2020-2021下海三林中学北校高一数学下期中一模试卷(含答案)

合集下载

2020-2021下海三林中学北校高一数学下期末一模试卷(含答案)

2020-2021下海三林中学北校高一数学下期末一模试卷(含答案)

2020-2021下海三林中学北校高一数学下期末一模试卷(含答案)一、选择题1.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1 B .4 C .1或4 D .2或42.若,则( )A .B .C .D .3.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .04.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,7sin 4B =,574ABC S =△,则b =( ) A .23B .27C .15D .145.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .6.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +7.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭8.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 9.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减10.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)11.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 12.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题13.已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.14.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 15.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________. 16.若,2παπ⎛⎫∈⎪⎝⎭,1sin 43πα⎛⎫+= ⎪⎝⎭,则sin α=_________17.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .18.等边ABC ∆的边长为2,则AB u u u v 在BC uuu v方向上的投影为________. 19.()()()()()1tan11tan 21tan31tan 441tan 45︒︒︒︒︒+++++L =__________.20.函数2cos 1y x =+的定义域是 _________.三、解答题21.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.22.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (Ⅰ)求取出的两个球上标号为相同数字的概率; (Ⅱ)求取出的两个球上标号之积能被3整除的概率. 23.如图,在平面直角坐标系xOy 中,已知以M 点为圆心的圆22:1412600M x y x y +--+=及其上一点(4,2)A .(1)设圆N 与y 轴相切,与圆M 外切,且圆心在直线6y =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点且BC OA =,求直线l 的方程. 24.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;25.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值. 26.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为2a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛ ⎝⎭,2222⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c ,由7sin B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC V 中,7sin 4B =,574ABC S =△157sin 24ABC S ac B ==V ,联立521sin 24sin 4a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin B =,所以3cos 4B ==所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.5.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.6.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.7.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.8.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项.【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.9.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确;∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.10.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.11.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()2a A B a BM a ==+=,,222313()2a A M a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.12.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示, 从图象知:33022f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.二、填空题13.【解析】分析:令得当时由此推导出数列是首项为1公差为的等差数列从而得到从而得到详解:令得解得当时由)得两式相减得整理得且∴数列是首项为1公差为的等差数列可得所以点睛:本题考查数列的通项公式的求法是中解析:*2()n n S n n N =∈g【解析】分析:令1n =,得12a =,当2n ≥ 时,11122n n n S a ---=-,由此推导出数列{}2n na 是首项为1公差为12的等差数列,从而得到()112n n a n -+=,从而得到n S . 详解:令1n =,得11122a a =-,解得12a = ,当2n ≥ 时,由22n n n S a =-),得11122n n n S a ---=-,两式相减得()()1112222,nn n n n n n a S S a a---=-=--- 整理得111222n n n n a a ---=,且111,2a =∴数列{}2n n a是首项为1公差为12 的等差数列, ()111,22n n a n ∴=+- 可得()112,n na n -=+ 所以()12221222.nn n nn n S a n n -⎡⎤=-=+-=⋅⎣⎦点睛:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.14.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12nm【解析】 【分析】 【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12nm. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则解析:4 【解析】 【分析】 【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=16.【解析】【分析】利用凑角的方法与两角和的正弦公式求解即可【详解】因为故故答案为:【点睛】本题主要考查了凑角的方法求三角函数值的方法同时也需要根据角度的象限分析余弦的正负同时也要利用两角和的正弦公式属解析:46+ 【解析】 【分析】利用凑角的方法与两角和的正弦公式求解即可. 【详解】因为1sin 43πα⎛⎫+= ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,故cos 4πα⎛⎫+== ⎪⎝⎭ sin sin cos cos s s in 44i 44n 44ππππππαααα⎛⎫⎛⎫⎛⎫+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14sin cos 2442336ππαα⎡⎤⎛⎡⎤⎛⎫⎛⎫=+-+=--=⎢⎥ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎣⎦⎢⎥⎝⎭⎣⎦.故答案为:46+【点睛】本题主要考查了凑角的方法求三角函数值的方法,同时也需要根据角度的象限分析余弦的正负,同时也要利用两角和的正弦公式,属于中等题型.17.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直 解析:2y x =【解析】试题分析:设与直线20x y +=垂直的直线方程:20x y b -+=,圆22240x y x y +--=化为()()22125x y -+-=,圆心坐标()12,.因为直线平分圆,圆心在直线20x y b -+=上,所以21120b ⨯-⨯+=,解得0b =,故所求直线方程为2y x =.考点:1.直线与圆的位置关系;2.直线的一般式方程与直线的垂直关系.【思路点睛】本题是基础题,考查直线与圆的位置关系,直线与直线垂直的方程的设法,据此设出与已知直线垂直的直线方程,利用直线平分圆的方程,求出结果即可.18.【解析】【分析】建立直角坐标系结合向量的坐标运算求解在方向上的投影即可【详解】建立如图所示的平面直角坐标系由题意可知:则:且据此可知在方向上的投影为【点睛】本题主要考查平面向量数量积的坐标运算向量投【解析】 【分析】建立直角坐标系,结合向量的坐标运算求解AB u u u r 在BC uuu r方向上的投影即可. 【详解】建立如图所示的平面直角坐标系,由题意可知:()0,0A ,()2,0B ,()1,3C ,则:()2,0AB =uu u r ,()1,3BC =-u u u v ,2AB BC ⋅=-u u u r u u u r且2AB =u u u r ,10BC =u u u v,据此可知AB u u u r 在BC uuu r 方向上的投影为212AB BC AB⋅-==-u u u v u u u vu u uv .【点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】根据式子中角度的规律可知变形有由此可以求解【详解】根据式子中角度的规律可知变形有所以故答案为:【点睛】本题主要考查两角和的正切公式的应用以及归纳推理的应用属于中档题 解析:232【解析】 【分析】根据式子中角度的规律,可知()45045,045αβαβ+=︒<<︒<<oo o,tan tan tan 4511tan tan αβαβ+==-o ,变形有()()1tan 1tan 2αβ++=,由此可以求解.根据式子中角度的规律,可知()45045,045αβαβ+=︒<<︒<<oo o,tan tan tan 4511tan tan αβαβ+==-o ,变形有()()tan 1tan 12αβ++=.所以()()1tan11tan 442︒︒++=,()()1tan 21tan 432︒︒++=, L ,()()1tan 221tan 232︒︒++=,1tan 452+=o,()()()()()231tan11tan 21tan31tan 441tan 452︒︒︒︒︒+++++=L .故答案为:232. 【点睛】本题主要考查两角和的正切公式的应用以及归纳推理的应用,属于中档题.20.【解析】【分析】由函数的解析式得到关于x 的不等式求解不等式即可确定函数的定义域【详解】函数有意义则:即求解三角不等式可得:则函数的定义域为【点睛】求函数的定义域其实质就是以函数解析式有意义为准则列出解析:()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】由函数的解析式得到关于x 的不等式,求解不等式即可确定函数的定义域. 【详解】函数有意义,则:2cos 10x +≥,即1cos 2x ≥-, 求解三角不等式可得:()222233k x k k Z ππππ-≤≤+∈, 则函数的定义域为()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.三、解答题21.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=u u u r u u u r和1cos 3B =,得ac=6.由余弦定理,得2213a c +=.解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=u u u r u u u r得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,22122sin 1cos 1().33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换. 22.(1) . (2).【解析】 【分析】 【详解】设从甲、乙两个盒子中各取1个球,其数字分别为x ,y . 用(x ,y )表示抽取结果,则所有可能的结果有16种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}.事件A 由4个基本事件组成,故所求概率P (A )==.(2)设“取出的两个球上标号的数字之积能被3整除”为事件B ,则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=.考点:古典概型的概率计算23.(1)22(1)(6)1x y -+-=(2)2150x y -+=或250x y --=.【解析】 【分析】(1)根据由圆心在直线y =6上,可设()0,6N x ,再由圆N 与y 轴相切,与圆M 外切得到圆N 的半径为0x 和0075-=+x x 得解.(2)由直线l 平行于OA ,求得直线l 的斜率,设出直线l 的方程,求得圆心M 到直线l 的距离,再根据垂径定理确定等量关系,求直线方程. 【详解】(1)圆M 的标准方程为22(7)(6)25-+-=x y ,所以圆心M (7,6),半径为5,.由圆N 圆心在直线y =6上,可设()0,6N x 因为圆N 与y 轴相切,与圆M 外切 所以007<<x ,圆N 的半径为0x 从而0075-=+x x 解得01x =.所以圆N 的标准方程为22(1)(6)1x y -+-=. (2)因为直线l 平行于OA ,所以直线l 的斜率为201402-=-. 设直线l 的方程为12y x m =+,即220x y m -+= 则圆心M 到直线l 的距离55==d 因为222425==+=BC OA 而2222⎛⎫=+ ⎪⎝⎭BC MC d 所以2(25)2555-=+m解得152m =或52m =-.故直线l 的方程为2150x y -+=或250x y --=. 【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题. 24.(1)见解析;(2)见解析; 【解析】 【分析】(1)要证BD⊥平面PAC ,只需在平面PAC 上找到两条直线跟BD 垂直即证,显然AC BD ⊥,从PA ⊥平面ABCD 中可证PA BD ⊥,即证. (2)要证明平面PAB⊥平面PAE,可证 A E ⊥平面PAB 即可. 【详解】(1)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥; 因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A ⋂=,,PA AC ⊂平面PAC , 所以BD ⊥平面PAC .(2)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE PA ⊥; 因为PA AB A ⋂= 所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE . 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力. 25.(1)1tan 3cos 2t θθ=+-;(2)6π【解析】 【分析】(1)根据直角三角形的边角关系求出AC 和BC 的值,再求t 关于θ的函数解析式;(2)根据t 的解析式,结合三角函数的性质求出t 的最小值以及对应θ的值. 【详解】(Ⅰ)由题意知,AP PB ⊥,2AP =,02πθ<<,所以2tan PC θ=,2cos AC θ=,122tan BC θ=-, 所以t 关于θ的函数为2122tan 1tan 3242cos 4cos 2AC BC t θθθθ-=+=+=+-; (Ⅱ)由(Ⅰ)知,1tan 2sin 33cos 2cos t θθθθ-=+-=+,令2sin 0cos y θθ-=>,则2sin 2cos y θθ=+…解得y 1sin ,cos 2θθ= 即6πθ=时,所花时间t 最小.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的问题,意在考查学生对这些知识的理解掌握水平.26.(Ⅰ) 证明见解析,详见解析;(Ⅱ)6a =. 【解析】 【分析】 【详解】试题分析:(1)依据直线与平面垂直的判定定理推证;(2)借助题设条件运用等积法建立方程求解. 试题解析:(1)在图1中,易得//,BE AOC OE CD CD AO CD OC ⊥∴⊥⊥Q 所以,在图2中,1,CD OC CD AO CD ⊥⊥∴⊥平面1A OC (2)由已知,平面1A BE ⊥平面BCDE , 1CD A O ⊥ 所以1A O ⊥平面BCDE21116332BCDEAO S a a a ∴⋅=⋅== 考点:空间线面垂直的位置关系和棱锥的体积公式等有关知识的运用.。

