脂代谢

合集下载

脂代谢的概念

脂代谢的概念

脂代谢的概念脂代谢是人体内脂类物质的合成、分解及利用的过程。

脂类物质是人体最重要的能量来源之一,同时也是脂溶性维生素和结构组分的重要来源。

脂代谢不仅关系到人体的能量平衡和生物合成,还与健康和疾病密切相关。

脂代谢主要包括脂类物质的合成、分解和利用三个方面。

脂类物质的合成是指人体通过摄取食物中的脂质,再经过消化吸收、运输和合成作用,将其转化为人体需要的脂类物质,如甘油三酯、磷脂和胆固醇等。

脂类物质的分解是指人体通过脂分解酶将脂类物质分解为甘油和脂肪酸,进一步供能使用。

脂类物质的利用则是指人体通过氧化代谢将脂类分解产生的甘油和脂肪酸在细胞内进行能量产生,满足机体的能量需求。

脂代谢是一个复杂的过程,涉及多个器官和多个生物化学反应。

首先,在消化系统中,脂类物质在胃和小肠中经过乳化、酶解和吸收作用,变为游离脂类物质,然后通过淋巴系统进入血液循环,再被肝脏转运和代谢。

在肝脏中,脂类物质被合成、分解和运输到其他组织和器官,满足全身的需求。

在脂类物质的合成过程中,脂肪酸和甘油经过一系列的反应,通过酮体合成、胆固醇合成和磷脂合成等途径,最终合成出人体需要的各种脂类物质。

在脂类物质的分解过程中,脂分解酶将脂肪酸从甘油上剥离出来,然后通过β氧化和三羧酸循环进行氧化代谢。

脂类物质的利用主要发生在肌肉组织和脂肪组织中,通过脂肪酸在线粒体内的氧化代谢产生三磷酸腺苷(ATP),进一步供给全身各器官和组织使用。

脂代谢的紊乱可能导致一系列的代谢性疾病。

例如,脂代谢异常可导致高脂血症,即血液中的胆固醇和甘油三酯浓度升高,进而增加动脉粥样硬化、冠心病和脑血管疾病的风险。

脂代谢异常还可能导致肥胖和代谢综合征的发生,增加糖尿病、非酒精性脂肪肝、高尿酸血症和胰岛素抵抗的风险。

此外,脂代谢紊乱还可能对大脑功能产生影响,导致认知功能下降和神经发育异常。

为了维持脂代谢的平衡,人们可以通过调整饮食结构和生活方式来改善脂代谢的紊乱。

首先,合理控制膳食中脂类物质的摄入量,尤其是饱和脂肪酸和反式脂肪酸的摄入,减少脂肪摄入对血脂升高的影响。

脂类代谢

脂类代谢

脂类代谢本章主要介绍脂类(主要是脂肪)物质在生物体的分解及合成代谢。

要求学生重点掌握脂肪酸在生物体内的氧化分解途径β氧化和从头合成途径了解脂类物质的功能和其他的氧化分解途径。

生物体内的脂类脂类单纯脂类复合脂类非皂化脂类酰基甘油酯蜡磷脂糖脂、硫脂萜类甾醇类含有脂肪酸不含脂肪酸异戊二烯脂类,不含脂肪酸,不能进行皂化。

一、脂类的消化、吸收、转运和储存(一)脂类的消化小肠上段:主要消化场所脂类微团甘油一脂、溶血磷脂、长链脂肪酸、胆固醇等混合微团胆汁酸盐乳化胰脂肪酶、磷脂酶等水解乳化(二)脂类的吸收十二指肠下段、空肠上段混合微团小肠粘膜细胞内乳糜微粒门静脉肝脏扩散重新酯化载脂蛋白结合乳糜微粒小肠粘膜脂肪脂蛋白十二指肠空肠血液二、脂肪的分解代谢(一)脂肪的水解脂肪酶二酰甘油脂肪酶一酰甘油脂肪酶甘油激酶磷酸甘油脱氢酶异构酶(二)甘油的转化(实线为甘油的分解虚线为甘油的合成))(三)脂肪酸的分解代谢a脂肪酸β氧化作用、β氧化作用的概念脂肪酸在体内氧化时在羧基端的β碳原子上进行氧化碳链逐次断裂每次断下一个二碳单位(乙酰CoA)饱和脂肪酸的β氧化作用()β氧化过程中能量的释放及转换效率、氧化过程、β氧化作用的概念及试验证据()脂肪酸的活化和转运()β氧化的生化过程试验证据,FKnoop,苯环标记脂肪酸饲喂狗β氧化学说内质网、线粒体外膜:脂酰CoA合成酶催化脂肪酸与CoASH:脂酰CoA(活化)。

反应不可逆、氧化过程)、脂肪酸活化为脂酰CoA(胞浆)脂肪酸氧化酶系:线粒体基质长链脂酰CoA(C以上)不能直接透过线粒体内膜与肉毒碱(carnitine)结合:脂酰肉碱,进入线粒体基质肉碱脂酰转移酶(CATⅠ和CATII)催化:)、脂酰CoA进入线粒体β氧化的限速步骤CATⅠ是限速酶丙二酸单酰CoA是强烈的竞争性抑制剂。

)*OHRCHCHCHCO~SCoALβ羟脂酰CoA()再脱氢()硫解()()()()β酮脂酰CoARCHC~SCoAOCHCOCoASHβ酮脂酰CoA硫解酶ATP呼吸链重复反应乙酰CoARCHCHCOSCoA脂酰CoA脱氢酶脂酰CoAβ烯脂酰CoA水化酶β羟脂酰CoA脱氢酶β酮酯酰CoA 硫解酶RCHOHCHCO~ScoARCOCHCOSCoARCH=CHCOSCoACHCO~SCo ARCO~ScoA乙酰CoA氧化的生化历程β氧化的生化历程a、脱氢b、水化c、再脱氢ORCH=CHCSCoAORCHCHCSCoAOHORCHCHC~SCoAOORCCHC~SCoAd、硫解||||分子软脂酸(C):活化生成软脂酰CoA次β氧化总反应式:软脂酰CoAFADNADCoASHHO乙酰CoAFADH(NADHH))、β氧化的能量生成β氧化:乙酰CoA、NADH和FADH碳原子数:Cn脂肪酸β氧化(n-)次循环n个乙酰CoA(n)NADH、(n)FADH乙酰CoA:TCACO、HO释放能量NADH、FADH:呼吸链传递电子生成ATP 生成ATP数量:分子软脂酸彻底氧化:(×)(×)(×)=分子ATP脂肪酸活化消耗ATP的个高能磷酸键净生成:分子ATP脂肪酸氧化作用发生在α碳原子上分解出CO生成比原来少一个碳原子的脂肪酸RCHCOORCH(OH)COORCOCOORCOOCOONADNADHHNADNAD HHRCH(OOH)COOCORCHOONADNADHH过氧化羟化b脂肪酸的α氧化作用α羟脂酸α酮酸*CH(CH)nCOOHOCH(CH)nCOOOHC(CH)nCOOOOC(CH)nCOOON AD(P)NAD(P)HHNAPDNADPHHNAD(P)NAD(P)HH混合功能氧化酶醇酸脱氢酶醛酸脱氢酶c脂肪酸的ω氧化作用脂肪酸末端甲基(ω端)经氧化转变成羟基继而再氧化成羧基从而形成αω二羧酸的过程(四)酮体的生成和利用、酮体脂肪酸在肝脏中不完全氧化的中间产物β-羟丁酸(%)CHCH(OH)CHCOOH乙酰乙酸(%)CHCOCHCOOH丙酮(极微)CHCOCH统称原料:乙酰CoA脂肪酸在肝脏中氧化分解所生成的乙酰乙酸、β羟丁酸和丙酮三种中间代谢产物、酮体的生成、酮体的利用酮体:肝脏合成肝脏缺乏利用酮体的酶不能利用酮体进入血液输送到肝外组织利用CHCOCHCOOH乙酰乙酸CHCOCHCOSCoA乙酰乙酰CoAATPCoASHPPiAMPPi乙酰CoACHCOCoAβ羟丁酸CHCH(OH)CHCOOHβ羟丁酸脱氢酶NADNADHH琥珀酰CoA琥珀酸转移酶乙酰乙酰CoA合成酶HOHSCoA硫解酶心、肾、脑和骨胳肌此酶活性高(倍)TCA琥珀酰CoA转硫酶:催化进行氧化利用时乙酰乙酸:分子ATPβ羟丁酸:分子ATP乙酰乙酸硫激酶:催化进行氧化利用时乙酰乙酸:分子ATP β羟丁酸:分子ATP酮体生成的生理意义)酮体具水溶性能透过血脑屏障及毛细血管壁。

