讨指数函数的周期性;2. 证明指数函数的周期性;3. 应用指数函数的周期性解决实际问题。
五、实际问题中的应用1. 引入实际问题;2. 应用指数函数的性质解决实际问题;3. 总结指数函数在实际问题中的应用。
教学方法:1. 采用讲授法,讲解指数函数的定义、表达形式以及性质;2. 利用多媒体演示,直观展示指数函数的图像和性质;3. 通过例题和练习题,巩固学生对指数函数性质的理解和应用。
教学评估:1. 课堂问答,检查学生对指数函数定义和表达形式的理解;2. 布置课后练习题,评估学生对指数函数性质的掌握程度;3. 组织小组讨论,评估学生在解决实际问题中的应用能力。
教学资源:1. 教材或教辅资料;2. 多媒体教学设备;3. 练习题和实际问题。
教学时间:1. 第一课时:指数函数的定义与表达形式;2. 第二课时:指数函数的单调性;3. 第三课时:指数函数的奇偶性;4. 第四课时:指数函数的周期性;5. 第五课时:实际问题中的应用。
六、指数函数的图像与性质1. 分析指数函数的图像特点;2. 探讨指数函数的性质,包括单调性、奇偶性和周期性;3. 应用指数函数的性质解决实际问题。
七、指数函数的应用1. 引入实际问题;2. 应用指数函数的性质解决实际问题;3. 总结指数函数在实际问题中的应用。
指数函数及其性质教案 (1)
指数函数及其性质教案教学目标知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.水平目标:通过自主探索,经历“特殊→一般→特殊”的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法,增强识图用图的水平.情感目标:感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,体现数学实用价值及其在社会进步、人类文明发展中的重要作用。
教学重点、难点重点:指数函数的图象、性质及其简单使用.难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系. 教学方法与手段教学方法:启发式、探究式教学法.教学手段:采用多媒体辅助教学.教学过程1.创设情境,建构概念〖学生活动1〗:将一页白纸连续对折,完成表格并写出:(2)设这页纸的面积单位为1,则对折后每页纸的面积s与对折次数x的关系式:______________________〖问题情境1〗某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相对应的细胞个数为y,则细胞个数y 与分裂次数x的表达式:____________________〖问题情境2〗一尺之棰,日取其半,万世不竭.出自《庄子●天下篇》求剩余长度y关于截取次数x的表达式为: ____________________〖问题1〗类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?_____________________________________________________________________〖建构概念〗一般地,形如______________________的函数称为指数函数.它的定义域是R.2.实验探索,汇报交流(1)构建研究方法〖问题2〗我们定义了一个新的函数,你能类比前面讨论函数的思路,提出研究指数函数的方法和内容吗?研究方法:____________________________________研究内容:_____________________________________________〖问题3〗如何来画指数函数的图象呢?_________________________________________________________________ (2)自主探究,汇报交流〖学生活动2〗选择数据,画出图象,观察特点,归纳性质.(在坐标纸上画)x(>0且≠1)具有以下性质:〖学生活动3〗指数函数3.新知使用,巩固深化【例1】比较下列各组数中两个值的大小:①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.变式探究:①比较a0.3与a3.1的大小(a>0,a≠1)②根据不等式确定x的取值范围.1.5x<1.53.2【例2】①已知3x≥9,求实数x的取值范围;②已知0.2x<25,求实数x的取值范围.4.课堂检测:课本第67页,练习第4题:(2),(4),(6)5.概括知识,总结方法〖问题4〗本节课我们的收获➢1.学习了哪些知识:➢2.实践了一种研究函数的探究模式:➢ 3. 渗透了三种数学思想:5.分层作业,因材施教A组(1)感受理解:课本第70页,习题3.1(2):1,2,3,4;B组(2)思考使用:使用今天的研究方法,你还能得到指数函数的其它性质吗?6、知识扩展〈一〉考古中的指数函数14C是具有放射性的碳同位素,能够自发地实行 衰变,变成氮,半衰期为5730年,活的植物通过光合作用和呼吸作用与环境交换碳元素,体内14C 的比例与大气中的相同。
指数函数及其性质教案
指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。
2. 掌握指数函数的一般形式。
教学内容:1. 引入指数函数的概念,指数函数的一般形式。
2. 举例说明指数函数的图像和性质。
教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。
2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。
3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。
4. 引导学生总结指数函数的性质,如单调性、奇偶性等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的概念。
章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。
2. 理解指数函数的单调性和奇偶性。
教学内容:1. 分析指数函数的图像特点。
2. 探讨指数函数的单调性和奇偶性。