2020年高一数学第二学期期中模拟试卷及答案(三)

2020年高一数学第二学期期中模拟试卷及答案(三)

范文2020年高一数学第二学期期中模拟试卷及答案(三)1/ 62020 年高一数学第二学期期中模拟试卷及答案(三)本试卷满分 150 分,考试时间 120 分钟。

一、选择题(每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项,请将答案填在答题纸上) 1.已知数列?an? 满足 an?1 ? an ? 2 ,且 a1 ?2 ,那么 a5 ? ((A)8 (B)9 (C)10 )(D) 11 2.如果 a ? b ? 0,那么下列不等式正确的是()(A)? 1 ? ? 1 (B)a2 ? b2 ab (C)1 ? 1 ab (D)ab ? a2 3.在△ABC 中,若∠A=60°,b=3,c=8,则其面积等于()(A)12 (B) 63 (C)8 3 (D)12 3 4.等比数列?an? 满足 a5 ? a1 ? 15 ,a4 ? a2 ? 6 。

则公比 q 的值为()(A)2 (B) 1 2 (C)1 (D) 2 或1 2 5.若 b ? a ? 0,则下列不等式:① a ? b ;② a ? b ? ab;③ b ? a ? 2 ;ab ④ a2 ? 2a ? b 中,正确的不等式有()b (A)1 个(B)2 个(C)3 个(D) 4个第1页?y ? 2x 6.若变量 x, y 满足约束条件 ? ? x ? y ? 1,则 x ? 2 y 的最大值是() ?? y ? ?1 (A) ? 5 2 5 2 (B)0 (C) 5 3 (D) 7.在 R 上定义运算⊙:,则满足的实数 x 的取值范围为()(A)(0,2)(B)(-1,2)(C)? ??, ?2? U?1, ??? (D)(-2,1) 8.若关于 x 的不等式 x ? 4 ? a 对于一切 x ? (0, ??) 恒成立,则实数 a x 的取值范围是()(A)(??, 5] (B)(??, 4] (C)(??, 2] (D) (??,1] 二、填空题(每小题 5 分,共 30 分) 9.不等式 x2 ? 5x ? 6 ? 0 的解集为________________. 10 .在△ ABC 中,若 tan A ? 1 ,∠ C=150 ° , BC=1 ,则 3 AB=______________. 11.在各项均为正数的等比数列?an? 中,若 a2 ? 2 ,则 a1 ? 2a3 的最小值是____________. 12.已知?an? 是公差为 d 的等差数列,a1 ? 1.若 a2 ? a3 ? a5 ,则 d 的取值范围是_______. 13.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可第2页3/ 6获利润如下表所示:体积(升/件)重量(公斤/件)利润(元/件)甲 20 10 8 乙 10 20 10 在一次运输中,货物总体积不超过 110 升,总重量不超过 100 公斤,那么在合理的安排下,一次运输获得的最大利润为_________元。

2020-2021高三数学下期中第一次模拟试卷(附答案)(14)

2020-2021高三数学下期中第一次模拟试卷(附答案)(14)

3 4


b a
1 1
的取值范围为
,
9 4
3 4
,
,故④正确.
∴正确命题的个数是 2 个. 故选 B. 点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜
截式比较截距,要注意 z 前面的系数为负时,截距越大, z 值越小;②分式型,其几何意
义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应
项和
Sn
.
24.已知函数 f x 3 sin x cos x .
(1)求函数
f
x

x
2
,
的值域;
(2)在 ABC 中,内角 A 、 B 、 C 的对边分别是 a 、 b 、 c ,若
f
A
7 6
f
B
6
8 3
,求 a b
的取值范围.
25.如图,游客从某旅游景区的景点 A 处下上至 C 处有两种路径.一种是从 A 沿直线步行
所以 Sn Sn1 , n n1
所以
na1
2n
an
n
1a1 an1 2n 1

所以 an an1 ,
所以等差数列 an 为递增数列.
又 a8
a7
0 ,即
a8 a7
1 ,
所以 a8 0 , a7 0 ,
即数列an前 7 项均小于 0,第 8 项大于零,
所以 Sn 的最小值为 S7 ,
故选 D. 【点睛】
详解:由于
f
x
3x2loxg2 x1,,
x x
0 0

当 x>0 时,3+log2x≤5,即 log2x≤2=log24,解得 0<x≤4, 当 x≤0 时,x2﹣x﹣1≤5,即(x﹣3)(x+2)≤0,解得﹣2≤x≤0,

2020-2021下海时代中学高一数学下期中一模试卷(附答案)

2020-2021下海时代中学高一数学下期中一模试卷(附答案)