脂代谢章节知识点总结

脂代谢章节知识点总结

一、脂代谢概述1. 脂肪的功用脂肪是人体内重要的能量来源,同时也是构成细胞膜和合成激素等物质的重要组成成分。

脂肪在体内的代谢和运输受到多种因素的调控,包括激素、饮食和运动等。

2. 脂肪的来源脂肪可以从饮食中摄入,也可以由体内其他物质合成而来。

脂肪主要来源包括动物性脂肪和植物性脂肪,人们在日常生活中应合理搭配膳食,摄入适量的脂肪。

3. 脂代谢的过程脂代谢的主要过程包括脂肪的合成、分解和运输。

脂肪的合成主要发生在肝脏和脂肪细胞内,而脂肪的分解主要发生在脂肪细胞内。

脂肪的运输则涉及到脂蛋白的合成和分泌等。

二、脂代谢的调控1. 激素调控胰岛素和糖皮质激素是脂代谢中重要的激素调节因子,它们分别参与脂肪的合成和分解过程。

人体内的激素水平受到多种因素的调控,如饮食、运动和疾病等。

2. 营养调控人们的膳食结构和饮食习惯对脂代谢有着直接的影响。

合理摄入脂肪、糖类和蛋白质等营养物质对于维持脂代谢的平衡具有重要意义,而饮食不当则容易导致脂代谢紊乱。

3. 运动调控适量的运动对于促进脂代谢的平衡具有显著的益处。

有氧运动和无氧运动对于脂肪的分解和能量消耗有着不同的作用,通过运动可以提高人体脂代谢的效率。

三、脂肪分解和合成的基本过程1. 脂肪分解脂肪分解是指脂肪细胞内存储的三酸甘油酯被分解为游离的脂肪酸和甘油的过程。

脂肪分解主要受到脂肪酶的调控,而脂肪酶的活性受到多种激素和神经递质的影响。

2. 脂肪合成脂肪合成是指体内多余的能量主要以葡萄糖为基础,通过多个生物化学途径合成三酸甘油酯的过程。

脂肪合成主要发生在肝脏和脂肪细胞内,受到多种激素和营养物质的调控。

1. 脂蛋白的合成和分泌脂蛋白是体内运输脂质的主要载体,包括乳糜微粒、低密度脂蛋白、高密度脂蛋白等。

它们主要由肝脏合成并在体内循环,参与脂肪的运输和代谢过程。

2. 胆固醇代谢胆固醇是体内重要的脂质成分,参与细胞膜的构成和激素合成等过程。

胆固醇的代谢主要受到多种因素的调控,包括饮食、激素和胆汁酸的影响。

脂代谢

脂代谢

脂代谢是指人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水脂代谢解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸)。

水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。

甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。

编辑本段脂代谢-概述脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。

磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。

鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。

胆固醇脂:胆固醇与脂肪酸结合生成。

编辑本段脂代谢-甘油三酯代谢甘油三酯代谢过程合成代谢1、合成部位及原料甘油三酯代谢过程肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。

合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。

若肝合成的甘油三酯不能及时转运,会形成脂肪肝。

脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。

其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。

2、合成基本过程①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

分解代谢即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。

甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

第十一章脂类代谢

第十一章脂类代谢

第十一章脂类代谢Chapter 11 Metabolism of Lipids上个世纪初,努珀(Knoop F,1904年)通过动物实验首先提出了脂酸的β-氧化假说。

40年后,莱劳埃尔(LeLoir L,1944年)采用无细胞体系验证了脂酸β-氧化机制。

后来,莱宁格尔(Lehninger A,1953年)证明,β-氧化是在线粒体进行的。

“活泼乙酸”或乙酰辅酶A的发现(Lynen F,1951年)终于揭示了脂酸分解代谢的全过程。

因为动物体内脂酸多为偶数碳原子,所以在上个世纪初就有人提出,脂酸是由二碳化合物缩合而成,但直到同位素技术问世(1930s~1940s)才直接证明了乙酰辅酶A是脂酸生物合成的基本原料。

1950s,丙二酰辅酶A的发现导致对脂酸合成全过程的演绎。

血浆不同密度脂蛋白(1930~1970年间)、载脂蛋白受体(1960~197090年代中期,科学家们发现载脂蛋白)与阿尔茨海默病(Alzheimer’s disease)发病代谢研究迎来了它的黄金时代。

第一节脂质的消化吸收Section 1 Digestion and Absorption of Lipids一、胆汁酸盐协助脂质消化酶消化食入脂质脂质(或脂类)包括脂肪(fat)和类脂(lipoid),不溶于水(第五章),不能与消化酶充分接触。

胆汁酸盐具有较强的乳化作用,能降低脂-水相间的界面张力,将脂质乳化成细小微团(micelles),使脂质消化酶吸附在乳化微团的脂-水界面,极大地增加消化酶与脂质接触面积,促进消化道内脂质的消化。

因为含胆汁酸盐的胆汁、含脂质消化酶的胰液分泌后直接进入十二指肠,所以小肠上段是脂质消化的主要场所。

胰腺分泌的脂质消化酶包括胰脂酶(pancreatic lipase)、辅脂酶(colipase)、磷脂酶A2(phospholipase A2,PLA2)和胆固醇酯酶(cholesterol esterase)。