教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。
2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。
3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的图像和性质。
章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学内容:1. 介绍指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。
2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数在实际问题中的应用。
章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。
2. 学会解决实际问题中的指数方程。
指数函数及其性质教学设计(共8篇)
指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
2.1.2指数函数及其性质教案doc
2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。
过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。
情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。
认识到数学来源于生活,并且服务于生活。
二、教学重点和难点重点:指数函数的概念和性质。
难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。
三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。
(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。
引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。
老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。
指数函数及其性质教案
指数函数及其性质教案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--指数函数及其性质教案指数函数及其性质教案一、教学目标:知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。
领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的'学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:(一)创设情景问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。
求出这种物质的剩留量随时间(单位:年)变化的函数关系。
设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0。
84x。
引导学生观察,两个函数中,底数是常数,指数是自变量。
1.指数函数的定义一般地,函数yaa0且a1叫做指数函数,其中x是自变量,函数的定义域是R。
x问题:指数函数定义中,为什么规定“a0且a1”如果不这样规定会出现什么情况(1)若a x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题(对于x0,a无意义)(3)若a=1又会怎么样(1x无论x取何值,它总是1,对它没有研究的必要。
)师:为了避免上述各种情况的发生,所以规定a0且a1。
练1:指出下列函数那些是指数函数:1(1)y4x(2)yx4(3)y4x(4)y4(5(转载于:,n的大小:设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
高中数学指数函数及其性质优秀教案设计
高中数学指数函数及其性质优秀教案设计教案:指数函数及其性质教学目标:1.理解指数函数的定义和性质。
2.掌握指数函数的图像特征和变化规律。
3.能够应用指数函数解决实际问题。
教学重点:1.指数函数的定义和性质。
2.指数函数图像的特征和变化规律。
教学难点:1.理解指数函数的定义和性质。
2.熟练掌握指数函数图像的特征和变化规律。
教学准备:1.教师:电脑、投影仪、教学PPT。
2.学生:教科书、笔记本。
教学过程:Step 1:导入新知1.教师利用PPT展示指数函数的定义和性质,引导学生思考指数函数与幂函数的关系,并提出问题:“指数函数与幂函数有什么区别?它们的图像有何特点?”2.学生回答问题并进行讨论。
Step 2:学习指数函数的定义和性质1.教师通过展示幂函数的特征和图像,引导学生理解指数函数的概念和定义。
2.教师讲解指数函数的性质,如:a.正指数函数和负指数函数的性质;b.指数函数的单调性和奇偶性;c.指数函数在x轴和y轴上的截距。
Step 3:探究指数函数图像的特征和变化规律1.教师通过PPT展示指数函数的图像,并引导学生观察和总结图像的特点。
2.教师指导学生探究指数函数图像的变化规律,如正指数函数图像的增长趋势和负指数函数图像的衰减趋势。
3.学生在笔记本上完成练习,绘制两个指数函数的图像,并分析它们之间的关系。
Step 4:应用指数函数解决实际问题1.教师通过实际问题展示指数函数的应用,如人口增长问题、放射性衰变问题等。
2.教师提供一些实际问题,并引导学生运用指数函数解决。
Step 5:归纳总结1.教师带领学生归纳总结指数函数的定义、性质和图像特征。
2.学生进行小组讨论,共同总结归纳。
Step 6:作业布置1.学生独立完成教科书上的习题,巩固所学的知识。
2.学生还可以选择一个实际问题,利用指数函数解决,并写出解题过程和思路。
教学反思:此教学设计能够帮助学生深入理解指数函数的定义和性质,通过观察和探究图像特征和变化规律,提高数学建模和解决实际问题的能力。