2020-2021下海时代中学高一数学下期中一模试卷(附答案)一、选择题1.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=I ,n m ⊥,则n α⊥2.下列命题正确的是( ) A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面3.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<4.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-5.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥αD .m ∥n ,且n ⊥β6.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12 B .12-C .32D .3 7.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56πC .14πD .64π8.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .9.,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( )①若,,则; ②若,,则; ③若,,,则④若,,,则.A .①③B .①④C .②③D .②④10.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .B .C .D .11.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16012.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4B .3C .2D .1二、填空题13.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.14.已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的表面积为_______.15.已知圆O :224x y +=, 则圆O 在点(1,3)A 处的切线的方程是___________. 16.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()3x g x -=,[]0,1x ∈,则函数()g x 的值域为_____17.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______18.函数2291041y x x x =++-+的最小值为_________. 19.在正方体1111ABCD A B C D -中,①BD P 平面11CB D ②直线AD 与1CB 所成角的大小为60︒ ③1AA BD ⊥ ④平面11A BC ∥平面1ACD 请把所有正确命题的序号填在横线上________.20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^; ④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.22.已知点()1,0P ,()4,0Q ,一动点M 满足2MQ MP =. (1)求点M 的轨迹方程;(2)过点()2,3A 的直线l 与(1)中的曲线有且仅有一个公共点,求直线l 的方程. 23.在平面直角坐标系xOy 中,直线2210x y +--=与圆C 相切,圆心C 的坐标为()2,1-(1)求圆C 的方程;(2)设直线y =x +m 与圆C 交于M 、N 两点. ①若22MN ≥,求m 的取值范围; ②若OM ⊥ON ,求m 的值.24.已知空间几何体ABCDE 中,△BCD 与△CDE 均是边长为2的等边三角形,△ABC 是腰长为3的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面BCD .(1)试在平面BCD 内作一条直线,使得直线上任意一点F 与E 的连线EF 均与平面ABC 平行,并给出证明; (2)求三棱锥E -ABC 的体积.25.如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.26.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ; (2)求证:1AN A B ⊥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥ 错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误. 故选C.2.C解析:C 【解析】 【分析】根据确定一个平面的公理及推论即可选出. 【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C. 【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.3.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.4.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径r =又由圆心到直线的距离为d ==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.5.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.6.A解析:A 【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角). 又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ==== ∴PNM ∆为等边三角形, ∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值.7.C解析:C 【解析】 【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可. 【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.D解析:D 【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.9.B解析:B 【解析】 【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β. 【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确; 在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n , 由n ⊥β,得m ⊥β,故④正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.10.C解析:C【解析】试题分析:该几何体为一个侧面与底面垂直,底面为正方形的四棱锥(如图所示),其中底面边长为,侧面平面,点在底面的射影为,所以,所以,,,,底面边长为,所以最长的棱长为,故选C.考点:简单几何体的三视图.11.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-= 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分, 所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.12.B解析:B 【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确 考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质二、填空题13.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为 6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D V 是等边三角形,则当N 为11B D 中点时,NA 距离最小,易知最小值为6214.【解析】【分析】如图所示根据外接球的球心O 恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O 的半径为R 球心O 到平面的距离为d 由O 是的中点得解得作平面ABC 垂足为的外心解析:523π【解析】 【分析】 如图所示,根据外接球的球心O 恰好是CD 的中点,将棱锥的高,转化为点到面的距离,再利用勾股定理求解.【详解】如图所示:设球O 的半径为R ,球心O 到平面ABC 的距离为d ,由O 是CD 的中点得221322232D ABC O ABC V V --==⨯⨯=, 解得3d =作1OO ⊥平面ABC ,垂足1O 为ABC ∆的外心, 所以123CO =, 所以22223133)33R ⎛⎫=+= ⎪ ⎪⎝⎭,所以球O 的表面积为25243R ππ=. 故答案为:523π 【点睛】本题主要考查三棱锥的外接球的体积,还考查了转化化归的思想和运算求解的能力,属于中档题. 15.【解析】【分析】先求出kOA=从而圆O 在点处的切线的方程的斜率由此能出圆O 在点处的切线的方程【详解】kOA=∴圆O 在点处的切线的方程的斜率∴圆O 在点A 处的切线的方程整理得即答案为【点睛】本题考查圆的 33430x y +-=【解析】【分析】先求出k OA,从而圆O在点(处的切线的方程的斜率k = ,由此能出圆O在点A 处的切线的方程.【详解】k OA=O在点(处的切线的方程的斜率k =, ∴圆O 在点A (处的切线的方程1y x =-) ,30y +-=.30y +-=.【点睛】本题考查圆的切线方程的求法,属中档题. 16.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:3[2]4+ 【解析】【分析】根据斜率的几何意义,()32g x x =-表示函数y =(2,3)连线的斜率,数形结合,即可求解.【详解】 ()g x =为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上, (1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得k =或k =当34k +=3[0,1]==-,当37 k-=时,37[0,1]372x==+∉-⨯不合题意,舍去,()g x值域为37[,2]+.故答案为:37[,2]+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.17.【解析】【分析】设的平分线与交于根据角平分线与面积关系求出利用共线向量坐标关系求出点坐标即可求解【详解】设的角平分线与交于解得所以的平分线方程为故答案为:【点睛】本题考查角平分线方程向量共线坐标应用解析:0x y-=【解析】【分析】设BAC∠的平分线与BC交于D,根据角平分线与面积关系求出||||CDDB,利用共线向量坐标关系,求出D点坐标,即可求解.【详解】设BAC∠的角平分线与BC交于(,)D a b,1||||sin||210||221||||10||||sin2ACDABDAC AD CADS AC CDS AB DBAB AD BAD⋅⋅∠∴=====⋅⋅∠VV,2,(1,5)2(2,)CD DB a b a b∴=--=--u u u r u u u r,解得55,33a b==,55(,)33D∴,所以BAC∠的平分线AD方程为0x y-=.故答案为:0x y-=.【点睛】本题考查角平分线方程、向量共线坐标,应用角平分线性质是解题的关键,属于中档题. 18.【解析】【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】 74【解析】【分析】 将2291041y x x x +-+()2222354y x x =+-+()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =+-++即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值;【详解】 解:()22222291041354y x x x x x =+-+=+-+()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC +-++,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题. 19.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确; 解析:①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④.【详解】对于①,如下图所示,由于1111,DD BB DD BB =P ,则四边形11DD B B 为平行四边形,则11D B BD P11D B ⊂面11D B C ,BD ⊄面11D B C ,所以BD P 平面11CB D ,故①正确;对于②,由于AD BC ∥,则直线AD 与1CB 所成角为145B CB ∠=︒,故②错误; 对于③,1AA ⊥面ABCD ,BD ⊂面ABCD ,则1AA BD ⊥,故③正确;对于④,在正方体中,1111,AA CC AA CC =P ,则四边形11AAC C 为平行四边形 所以1111,AC AC AC ⊄P 平面1ACD ,AC ⊂平面1ACD ,所以11AC ∥平面1ACD 同理1A B P 平面1ACD ,1111111,,AC A B A AC A B ⋂=⊂平面11A BC所以平面11A BC ∥平面1ACD ,故④正确;故答案为:①③④【点睛】本题主要考查了利用判定定理证明线面平行,面面平行,利用线面垂直的性质证明线线垂直,异面直线所成角,属于中档题.20.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动 解析:. ① ② ④【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.三、解答题21.(1)见解析;(2)在棱PA 上存在点E 且E 满足2AE EP =时能使得面//BOE 面PCD ,证明见解析.【解析】【分析】(1)可证PD ⊥平面PAB ,从而得到要证明的面面垂直.(2)在棱PA 上存在点E 且E 满足2AE EP =时能使得面//BOE 面PCD , 利用面面平行的判断定理可证明该结论.【详解】(1)因为90BAD ∠=︒,故BA AD ⊥又因为侧面PAD ⊥底面ABCD ,侧面PAD I 底面ABCD AD =,BA ⊂平面ABCD , 所以BA ⊥平面PAD .因为PD ⊂平面PAD ,故BA PD ⊥,又因为PA PD ⊥,PA AB A =I ,PA ⊂平面PAB ,AB Ì平面PAB ,所以PD ⊥平面PAB ,而PD ⊂平面PCD ,故平面PAB ⊥平面PCD .(2)在棱PA 上存在点E ,使得面//BOE 面PCD ,E 满足2AE EP =,证明如下: 因为2AE EP =,2AO OD =,所以DAE EP AO O =,故//OE PD . 因为OE ⊄平面PCD ,PD ⊂平面PCD ,故//OE 平面PCD .因为//BC AD ,13OD AD BC ==,故//,OD BC OD BC =, 所以四边形BCDO 为平行四边形,故//BO CD ,因为BO ⊄平面PCD ,CD ⊂平面PCD ,故//BO 平面PCD .因为BO ⊂平面EOB ,EO ⊂平面EOB ,BO EO O ⋂=,故面//BOE 面PCD .【点睛】本题考查面面垂直的证明和面面平行的探索,前者注意空间中三种垂直关系的转化,后者应根据题设条件得到动点满足的位置特征,然后再根据判定定理来证明,本题属于中档题.22.(1)224x y +=;(2)2x =或512260x y -+=.【解析】【分析】(1)设点M 的坐标,根据已知用数学表达式表示出来,再化简即可;(2) 直线与曲线相交有且只有一个公共点,即为相切,可以用几何关系:圆心到直线的距离等于半径.【详解】(1)设点(),M x y ,点M 满足2MQ MP =,=则点M 的轨迹方程C 为224x y +=(2)设直线l 的方程为()32y k x -=-,∵直线():32l y k x -=-与曲线C 只有一个公共点,∴直线():32l y k x -=-与曲线C 相切,5212d k ==⇒= ∵直线2x =与曲线C 相切,∴直线l 方程为2x =或512260x y -+=.【点睛】本题主要考查了点的轨迹方程的求法,直线与圆相切,属于中档题.23.(1)22(2)(1)4x y -++=;(2)①51m -≤≤-;②m =或m = 【解析】【分析】(1)假设圆的方程,利用以()2,1C -为圆心的圆与直线10x y +-=相切,即可求得圆C 的方程;(2)①直线y x m =+圆C 交于M 、N 两点,根据圆心到直线的距离,半径,弦长之间的关系,得到关系式求出m 的范围.②设()()1122,,,M x y N x y ,联立直线与圆的方程,通过韦达定理以及判别式,通过OM ⊥ON ,求出m 的值即可.【详解】解:(1)设圆的方程是222(2)(1)x y r -++=,依题意,直线10x y +-=与圆C 相切,∴所求圆的半径2r ==, ∴所求的圆方程是22(2)(1)4x y -++=;(2)①圆心()2,1C -到直线y x m =+的距离d ==MN ∴==≥解得51m -≤≤-; ②设()()1122,,,M x y N x y ,22(2)(1)4y x m x y =+⎧⎨-++=⎩, 消去y ,得到方程2222(1)210x m x m m +-+++=, 由已知可得,判别式(224(1)422+1)0m m m ∆=--⨯+>,化简得2610m m ++<, 21212211,2m m x x m x x +++=-+=①, 由于OM ⊥ON ,可得12120x x y y +=又1122,y x m y x m ==++,所以()2121220x x m x x m +++=②,由①,②得32m -=或32m -=,满足>0∆,故32m -+=或32m -=. 【点睛】本题重点考查圆的标准方程,考查直线与圆的位置关系,考查圆中弦长的计算,合理运用圆的性质是关键.注意韦达定理及整体思想的运用,属中档题.24.(1)取DC 的中点N ,取BD 的中点M ,连接MN ,则MN 即为所求,证明见解析(2【解析】【分析】(1)取DC 的中点N ,取BD 的中点M ,连接MN ,则MN 即为所求,证明EN ∥AH ,MN ∥BC 可得平面EMN ∥平面ABC 即可(2)因为点E 到平面ABC 的距离与点N 到平面ABC的距离相等,求三棱锥E-ABC的体积可转化为求三棱锥N-ABC的体积,根据体积公式计算即可.【详解】(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC,易知DH3,∴NG=32,又S△ABC=12·BC·AH=12×2×22312,∴V E-ABC=13·S△ABC·NG=63.【点睛】本题主要考查了线线平行,线面平行,面面平行的判定,面面垂直的性质,等体积法求三棱锥的体积,属于中档题.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)连接AC 交BE 于点O ,连接OG ,先证明四边形ABCE 为平行四边形,再通过证明//OG DC ,即可得到//DC 平面GBE ;(2)通过证明AC ⊥平面DFH ,即可得到DF AC ⊥.【详解】(1)连接AC 交BE 于点O ,连接OG .因为//AB CD ,12AB AD BC CD a ====, E 为CD 中点 所以AB CE =,即四边形ABCE 为平行四边形所以O 为AC 的中点因为G 分别为AD 的中点,所以//OG DC ,又因为OG ⊂平面GBE ,DC ⊄平面GBE ,所以//DC 平面GBE ;(2)取AE 中点H ,连接,DH FH .因为,F H 分别为,AB AE 中点,所以//FH BE ,易知,四边形ABCE 为菱形,所以AC BE ⊥,所以AC FH ⊥,又因为DA DE =,H 为AE 中点,所以DH AE ⊥,又平面DAE ⊥平面ABCE ,所以DH ⊥平面ABCE ,所以DH AC ⊥,又因为DH FH H ⋂=,所以AC ⊥平面DFH ,则DF AC ⊥.【点睛】本题主要考查线面平行和线线垂直的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.26.(1)见解析(2)见解析【解析】【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥.【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P Q 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N Q 是11B C 的中点,∴1PM B N =,且1//PM B N , ∴四边形1PMNB 是平行四边形,1//MN PB ∴,而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,//MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =I ,∴11B C ⊥平面11A B BA ,111B C A B ∴⊥,又Q 侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C ,又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题.。

上海三林中学北校数学高一下期中经典测试卷(含解析)

上海三林中学北校数学高一下期中经典测试卷(含解析)