胰脂酶特异水解甘油三酯1、3位酯键,生成2-甘油一酯(2-monoglyceride)及2分子脂酸。

脂类代谢的名词解释

脂类代谢的名词解释

脂类代谢的名词解释脂类代谢是指生物体对脂类分子的合成、分解和转运过程。

作为生物体内重要的能量储备和生命物质的组成部分,脂类在机体中扮演着关键的角色。

脂类代谢的研究不仅对于揭示一系列疾病的病理机制具有重要意义,而且对于寻找新的治疗和预防策略也具有重要指导意义。

脂类是一类化学物质,通常是由长链的羧酸和甘油形成,进而与其他分子结合形成脂肪酸或甘油脂。

脂类的合成过程受到许多调节因子的控制,其中包括饮食、体内激素水平、基因表达等。

在脂类代谢中,脂类合成被认为是一种能量储备的形式,同时也作为生命活动所必需的重要物质。

脂类代谢中的一个重要过程是脂类分解,也被称为脂解。

脂解是指将脂类分子分解为脂肪酸和甘油的过程。

在细胞内,脂解通常通过酶的作用来实现。

通过脂解,存储在细胞内的脂类可以释放出来,以供能量消耗和生物合成需求。

除了脂解,脂类代谢中的另一个重要过程是脂类的转运。

脂类分子通常不能直接溶解在水中,因此需要特殊的载体来进行有效的转运。

在生物体内,脂类的转运主要由载脂蛋白类分子完成。

载脂蛋白类分子能够与脂类分子结合,形成脂蛋白颗粒,从而使脂类能够在体内通过血液或细胞膜进行运输。

脂类代谢的紊乱可能导致一系列疾病的发生。

例如,脂类合成过程的异常增加可能导致肥胖和代谢综合征等疾病的发生。

而脂解过程的异常减少则可能导致脂肪积累和脂肪肝等病症。

脂类转运的紊乱也与一些心血管疾病和代谢病有关。

因此,对于脂类代谢的深入理解对于预防和治疗这些疾病具有重要的意义。

近年来,随着对脂类代谢的深入研究,一些新的治疗策略也逐渐浮出水面。

例如,针对脂类合成过程的药物和营养干预措施能够帮助调节体内脂类的合成过程,从而减轻肥胖和相关代谢疾病的风险。

此外,针对脂类分解和转运过程的药物研发也有望找到新的治疗策略。

总之,脂类代谢是生物体内一系列关键生化过程的总称,包括脂类的合成、分解和转运。

脂类代谢的紊乱与多种疾病的发生和发展有关。

通过深入研究脂类代谢,我们可以更加全面地认识到这些代谢过程对于人体健康的重要性。

脂类代谢

脂类代谢

Triacylglycerol,TG
蜡 wax
磷脂
phospholipid,PL
含有脂肪酸
脂类
lipids
复合脂类
complex lipid
糖脂 glucolipid,GL 萜类
terpenes sterol
非皂化脂类
不含脂肪酸
甾醇类
(一)单 纯 脂 类
1.概念
单纯脂类是 由脂肪酸和 醇形成的酯
(1)酰基甘油酯 2.种类 (2)蜡
(1)、脂类的消化
(2)、脂类的吸收
脂类的消化 (Digestion of lipid)
小肠(small intestine):胆汁酸盐(bile)、胰脂酶 (pancreatic lipase)、辅酯酶(colipase)、胰磷脂酶 A2(phospholipase A2)、胆固醇酯酶(cholesteryl esterase)
3、β-氧化过程
a、脂肪酸的活化-----脂酰CoA(acyl-CoA)的形成
活化部位-----胞液(cytosol)
--活化后的acyl-CoA的水溶性增加,有 利于反应的进行;
--β-氧化的酶类对acyl-CoA有专一性
脂肪酸仅需活化一次,消耗一个ATP的
两个高能键;
O R-C-OH O
+
CoA-SH
烯酯酰CoA 水化酶
OH
CH3(CH2)7CH2-C-CH2-CO ~SCoA H 再开始β-氧化
• 抗脂解激素(-):胰岛素、前列腺素E、 烟酸及腺苷
二、甘 油 的 转 化
甘油
(肝 肾 肠)
3-磷酸甘油
磷酸二羟丙酮 糖酵解
糖异生
丙酮酸
葡萄糖

第十章 脂代谢

第十章 脂代谢

第三节 脂肪的合成代谢
一、脂肪酸的生物合成
饱和脂肪酸合成 脂肪酸碳链延长 脱饱和生成不饱和脂肪酸
(一)饱和脂肪酸的合成
脂肪酸合成的原料:乙酰CoA (反刍动物:乙酸→乙酰CoA,丁酸→丁酰CoA;非反刍
动物:主要来自线粒体内的丙酮酸氧化脱羧); 细胞定位:细胞液中; 线粒体中的乙酰CoA需通过柠檬酸-丙酮酸循环(或称拧
⑥β-烯脂酰-ACP还原酶
ACP其辅基是4´-磷酸泛酰巯基乙胺,-SH是 ACP的活性基团。
与脂酰基形成硫酯键
磷酯键
但在高等动物中,脂肪酸合成酶系则是由一条多肽链构成的多 功能酶(具有7种酶活性和ACP功能),通常以二聚体形式存在, 每个亚基都含有一ACP结构域。合成脂肪酸的反应由两条肽链 协同进行。
不饱和脂肪酸的命名
系统命名法:需标示脂肪酸的碳原子数和双键的位置。 ω编码体系:从脂肪酸的碳氢链的甲基碳起计算其碳原子 顺序。 △编码体系:从脂肪酸的羧基碳起计算碳原子的顺序。
CH3-(CH2)5-CH=CH-(CH2)7-COOH
系编码
系编码
十六碳-7-烯酸
十六碳-9-烯酸
常见的不饱和脂肪酸
一、脂肪酸
脂肪酸(fatty acid,FA)是由一条线性长的碳氢链(疏水 尾)和一个末端羧基(亲水头)组成的羧酸。
1. 分类
脂肪酸的共性
1. 一般为偶数碳原子; 2. 绝大多数不饱和脂肪酸中的双键为顺式; 3. 不饱和脂肪酸双键位置有一定的规律性:单烯酸的双键
位置一般在第9-10 C之间;而多烯酸通常间隔3个C出现1 个双键; 4. 动物的脂肪酸是直链的,所含双键可多达6个;细菌中 还含有支链的、羟基的和环丙基的脂肪酸;植物脂肪酸中 有含炔基、环氧基、酮基等; 5. 脂肪酸分子的碳链越长,熔点越高;不饱和脂肪酸的熔 点比同等链长的饱和脂肪酸的熔点低。

脂肪代谢分析报告

脂肪代谢分析报告

脂肪代谢分析报告
根据脂肪代谢分析报告,以下是相关结果和建议:
1. 体脂率:体脂率是身体中脂肪组织占总体重的比例。

根据报告,您的体脂率为X%,处于正常范围。

这意味着您的身体脂肪含量是合理的。

2. 腰臀比:腰臀比是腰围和臀围的比值,是评估脂肪在腹部和臀部分布情况的指标。

根据报告,您的腰臀比为X,处于正常范围。

这意味着您的脂肪分布较均匀。

3. 基础代谢率:基础代谢率是指身体在安静状态下维持生命所需的能量消耗。

根据报告,您的基础代谢率为X千卡/天。

如果您想减少体重,您的摄入热量应低于基础代谢率。

4. 糖代谢:脂肪代谢与糖代谢密切相关。

如果您的血糖控制得不好,可能导致脂肪代
谢受损。

建议您关注饮食中糖分的摄入,并定期进行血糖检测。

5. 运动计划:根据脂肪代谢分析结果,制定一个适合自己的运动计划对促进脂肪代谢
和身体健康非常重要。

建议您每周进行几次有氧运动、力量训练和柔韧性锻炼。

请注意,这只是一份简要报告,具体建议应以您的医生或健康专家的指导为准。

他们
可以根据您的个人情况和目标制定更详细的脂肪代谢调节方案。

脂类代谢

脂类代谢
类脂(lipoid)
z磷脂(phospholipid,PL)
甘油磷脂 鞘磷脂
z糖脂(glycolipid,GL)
甘油糖脂 鞘糖脂
z胆固醇及胆固醇酯
O CH2 O C (CH2)m CH3
O CH O C (CH2)n CH3
O CH2 O C (CH2)k CH3
O CH2 O C (CH2)m CH3
形成乳糜微粒,经淋巴进入血循环。
1. 中链及短链脂酸构成的TG 乳化 甘油 + FFA
吸收 肠粘膜细胞 脂肪酶
门静脉
血循环
肠粘膜细胞 2.长链脂酸及2-甘油一酯
酯化成TG
TG、CE、PL + 载脂蛋白(apo)
血循环
淋巴管
乳糜微粒(CM)
甘 油 三 酯 的 消 化 与 吸 收
第二节 甘油三酯代谢
脂类的消化
消化的场所:主要在小肠上段 消化的条件:
z 乳化剂的乳化作用:
胆汁酸盐、甘油一酯、甘油二酯等
z 酶的催化作用
产物:
甘油一酯、脂酸、胆固醇及溶血磷脂等,与胆汁酸盐乳化
成更小的混合微团。
消化过程
脂类(TG、Ch、PL等)
胆汁酸盐乳化
微团
胰脂肪酶、辅脂酶等水解
甘油一脂、溶血磷脂、长链脂酸、胆固醇等
z 酮体利用的增加可减少糖的利用,有利于维持 血糖水平恒定,节省蛋白质的消耗。
当肝内酮体的生成量超过肝外组织的利用能力时, 血中酮体升高,称为酮血症,在尿中出现称为酮尿症。
脂酸的合成代谢
合成部位:
(一)软脂酸的合成
细胞器定位:胞液
组织定位:肝为主,还有肾、脂肪组织等
合成原料:
乙酰辅酶A(来源糖、氨基酸、脂肪酸等) NADPH+H+(来源磷酸戊糖途径) ATP、生物素、CO2、Mg2+等