指数函数及其性质教案——方林
§2.1.2指数函数及其性质一、教学目标知识与技能:通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义过程与方法:根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力. 情感态度与价值观:通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 二、教学重难点教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 三、教具准备 四、教学过程 (一)导入课题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x 年后的剩留量y 与x 的关系式是_________.(y=0.84x)2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的关系式是_________.(y=2x) (二)新知探究 提出问题(1)你能说出函数y=0.84x 与函数y=2x的共同特征吗?(2)你是否能根据上面两个函数关系式给出一个一般性的概念? (3)为什么指数函数的概念中明确规定a>0,a ≠1? (4)为什么指数函数的定义域是实数集?(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤. 活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨 讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y .(2)对于两个解析式xy 84.0=和xy 2=,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一、定义:一般地,函数xa y =)1,0(≠>a a 叫做指数函数,其中x 叫自变量,函数的定义域是实数集R .(3)注意:(i )规定1,0≠>a a⎩⎨⎧≤>=没有意义恒等于,00,00x a x a x 0<a 开偶次根号没有意义,如2)2(,21,221-=-==-=x a x a ,显然是没有意义的1=a 是一个常数函数,无研究必要(ii )形式的严格性:1,0≠>a a ,指数是自变量x ,且R x ∈,整个式子的系数是1 (4)因为x a ,0>可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数. 例1判断下列函数是否是一个指数函数?(1)x y 4= (2)4x y = (3)x y 4-= (4)x y )4(-= (5)x y -=π(6)xy )1(π= (7)x x y = (8))1,0()12(≠>-=a a a y x (9)x y 32⋅= (10)26+=x y变式训练函数x a a a y )33(2+-=是指数函数,则=a函数x x x x a y a y k a y y 23,,,2--==+==)1,0(≠>a a 中是指数函数的有哪些? 已知)(x f y =是指数函数,且4)2(=f ,求函数)(x f y =的解析式 提出问题(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? (2)前面我们学习函数的时候,如何作函数的图象?说明它的步骤.(3)利用上面的步骤,作函数xy 2=,xy )21(=的图象.(4)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?(5)把xy 2=和xy )21(=的图象,放在同一坐标系中,你能发现这两个图象的关系吗?(6)你能证明上述结论吗?(7)能否用xy 2=的图象画xy )21(=的图象?请说明画法的理由.活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养 讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质. (2)列表x … -3 -2 -1 0 1 2 3 … x y 2=…81 41 211248…xy )21(=… 8 4 2 121 41 81…(2)描点作图(4)通过观察图像,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x 轴上方,说明值域大于0.图象经过点)1,0(。
指数函数及其性质(教案)
指数函数及其性质(一)【教学目标】1.使学生掌握指数函数的概念,图象和性质;(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
【教学重点】指数函数的概念和性质。
【教学难点】指数函数的图象、性质与底数a的关系。
【教学方法】启发式教学,探讨式教学等。
【教学工具】多媒体(几何画板)【教学设计】一、通过问题引入:问题(1):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?问题(2):某台机器的价值每年折旧率为6%,写出经过x年后,这台机器的价值y与x的函数关系式。
用多媒体演示它们的变化过程并求出函数关系式:(1)表达式 y=2x(x为正整数)(2)表达式y=0.94x(x为正整数)设问:y=0.94x和y=2x这样的函数是什么函数?其一般形式是什么?提示学生从幂的形式、幂底数和幂指数三个方面概括出其形式为y=a x后,说明这就是我们今天要学习的指数函数,从而引出指数函数的概念。
二、新授1、指数函数的概念一般地,函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R ,常数a(a>0且a ≠1)叫做指数函数的底数。
设问:函数y=a x 中当x 为全体实数时,底数为什么要规定a>0且a ≠1?学生讨论,老师总结如下: 当a>0时,a x 有意义;当a=1时,1xa ≡,无研究价值;当a=0时,若x>0时,0xa ≡,也没有研究价值;若x ≦0时,xa 无意义; 当a<0时,xa不一定有意义,如()122-,所以为了研究方便,规定a>0且a ≠1。