一、选择题1.(0分)[ID :12413]已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .323π2.(0分)[ID :12412]一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,则下列关于截面的说法正确的是( ).A .满足条件的截面不存在B .截面是一个梯形C .截面是一个菱形D .截面是一个三角形3.(0分)[ID :12411]已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥4.(0分)[ID :12405]三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π5.(0分)[ID :12382]已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为43,则球O 的半径为( ) A .3B .1C .2D .46.(0分)[ID :12375]直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3 B .-4 C .-6 D .367.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.(0分)[ID :12393]点A 、B 、C 、D 在同一个球的球面上,2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256πB .8πC .2516πD .254π9.(0分)[ID :12388]一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+410.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭D .53,12411.(0分)[ID :12428]在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为( )A .8B .62C .82D .8312.(0分)[ID :12339]某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .32 13.(0分)[ID :12335]已知平面αβ⊥且l αβ=,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ).A .若//m α且//m β,则//m lB .若m α⊥且n β⊥,则m n ⊥C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥ 14.(0分)[ID :12363]若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .13C .15D 3215.(0分)[ID :12360]如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题16.(0分)[ID :12487]在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.17.(0分)[ID :12474]如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.18.(0分)[ID :12473]在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________19.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是2M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.20.(0分)[ID :12460]正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.21.(0分)[ID :12528]《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为__________.22.(0分)[ID :12526]直线y =x +1与圆x 2+y 2+2y −3=0交于A , B 两点,则|AB |=________.23.(0分)[ID :12443]已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.24.(0分)[ID :12505]小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()32x g x x -=-,[]0,1x ∈,则函数()g x 的值域为_____ 25.(0分)[ID :12453]在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.三、解答题26.(0分)[ID :12587]如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积.27.(0分)[ID :12563]已知圆22:2410C x y x y ++-+=,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M .(1)若点P 运动到()13,处,求此时切线l 的方程;(2)求满足PM PO =的点P 的轨迹方程.28.(0分)[ID :12552]如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==.(1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3:11?若存在,求出点G 的位置;若不存在,请说明理由.29.(0分)[ID :12550]如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,12BC AD =,PA PD =,M ,N 分别为AD 和PC 的中点.(1)求证://PA 平面MNB ; (2)求证:平面PAD ⊥平面PMB .30.(0分)[ID :12546]已知圆22:20M x y x a +-+= (1)若8a =-,过点(4,5)P 作圆M 的切线,求该切线的方程;(2)当圆22:(1)(23)4N x y ++-=与圆M 相外切时,从点(2,8)Q -射出一道光线,经过y 轴反射,照到圆M 上的一点R ,求光线从点Q 经反射后走到点R 所走过路线的最小值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.C 3.C 4.A 5.C6.A7.B8.D9.D10.D11.C12.B13.D14.C15.D二、填空题16.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范17.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件18.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平19.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个20.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上21.【解析】【分析】由题意得该四面体的四个面都为直角三角形且平面可得因为为直角三角形可得所以因此结合几何关系可求得外接球的半径代入公式即可求球的表面积【详解】本题主要考查空间几何体由题意得该四面体的四个22.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根23.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 24.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得25.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】 【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果.设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E 设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+=解得:3x =,3R =∴球的体积为:343233V R ππ==本题正确选项:D 【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.2.C解析:C 【解析】 【分析】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF ,易得即截面为四边形PDEF ,且四边形PDEF 为菱形即可得到答案. 【详解】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF , 易得PD ∥VB 且12PD VB =,EF ∥VB 且12EF VB =,所以PD ∥EF ,PD EF =, 所以四边形PDEF 为平行四边形,又VB ⊄平面PDEF ,PD ⊂平面PDEF ,由线面平行 的判定定理可知,VB ∥平面PDEF ,AC ∥平面PDEF ,即截面为四边形PDEF ,又1122DE AC VB PD ===,所以四边形PDEF 为菱形,所以选项C 正确.【点睛】本题考查线面平行的判定定理的应用,考查学生的逻辑推理能力,是一道中档题.3.C解析:C 【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥ 错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误. 故选C.4.A解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球, 外接球的直径等于长方体的对角线, 即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.5.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 234312343S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.6.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-, 则圆心坐标为(1,1)-,半径1r a =- 又由圆心到直线的距离为11222d -++==所以由圆的弦长公式可得222(1)(2)4a --=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.7.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 8.D解析:D【解析】试题分析:根据题意知,ABC 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 9.D解析:D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为π×12+12×2π×1×2+2×2=3π+4 ,选D. 10.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.11.C解析:C【解析】【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.12.B解析:B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.13.D解析:D【解析】【分析】根据已知条件和线面位置关系一一进行判断即可.【详解】选项A :一条直线平行于两个相交平面,必平行于两个面交线,故A 正确;选项B :垂直于两垂直面的两条直线相互垂直,故B 正确;选项C :M m ∈且//m l 得m α⊂且//m β,故C 正确;选项D :M m ∈且m l ⊥不一定得到m α⊂,所以,m l 可以异面,不一定得到m β⊥. 故选:D .【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.14.C解析:C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C .【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题. 15.D解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题16.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范解析:3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.17.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件解析:1,12⎛⎫ ⎪⎝⎭【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =.随F 点到C 点,由CB AB ⊥,CB DK ⊥,得CB ⊥平面ADB ,则CB BD ⊥.又2CD =,1BC =,则BD =.因为1AD =,2AB =,所以AD BD ⊥,故12t =. 综上,t 的取值范围为1,12⎛⎫ ⎪⎝⎭. 点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.18.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平 解析:①③【解析】【分析】对4个命题分别进行判断,即可得出结论.【详解】解:①平行于同一平面的两个不同平面互相平行,正确;②平行于同一直线的两个不同平面互相平行或相交,不正确;③垂直于同一直线的两个不同平面互相平行,正确;④垂直于同一平面的两个不同平面互相平行或相交,不正确.故答案为:①③.【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.19.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.20.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上解析:2【解析】【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值.【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度, ∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.故答案为:22【点睛】 本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.21.【解析】【分析】由题意得该四面体的四个面都为直角三角形且平面可得因为为直角三角形可得所以因此结合几何关系可求得外接球的半径代入公式即可求球的表面积【详解】本题主要考查空间几何体由题意得该四面体的四个 解析:20π【解析】【分析】由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,可得25PC =22PB =PBC 为直角三角形,可得23BC =PB BC ⊥,因此AB BC ⊥,结合几何关系,可求得外接球O 的半径R ===O 的表面积. 【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,2PA AB ==,4AC =,PC =PB =因为PBC 为直角三角形,因此BC =BC =(舍).所以只可能是BC =此时PB BC ⊥,因此AB BC ⊥,所以平面ABC 所在小圆的半径即为22AC r ==, 又因为2PA =,所以外接球O 的半径R === 所以球O 的表面积为24π20πS R ==.【点睛】本题考查三棱锥的外接球问题,难点在于确定BC 的长,即得到AB BC ⊥,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题. 22.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:2√2【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】根据题意,圆的方程可化为x 2+(y +1)2=4,所以圆的圆心为(0,−1),且半径是2,根据点到直线的距离公式可以求得d =√12+(−1)2=√2,结合圆中的特殊三角形,可知|AB |=2√4−2=2√2,故答案为2√2.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.23.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果.【详解】设B (),,x y z ,则1230,1,2222x y z +++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题. 24.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:2] 【解析】【分析】根据斜率的几何意义,()g x =表示函数y =(2,3)连线的斜率,数形结合,即可求解.【详解】()32g x x =-为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上, (1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-,最小值为过A 点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得34k +=或34k =当374k +=时,137[0,1]3724x ==-∈+⨯, 当374k -=时,137[0,1]3724x ==+∉-⨯ 不合题意,舍去,()g x 值域为37[,2]4+. 故答案为:37[,2]4+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.25.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面 解析:23【解析】【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值.【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,2222213BE =++=,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.三、解答题26.(1)证明见解析(2)8【解析】试题分析:(1)欲证A 1D 1∥平面AB 1D ,根据直线与平面平行的判定定理可知只需证A 1D 1与平面AB 1D 内一直线平行,连接DD 1,根据中位线定理可知B 1D 1∥BD,且B 1D 1=BD ,则四边形B 1BDD 1为平行四边形,同理可证四边形AA 1D 1D 为平行四边形,则A 1D 1∥AD又A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D ,满足定理所需条件;(2)根据面面垂直的性质定理可知AD⊥平面B 1C 1CB ,即AD 是三棱锥A ﹣B 1BC 的高,求出三棱锥A ﹣B 1BC 的体积,从而求出三棱锥B 1﹣ABC 的体积.试题解析:(1)证明:如图,连结1DD .在三棱柱111ABC A B C -中,因为1,D D 分别是BC 与11B C 的中点,所以11//B D BD ,且11B D BD =.所以四边形11B BDD 为平行四边形,所以11//BB DD ,且11BB DD =.又1111//,AA BB AA BB =所以1111//,AA DD AA DD =,所以四边形11AA D D 为平行四边形,所以11//A D AD .又11A D ⊄平面1AB D ,AD ⊂平面1AB D ,故11//A D 平面1AB D .。

2021年高一下学期期中考试数学试卷+答案

2021年高一下学期期中考试数学试卷+答案

2020-2021学年度第二学期高一年级期中检测时间:120分钟 总分:150分注意事项:2021.41.答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损. 一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b2. 已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,若y ≥k (x +1)-1恒成立,那么k 的取值范围是( )A. ⎣⎡⎦⎤12,3B. ⎝⎛⎦⎤-∞,43C. [3,+∞)D. ⎝⎛⎦⎤-∞,12 3. 在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3 B. 2213 C .3 2 D. 3524. 素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24423-1,第19个梅森素数为Q =24253-1,则下列各数中与P Q最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .10595. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,b cos A =c -12a ,点D 在AC 上,2AD =DC ,BD =2,则△ABC 的面积的最大值为( ) A. 332B. 3 C .4 D .6 6. 欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,e πie π4i 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 7. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线8. 定义在R 上的偶函数f (x )对任意实数都有f (2-x )=f (x +2),且当x ∈(-1,3]时,f (x )=⎩⎨⎧ 1-x 2,x ∈(-1,1],1-|x -2|,x ∈(1,3],则函数g (x )=5f (x )-|x |的零点个数为( ) A .5 B .6 C .10 D .12二、多项选择题:本大题共4题,每小题5分,共20分.9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系。

2020级2020-2021学年第二学期高一数学期中试题(有答案)

2020级2020-2021学年第二学期高一数学期中试题(有答案)

2020~2021学年第二学期2020级高一期中考试数学试卷注意事项:本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将答题卡交回。