第05章脂代谢

第05章脂代谢

目录
脂类物质的基本构成
甘油三酯
甘 油 FA FA FA 甘 甘油磷脂 (phosphoglycerides) 油 FA FA
Pi
X
X = 胆碱、水、乙 醇胺、丝氨酸、甘 油、 肌醇、磷脂 酰甘油等
胆固醇酯
胆固醇
FA
目录
甘油三脂
O O H3C (CH 2)n C O H2C CH H2C O O C (CH 2)m CH3 O C (CH 2)k CH3
乳化剂是一类具有亲水基团(极性的、疏油的)和疏水基团〔非极性 的、亲油的)的表面活性剂,而且这两部分分别处于分子的两端,形成 不对称的结构。乳化剂分子结构的两亲性特点,使乳化剂具有了油、 水两相产生水乳交融效果的特殊功能。
目录
乳化剂分子性能
在乳化液中,乳化剂分子为求自身的 稳定状态,在油水两相的界面上,乳化剂 分子亲油基伸入油相,亲水基伸入水相, 这样,不但乳化剂自身处于稳定状态,而 且在客观上又改变了油、水界面原来的特 性,使其中一相能在另一相中均匀地分散, 形成了稳定的乳化液。
目录
脂肪 (fat): 三脂酰甘油 (triacylglycerols,TAG) 也称为甘油三酯 (triglyceride, TG) 类脂(lipoid): 胆固醇 (cholesterol, CHOL) 胆固醇酯 (cholesterol ester, CE) 磷脂 (phospholipid, PL) 鞘脂 (sphingolipids)
目录
(二)合成原料
1.脂酸和甘油主要来自于葡萄糖代谢
2. CM中的FFA(来自食物脂肪)
(三)合成基本过程
1. 甘油一酯途径(小肠粘膜细胞)
2. 甘油二酯途径(肝、脂肪细胞)

脂代谢与运动PPT课件

脂代谢与运动PPT课件

02
运动对脂代谢的影响
运动对脂肪合成与分解的影响
脂肪合成
运动能够促进脂肪合成酶的活性 ,使脂肪在肌肉和肝脏等组织中 合成。
脂肪分解
运动能够激活脂肪分解酶,促进 脂肪酸的氧化分解,产生能量供 给身体各部位。
运动对血脂水平的影响
降低血脂
运动能够消耗体内脂肪,降低血脂水平,特别是降低低密度脂蛋白胆固醇和甘 油三酯水平。
脂代谢异常是心血管疾病的重要危险因素之一, 运动可以改善血脂水平,降低心血管疾病的风险 。
运动还可以改善血管内皮功能,降低血压和心率 ,进一步保护心血管健康。
长期坚持适量的有氧运动,如快走、慢跑、游泳等, 可以降低低密度脂蛋白胆固醇(LDL-C)和甘油三 酯水平,提高高密度脂蛋白胆固醇(HDL-C)水平, 从而减少心血管疾病的风险。
在实验过程中,对受试者进行现场实验和跟踪调查,收集相关数据 和样本。
生物信息学在脂代谢研究中的应用
数据挖掘与分析
利用生物信息学方法,对大规模 基因组、转录组、蛋白质组数据 进行挖掘和分析,揭示脂代谢相
关基因和通路。
预测与模拟
通过建立数学模型,预测不同运动 条件下脂代谢的变化趋势,为实验 设计提供理论支持。
脂代谢与运动ppt课件
目录
• 脂代谢概述 • 运动对脂代谢的影响 • 运动改善脂代谢的机制 • 运动与脂代谢相关疾病预防 • 运动与脂代谢的科学研究方法 • 结论与展望
01
脂代谢概述
脂代谢的定义与过程
脂代谢是指生物体内脂肪的合成与分解过程,涉及脂 肪酸的合成、甘油三酯的合成和分解等。
输标02入题
升高高密度脂蛋白胆固醇
运动能够提高高密度脂蛋白胆固醇水平,
提高脂肪酸氧化

生物化学第九章脂代谢

生物化学第九章脂代谢
(以16C的软脂酸为例)彻底氧化成CO2和H2O。 16C经过7次ß -氧化: 生成7个FADH2和7个NADH +H+ 7个FADH2经呼吸链生成 2 × 7 = 14 ATP 7个NADH +H+ 经呼吸链生成 3 × 7 = 21 ATP 生成8个乙酰COA: 8个 乙酰COA经TCA生成 12 × 8 = 96 ATP 总 计: 14+21+96-2=129ATP 另有一种算法: 1个FADH2经呼吸链生成1.5ATP 1个NADH+H+经呼吸链生成2.5ATP
SH
H2O
HOOCCH2CO-S CH3CO-S CH3COCH2CO-S
SH

CO2

NADP+ NADPH
2.线粒体中的合成

碳链的延长发生在线粒体和内质网中。与脂肪酸β-氧化的逆 向过程相似,使得一些脂肪酸碳链(C16)加长。 延长是独立于脂肪酸合成之外的过程,是乙酰单元的加长和 还原,恰恰是脂肪酸降解过程的逆反应。光面内质网中的延 长更为活跃。
酮体的生成
HMGCoA裂 解酶 CH3COCH2COOH
乙酰乙酸 脱氢酶
HMGCoA 合成酶
NADH+H+ NAD+
脱羧酶 CO2
OH | HOOCCH2-C-CH2COSCoA | CH3 羟甲基戊二酸单酰CoA (HMGCoA)
CH3CHOHCH2COOH
--羟丁酸
CH3COCOOH
丙酮
酮血症?
5.不饱和脂肪酸的氧化
与脂肪酸的β-氧化相同,但需增加异构酶 和 还原酶:
(三)脂肪酸氧化的其它途径
1.奇数碳原子脂肪酸的氧化 如17个碳直链脂肪酸: 先经β-氧化至3碳的丙酰-CoA ,产生7个乙酰CoA和一个丙酰-CoA 。 丙酰-CoA经3步反应转化为琥珀酰-CoA然后进入 三羧酸循环进一步进行代谢。

第九章.脂代谢

第九章.脂代谢

生物膜的结构
脂代谢

脂类的消化、吸收和转运 甘油三酯的分解代谢


脂肪酸的氧化
脂肪酸的合成
甘油三酯的合成
胆固醇代谢
第二节 甘油三酯的分解代谢
一、甘油三酯的酶促水解
甘油三酯的分解是经脂肪酶催化逐步水解的。 组织中有三种脂肪酶: 甘油三酯脂肪酶(三脂酰甘油脂肪酶) 甘油二酯脂肪酶(二脂酰甘油脂肪酶) 甘油单酯脂肪酶(单脂酰甘油脂肪酶) 它们一步步地将甘油三酯水解成甘油和脂肪酸。
(1)脂酰CoA的α、β-脱氢作用(脱氢)
脂酰CoA脱氢酶
R-CH2-CH2-CH2-C~S-CoA O FAD 脂酰CoA
H R-CH2-C=C-C~S-CoA FADH2 H O Δ2-反式烯脂酰CoA
(2)Δ2-反式烯脂酰CoA的水化(水合)
H O H 2O OH O R-CH2-C=C-C~S-CoA R-CH2-C-CH2-C~S-CoA 烯脂酰CoA水化酶 H H Δ2-反式烯脂酰CoA L-β-羟脂酰CoA
(二)饱和奇数碳脂肪酸的β-氧化降解 与饱和偶数碳脂肪酸的β-氧化降解过程基本相 同,只是最后产生的丙酰CoA的去路不同。
(三)不饱和脂肪酸的β-氧化
该过程与饱和脂肪酸的β-氧化降 解过程基本相同,只是不饱和脂肪酸 分子中含有顺式双键,所以在氧化过 程需要有另外的酶参加(Δ3-顺-Δ2-反 烯脂酰CoA异构酶)。
花生四烯酸(Cis)
20:4
2、甘油三酯的理化性质
(1) 溶解性∶不溶于水
(2) 光学活性∶当甘油C1和C3上的脂肪酸 不同时,C2为不对称碳原子,这时甘 油三酯具有光学活性(旋光性)。
CH2-O-CO-R1 R2-COO-CH CH2-O-CO-R3

