复变函数习题答案
复变函数参考答案(1-8章)
复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。
(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。
提示:本题注意到2(1)2i i −=−,2(1)2i i +=。
则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。
(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。
提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。
(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。
(5)2122lim1z zz z z z →+−−=−32。
提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。
(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。
提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。
连接0,2z +,2z −的三角形为Rt Δ。
因此推出向量2z =,2arg 3z π=,即1z =−+。
本题也可以利用代数法来做。
2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。
复变函数习题答案
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. 解:i 4πππecos isin 442222-⎛⎫⎛⎫⎛⎫=-+-=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z aa z a-∈+); 33311;;;.22nz i ⎛⎛-+-- ⎝⎭⎝⎭①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re3z xxy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Rei 1kn =-,()Imi 0n=;当21n k =+时,()Re i 0n=,()()Im i 1kn=-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-= 33-=- ③解:()()2i 32i 2i32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 222++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈¡,则z x x ==. ∴z z =. 命题成立.5、设z ,w ∈£,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w w z zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈£,证明下列不等式.()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+. ∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .25531cos πisin πi 6622=+=-+z39931cos πisin πi 6622=+=--z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cosisin i 3322=+=+z 2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z-+++=L证明:∵2πi enz ⋅= ∴1nz=,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z+i|<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数课后部分答案
1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3
3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,
3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
复变函数论习题及答案
第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。
5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。
6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。
10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数习题及解答
第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
(完整版)复变函数试题及答案
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()
复变函数习题答案习题详解
第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=-- 实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131i i i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。
最新复变函数课后习题答案(全)
习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
第1章复变函数习题答案习题详解