第Ⅰ卷(共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)⒈数列12,-14,18,-116,…的一个通项公式是a n=()A.(-1)n 12n B.(-1)n1n2C.()112nn--D. ()112nn--⒉在等差数列{a n}中,若a4+a6+a8+a10+a12=20,则a8的值为()A.15 B.4 C.10 D.2⒊已知等比数列{a n}中,a3=1,a5=9,则a2⋅a6等于()A.9 B.±9 C.27 D.±27⒋在数列{a n}中,若a1=-1,a n+1=a n+2(n≥1),则a13=()A.34 B.35 C.23 D.78⒌在等差数列{a n}中,a10=10,S10=10,则a1与d分别为()A.a1=8,d=2 B.a1=-8,d=2C.a1=-8,d=-2 D.a1=8,d=-2⒍在数列{a n}中,S n=2n2-n,则a7+a8+a9+a10=()A. 121B.122C. 123D. 124⒎在等比数列{a n}中,若a4⋅a7+a5⋅a6=4,则该数列的前10项的积等于()A. 16B. 32C. 64D. 128⒏已知5个实数1,m,x,n,3构成等比数列,则实数x的值是()A.2 B.C.-2或2 D.或-⒐正四棱锥的侧面是正三角形,则它的高与底面边长之比为()A.1∶2 B.2∶1 C.2∶1 D.1∶2⒑已知正三棱锥的底面边长为3,侧棱长为)A.B.C. D⒒如果球的半径是5,那么与球心距离为3的截面圆的面积为()A. 9πB. 12π C.16π D.24π⒓已知正四棱锥S—ABCD的底面边长为6,侧棱长为5的,则它的表面积为()A. 84B. 48C. 36D. 132⒔若一个圆柱的底面半径为4,轴截面的对角线长为10,则这个圆柱的侧面积为()A.48π B.24π C.48 D.24⒕半径为R的球内接一个正方体,则该正方体的体积是()A.22R3B.43πR3C.893R3D.39R3⒖钟表的时针经过5个小时,则时针转过的圆心角的弧度数为()A.53πB.53π-C.56πD.56π-⒗已知角α满足sinα<0且cosα>0,则角α所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限⒘若α是△ABC的一个内角,且sinα=45,则tanα的值为()A.43B.±43C.±34D.-43⒙已知sinαcosα=18,且4π<α<2π,则cosα-sinα=()A.12-B.12C.D.⒚已知cos(π+α)=-513,则π2sinα⎛⎫-⎪⎝⎭的值为()A.-513B.513C.-1213D.1213⒛已知数列{a n}的通项公式为a n=2n-1,b n=cos(π2na⋅),则数列{b n}是()A.等差数列B.等比数列C.既是等差数列,又是等比数列D.不能确定第Ⅱ卷(共60分)二、填空题(本大题共5个小题,每小题4分,共20分,请将答案填在答题卡相应题号的横线上)21. 已知a 和b 是方程x 2-4x -5=0的两根,则a 、b 的等差中项是____________. 22. 圆锥底面半径为3cm ,其侧面展开图是一个半圆,则圆锥的侧面积为_________. 23. 已知tan x =815,且x 是第三象限角,则sin x =____________. 24. 若α=120º,则角α终边与单位圆的交点P 的坐标为 . 25. 若1,a 1,a 2,a 3,9成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则312a ab - = .三、解答题(本大题共5个小题,共40分,请在答题卡相应的题号处写出必要的解答过程.)26.(本小题7分)某园林管理处计划把420株树苗恰好栽种成10排,若第一排栽种60株,且从第2排起,每排栽种的数量与前一排的差是一个常数,求第7排应该栽种多少株树苗?27.(本小题8分,每小题4分)(1) 已知tan x =3,求cos 2α-sin 2α的值;(2) 已知sin (π-α)=-45,求cos (20212π+α)的值.28. (本小题8分)一个空间几何体的三视图如图所示,求该几何体的表面积和体积(单位:cm ).29.(本题8分)已知圆锥SO 的底面半径为OC =10,在其中有一个半径OB =5、高为O 1O =12的内接圆柱,求该圆锥的表面积和体积.30.(本小题9分)已知S n 是等差数列{a n }的前n 项和,且S 9=36,a 5+a 7+a 9=18.(1) 求数列{a n }的通项公式;(2) 设2n an b =,求数列{b n }的前n 项和T n .第29题图SDCO 1OBA第28题图4444主视图 俯视图左视图数学试题参考答案及评分标准卷一(选择题,共60分)卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分)21. 2 22. 18π 23. -817 24. (-12) 25. -2三、解答题(本大题5个小题,共40分)26.解:由题意可知:每排栽种树苗的株数可以构成等差数列{a n },其中a 1=60. 1分 设公差为d ,则S 10=10 a 1+)10(1012-×d =10×60+45d =420. ………………… 3分 解得,d =-4. ………………………… 4分 a 7=a 1+(7-1)d =60+6×(-4)=36. ………………………… 6分 答:第7排应该栽种36株树苗. ……………………………… 7分27.解:(1) cos 2α-sin 2α=22cos sin 1αα-=2222cos sin sin cos αααα-+ …………………… 1分 =222222cos sin cos sin cos cos αααααα-+=221tan tan 1αα-+ ……………… 3分=221331-+=-45. ………………… 4分 (2) sin (π-α)=sin α=-45, …………………… 5分cos (20212π+α)=cos (1010π+12π+α) ……………………… 6分=cos (12π+α)=-sin α=45 …………………………… 8分28.解:由三视图可知,几何体的下部分是一个底面半径为2cm ,高为4cm 的圆柱,上部分是一个半径为2cm 的半球..................................... 2分 圆柱(不包含上底面)的表面积为:S 底+S 侧=π×22+2π×2×4=20π(cm 2)......... 3分 半球(不包含底面圆)的表面积为:2π×22=8π(cm 2) ........................... 4分 所以几何体的表面积为28πcm 2. (5)分圆柱的体积为:π×22×4=16π(cm 3) ……………………… 6分半球的体积为:12×43π×23=16π3(cm 3) ……………………… 7分 所以几何体的体积为64π3cm 3. ……………………… 8分 29.(1)解:根据图形的轴截面可知:1BC O O OC SO =,即1051210SO=- 所以,SO =12105⨯=24. …………………… 2分 在Rt ⊿SOC 中,圆锥的母线长l =SC 26 …………… 4分 所以,圆锥的表面积S 表=π×OC 2+12×2π×OC ×SC =π×102+12×2π×10×26=360π. ……………………… 6分 圆锥的体积V =13×π×OC 2×SO =13×π×102×24=800π. ……………………… 8分 30.解:(1) 因为S 9=9a 5=36,所以,a 5=4. …………………… 1分 因为a 5+a 7+a 9=3a 7=18. 所以,a 7=6. …………………… 2分 因为a 5=a 1+4d =4,a 7=a 1+6d =6,所以,a 1=0,d =1. …………………… 4分所以,a n =a 1+(n -1)d =0+(n -1)×1=n -1. …………………… 5分 (2) 由题意得,b n =2n a=12n - …………………… 6分因为(1)111122222n nn n n n b b +-+--===,所以数列{b n }是等比数列. …………………… 8分所以,T n =1(1)1n b q q --=112(12)12n ---=2 1.n - ………………… 9分。

2020-2021学年度第二学期期中考试高一数学试卷含详解

2020-2021学年度第二学期期中考试高一数学试卷含详解
2020-2021 学年度第二学期期中考试
高一数学
一、选择题(共 12 小题)
1.等差数列{an}中, a3 3 , a2 a10 18 ,则数列{an}的公差为( )
A. 1
B. 2
C. 3
D. 4
2.已知 △ABC 中, a 2 , b 3 , B 60 ,那么角 A 等于( )
A.135
c
,则
a
c
D.若
a
/
/b

b
/
/c
,则
a
/
/c
5.设等差数列{an}的前 n 项和为 Sn,公差为 d ,且满足 a1 0 , S11 S18 ,则对 Sn 描述
正确的有( )
A. S14 是唯一最小值
B. S15 是最小值
C. S29 0
D. S15 是唯一最大值
6.为了测量某塔 AB 的高度,在一幢与塔 AB 相距 40m 的楼顶处测得塔底 A 的俯角为
第 3页(共 7页)
21.设各项为正数的数列 an的前 n 和为 Sn ,且 Sn 满足: Sn2 (n2 n 3)Sn 3(n2 n) 0, n N .等
比数列 bn满足:
log 2
bn
1 2
an
0
.
(Ⅰ)求数列 an, bn的通项公式;
(Ⅱ)设 cn an bn ,求数列 cn的前 n 项的和 Tn ;
A.
PA
1
BA
2
BC
C.
PA
3 1
BA
3 2
BC
33
B.
PA
2
BA
1
BC
D.
PA
3 2

2020-2021学年高一数学下学期期中联考试题(含解析)

2020-2021学年高一数学下学期期中联考试题(含解析)

高一数学下学期期中联考试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在等比数列 {}n a 中,116a =-,48a =,则 7a =( ) A. 4- B. 4± C. 2- D. 2±【答案】A 【解析】Q 等比数列{}n a 中,1416,8a a =-=,且21741744,a a a +=+∴⋅=,247164416a a a ∴===--,故选A.2.在 ABC V 中,若()221a b c bc--=,则 A ∠ 的大小是( )A.π6 B.π4 C.π3D.2π3【答案】C 【解析】 【分析】利用余弦定理表示出cos A ,将已知等式变形后代入求出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出角A 的度数。

【详解】已知等式变形得:2222a b bc c bc -+-=,即222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,Q 角A 为三角形内角, ∴3A π=,故答案选C.【点睛】此题考查了余弦定理,特殊角的三角函数值,熟练掌握余弦定理是本题解题的关键。

3.设D E ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则12λλ+的值是 ( ) A. 12 B. 21-C. 23D. 32-【答案】A 【解析】 【分析】 作出图形,根据向量的线性运算规则可得212121()323236DE BE BD BC BA AC AB BA AC AB →→→→→→→→→→=-=-=--=-,再由分解的唯一性得出1λ与2λ的值即可求出12λλ+的值。

【详解】由题意,如图:Q AB AD 21=,BC BE 32=, ∴212121()323236DE BE BD BC BA AC AB BA AC AB →→→→→→→→→→=-=-=--=-,又Q 12DE AB AC λλ→→→=+ (21λλ,为实数),∴11=-6λ,22=3λ, ∴12121=-632λλ++=,故答案选A 。

2020-2021高三数学下期中一模试卷(附答案)(1)

2020-2021高三数学下期中一模试卷(附答案)(1)