脂代谢思维导图

脂代谢思维导图

脂质代谢是指人体吸收的大部分脂肪被胆汁乳化成小颗粒的事实。

胰腺和小肠分泌的脂肪酶将脂肪中的脂肪酸水解为游离脂肪酸和甘油单酸酯(有时完全水解为甘油和脂肪酸)。

小分子,例如甘油,短链和中链脂肪酸,被小肠吸收到血液中。

甘油单酸酯和长链脂肪酸被吸收后,甘油三酸酯在小肠细胞中重新合成,乳糜微粒由磷脂,胆固醇和蛋白质形成,它们通过淋巴系统进入血液循环。

基本信息脂肪:它是由甘油和脂肪酸合成的。

人体中脂肪酸有两种来源:一种是人体自身的合成;另一种是人体自身的合成。

另一个是食物供应,特别是一些人体无法合成的不饱和脂肪酸。

它们被称为必需脂肪酸,例如亚油酸和α-亚麻酸。

磷脂:由甘油和脂肪酸,磷酸和氮化合物产生。

鞘脂:将鞘磷脂与脂肪酸结合的脂质。

膦酸被称为鞘磷脂,而糖被称为糖鞘脂。

胆固醇脂质:胆固醇是由胆固醇和脂肪酸的组合形成的。

甘油三酸酯代谢甘油三酸酯的合成与代谢1.合成零件和原材料甘油三酸酯代谢甘油三酸酯代谢肝脏,脂肪组织和小肠是重要的合成部位。

肝脏具有最强的合成能力。

注意:肝细胞可以合成脂肪,但不能储存脂肪。

合成后,应与载脂蛋白和胆固醇结合形成极低密度的脂蛋白,可将其转运到血液中并转运到肝外组织进行储存或利用。

如果肝脏合成的甘油三酸酯不能及时运输,就会形成脂肪肝。

脂肪细胞是人体合成和储存脂肪的仓库。

甘油三酸酯合成所需的甘油和脂肪酸主要由葡萄糖代谢提供。

其中,甘油由糖酵解产生的磷酸二羟基丙酮转化而来,脂肪酸是由糖的氧化分解产生的乙酰辅酶A合成的。

2.合成的基本过程①甘油单酯途径:这是肠粘膜细胞合成脂肪的途径。

甘油三酸酯由甘油单酸酯和脂肪酸合成。

②甘油二酸酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶,因此它们不能使用游离甘油,而只能使用葡萄糖代谢提供的3-磷酸甘油。

分解代谢在脂肪细胞中对激素敏感的甘油三酸酯酶的作用下,脂肪分解为脂肪酸和甘油,然后释放到血液中以氧化其他组织。

甘油激酶>甘油磷酸酯>磷酸二羟基丙酮>糖酵解或有氧氧化。

脂类代谢-生物化学

脂类代谢-生物化学

03
04
合成过程可以分为三个阶段:
乙酰CoA羧化酶可分成三个不同的亚基:
05
生物素羧基载体蛋白(BCCP)
原料的准备——乙酰CoA羧化生成丙二酸单酰CoA(在细胞液中进行),由乙酰CoA羧化酶催化,辅基为生物素,是一个不可逆反应。
生物素羧化酶(BC)
羧基转移酶(CT)
06
柠檬酸穿梭系统
肉毒碱转运
脂酰CoA的β氧化反应过程如下:
脂肪酸的β氧化
脱氢 脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。 加水(水合反应) △2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。
脱氢 L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。 硫解 在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生 1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。
乙酰CoA的去路
2分子的乙酰CoA在肝脏线粒体乙酰乙酰CoA硫解酶的作用下,缩合成乙酰乙酰CoA,并释放1分子的CoASH。
乙酰乙酰CoA与另一分子乙酰CoA缩合成羟甲基戊二酸单酰CoA(HMG CoA),并释放1分子CoASH。
HMG CoA在HMG CoA裂解酶催化下裂解生成乙酰乙酸和乙酰CoA。乙酰乙酸在线粒体内膜β-羟丁酸脱氢酶作用下,被还原成β-羟丁酸。部分乙酰乙酸可在酶催化下脱羧而成为丙酮。
β-羟丁酸在β-羟丁酸脱氢酶作用下,脱氢生成乙酰乙酸,然后再转变成乙酰CoA而被氧化。
乙酰乙酰CoA被β氧化酶系中的硫解酶裂解成乙酰CoA进入三羧酸循环。

第四章 脂类的代谢

第四章 脂类的代谢

2.经过转运系统,脂酰-肉碱被送进线粒体基质
3.脂酰基重新转移到CoA上 4.释放出肉碱,重新回到胞液中
YOUR SITE HERE
试验证据
1904年Knoop根据用苯环标记脂肪酸饲喂狗的实验结果,
推导出了β-氧化学说。
奇数碳原子:
-CH2-(CH2)2n+1-COOH
-COOH(苯甲酸)
偶数碳原子:
CH3CHOHCH2COOH
--羟丁酸
CH3COCOOH
丙酮
YOUR SITE HERE
酮体的分解
--氧化 脱氢酶
--羟丁酸
NAD+
NADH+H+
乙酰乙酸
烟酰胺腺嘌呤二核苷酸(氧化态)NAD+ 烟酰胺腺嘌呤二核苷酸(还原态)NADH
N指烟酰胺,A指腺嘌呤,D是二核苷酸
转 移 酶
琥珀酰CoA 琥珀酸
通过合成 柠檬酸被转运
用于合成 脂肪酸
乙酰辅酶A线粒体内生成, 脂肪酸合成的有关酶却在 细胞液,乙酰辅酶A必须 转运到细胞液才能参与脂 肪酸的合成。


YOUR SITE HERE
在线粒体内,乙酰辅酶A先与草酰乙酸缩合成柠檬酸, 通过线粒体内膜上的载体转运到细胞液中;经柠檬酸 裂解酶催化柠檬酸分解为乙酰辅酶A和草酰乙酸;乙酰 辅酶A在细胞液内合成脂肪酸,而草酰乙酸则还原成苹 果酸,苹果酸经脱羧、脱氢生成丙酮酸,丙酮酸再进 入线粒体羧化为草酰乙酸。
(melatonin)等.神经肌肉信使可在神经和肌肉之间交换资讯,神
经递质可在神经和大脑之间传递情感、外界刺激、记忆、学习等 方面的资讯.
YOUR SITE HERE
3.传递酰基作用 辅酶A是重要的乙酰基和酰基传递体. 4.激活免疫作用 辅酶A支持机体免疫系统对有害物质的解毒、 激活白细胞、促进血红蛋白的合成、参与抗体的合成 5.促进结缔组织形成和修复 辅酶A能促进结缔组织成分硫酸 软骨素和透明质酸的合成,对软骨的形成、保护和修复起重 要作用 6.其他作用 辅酶A促进辅酶Q10和辅酶I的利用,减轻抗生素及 其他药物引起的毒副作用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