第一章习题详解1.求下列复数的实部与虚部,共轭复数、模与辐角:z 1)i231+解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im 共轭复数:1323231ii +=⎪⎭⎫⎝⎛+模:1311323231222=+=+i 辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2)ii i --131解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im 共轭复数:253131i i i i +=⎪⎭⎫⎝⎛--模:234434253131222==+=--ii i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re 虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+4)ii i +-2184解:ii i i i i 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im 共轭复数:()ii i i 314218+=+-模:1031422218=+=+-i ii 辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg 2.当、等于什么实数时,等式成立?x y ()i iy i x +=+-++13531解:根据复数相等,即两个复数的实部和虚部分别相等。
复变函数习题及解答
(1);(2);(3);(4);(5);(6)答案(1)实部-1;虚部;模为2;辐角为;主辐角为;原题即为代数形式;三角形式为;指数形式为.(2)略为(3)略为(4)略为(5)略为:(6)该复数取两个值略为计算下列复数1);2);答案1);2);计算下列复数(1);(2);答案(1)(2)已知为实数,求复数的实部和虚部.【解】令,即为实数域(Real).平方得到,根据复数相等,所以即实部为虚部为说明已考虑根式函数是两个值,即为值.如果试证明对于任何复常数有【证明】因为,所以如果复数是实系数方程的根,则一定也是该方程的根.证因为,,…,均为实数,故,,…,.且,故由共轭复数性质有:.则由已知.两端取共轭得即.故也是之根.注此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.证明:,并说明其几何意义.若,试求的值.【解】因为所以即为所以将下列复数表为的幂的形式(1);(2)答案证明:如果是1的n次方根中的一个复数根,但是即不是主根,则必有对于复数,证明复数形式的柯西(Cauchy)不等式:成立。
【证明】对任意n个复数,由三角不等式知再由关于实数的柯西不等式得,证毕。
证明成立.下列不等式在复数平面上表示怎样的点集1);2);3);4);5)(答 1)平面上由与所构成的宽度为1的铅直带形域;2)以为心,内半径为2,外半径为3的圆环域;3)顶点在原点,开度为的角形区域;4)宽度为的说平带形域,边界为,;5)以为心,为半径的圆之外部区域)指出下列关系表示的点之轨迹或范围;并说明是何种点集1)2)解 1)令,由知且即这样的点为平面上从点出发(但不含点)与实轴倾角为的射线.此射线所形成的点集既非开集,也非闭集.2)设,则原条件即为即由模的定义得化简得这是一椭圆,长半轴为,短半轴为,中心在原点,它是有界闭集(全部为边界点).描述下列不等式所确定的点集,并指出是区域还是闭区域,有界还是无界,单连通还是多(或复)连通.(1)(2)(3)(4)(5)(6)(7)(8)解(1)是以i为圆心、在以2为半径的圆外,3为半径的圆内的圆环,是有界闭区域、多连通.(图形略)(2)即是下半平面,无界单连通闭区域.(3)到3的距离比到2的距离大,因此,它是左半平面,去掉一点,是无界的多连通的区域.(4)在直线的上方,其中.无界单连通区域(5)即或是无界多连通区域(6)此不等是焦点在和初,长半轴为5/2的椭圆内部,为有界单连通闭区域).(7)这是半支双曲线:,部分是无界单连通区域.(8)不等式即,或,只有当,成立,因此,只代表复平面上一个点.已知映射,求(1) 圆周的象;(2)直线的象;(3)区域的象.答案 (1) ,为圆周(2)直线(3)先看直线 x=1的象,而 z=0 的象在圆的外部,因此的象是圆的内部即为讨论下列函数在指定点的极限存在性,若存在求出其值,并判断在该点的连续性.1), 2),解 1),则,,,又注意即在点处极限存在且连续.2)设,则显然,在点极限存在且连续.但注意不存在,事实上,令,有,对不同值有不同结果,故知不存在.所以,不存在.由连续与极限的关系知在处极限不存在、不连续.注这两个问题均通过极限存在的充要条件将问题转化为两个二元实函数在对应点处极限存在性的判断问题,这是最常用的方法.在问题1)中,又根据连徐的另一等价定义,立即得到在处不仅极限存在,而且在该点连续的结论;在2)中,实际上是一复变量实值函数,即,所以由充要条件只需判断一个二元实函数在点的极限存在性.由该二元实函数在点极限不存在即得在处极限的不存在性.若函数在点点连续,证明(1)在该点连续;(2)的模在该点连续.本章计算机编程实践与思考(说明:读者可参考第五部分计算机仿真编程实践)使用Matlab,或Mathcad,或Mathmatic计算机仿真求解下列复数的实部、虚部;共轭复数;模与辐角;计算机仿真计算:计算机仿真求解方程计算机仿真编程实践:若对应为的根,其中且取整数.试用计算机仿真编程验证下列数学恒等式成立.用计算机编程实践方法(Matlab,Mathcad,Mathmatic,C/C++)实现:(1)绘出单位圆及其内接正十七边形;(2)计算机编程求出边长;(3)能否对多变形进行推广,得出相应的计算机仿真计算方法.计算机仿真编程验证对复平面任意两个以上的不重合的有限远点,(即保证分母不为零),恒等式是否还成立呢注意式中自然数,而m, k为1至N的整数.(提示:利用随机函数产生随机数,从而验证恒等式是否成立)。
复变函数14套题目和答案