2020-2021高三数学下期中一模试卷(附答案)(1)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .114.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .35.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 6.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6 B .8 C .9 D .10 7.下列函数中,y 的最小值为4的是( ) A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 8.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-9.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1610.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .211.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <12.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .15.设122012(1)(1)(1)n nn x x x a a x a x a x ++++++=++++L L ,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=L ,则n =_____16.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.17.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.19.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.20.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________三、解答题21.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 22.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sinA 的值; (2)求·BA BC u u u v u u u v的值.23.已知数列{}n a 的首项1122,,1,2,3, (31)n n n a a a n a +===+. (1)证明: 数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 24.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()2cos cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小; (Ⅱ)若22a b ==,,求()sin 2B C -的值.25.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=55-时,求小路AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度.26.如图,在平面四边形ABCD 中,42AB =22BC =4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 4.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S q q---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.5.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.6.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).8.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D.【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.9.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.10.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =,综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案. 【详解】由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=, 所以sin 2sin 20B A -=,得22B A =或22180B A +=o ,所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141114244a b a b ab ab ab ab ab ab +++≥=+≥⋅= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2222,24a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,2a b ab +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续10项的和为考点:等差数列解析:200 【解析】试题分析:等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.考点:等差数列.15.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【解析】 【分析】记函数122012()(1)(1)(1)n nn f x x x x a a x a x a x =++++++=++++L L ,012222(1)2n n f a a a a =+++=++++L L ,利用等比数列求和公式即可求解.【详解】由题:记函数212012()(1)(1)(1)n nn f x a a x a x a x x x x =++++=++++++L L ,021222(12)(21)212n nn f a a a a -=++++++=-=+L L , 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.16.4【解析】【分析】先判断是正数且把所求的式子变形使用基本不等式求最小值【详解】由题意知则当且仅当时取等号∴的最小值为4【点睛】】本题考查函数的值域及基本不等式的应用属中档题解析:4 【解析】 【分析】先判断a c 、是正数,且1ac =,把所求的式子变形使用基本不等式求最小值. 【详解】由题意知,044010a ac ac c =-=∴=V >,,,>,则111111 2224a c a c a c c a c c a a c a c a +++=+++=+++≥+=+=()(),当且仅当1a c ==时取等号.∴11a c c a +++的最小值为4. 【点睛】】本题考查函数的值域及基本不等式的应用.属中档题.17.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换 解析:92【解析】 【分析】 先化简11122(2)2(2)()22a b a b a b a b+=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】 由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a+=⋅+⋅=⋅+⋅+=++19(522≥+=. 当且仅当221223222a b a ba b⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.18.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6,当a﹣b<0时,由基本不等式求得﹣(a﹣b)﹣9 ab-≥6,即(a﹣b)+9a b-≤﹣6,故227a ba c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞).【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.19.或【解析】【分析】先画出不等式组所代表的平面区域解释目标函数为直线在轴上的截距由目标函数取得最大值的最优解不唯一得直线应与直线或平行从而解出的值【详解】解:画出不等式组对应的平面区域如图中阴影所示将解析:2或1-.【解析】【分析】先画出不等式组所代表的平面区域,解释目标函数为直线=+y ax z在y轴上的截距,由目标函数=+z ax y-取得最大值的最优解不唯一,得直线=+y ax z应与直线20x y+-=或220x y-+=平行,从而解出a的值.【详解】解:画出不等式组20220220x yx yx y+-≤⎧⎪--≤⎨⎪-+≥⎩对应的平面区域如图中阴影所示将=+z ax y-转化为=+y ax z,所以目标函数z代表直线=+y ax z在y轴上的截距若目标函数=+z ax y-取得最大值的最优解不唯一则直线=+y ax z应与直线20x y+-=或220x y-+=平行,如图中虚线所示又直线20x y+-=和220x y-+=的斜率分别为1-和2所以2a=或1a=-故答案为:2或1-.【点睛】本题考查了简单线性规划,线性规划最优解不唯一,说明目标函数所代表的直线与不等式组某条边界线平行,注意区分最大值最优解和最小值最优解.20.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.三、解答题21.(1)3π;(2 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值.【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >, 则31sin cos cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3cos B B =,tan 3B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由13sin 2ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r, 等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r ,所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r,则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题. 22.(1315;(2)32-【解析】 【分析】 (1)先求得15sin 4B =,再根据正弦定理求得sin A 即可; (2)根据余弦定理解得2AB =,再由数量积的定义求解即可 【详解】 (1)1cos 4B =-Q , 15sin 4B ∴=,根据正弦定理可得,sin sin BC ACA B=,即3sin A =,sin 16A ∴=(2)根据余弦定理可得,2222cos AC AB BC AB AC B =+-⋅⋅, 即2223432AB AB =++,解得2AB =, 13cos 2342BA BC BA BC B ⎛⎫∴⋅=⋅⋅=⨯⨯-=- ⎪⎝⎭u u u r u u u r【点睛】本题考查利用正弦定理求角,考查向量的数量积运算,考查运算能力23.(1)证明见解析;(2)24222n n n n n S +++=-.【解析】试题分析:(1)对121n n n a a a +=+两边取倒数得111111222n n n na a a a ++==+⋅,化简得1111112n n a a +⎛⎫-=- ⎪⎝⎭,所以数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)由(1)11n a ⎧⎫-⎨⎬⎩⎭是等比数列.,求得1112n n a =+,利用错位相减法和分组求和法求得前n 项和24222n n n n n S +++=-.试题解析:(1)111211111111,?,1112222n n n n n n n n n a a a a a a a a a +++⎛⎫+=∴==+∴-=- ⎪+⎝⎭Q ,又 11211,132a a =∴-=,∴数列11n a ⎧⎫-⎨⎬⎩⎭是以为12首项,12为公比的等比数列.(2)由(1)知,1111111?222n n n a -+-==,即1112n n a =+,设23123...2222n n nT =++++, ① 则2311121...22222n n n n nT +-=++++, ② 由①-②得21111111111122 (112222222212)nn n n n n n n n n T +++⎛⎫- ⎪⎝⎭=+++-=-=---,11222nn n n T -∴=--.又()1123 (2)n n n +++++=.∴数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和()2124222222n n n n n n n n n S +++++=-+=-.考点:配凑法求通项,错位相减法.24.(Ⅰ)34C π=(Ⅱ)10- 【解析】 【分析】(I )利用正弦定理化简已知条件,求得cos C 的值,由此求得C 的大小.(II )根据余弦定理求得c ,利用正弦定理求得sin B ,利用同角三角函数关系式求得cos B ,由二倍角公式求得sin 2,cos 2B B 的值,再由两角差的正弦公式求得()sin 2B C -的值. 【详解】()sin cos sin cos sin 0C A B B A C ++=sin sin 0C C C +=,∴cos 2C =-,∵0C π<<,∴34C π=(Ⅱ)因为2a b ==,34C π=,由余弦定理得2222cos 242210c a b ab C ⎛=+-=+-⨯= ⎝⎭,∴c =由sin sin sin c b B C B =⇒=,因为B为锐角,所以cos B =4sin 225B ==,223cos 2cos sin 5B B B =-= ()43sin 2sin 2cos cos 2sin 525210B C B C B C ⎛-=-=⨯--⨯=- ⎝⎭【点睛】本小题主要考查利用正弦定理和余弦定理解三角形,考查同角三角函数的基本关系式,考查二倍角公式以及两角差的正弦公式,属于中档题. 25.(1)AC =2)BD =【解析】 【分析】(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin∠ADB 35=,进而可求cos∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.(2)由(1)得:BD 2=14﹣可求.S ABCD =7152+sin (θ﹣φ),结合题意当θ﹣φ2π=时,四边形ABCD 的面积最大,即θ=φ2π+,此时cosφ=,sinφ=,从而可求BD 的值.【详解】(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,得214BD θ=-,又cos θ=BD =∵,2πθπ⎛⎫∈ ⎪⎝⎭ ∴sin θ===由sin sin BD AB BAD ADB =∠∠3sinADB=∠,解得:3sin 5ADB ∠=,∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2CDB π∠=且CD BD ==∴3cos cos sin 25ADC ADB ADB π⎛⎫∠=∠+=-∠=- ⎪⎝⎭ 在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠(2232375⎛⎫=+--= ⎪⎝⎭,解得:AC =(2)由(1)得:214BD θ=-,2113sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin θθ=-)()157sin 2cos 7sin2θθθφ=+-=+-,此时sin φ=cos φ=,且0,2πφ⎛⎫∈ ⎪⎝⎭当2πθφ-=时,四边形ABCD 的面积最大,即2πθφ=+,此时sin θ=,cos θ=∴2141426BD θ⎛=-=-= ⎝,即BD =答:当cos θ=AC百米;草坪ABCD 的面积最大时,小路BD【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 26.(1;(2)CD =5 【解析】 【分析】(1)直接利用余弦定理求cos∠BAC;(2)先求出CD . 【详解】(1)在△ABC 中,由余弦定理得:222cos 2AB AC BC BAC AB AC+-∠=⋅==. (2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=8, 所以在△ACD 中由正弦定理得:sin sin45CD ACDAC =∠︒=,所以CD =5. 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2020-2021下海下海中学高一数学下期中一模试题带答案