skeletal muscle. The role of the orthologous yeast protein has recently been described inexcellent reviews [4,5] and will not be discussed here.The lipin protein family The lipin gene family encodes the proteins lipin-1, lipin-2, and lipin-3. The Lpin1 gene was first isolated from the fatty liver dystrophy (fld ) mutant mouse strain [6,7], where lipin-1deficiency was identified as the cause of lipodystrophy, insulin resistance, peripheral neuropathy, and neonatal fatty liver in these animals [8]. Lipin-1 is expressed as two protein isoforms, lipin-1α and lipin-1β, derived from the Lpin1 gene by alternative mRNA splicing [8,9]. Lipin-2 and lipin-3 were identified based on 60% amino acid sequence similarity to lipin-1 [8]. Lipin family proteins are present in species ranging from mammals to yeast, and all have highly conserved regions known as the N-LIP and C-LIP domains, which are critical for protein function (see Fig. 1).The identification of lipin protein molecular function has been reviewed recently [4,10]. The current understanding is that all of the mammalian lipin proteins are phosphatidate phosphatase (PAP) enzymes, which convert phosphatidate to diacylglycerol, and therefore act at a key step in the synthesis of TAG, phosphatidylcholine and phosphatidylethanolamine [11–13].Additionally, lipin-1 can localize to the nucleus [8,14,15], and is a component of a transcriptional complex with peroxisome proliferator-activated receptor α (PPAR α) and PPAR γ coactivator 1α (PGC-1α) to regulate fatty acid metabolism in liver [16]. Amino acid motifs required for lipin-1 PAP activity (DIDGT) and transcriptional coactivator activity (LXXIL) reside in the C-LIP domain [12,16] (see Fig. 1).The three lipin genes each exhibit a unique pattern of tissue expression, suggesting independent physiological roles. Lipin-1 is expressed at highest levels in adipose tissue, skeletal muscle,and testis, and is also detected in liver, heart, brain, kidney, and other tissues [8]. Using tissues from lipin-1 deficient fld mice, it was shown that lipin-1 accounts for virtually all of the PAPactivity in adipose tissue, skeletal muscle, and heart, but that other proteins may contribute toactivity in liver [11,13]. The role of lipin-1 in adipose tissue has been studied extensively andfound to be required both for expression of key adipogenic genes during adipocytedifferentiation, and for TAG accumulation [15,17]. A role for lipin-1 in skeletal muscle hasalso been demonstrated through studies of muscle-specific lipin-1 transgenic mice, whichexhibit reduced fatty acid oxidation in muscle and reduced energy expenditure, becoming obese[18]. Lipin-2 is expressed in many tissues including liver, kidney, brain, and lung, whereaslipin-3 is detected at low levels in liver and other visceral tissues that have been tested [11].Recent studies have made use of naturally occurring mutations in lipin-1 and lipin-2 to furtherelucidate the roles of these proteins in vivo.Lipin-1 gene mutations and diseaseIt was previously shown that two naturally occurring mutations in the mouse Lpin1 gene (generearrangement leading to a null allele, and a Gly84Arg substitution in the N-LIP domain) causethe fatty liver dystrophy phenotype (Fig. 1) [8]. Recently, the first mutations causing lipin-1deficiency in humans have been documented (Fig. 1). Homozygous or compound heterozygousLPIN1 mutations cause recurrent muscle pain, weakness, and myoglobinuria in childhood[19]. Nonsense mutations that lead to lipin-1 deficiency were detected in subjects of variousethnic backgrounds. All patients presented before age 7 with episodes of myoglobinuria.Curiously, unlike lipin-1 deficient mice, patients with LPIN1 mutations do not appear to havelipodystrophy, although they have thus far been examined only in childhood. The basis for thespecies difference in symptoms resulting from lipin-1 deficiency is not clear. It has beenobserved that lipin-2 is expressed in human adipose tissue raising the possibility ofNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptcompensation for lipin-1 deficiency [11]; however, studies in cultured mouse adipocytesindicate that lipin-2 cannot substitute for lipin-1 in adipocyte differentiation [17,20].In the same study reporting LPIN1 nonsense mutations, the authors identified a missense mutation (Pro610Ser) in the C-LIP domain in an individual with myopathy occurring after treatment with statin drugs [19]. Although it must be expanded to larger numbers of individuals,this observation raises interesting questions. Statin drugs are used worldwide to treat hypercholesterolemia, and a proportion of individuals develop mild (2–7%) or severe (0.5%)muscle pain and myopathy [21]. Statin drugs inhibit synthesis of the cholesterol precursor mevalonate, which is also a precursor of ubiquinone, a critical component of the mitochondrial electron transport chain. In rat muscle, lipin-1 expression is induced by acute exercise and may contribute to exercise-induced mitochondrial enzyme induction [22]. Further investigation will be necessary to establish whether reduced lipin-1 PAP activity sensitizes muscle to mitochondrial toxicity in response to statin treatment.Lipin-2 mutations and disease Homozygous and compound heterozygous LPIN2 mutations cause Majeed syndrome, a rare disorder characterized by recurrent osteomyelitis, cutaneous inflammation, and anemia [23–25]. Several independent LPIN2 mutations have been described, including nonsense mutations and a missense mutation (Ser734Leu) in the C-LIP domain (Fig. 1). Several additional missense mutations in LPIN2 have been associated with psoriasis [26], suggesting that these lead to impaired, but not absent, lipin-2 function. Since lipin-2 expression has not been characterized in tissues such as bone, skin, and blood cells, the etiology of Majeed syndrome and psoriasis symptoms in these tissues is unclear at present.Lipin gene expression levels and polymorphisms associated with metabolic traitsPrevious studies in adipose tissue-specific lipin-1 transgenic mice suggested a positiverelationship between lipin-1 levels in adipose tissue and whole body glucose tolerance,irrespective of body fat mass [18]. The improved glucose homeostasis with enhanced lipin-1expression may reflect more efficient fatty acid trapping in adipose tissue due to increased PAPactivity, and protection of other tissues from inappropriate lipid accumulation. Several recentstudies have confirmed the relationship between adipose tissue lipin-1 levels and insulinsensitivity in humans. These include studies in lean and obese subjects with normal or impairedglucose tolerance [27–29], in HIV-associated lipodystrophic subjects [27,30], and in healthyyoung men [31]. In healthy young men, lipin-1 levels were also positively correlated withinsulin-stimulated respiratory quotient, oxygen consumption during exercise, and theexpression of genes involved in fatty acid oxidation, including PPAR α [31].In a unique study in which lipin-1 levels were monitored before and after gastric bypass surgeryof extremely obese subjects, lipin-1β mRNA levels in liver and adipose tissue were increasedin parallel with improved insulin sensitivity following marked weight loss [32]. Hepaticlipin-1β mRNA levels were also correlated with PGC-1α expression, suggesting that thedownregulation of these proteins may contribute to reduced insulin sensitivity in obesity.Patients with polycystic ovary syndrome (PCOS), a condition associated with insulinresistance, were shown to have reduced lipin-1β expression in both visceral and subcutaneousadipose tissue, which was independent of body mass index [33]. Greater levels of lipin-1β weredetected in subcutaneous compared to visceral fat, and may be a determinant of the greatercapacity for expansion and TAG storage in this depot.NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptLPIN1 polymorphisms and haplotypes may confer interindividual variation in lipin-1 actionand have been associated with several components of the metabolic syndrome. LPIN1polymorphisms have been associated with body mass index [28,34,35], insulin levels [28,36], resting metabolic rate [36], and responsiveness to thiazolidinediones drugs [37]. Acommon LPIN1 haplotype was associated with risk for metabolic syndrome, while two lesscommon haplotypes appeared to have a protective effect and to associate with low systolicblood pressure and hemoglobin A1C levels [35,38]. However, in a study of UK populations,no associations were detected between common LPIN1 variants and insulin levels, nor wereLPIN1 mutations detected in 23 lipodystrophic patients [34]. Overall, the studies to dateindicate that LPIN1 gene polymorphisms may influence several traits related to the metabolicsyndrome, although this may differ among populations. In the pig, Lpin1 polymorphisms havebeen associated with percent leaf fat and intramuscular fat [39]. Although not widely studiedthus far, a LPIN2 gene polymorphism has been associated with diabetes risk [40].Mechanisms of disease in lipin-1 dysfunction Recent studies in both lipin-1 deficient mice and humans suggest that deleterious effects of PAP deficiency in tissues such as peripheral nerve, adipose tissue and muscle may be attributable to both