指数函数及其性质
指数函数及其性质2.1.2指数函数及其性质(第一课时)一、 教学目标:知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图像数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想;过程与方法展示函数图像让学生通过观察,进而研究指数函数的性质.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力.二.重点、难点重点:指数函数的概念和性质及其初步应用. 难点:指数函数性质的归纳,概括及其初步应用.三、学法与教具:①学法:分类讨论、观察法、讲授法及讨论法. ②教具:多媒体.四、教学设想1、 创设情境揭示课题①观察情境1、细胞的分裂过程:细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么? 观察情境1得: y = 2 x ( x∈N + ) (细胞分裂)观察事例2、一根1米长的绳子,第 1 次剪掉绳长的一半,第 2 次剪掉剩余绳长的一半……剪了x 次后剩余绳子的长度为y 米,试写出y 和x 的函数关系. 观察事例2得:y = ( 12 ) x ( x ∈N + ) (剪绳子)② 请问这两个函数有什么共同特征?这两个关系式中的底数是一个正数,自变量为指数,即都可以用x y a =(a >0且a ≠1来表示).这就是今天我和同学一起学习和交流的主要课题。
212、学法指导、启发探究③指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .④设问:既然规定 a>0,且a ≠1,那么应如何对a 进行分类? 生:⑤如何判断一个函数是否是指数函数?关键有两点:①底数是一个大于0且不等于1的常数;②其形式为y = ax ,指数部分只有x 或kx (k ≠0)的形成作为指数,a x 前面的系数只能为1.3、问题分析、思想奠基提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2xy =-(4)xy π= (5)2y x = (6)24y x =(7)xy x = (8)(1)xy a =- (a >1,且2a ≠)4、师生合作、共同探究⑥指数函数的图像性质我们在学习函数的单调性的时候,主要是根据函数的图像即用数形结合的方法来研究. 下面我们通过画出函数2xy =、10xy = 的图像先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图像⑧让学生观察图,总结指数函数的性质再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()xy =的图象.x 1x ⎛⎫5、互问互检、巩固强化 例题1、例1:(P 66例7)比较下列各题中的数值的大小 (1) 1.72.5 与 1.73 ( 2 ) 0.10.8-与0.20.8- ( 3 ) 2 -0.8 与 4-0.8 (4)1.70 0. 3 与 0.9 3.1 解法:用数形结合的方法。
最新人教版高一数学《指数函数》教案15篇
人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。
精品教案 2.1.2 指数函数及其性质
2.1.2 指数函数及其性质第1课时本教学设计获福建省数学设计大赛一等奖.整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨. 师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y 表示,每位同学的座号数用x 表示,y 与x 之间的关系分别是什么?学生很容易得出y =2x (x ∈N *)和y =2x (x ∈N *). 学情预设学生可能会漏掉x 的取值范围,教师要引导学生思考具体问题中x 的取值范围. 二、师生互动、探究新知 1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y =2x 类似的关系式y =1.073x (x ∈N *,x ≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y =2x (x ∈N *)和y =1.073x (x ∈N *,x ≤20)这两个解析式有什么共同特征? ②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟). 对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在)②若a =0,会有什么问题?(对于x ≤0,a x都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要) 师:为了避免上述各种情况的发生,所以规定a >0且a ≠1. 在这里要注意生生之间、师生之间的对话. ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =kx,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备. 接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x,y =32x ,y =-2x .学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解. 2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面? 设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透. (2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组); ③每组都将研究所得到的结论或成果写出来以便交流. 