复变函数14套题目和答案《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若收敛,则与都收敛.()4.若f(z)在区域D内解析,且,则(常数).()5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是的m 阶零点,则z0是1/的m阶极点.()7.若存在且有限,则z0是函数f(z)的可去奇点.()8.若函数f(z)在是区域D内的单叶函数,则.()9.若f(z)在区域D内解析,则对D内任一简单闭曲线C.()10.若函数f(z)在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.()二.填空题(20分)1.__________.(为自然数)2._________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9.的孤立奇点为________.10.若是的极点,则.三.计算题(40分):1.设,求在内的罗朗展式.2.3.设,其中,试求4.求复数的实部与虚部.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)1、判断题.(20分)1.若函数在D内连续,则u(x,y)与v(x,y)都在D内连续.()2.cosz与sinz在复平面内有界.()3.若函数f(z)在z0解析,则f(z)在z0连续.()4.有界整函数必为常数.()5.如z0是函数f(z)的本性奇点,则一定不存在.()6.若函数f(z)在z0可导,则f(z)在z0解析.()7.若f(z)在区域D内解析,则对D内任一简单闭曲线C.()8.若数列收敛,则与都收敛.()9.若f(z)在区域D内解析,则|f(z)|也在D内解析.()10.存在一个在零点解析的函数f(z)使且.()二.填空题.(20分)1.设,则2.设,则________.3._________.(为自然数)4.幂级数的收敛半径为__________.5.若z0是f(z)的m阶零点且m0,则z0是的_____零点.6.函数ez的周期为__________.7.方程在单位圆内的零点个数为________.8.设,则的孤立奇点有_________.9.函数的不解析点之集为________.10..三.计算题.(40分)1.求函数的幂级数展开式.2.在复平面上取上半虚轴作割线.试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3.计算积分:,积分路径为(1)单位圆()的右半圆.4.求.四.证明题.(20分)1.设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析.2.试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一.判断题.(20分).1.cosz与sinz的周期均为.()2.若f(z)在z0处满足柯西-黎曼条件,则f(z)在z0解析.()3.若函数f(z)在z0处解析,则f(z)在z0连续.()4.若数列收敛,则与都收敛.()5.若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数.()6.若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.()7.如果函数f(z)在上解析,且,则.()8.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()9.若z0是的m阶零点,则z0是1/的m阶极点.()10.若是的可去奇点,则.()二.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在|z|1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。
复变函数试题及答案
____________________________________________________________________________________________________一、填空题(每小题2分)1、复数i 212--的指数形式是2、函数w =z1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是3、若01=+z e ,则z =4、()ii +1=5、积分()⎰+--+idz z 2222=6、积分⎰==1sin 21z dz zzi π7、幂级数()∑∞=+01n nnz i 的收敛半径R=8、0=z 是函数ze z 111--的 奇点 9、=⎪⎪⎭⎫⎝⎛-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w二、单选题(每小题2分) 1、设α为任意实数,则α1=( )A 无意义B 等于1C 是复数其实部等于1D 是复数其模等于1 2、下列命题正确的是( )A i i 2<B 零的辐角是零C 仅存在一个数z,使得z z -=1D iz z i=13、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析C 每一个幂级数在它的收敛圆周上处处收敛D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( )Ai 2321- B 223i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( )A z1sin 1B z 1cosC z ctg e 1D Lnz6、下列积分之值不等于0的是( )A ⎰=-123z z dzB ⎰=-121z z dzC⎰=++1242z z z dzD ⎰=1cos z z dz7、函数()z z f arctan =在0=z 处的泰勒展式为( )A ()∑∞=+-02121n nn n z (z <1) B()∑∞=+-01221n n nn z (z <1) C ()∑∞=++-012121n n n n z (z <1) D()∑∞=-0221n nnn z (z <1) 8、幂级数n n n z 201)1(∑∞=+-在1<z 内的和函数是( )A211z - B 211z + C 112-z D 211z+- 