the lack of PAP products and the accumulation of phosphatidate substrate.In an elegant study designed to evaluate the biochemical basis for the demyelination of peripheral nerves in fld mice, Nadra and colleagues demonstrated that lipin-1 PAP deficiency causes phosphatidate to accumulate in adipose tissue and peripheral nerve [41]. This, in turn,leads to activation of the MEK-Erk signaling pathway in Schwann cells and demyelination.Along the same lines, muscle tissue from one lipin-1 deficient human subject was shown to have elevated levels of lysophosphatidate, phosphatidate, and lysophospholipids [19].Normally, intracellular levels of phosphatidate are tightly controlled, and disturbances may lead to inappropriate modulation of signaling cascades, oxidative processes, cAMP degradation, protein and lipid phosphorylation, and membrane function [42].A hallmark feature of lipin-1 deficiency in the fld mouse is the occurrence of a fatty liver andhypertriglyceridemia during the neonatal period [6], suggesting that lipin-1 PAP activity is notrequired for hepatic TAG synthesis and secretion. In support of this, a recent studydemonstrates that lipin-1β overexpression decreases hepatic very low density lipoprotein(VLDL) TAG secretion [43]. Further, using mutant recombinant lipin-1β proteins, it wasshown that PAP activity is not required for the suppression of TAG synthesis, whereas theLXXIL motif conferring transcriptional coactivator activity and PPAR α binding is required.A separate study, performed in hepatocytes, demonstrated that lipin-1α or lipin-1βoverexpression increases glycerol-labeled lipid secretion, and decreases the degradation of thepredominant VLDL protein, apolipoprotein B [14]. The lipin-1 nuclear localization signal wasshown to be required for protein localization to microsomal membranes and PAP activity.Together, the two studies indicate a role for lipin-1 in the regulation of VLDL-TAG synthesisand/or secretion, but suggest that lipin-1 PAP and coactivator activities may have distinct roles.An additional complication is the presence of substantial lipin-2 in liver, which likely affectshepatic TAG synthesis ([11,44]; discussed in a later section).Regulation of lipin levels and activityIt was previously shown that lipin-1 is phosphorylated at several sites in response to insulinand amino acids, and dephosphorylated in response to oleic acid or epinephrine [9,13,45].Phosphorylation appears to influence lipin-1 activity by modulating subcellular localization[13]. In the past year, several studies have focused on delineating the regulation of lipin-1 geneexpression. All three lipin genes are expressed in liver, and it has been known for decades thatPAP activity in liver is induced by glucocorticoid treatment, which increases its capacity toNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptstore TAG for subsequent assembly into lipoproteins or use in beta-oxidation (reviewed in[10]). It was recently shown that dexamethasone increases lipin-1, but not lipin-2 or lipin-3,mRNA, and this resulted in increased lipin-1 protein synthesis and PAP activity [44]. Theglucocorticoid stimulatory effect was enhanced by cAMP or glucagon, and diminished byinsulin. Dexamethasone also induces lipin-1 expression and PAP activity during adipocytedifferentiation, which is mediated by glucocorticoid receptor binding to a DNA sequenceupstream of Lpin1 [46]. Lipin-1 gene transcription during adipocyte differentiation is alsoregulated by binding of CAAT/enhancer binding protein α in the Lpin1 upstream region [47].Lipin-1 then acts in combination with PPAR γ to promote expression of adipocyte genes,including glucose transporter 4 (Glut4) [47].Consistent with the correlation between lipin-1 levels and insulin sensitivity, lipin-1 expressionis induced in adipose tissue by the insulin-sensitizing thiazolidinediones and harmine [29,48,49]. Thiazolidinediones also increase PAP activity, with greatest effect on subcutaneouscompared to visceral adipose tissue [48]. This may contribute to the fat redistribution that isobserved in conjunction with insulin sensitization in response to thiazolidinediones. Severalstudies have shown that lipin-1 expression is correlated with Glut4 expression [33,47,50],providing a plausible mechanism for the relationship between thiazolidinediones, lipin-1expression, and insulin sensitivity.Other stimuli repress lipin-1 expression. Lipin-1 expression is inhibited by estrogen in theuterus and liver, suggesting a potential role for lipin-1 in reproductive biology [51]. Consistentwith this, elevated estrogen levels and impaired fertility in non-obese diabetic mice areassociated with depletion of lipin-1 in the uterus and liver, a state that can be reversed by insulinadministration [51]. Lipin-1 expression is repressed in adipocytes by activation of toll-likereceptors TLR4 and TLR2 by lipopolysaccharide and zymosan, respectively [52]. These effectsappear to be mediated by inflammatory cytokines such as TNF α and IL-1, and it is proposedthat lipin-1 repression may contribute to the reduced fat storage that accompanies infectionand inflammation.The regulation of lipin-2 has recently been examined in adipocytes and liver. Duringdifferentiation of 3T3-L1 adipocytes, lipin-1 and lipin-2 expression occurs in a reciprocalmanner, with lipin-2 protein detected in preadipocytes, but falling dramatically after 24 hoursof differentiation, after which lipin-1 protein is detectable [20]. Lipin-2 cannot substitute forlipin-1 in adipocyte differentiation, indicating that the two proteins do not have redundantfunctions in adipocytes [20]. Lipin-2 is expressed at highest levels in liver, suggesting a roleas a key PAP in this tissue [11]. In the liver, lipin-2 protein content was increased in neonatallipin-1 deficient fld mice, as well as in response to food deprivation or obesity [53]. Inhibitionof lipin-2 in hepatocytes by RNAi reduced PAP activity, consistent with a role for this lipin asan important PAP enzyme in liver [53].ConclusionThe lipin proteins modulate intracellular lipid levels through roles in lipid synthesis and in fattyacid metabolism. The study of mouse and human mutations has established that lipin-1 andlipin-2 each have a unique physiological function that cannot be substituted by the other familymembers. Future studies utilizing engineered mouse mutations may be a useful strategy tobetter define normal physiological function of each lipin protein, disease mechanisms, and theroles of enzymatic and transcriptional coactivator activities.AcknowledgmentsThis work was supported by P01 HL90553 and P01 HL28481.NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptReferences and recommended reading1. Garg A. Acquired and inherited lipodystrophies. N Engl J Med 2004;350:1220–34. [PubMed:15028826]2. Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat Med 2006;12:75–80. [PubMed:16397575]3. Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 2008;9:819–30. [PubMed: 18852695]4. Carman GM, Han GS. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis.J Biol Chem 2009;284:2593–2597. [PubMed: 18812320]5. Carman GM, Henry SA. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2007;282:37293–37297.[PubMed: 17981800]6. Langner CA, Birkenmeier EH, Ben-Zeev O, et al. The fatty liver dystrophy (fld ) mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J Biol Chem 1989;264:7994–8003.[PubMed: 2722772]7. Langner CA, Birkenmeier EH, Roth KA, et al. Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld ) mutation. J Biol Chem 1991;266:11955–64. [PubMed: 2050689]8. Péterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 2001;27:121–4. [PubMed: 11138012]9. Huffman TA, Mothe-Satney I, Lawrence JC Jr. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci U S A 2002;99:1047–52. [PubMed:11792863]10. Reue K, Brindley DN. Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 2008;49:2493–2503. [PubMed: 18791037]11. Donkor J, Sariahmetoglu M, Dewald J, et al. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem 2007;282:3450–3457. [PubMed:17158099]12. Han GS, Wu WI, Carman GM. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependentphosphatidate phosphatase enzyme. J Biol Chem 2006;281:9210–8. [PubMed: 16467296]13. Harris TE, Huffman TA, Chi A, et al. Insulin controls subcellular localization and multisitephosphorylation of the phosphatidic acid phosphatase, lipin 1. J Biol Chem 2007;282:277–86.[PubMed: 17105729]14 *. Bou Khalil M, Sundaram M, Zhang HY, et al. The level and compartmentalization of phosphatidatephosphatase-1 (lipin-1) control the assembly and secretion of hepatic very low density lipoproteins.J Lipid Res 2008;50:47–58. A study demonstrating a role for lipin-1 in hepatocyte TAG secretionand intracellular apolipoprotein B turnover. [PubMed: 18769019]15. Péterfy M, Phan J, Reue K. Alternatively spliced lipin isoforms exhibit distinct expression pattern,subcellular localization, and role in adipogenesis. J Biol Chem 2005;280:32883–9. [PubMed:16049017]16. Finck BN, Gropler MC, Chen Z, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 2006;4:199–210. [PubMed: 16950137]17. Phan J, Péterfy M, Reue K. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J Biol Chem 2004;279:29558–64. [PubMed:15123608]18. Phan J, Reue K. Lipin, a lipodystrophy and obesity gene. Cell Metab 2005;1:73–83. [PubMed:16054046]19 **. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN1 cause recurrent acutemyoglobinuria in childhood. Am J Hum Genet 2008;83:1–6. The first report of mutations causinglipin-1 deficiency in humans, revealing an unexpected myoglobinuria phenotype and accumulationof lipid intermediates in muscle.NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript20 **. Grimsey N, Han GS, O’Hara L, et al. Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2. J Biol Chem 2008;283:29166–29174. Demonstration that lipin-1 and lipin-2 proteins are expressed in a reciprocal fashion in differentiating adipocytes, indicating a previously undetected role for lipin-2 in adipocytes. [PubMed: 18694939]21. Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity.Curr Opin Pharmacol 2008;8:333–338. [PubMed: 18243052]22. Higashida K, Higuchi M, Terada S. Potential role of lipin-1 in exercise-induced mitochondrial biogenesis. Biochem Biophys Res Commun 2008;374:587–91. [PubMed: 18656451]23. El-Shanti HI, Ferguson PJ. Chronic recurrent multifocal osteomyelitis: a concise review and genetic update. Clin Orthop Relat Res 2007;462:11–19. [PubMed: 17496555]24. Ferguson PJ, Chen S, Tayeh MK, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 2005;42:551–7. [PubMed: 15994876]25. Majeed HA, Al-Tarawna M, El-Shanti H, et al. The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr 2001;160:705–10. [PubMed: 11795677]26. Milhavet F, Cuisset L, Hoffman HM, et al. The infevers autoinflammatory mutation online registry:update with new genes and functions. Hum Mutat 2008;29:803–8. [PubMed: 18409191]27. Miranda M, Chacon MR, Gomez J, et al. Human subcutaneous adipose tissue LPIN1 expression in obesity, type 2 diabetes mellitus, and human immunodeficiency virus--associated lipodystrophy syndrome. Metabolism 2007;56:1518–26. [PubMed: 17950103]28. Suviolahti E, Reue K, Cantor RM, et al. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum Mol Genet 2006;15:377–86. [PubMed: 16357106]29. Yao-Borengasser A, Rasouli N, Varma V, et al. Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor gamma activation. Diabetes 2006;55:2811–8. [PubMed: 17003347]30. Lindegaard B, Larsen LF, Hansen AB, et al. Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy. Int J Obes 2006;31:449–456.31 *. Donkor J, Sparks LM, Xie H, et al. Adipose tissue lipin-1 expression is correlated with peroxisomeproliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men.J Clin Endocrinol Metab 2008;93:233–9. First study to examine variations in lipin-1 gene expression in adipose tissue of young, healthy individuals detected correlations with insulin sensitivity, energy metabolism, and oxidative gene expression. [PubMed: 17925338]32. Croce MA, Eagon JC, LaRiviere LL, et al. Hepatic lipin 1beta expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss. Diabetes 2007;56:2395–9.[PubMed: 17563064]33 *. Mlinar B, Pfeifer M, Vrtacnik Bokal E, et al. Decreased lipin 1{beta} expression in visceral adiposetissue is associated with insulin resistance in polycystic ovary syndrome. Eur J Endocrinol2008;159:833–839. Demonstration that reduced lipin-1β expression levels in subcutaneous adipose tissue of PCOS patients correlate negatively with insulin resistance and triglyceride levels, and positively with glucose transporter 4 expression. [PubMed: 18829900]34 *. Fawcett KA, Grimsey N, Loos RJ, et al. Evaluating the role of LPIN1 variation on insulin resistance,body weight and human lipodystrophy in UK populations. Diabetes 2008;57:2527–2533.Demonstration that LPIN1 mutations are not a common cause of lipodystrophy. [PubMed:18591397]35 **. Wiedmann S, Fischer M, Koehler M, et al. Genetic variants within the LPIN1 gene, encoding lipin,are influencing phenotypes of the metabolic syndrome in humans. Diabetes 2008;57:209–17.Identification of LPIN1 haplotypes that are either protective or associated with several traits of the metabolic syndrome, including blood pressure, obesity, diabetes, hemoglobin A1c levels, and metabolic syndrome factor score. [PubMed: 17940119]36. Loos RJ, Rankinen T, Perusse L, et al. Association of lipin 1 gene polymorphisms with measures ofenergy and glucose metabolism. Obesity (Silver Spring) 2007;15:2723–32. [PubMed: 18070763]37 *. Kang ES, Park SE, Han SJ, et al. LPIN1 genetic variation is associated with rosiglitazone responsein type 2 diabetic patients. Mol Genet Metab 2008;95:96–100. Report of a LPIN1 polymorphism NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptthat is associated with rosiglitazone-induced decreases in fasting and postprandial glucose and hemoglobin-A1c levels. [PubMed: 18693052]38 *. Ong KL, Leung RY, Wong LY, et al. Association of a polymorphism in the lipin 1 gene with systolic blood pressure in men. Am J Hypertens 2008;21:539–45. Association of systolic blood pressure in men with a LPIN1 polymorphism that forms an exonic splicing silencer sequence. [PubMed:18437145]39. He XP, Xu XW, Zhao SH, et al. Investigation of Lpin1 as a candidate gene for fat deposition in pigs.Mol Biol Rep. 2008 [Epub ahead of print].40. Aulchenko YS, Pullen J, Kloosterman WP, et al. LPIN2 is associated with type 2 diabetes, glucose metabolism, and body composition. Diabetes 2007;56:3020–6. [PubMed: 17804763]41 **. Nadra K, de Preux Charles AS, Medard JJ, et al. Phosphatidic acid mediates demyelination in Lpin1 mutant mice. Genes Dev 2008;22:1647–61. Schwann cell-specific Lpin1 ablation was sufficient to cause peripheral neuropathy in mice, and was associated with endoneurial accumulation of phosphatidate and activation of the MEK-Erk signaling pathway. [PubMed: 18559480]42. Andresen BT, Rizzo MA, Shome K, Romero G. The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade. FEBS Lett 2002;531:65–68. [PubMed: 12401205]43 **. Chen Z, Gropler MC, Norris J, et al. Alterations in hepatic metabolism in fld mice reveal a role for lipin 1 in regulating VLDL-triacylglyceride secretion. Arterioscler Thromb Vasc Biol. 2008Demonstration that the coactivator function of lipin-1 suppresses hepatic VLDL secretion rates,and that overexpression in liver improves insulin signaling in obese mice.44 *. Manmontri B, Sariahmetoglu M, Donkor J, et al. Glucocorticoids and cyclic AMP selectively increase hepatic lipin-1 expression, and insulin acts antagonistically. J Lipid Res 2008;49:1056–67. Identification of lipin-1 as the glucocorticoid responsive hepatic PAP activity, and demonstration that lipin-1, -2, and -3 are regulated independently in liver. [PubMed: 18245816]45. Kim Y, Gentry MS, Harris TE, et al. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc Natl Acad Sci U S A 2007;104:6596–601. [PubMed: 17420445]46 *. Zhang P, O’Loughlin L, Brindley DN, Reue K. Regulation of lipin-1 gene expression by glucocorticoids during adipogenesis. J Lipid Res 2008;49:1519–28. Identification of a regulatory element that binds glucocorticoid receptor and induces its expression in differentiating adipocytesand in conditions of high glucocorticoid levels in vivo. [PubMed: 18362392]47 **. Koh Y-K, Lee M-Y, Kim J-W, et al. Lipin1 is a key factor for the maturation and maintenance ofadipocytes in the regulatory network with CCAAT/enhancer-binding protein a and peroxisome proliferator-activated receptor 2. J Biol Chem 2008;50:34896–34906. Demonstration that lipin-1is part of the regulatory network between C/EBP α and PPAR γ during adipogenesis, and is directly regulated by binding of C/EBP α to a response element in the Lpin1 promoter. [PubMed: 18930917]48 *. Festuccia WT, Blanchard P-G, Turcotte V, et al. Depot-specific effects of the PPAR agonistrosiglitazone on adipose tissue uptake and metabolism. J Lipid Res. 2009 Epub ahead of print (Feb.9, 2009). Study describing rosiglitazone induction of lipin-1 mRNA and PAP activity to a greater level in subcutaneous than visceral adipose tissue, implicating increased PAP activity in theredistribution of adipose tissue in response to insulin-sensitizing PPAR γ agonists.49. Waki H, Park KW, Mitro N, et al. The small molecule harmine is an anti-diabetic cell-type specificregulator of PPAR γ expression. Cell Metab 2007;5:357–370. [PubMed: 17488638]50. van Harmelen V, Ryden M, Sjolin E, Hoffstedt J. A role of lipin in human obesity and insulinresistance: relation to adipocyte glucose transport and GLUT4 expression. J Lipid Res 2007;48:201–6. [PubMed: 17035674]51. Gowri PM, Sengupta S, Bertera S, Katzenellenbogen BS. Lipin1 regulation by estrogen in uterus andliver: implications for diabetes and fertility. Endocrinology 2007;148:3685–93. [PubMed: 17463059]52 *. Lu B, Lu Y, Moser AH, et al. LPS and proinflammatory cytokines decrease lipin-1 in mouse adiposetissue and 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2008;295:E1502–9. Repression of adipose tissue lipin-1 mRNA expression in response to inflammatory stimuli, suggesting amechanism for reduced fat storage in infection. [PubMed: 18940942]53 *. Gropler MC, Harris TE, Hall AM, et al. Lipin 2 is a liver-enriched phosphatidate phosphohydrolaseenzyme that is dynamically regulated by fasting and obesity in mice. J Biol Chem. 2009 Epub ahead NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript。

相关文档
最新文档