学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导. 通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟) 师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝⎛⎭⎫1a x的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a 的值,追踪y =a x 的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的 0<a <1a >1(0,+∞)过定点(0,1)非奇非偶在R 上是减函数 在R 上是增函数分钟)1.例:已知指数函数f (x )=a x (a >0,且a ≠1)的图象经过点(3,π),求f (0),f (1),f (-3)的值.解:因为f (x )=a x 的图象经过点(3,π),所以f (3)=π,即a 3=π.解得13πa=,于是f (x )=3πx .所以f (0)=1,f (1)=3π,f (-3)=1π.设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝⎛⎭⎫13x的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y=112xy⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获? 学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通. 4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y =1.7x 的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1. 解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y =0.8x ,当x =-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y =0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1. 点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x xx aa a ax -=--.因为a >1,x 2-x 1>0,所以21>1x x a -,即21x xa --1>0.又因为1xa >0,所以y 2-y 1>0,即y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数. 同理可证,当0<a <1时,y =a x 是减函数.证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x xaaa-=.因为a >1,x 2-x 1>0,所以21>1x x a ->1,即y 2y 1>1,y 1<y 2.所以当a >1时,y =a x ,x ∈R 是增函数.x例3 1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿; 经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿; ……经过x 年 人口约为13(1+1%)x 亿; 经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x )的定义域是( )A .(0,1)B .⎝⎛⎭⎫12,1 C .(-∞,0) D .(0,+∞)解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A B B .A B C .A =B D .A ∩B =∅ 解析:A ={y |y >0},B ={y |y ≥0},所以A B . 答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x 时,上述结论中正确的是__________.解析:因为f (x )=10x ,且x 1≠x 2,所以f (x 1+x 2)=1212101010xxx x +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010xxxx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x 是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号,所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x 图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>∴1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f⎝⎛⎭⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系.(1)①y =3x ,②y =3x +1,③y =3x -1;(2)①y =⎝⎛⎭⎫12x,②y =⎝⎛⎭⎫12x -1,③y =⎝⎛⎭⎫12x +1. 活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x ,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到;y =3x -1的图象由y =3x 的图象右移1个单位得到;y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝⎛⎭⎫12x,y =⎝⎛⎭⎫12x -1,y =⎝⎛⎭⎫12x +1的图象间有如下关系: y =⎝⎛⎭⎫12x +1的图象由y =⎝⎛⎭⎫12x 的图象左移1个单位得到; y =⎝⎛⎭⎫12x -1的图象由y =⎝⎛⎭⎫12x 的图象右移1个单位得到; y =⎝⎛⎭⎫12x -1的图象由y =⎝⎛⎭⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考. 