2020-2021下海下海中学高一数学下期中一模试题带答案

2020-2021下海下海中学高一数学下期中一模试题带答案一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( )A .1B .221-C .22D .23.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( )A .2732B .10863+C .1663+D .3221663+ 4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为( )A .3B .1C .2D .45.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π6.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C .32D .37.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( )A .5B .6C .35D .41 8.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .309.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( )A .12512πB .1259πC .1256πD .1253π 10.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 11.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1012.若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离二、填空题13.给出下面四个命题:①“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;②“直线//a 直线b ”的充要条件是“a 平行于b 所在的平面”;③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面//α平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是____________________14.已知圆22(1)16x y ++=,点(1,0),(1,0)E F -,过(1,0)E -的直线1l 与过(1,0)F 的直线2l 垂直且圆相交于,A C 和,B D ,则四边形ABCD 的面积的取值范围是_________.15.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.16.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.17.已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点,则动弦AB 的中点P 的轨迹方程为__________.18.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.19.已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V ,则21V V =__________.三、解答题21.如图,直角梯形BDFE 中,//,,22EF BD BE BD EF ⊥=,等腰梯形ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ;(2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.22.在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.23.已知圆22:(2)(3)4C x y -+-=外有一点()41-,,过点P 作直线l . (1)当直线l 与圆C 相切时,求直线l 的方程;(2)当直线l 的倾斜角为135︒时,求直线l 被圆C 所截得的弦长.24.在正方体1111ABCD A B C D -中,AB=3,E 在1CC 上且12CE EC =.(1)若F 是AB 的中点,求异面直线1C F 与AC 所成角的大小;(2)求三棱锥1B DBE -的体积.25.如图,四边形ABCD 为矩形,且2,1,AD AB PA ==⊥平面ABCD , 1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求三棱锥C PDE -的体积;(3)探究在PA 上是否存在点G ,使得EG P 平面PCD ,并说明理由.26.已知三角形ABC 的顶点坐标分别为A (4,1),B (1,5),C (3,2)-;(1)求直线AB 方程的一般式;(2)证明△ABC 为直角三角形;(3)求△ABC 外接圆方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果. 2.B解析:B【解析】【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解.【详解】由圆的一般方程可得22(2)(2)1x y -+-=, 圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221.故选B.【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.3.D解析:D【解析】【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值.【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心. 因为4AB BC ==,42AC =222AC AB BC =+,故ABC ∆为直角三角形, 故E 为AC 的中点,所以2226OE OA AE =-=,设D 到底面ABC 的距离为h ,则2642h OE R ≤+=所以三棱锥D ABC -的体积的最大值为(1132216644264232+⨯⨯⨯⨯=. 故选:D.【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定. 4.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心, 半径长度为1522AD =, 所以表面积为25π.6.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ==== ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 7.A解析:A【解析】【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案.【详解】圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -, 350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =. 故选:A .【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.8.C解析:C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9.C解析:C【解析】【分析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC 的中点,即可求出球的半径,代入体积公式即可得解.【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC 上,且球的半径为AC 长度的一半, 即22115222r AC AB BC ==+=,所以334451253326V r πππ⎛⎫==⋅= ⎪⎝⎭.故选:C【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.10.D解析:D 【解析】 【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.11.D解析:D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.B解析:B 【解析】 【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交. 【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为2d ==<,即直线与圆相交. 故选A. 【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.二、填空题13.①④【解析】【分析】利用直线与直线平面与平面间的位置关系及性质判断前后两个条件的推出关系利用充要条件的定义得结论【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直故①正确;对于②平行解析:①④ 【解析】 【分析】利用直线与直线、平面与平面间的位置关系及性质判断前后两个条件的推出关系,利用充要条件的定义得结论. 【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直,故①正确; 对于②,a 平行于b 所在的平面//a b ⇒或a 与b 异面,故②错; 对于③,直线a 、b 不相交⇒直线a ,b 异面或平行,故③错; 对于④,平面//α平面βα⇒内存在不共线三点到β的距离相等;α内存在不共线三点到β的距离相等⇒平面//α平面β或相交,故④正确故答案为:①④ 【点睛】本题考查直线与直线间的位置关系及性质;充要条件的判断.命题真假的判断,属于中档题.14.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与解析:⎡⎤⎣⎦【解析】 【分析】由题可知8AC =,而过(1,0)F 的弦BD 过圆心时最长,与EF 垂直时最短,据此则可以确定四边形ABCD 的面积的取值范围. 【详解】由题知,直线1l 过圆心(1,0)E -,故8AC =,设圆心(1,0)E -到直线2l 的距离为d ,则02d EF ≤≤=,所以BD ⎡⎤=⎣⎦,所以四边形ABCD 的面积12S AB CD ⎡⎤=⋅⋅∈⎣⎦;故答案为:⎡⎤⎣⎦.【点睛】本题主要考查直线与圆相交时的弦长、面积问题,解题关键是明确:过圆内一点的作弦,弦过圆心时最长,与最长的弦垂直时弦最短.15.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 解析:5 【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离. 【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,2AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得5BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题.16.【解析】【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故 解析:()4,2-【解析】【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于中档题.17.【解析】【分析】转化条件点三点共线即可得到点满足的条件化简即可得解【详解】由圆的方程可知圆心半径为设点点三点共线可得由相似可得即联立消去并由图可知可得故答案为:【点睛】本题考查了圆的性质和轨迹方程的解析:2271416x y ⎛⎫+-=⎪⎝⎭(2)y < 【解析】 【分析】转化条件点P 、M 、Q 三点共线、2MQ PM BM ⋅=即可得到点P 满足的条件,化简即可得解. 【详解】由圆的方程可知圆心()0,2,半径为1.设点(),P x y ,(),0Q a ,点P 、M 、Q 三点共线, 可得22y x a-=-, 由相似可得2MQ PM BM ⋅=即1=,联立消去a 并由图可知2y <,可得()2271()2416x y y +-=<.故答案为:()2271()2416x y y +-=<【点睛】本题考查了圆的性质和轨迹方程的求法,考查了转化能力和运算能力,属于中档题.18.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【解析】 【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.19.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截【解析】设球的半径为r ,表面积24π20πS r ==,解得r =ABC V 中,2AB AC ==,BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离d ==点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC V 所在平面截球所得圆(即ABC V 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)见解析(2)23【解析】 【分析】 【详解】 试题分析:(1)直接利用面面垂直的性质定理可证;(2)设AC BD O =I ,计算后可证OF//BE ,从而由已知可证OF ⊥平面ABCD ,因此可以OA ,OB ,OF 为坐标轴建立空要间直角坐标系,利用向量法求二面角. 试题解析:(1)∵平面BDFE ⊥平面ABCD ,C A BD ⊥,平面BDFE I 平面ABCD BD =, 又AC ⊂平面ABCD ,∴AC ⊥平面BDFE ;(2)设AC BD O =I ,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴OD OC OB OA ====,∵//FE OB ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()()()()()0,22,0,0,2,0,0,0,22,2,0,0,22,0,0B D F C A --,()()0,2,22,2,2,0DF CD u u u v u u u v==-,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0, 设平面DFC 的一个法向量为(),,n x y z =v,由·0·0DF n CD n ⎧=⎨=⎩u u u v v u u u v v 得2220220y z x y ⎧+=⎪⎨-=⎪⎩,令2x =得,()2,2,1n =-v , 2222cos ,31?221n AC u u uv v ==++,∴二面角B DF C --的余弦值为23.点睛:立体几何中求“空间角”,一种方法是根据“空间角”的定义作出它的“平面角”,再通过解三角形求得,其方法是一作二证三计算;第二种方法是在图形中有相互垂直的三条直线(或两条)时,可建立空间直角坐标系,利用空间向量法求角,这种方法主要的就是计算,减少了作辅助线,证明的过程,只要计算过关,一般都能求得正确结论. 22.(1)见解析(2)见解析 【解析】[证明] (1)∵AS AB =,AF SB ⊥,垂足为F ,∴F 是SB 的中点,又因为E 是SA 的中点,∴EF ∥AB ,∵EF ⊄平面ABC ,AB ⊂平面ABC ,∴EF ∥平面ABC ; 同理EG ∥平面ABC . 又EF EG E ⋂=,∴平面EFG ∥平面ABC .(2)∵平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF SB ⊥, ∴AF ⊥平面SBC ,∵BC ⊂平面SBC ,∴AF BC ⊥, 又因为AB BC ⊥,AF AB A ⋂=,AF 、AB ⊂平面SAB , ∴BC ⊥平面SAB ,∵SA ⊂平面SAB ,∴BC SA ⊥.【考点定位】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.23.(1)4x =或3480x y +-=(2)22 【解析】【分析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心C 与直线l 的距离,由弦长公式即可得出答案. 【详解】解: (1)由题意可得()2,3C ,直线l 与圆C 相切 当斜率不存在时,直线l 的方程为4x =,满足题意 当斜率存在时,设直线l 的方程为14y k x +=-,即410kx y k ---=2=,解得34k =-∴直线的方程为3480x y +-= ∴直线l 的方程为4x =或3480x y +-=(2)当直线l 的倾斜角为135︒时,直线l 的方程为30x y +-= 圆心()2,3C 到直线l=∴弦长为=【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力. 24.(1) 4π (2) 92【解析】 【分析】(1)连接AC ,11A C ,由11AC AC P 知11FC A ∠ (或其补角)是异面直线1C F 与AC 所成角,由余弦定理解三角形即可(2)根据11B DBE D BEB V V --=,且三棱锥1D BEB -的高为DC ,底面积为1BEB ∆的面积.【详解】(1)连接AC ,11A C ,∵1111,AC AC FC A ∴∠P (或其补角)是异面直线1C F 与AC 所成角 在11FC A ∆中,111192A C A F C F ===222119()22cos 922FC A +-∠==⨯∴异面直线1C F 与AC 所成角为4π. (2)由题意得, 1111119333=3322B DBE D BEB BEB V V S DC --∆==⋅=⋅⋅⋅⋅.【点睛】本题主要考查了异面直线所成的角,三棱锥的体积,属于中档题. 25.(1)见解析;(2)16;(3)见解析. 【解析】 【分析】(1)连结AE ,由几何体的空间结构可证得DE PAE ⊥平面,利用线面垂直的定义可知DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,结合题意转化顶点可得16C PDE P DCE V V --==. (3)在PA 上存在中点G ,使得//EG PCD 平面.取,PA PD 的中点,G H ,连结,,EG GH CH . 易证得四边形EGHC 是平行四边形,所以EG //CH ,结合线面平行的判断定理可知EG //平面PCD . 【详解】(1)连结AE ,∵E 为BC 的中点,1EC CD ==, ∴DCE ∆为等腰直角三角形,则45DEC ∠=o ,同理可得45AEB ∠=o ,∴90AED ∠=o ,∴DE AE ⊥, 又PA ABCD 平面⊥,且DE ABCD ⊂平面, ∴PA DE ⊥,又∵AE PA A ⋂=,∴DE PAE ⊥平面,又PE PAE ⊂平面,∴DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形, ∴111122DCE S ∆=⨯⨯=,而PA 是三棱锥P DCE -的高, ∴111113326C PDE P DCE DCE V V S PA --∆==⋅=⨯⨯=. (3)在PA 上存在中点G ,使得//EG PCD 平面.理由如下: 取,PA PD 的中点,G H ,连结,,EG GH CH .∵,G H 是,PA PD 的中点, ∴//GH AD ,且12GH AD =, 又因为E 为BC 的中点,且四边形ABCD 为矩形,所以EC //AD ,且EC =12AD , 所以EC //GH ,且EC =GH ,所以四边形EGHC 是平行四边形,所以EG //CH ,又EG ⊄平面PCD ,CH ⊂平面PCD ,所以EG //平面PCD .【点睛】 本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.26.(1)43y-19=0x +(2)见解析(3)221325x-+y-=222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】【详解】(1)直线AB 方程为:y 1x-45-11-4-=,化简得:43y-19=0x +; (2)AB 514-1-43k -==; BC 5231--34k -==(), ∴AB BC =-1k k ,则AB BC ⊥∴△ABC 为直角三角形(3)∵△ABC 为直角三角形,∴△ABC 外接圆圆心为AC 中点M 1322⎛⎫ ⎪⎝⎭,,半径为r=|AC |=22, ∴△ABC 外接圆方程为221325x-+y-=222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭。