课堂小结 思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B 组 1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a >1,0<a <1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时 指数函数及其性质的应用(2)导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y =3x ,②y =3x +1,③y =3x -1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y =a x 与y =a x +m (a >0,m ∈R )有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于且小于1第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1从左向右图象逐渐上升从左向右图象逐渐下降①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.0.031 250.062 50.1250.250.5图7比较可知函数y=2x-1、y=2x-2与y=2x的图象的关系为:将指数函数y=2x的图象向右平行移动1个单位长度,就得到函数y=2x-1的图象;将指数函数y=2x的图象向右平行移动2个单位长度,就得到函数y=2x-2的图象.点评:类似地,我们得到y=a x与y=a x+m(a>0,a≠1,m∈R)之间的关系:y=a x+m(a>0,m∈R)的图象可以由y=a x的图象变化而来.当m>0时,y=a x的图象向左移动m个单位得到y=a x+m的图象;当m<0时,y=a x的图象向右移动|m|个单位得到y=a x+m的图象.上述规律也简称为“左加右减”.。
必修1教案2.1.2指数函数及其性质(一)
2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。
指数函数及其性质
指数函数及其性质一、教学背景分析1.教学内容的地位和作用《指数函数及其性质》是人教版《普通高中课程标准试验教科书》数学必修1第二章第一节的内容,是第二章《基本初等函数》的重点内容之一.它是第一章“函数”的延伸,又是第三章《函数的应用》的基础,在知识上起着承前启后的作用.同时,由于它是学生进入高中接触到的第一个基本初等函数,对它的探究为研究其它函数提供了系统的方法和模式.更重要的是,作为常见的函数,它在生活实践中有着广泛的应用.因此,我们应该重点研究它.2.学情分析(1)学生已经初步掌握了函数的概念和性质以及指数的运算性质.(2)学生已经基本形成了研究函数的思路和方法.(3)学生的概括能力和探究能力存在欠缺.3.教学目标:根据课程标准的要求,结合本节课在教材中的地位和作用及学情分析,本节课的教学目标确定如下:知识与技能:(1)了解指数函数模型的实际背景;(2)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(3)掌握指数函数的性质;过程与方法:体会研究指数函数及性质的过程与方法;情感、态度与价值观:(1)让学生体会指数函数的基本模型,认识数学和生活实际的密切联系. (2)培养学生的探索精神、合作交流和竞争意识以及社会责任感.4.教学重点、难点:重点:指数函数的概念和性质.难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.二、教法分析和学法指导为了实现本节课的教学目标,设置如下教学和学法.1.教法:①以学生为主体的探究式教学;②采用“设问—探究—定论—应用”式层层推进;③借助多媒体和几何画板软件;2.学法:①以促进学生发展为出发点;②着眼于知识的形成和发展;③着眼于学生体验学习的过程;④探究形式,由浅入深、循序渐进.函数定义域为R板书设计:1、评价学生学习过程本节课在情境创设中注重与实际生活联系,让学生体会数学的应用价值,教学中学生精神饱满、兴趣浓厚、探究积极,乐于和老师、同学交流,体会成功的愉悦.2、评价学生的基础知识、基本技能和发现问题、解决问题的能力教学中通过学生回答问题,归纳总结等方面反馈学生对数学知识的理解程度、对数学技能的掌握程度和发现问题、解决问题的能力.我根据反馈信息适时点拨,鼓励学生发表自己的观点、充分质疑,并抓住学生在语言、思想等方面的亮点给予表扬,树立他们学习数学的自信心.并根据课堂情况适时调整思路,以便提高教学效果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生:通过直观理解自主得出这两个问题的函数关系式。 通过图示更好的让学生直观的理解整个过程,让他们自主思考、解题。 新知探究 (一)指数函数的定义
函数与函数各有什么特点?
1. 函数均为一个幂的形式
2. 底数是一个正的常数;
3.情感、态度与价值观
(1)通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有着广泛的应用,逐步培养学生的应用意识.
(2)在教学过程中,通过几何画板的合理利用,让学生体会到几何画板是认识数学的有效手段.
教学重点 指数函数的概念、性质及其图像。 教学难点 对底数的分类,并根据指数函数的图像总结出指数函数的性质。 教辅手段 几何画板、多媒体 教学方法 启发引导,合作交流
教学流程
环节 教学内容设计 师生互动 设计意图 情
境
设
置 问题一:
某种细胞分裂时,由1个分裂成2个,2个分裂成4个......一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x的函数关系式是什么?
问题二:
《庄子·天下篇》中写道:"一尺之棰,日取其半,万世不竭。"请你写出截取x次后,木棰剩余量y关于x的函数关系式是什么?
1、 上交作业:P59 A组 第5、8题
2、 完成学海舵手指数函数第三课时的练习
让学生完成本节的相应练习。 巩固当天天所学的知识点,并上交部分作业来检查学生对知识点的掌握情况 课后反思 由于是来学校的第一节汇报课,面对这么多老教师,开始有点紧张,语言组织得有点生硬,到后半节课就好多了。
对于教学内容,本节课如果在结束的时候能回到课堂前面的两个问题,用本节课的知识来解释"取之不尽"的话,就更能体现数学学科的实用性,增进学生对数学的兴趣。还有就是没有对指数函数的性质再进一步的补充归纳,就是在图像上归纳出函数值与"1"之间的大小关系。这样对于解决后面的"例二的第(3)小题"做好铺垫。
让学生自己求并问他们是否为指数函数。
适当的练习有利于更好的对定义的理解及其性质的应用。 归纳总结 1、 指数函数的定义;
2、 指数函数的图像及其性质;
3、 记函数的性质:可以由图像来帮助记忆;
4、 对于指数函数图像记两个典型图像,即函数图像与函数的图像。 和学生一起回顾,引导学生自己整理出来。 充分调动学生自主学习和归纳的能力,以及从特殊到一般,又从一般到特殊的学习过程。 课后延续
其它部分就是在上课时带点口头禅,如爱说"是不是"等。在教学中语言不够专业化,习惯性的用口头语来授课等问题。在以后的教学过程中要努力改正。
读书如饭,善吃饭者长精神,不善吃者生疾病。——章学诚
(1)理解指数函数的概念和意义,掌握指数函数的图象,探索并理解指数函数的单调性和特殊点.
(2)能画出具体指数函数的图象,并且由图象探究并理解指数函数的性质.
2.过程与方法
通过画出具体指数函数的图象去探究指数函数的性质,并在学习的过程中体会研究指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的思想方法等.通过探究指数函数的底数取且的理由,明确认识到数学概念的严谨性和科学性.
在上面的对两个讨论的基础上引出指数函数的定义。
教师提出问题,学生以快速回答的方式进行.
让学生在下面画出两个函数图像,教师在用几何画板做出图像。
引导学生对两个图像进行对比,并发现它们的关系。
问学生对一般函数是否成立?引导他们证明。最后用几何画板展示。给学生直观的理解。
思考:
函数图像与函数的图像由于什么联系?可否利用函数图像画出函数的图像?
函数图像与函数的图像是关于y轴对称,如果已知 的图像我们可以利用这个对称性画出 的图像。
通过几何画板的变化我们来归纳总结出指数函数 的一般情况的下的图像,并通过图像来归纳出指数函数的性质。
教师引导,让学生通过对两个函数的比较得出它们的特点—章学诚
(人教A版·必修1)
§2.1.2指数函数及其性质(第一课时)
授课人:陈祥湾 授课班级:高一(10)班
地点:音乐多媒体教室(一) 时间:2010.10.10 指导老师:吴青
教学目标 1.知识与技能
应用几何画板对a取任意值,引导学生进行归类,并画出两类图像,并在教师的指导下逐步得出指数函数的性质。 让学生从特殊的函数找出一些特点。
从简单到复杂,从特殊情况过渡到一般情况的归纳整理。
引发学生自主思考提出问题。
在前面的对定义思考基础上,再做些联系巩固对定义的理解。
例2、比较下列各题中两个值的大小:
(1),;
(2) ,;
(3),
变式:(1),
(2),
例3、求下列函数的定义域,(P58第2题)
引导学生思考求指数函数解析式需要什么条件?
解类似题目的方法:
1、 构造函数法;
2、 搭桥比较法。
充分利用几何画板来增进学生对指数函数的直观理解,进而引导学生来发现问题,提出问题并解决问题。 即时体验 例1、已知指数函数的图象经过点(3,π),求 f(0),f(1),f(-3)。
读书如饭,善吃饭者长精神,不善吃者生疾病。——章学诚
3. 自变量在指数的位置。
指数函数的定义:
一般地,函数 叫做指数函数,其中是自变量,函数的定义域是R。
思考 (1) 为什么规定底数呢?
(2) 为什么定义域为R?
练:下列函数中,哪些是指数函数?
(二)指数函数图象和性质的探究
画出指数函数与函数的图像。