2020-2021高三数学下期中一模试题附答案

2020-2021高三数学下期中一模试题附答案

2020-2021高三数学下期中一模试题附答案一、选择题1.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S2.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )A .2+B 1C .2D 13.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为n T ,则2017T =( ) A .2016B .2017C .2018D .20194.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .05.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2016.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .567.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .100 8.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .139.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14010.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣12.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( )A .1B .3 C .5 D .7 二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;14.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________15.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.16.已知是数列的前项和,若,则_____.17.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____. 19.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 20.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin2ABC ∠=3AB BC +的最大值为______.三、解答题21.已知正项等比数列{}n a 满足26S =,314S =. (1)求数列{}n a 的通项公式; (2)若2log n n b a =,已知数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T 证明:1n T <.22.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .23.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.24.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为2的等比数列,求{}n b 的前n 项和n S .25.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 26.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.2.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.3.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++L (26b b +)2014b ++L ()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.5.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.6.A【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 7.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.8.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.9.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1n S =L 1=,由110n S ==解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).12.D解析:D 【解析】分析:由正弦定理可将sin2sin 0b A B =化简得cosA =,由余弦定理可得222227a b c bccosA c =+-=,从而得解.详解:由正弦定理,sin2sin 0b A B +=,可得sin2sin 0sinB A B +=,即2sin sin 0sinB AcosA B = 由于:0sinBsinA ≠,所以cosA =:, 因为0<A <π,所以5πA 6=.又b =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=.即227a c =,所以7c a =. 故选:D .点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.二、填空题13.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公【解析】 【分析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin ϕ=,313cos ϕ=, 当b a a b +132C πϕ+=,∴213cos cos sin 213C πϕϕ⎛⎫=-== ⎪⎝⎭.故答案为:21313. 【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.14.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式解析:n a =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为n a =2,1{65,2n n n =-≥.考点:1.数列的前n 项和;2.数列的通项公式.15.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-. 【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.16.4950【解析】【分析】由an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an =2n 即可计算【详解】解:∵an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an +1﹣an 解析:【解析】 【分析】由a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .即可计算. 【详解】解:∵a n +S n =2n ,a n +1+S n +1=2n +1, 两式相减可得2a n +1﹣a n =2n .则(2a 2﹣a 1)(2a 3﹣a 2)…(2a 100﹣a 99)=21•22•23…299=24950.【点睛】本题考查了数列的递推式,属于中档题.17.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题解析:128【解析】【分析】 由1113()n n n N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求 【详解】1113()n n n N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴= 故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题 18.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c+++转为(a ﹣b )+9a b-,利用基本不等式求得它的范围. 【详解】 因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a -,b=1a ,即c=-b, 则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -, 当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b -≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞).【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.19.7【解析】由2an +1+Sn =3得2an +Sn -1=3(n≥2)两式相减得2an +1-2an +an =0化简得2an +1=an(n≥2)即=(n≥2)由已知求出a2=易得=所以数列{an}是首项为a1解析:7【解析】由2a n +1+S n =3得2a n +S n -1=3(n≥2),两式相减,得2a n +1-2a n +a n =0,化简得2a n +1=a n (n≥2),即1n n a a +=12(n≥2),由已知求出a 2=34,易得21a a =12,所以数列{a n }是首项为a 1=32,公比为q =12的等比数列,所以S n =31122112n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=3[1-(12)n ],S 2n =3[1-(12)2n ]代入1817<2n n S S <87,可得117<(12)n <17,解得n =3或4,所以所有n 的和为7. 20.【解析】【分析】根据条件可得利用余弦定理即可得到的关系再利用基本不等式即可得解【详解】设三角形的边为由由余弦定理得所以①又所以化简得②①②相除化简得故当且仅当成立所以所以的最大值为故答案为:【点睛】 解析:43【解析】【分析】根据条件可得1cos 3ABC ∠=, cos cos 0ADB BDC ∠+∠=,利用余弦定理即可得到AB 、AC 的关系,再利用基本不等式即可得解.【详解】设AD x =,3CD x =,三角形ABC 的边为a ,b ,c ,由21cos 12sin 23ABC ABC ∠∠=-=, 由余弦定理得222161cos 23a c x ABC ac +-∠==,所以2222163x a c ac =+-, ① 又cos cos 0ADB BDC ∠+∠=,2222=2221238x c a =+-, ② ①②相除化简得2232296ac a c ac -=+≥,故4ac ≤,当且仅当3a c =成立,所以()()2222339632448AB BC c a c a ac ac +=+=++=+≤,所以3AB BC +的最大值为故答案为:【点睛】本题考查了余弦定理和基本不等式的应用,考查了方程思想和运算能力,属于中档题. 三、解答题21.(1)2n n a =; (2)见解析.【解析】【分析】(1)由等比数列前n 项和公式求出公比q 和首项1a ,得通项公式;(2)用裂项相消法求出和n T ,可得结论.【详解】(1)设等比数列的首项及公比分别为10a >,0q >,26S =Q ,314S =,显然1q ≠,()()21311611141a q q a q q ⎧-⎪=-⎪∴⎨-⎪=⎪-⎩,解得122a q =⎧⎨=⎩, 2n n a ∴=;(2)证明:由(1)知,n b n =,则11111(1)1n n b b n n n n +==-++, 121n n n T b b b b -∴=++⋯⋯++1111111111223111n n n n n =-+-+⋯⋯+-+-=--++, *n N ∈Q ,1n T ∴<.【点睛】本题考查等比数列的前n 项和与通项公式,考查裂项相消法求数列的和.基本量法是解决等差数列和等比数列的常用方法.裂项相消法、错位相减法、分组(并项)求和法是数列求和的特殊方法,它们针对的是特殊的数列求和.22.(1)a n 11()2n +=;(2)T n 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【解析】【分析】(1)根据等差中项的性质列方程,并转化为1,a q 的形式,由此求得q 的值,进而求得数列{}n a 的通项公式.(2)利用裂项求和法求得数列{}n c 的前n 项和n T .【详解】(1)由S 1+a 1,S 3+a 3,S 2+a 2成等差数列,可得2(S 3+a 3)=S 2+a 2+S 1+a 1,即有2a 1(1+q +2q 2)=3a 1+2a 1q ,化为4q 2=1,公比q >0,解得q 12=. 则a n 14= ⋅(12)n ﹣111()2n +=; (2)b n 212222111()(2)(1)n n log a log n --===+, c n =(n +2)b n b n +2=(n +2)⋅22221111(1)(3)4(1)(3)n n n n ⎡⎤=-⎢⎥++++⎣⎦, 则前n 项和T n =c 1+c 2+c 3+…+c n ﹣1+c n 14=[22222222221111111111243546(2)(1)(3)n n n n -+-+-++-+-+++L ] 2211111449(2)(3)n n ⎡⎤=+--⎢⎥++⎣⎦ 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【点睛】本小题主要考查等差中项的性质,考查等比数列通项公式的基本量计算,考查裂项求和法,属于中档题.23.(Ⅰ)3π;(Ⅱ)b =【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b .结合二倍角公式和两角差的正弦公式可得()2sin A B -= 详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB =,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=-⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=- ⎪⎝⎭,可得tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,可得sinA =a <c ,故cosA =.因此22sin A sinAcosA ==,212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=11727214-⨯= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.24.(1)32n a n =-+(2)n S 23212n n n -=+- 【解析】【分析】(1)依题意()()382726a a a a d +-+==-,从而3d =-.由此能求出数列{}n a 的通项公式;(2)由数列{}n n a b +是首项为1,公比为2的等比数列,求出112322n n n n b a n --=-=-+,再分组求和即可.【详解】(1)设等差数列{}n a 的公差是d .由已知()()382726a a a a d +-+==-,∴3d =-,∴2712723a a a d +=+=-,得 11a =-,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为2的等比数列,∴12n n n a b -+=,∴112322n n n n b a n --=-=-+,∴()()21147321222n n S n -=+++⋅⋅⋅+-++++⋅⋅⋅+⎡⎤⎣⎦()31212n n n -=+-, 23212n n n -=+-. 【点睛】本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.25.(1) a n 12n =;(2) 1n n +. 【解析】【分析】(1)利用公式1n n n a S S -=-化简得到112n n a a +=,计算112a =,得到答案. (2)计算得到nb n =-,()1111111n n b b n n n n +==-++,利用裂项求和计算得到答案. 【详解】(1)根据题意,由a n +1+S n +1=1,①,则有a n +S n =1,②,(n ≥2)①﹣②得:2a n +1=a n ,即a n +112=a n ,又由a 112=, 当n =1时,有a 2+S 2=1,即a 2+(a 1+a 2)=1,解可得a 214=, 则所以数列{a n }是首项和公比都为12的等比数列,故a n 12n =; (2)由(1)的结论,a n 12n=,则b n =log 2a n =﹣n ,则()()()()()()()122311111111111223112231n n b b b b b b n n n n ++++=+++=+++-⨯--⨯--⨯--⨯⨯⨯+L L L L L =(112-)+(1231-)+……+(111n n -+)=1111n n n -=++.【点睛】本题考查了求通项公式,裂项求和法计算前n 项和,意在考查学生对于数列公式的综合应用.26.(Ⅰ)证明见解析;(II )证明见解析.【解析】【分析】【详解】(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:222a b c ab bc ca ++≥++, 由题设得,即2222221a b c ab bc ca +++++=,所以3()1ab bc ca ++≤,即13ab bc ca ++≤. (Ⅱ)因为22a b a b+≥,22b c b c +≥,22c a c a +≥, 所以222()2()a b c a b c a b c b c a+++++≥++, 即222a b c a b c b c a++≥++, 所以2221a b c b c a++≥. 本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”.【考点定位】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021下海三林中学北校高一数学下期中一模试卷(含答案)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4 B .14- C .14 D .42.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --=3.已知两点()A 3,4-,()B 3,2,过点()P 1,0的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是( )A .()1,1-B .()(),11,∞∞--⋃+C .[]1,1-D .][(),11,∞∞--⋃+ 4.已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。

其中正确的是( )A .(1)(2)(3)B .(1)(4)C .(1)(2)(4)D .(2)(4) 5.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-= 7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为 ( )A 3πB .3πC .43πD .12π 8.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A .26B .5C 26D .429.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭10.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .411.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n βB .α内不共线的三点到β的距离相等C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ=l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)14.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________15.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.16.若直线y x b =+与曲线234y x x =-b 的取值范围是______.17.过正方体1111ABCD A B C D -的顶点A 作直线l ,使l 与棱AB 、AD 、1AA 所成的角都相等,这样的直线l 可以作_________条.18.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0BD AC ⋅≠u u u r u u u r;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直.其中正确结论的序号是 .(请把正确结论的序号都填上)19.如图,在四棱锥P ABCD -中,PA ⊥底面,,//,2,1ABCD AD AB AB DC AD DC AP AB ⊥====,若E 为棱PC 上一点,满足BE AC ⊥,则PE EC =__________.20.已知点()1,0A -,()2,0B ,直线l :50kx y k --=上存在点P ,使得2229PA PB +=成立,则实数k 的取值范围是______.三、解答题21.如图,梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,现将SCD ∆沿CD 翻折到PCD ∆位置,使23PB =(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值;(3)求AB 与平面BDE 所成的角的正弦值.22.已知圆C 的圆心坐标()1,1,直线l :1x y +=被圆C 2.(1)求圆C 的方程;(2)从圆C 外一点()2,3P 向圆引切线,求切线方程.23.四棱锥P -ABCD 中,底面ABCD 是直角梯形,//AB CD ,90BCD ∠=︒,22AB AD DC ===.PAD △ 为正三角形,二面角P -AD -C 的大小为23π.(1)线段AD 的中点为M.求证:平面PMB ⊥平面ABCD ;(2)求直线BA 与平面P AD 所成角的正弦值.24.已知圆22:2410C x y x y ++-+=,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M . (1)若点P 运动到()13,处,求此时切线l 的方程;(2)求满足PM PO =的点P 的轨迹方程.25.如图,在直三棱柱111ABCA B C 中,AC BC ⊥,14CC =,M 是棱1CC 上的一点.(1)求证:BC AM ⊥;(2)若N 是AB 的中点,且//CN 平面1AB M ,求CM 的长.26.如图,在梯形ABCD 中,AB CD ∥,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)证明:BC ⊥平面ACFE ;(2)设点M 在线段EF 上运动,平面MAB 与平面FCB 所成锐二面角为θ,求cos θ的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.3.D解析:D【解析】分析:根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围.详解:∵点A (﹣3,4),B (3,2),过点P (1,0)的直线L 与线段AB 有公共点, ∴直线l 的斜率k≥k PB 或k≤k PA ,∵PA 的斜率为4031--- =﹣1,PB 的斜率为2031--=1, ∴直线l 的斜率k≥1或k≤﹣1,故选:D .点睛:本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,比较基础.直线的倾斜角和斜率的变化是紧密相联的,tana=k,一般在分析角的变化引起斜率变化的过程时,是要画出正切的函数图像,再分析.4.C解析:C【解析】【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案.【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b所在平面与已知平面平行,则符合题意的点为一条直线,综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题. 5.B解析:B由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.6.B解析:B【解析】【分析】【详解】因为线段AB 的垂直平分线上的点(),x y 到点A ,B 的距离相等,=.即:221244x x y y +-++- 229612x x y y =+-++-,化简得:425x y -=.故选B .7.C解析:C【解析】【分析】的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,由此可得结论【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,其直径为∴三棱锥的外接球体积为343π⨯=故选C【点睛】 本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题.8.A【解析】【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解.【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min 26d ∴=.故选:A.【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力. 9.D解析:D【解析】试题分析:A.}r rααββ⊥⇒⊥P 不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥P 不正确,,l β有可能平行;C.}m r m n n r⇒P P P 不正确,m,n 可能平行、相交、异面;故选D 。

相关文档
最新文档