9、设a i ≠,C :i z -=1,则()=-⎰dz i a zz C2cos ( )A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是( )____________________________________________________________________________________________________A )1(1>--=a z a a z ew i βB )1(1<--=a za az e w i β C )1(>--=a a z a z e w i βD )1(<--=a az az e w i β 三、判断题(每小题2分) 1、( )对任何复数z,22z z =成立2、( )若a 是()z f 和()z g 的一个奇点,则a 也是()()z g z f +的奇点3、( )方程01237=+-z z 的根全在圆环21<<z 内4、( )z=∞是函数()=z f ()251z z -的三阶极点5、( )解析函数的零点是孤立的四、计算题(每小题6分)1、已知())(2222y dxy cx i by axy x z f +++++=在z S 上解析,求a,b,c,d 的值2、计算积分⎰=--22)1(25z dz z z z3、将函数()11+-=z z z f 在1=z 的邻域内展成泰勒级数,并指出收敛范围 4、计算实积分I=⎰∞+++0222)4)(1(dx x x x5、求211)(zz f +=在指定圆环+∞<-<i z 2内的洛朗展式 6、求将上半平面0Im >z 共形映射成单位圆1<w 的分式线性变换()z L w =,使符合条件()0=i L ,()0>'i L五、证明题(每小题7分)1、设(1)函数)(z f 在区域D 内解析(2)在某一点D z ∈0有0)(0)(=z f n ,( ,2,1=n ) 证明:)(z f 在D 内必为常数2、证明方程015=++n z z e 在单位圆1<z 内有n 个根 一填空题(每小题2分,视答题情况可酌情给1分,共20分) 1 i eπ654-,2 21=u , 3 (2k+1)i π,(k=0, 2,1±±), 4 ⎪⎭⎫⎝⎛+-ππk i e e 242ln (k=0, 2,1±±) 5 3i -, 6 0 , 7 21 , 8 可去, 9 2e , 10 z 1-二 单选题(每小题2分,共20分)1 D2 D3 A4 A5 B6 B7 C8 D9 A 10 A 三 判断题(每小题2分,共10分)1⨯ 2 ⨯ 3 ∨ 4 ∨ 5 ⨯ 四 计算题(每小题6分,共36分)1解:22by axy x u ++=,22y dxy cx v ++= 3 分 y x v u = y dx ay x 22+=+x y v u -= dy cx by ax --=+22 …5分 解得:1,2-====c b d a 6 分2 解:被积函数在圆周的2=z 内部只有一阶极点z=0及二阶极点z=1 2 分2)1(25)(Re 02-=--===z z z z z f s2225)(Re 1211=='⎪⎭⎫⎝⎛-====z z z z z z z f s 分5____________________________________________________________________________________________________⎰=--22)1(25z dz z z z =π2i(-2+2)=0 6 分3 解:()11+-=z z z f = ()nn nz z z 1211211111210-⎪⎭⎫ ⎝⎛--=-+-=+-∑∞= …4分 (1-z <2) …6分 4 解: 被积函数为偶函数在上半z 平面有两个一阶极点i,2i …1分 I=⎰∞+∞-++dx x x x)4)(1(21222…2分 =[])(Re )(Re 2212z sf z f s i iz i z ==+π …3分=]iz iz i z z z z i z z i 22222)2)(1()4)((==+++⎢⎣⎡++π …5分=6π…6分 5 解:))((1)(i z i z z f +-=…1分=iz i i z -+-211)(12…3分 =∑∞=---02)()2()1()(1n nnni z i i z +∞<-<i z 2 …6分 6 解: w =L(i)=kiz iz +- 2 分 2)(2i z ikw +=' …3分 0)(=>'='i L w i k =∴ …4分iz iz iw +-= …6分 五 证明题(每小题7分,共14分)1 证明:设)(:0D k R z z k ⊂<- )(z f 在0z 解析 由泰勒定理 ∑∞=-=000)()(!)()(n n n z z n z f z f )(D k z ⊂∈ …2分 由题设 0)(0)(=z f n ∴)()(0z f z f ≡ ,)(D k z ⊂∈ …4分 由唯一性定理 )()(0z f z f ≡ )(D z ∈ …7分 2 证明:令n z z f 5)(= ,1)(+=z e z ϕ 2 分 (1)()z f 及()z ϕ在1≤z 解析 (2)1=z 上,()55==n z z f()1111+=+≤+≤+=e e e e z zz z ϕ<5 4 分故在1=z 上()()z z f ϕ>,由儒歇定理在1=z 内()()()n z z f N z z z f N ====+)1,()1,(ϕ …7分一、填空题(每小题2分)1、()()323sin 3cos 5sin 5cos ϕϕϕϕi i -+的指数形式是 2、i i = 3、若0<r<1,则积分()⎰==+rz dz z 1ln4、若v 是u 的共轭调和函数,那么v 的共轭调和函数是5、设0=z 为函数)(z f =33sin z z -的m 阶零点,则m =____________________________________________________________________________________________________6、设a z =为函数()z f 的n 阶极点,那么()()⎥⎦⎤⎢⎣⎡'=z f z f s az Re = 7、幂级数∑∞=0!n nn z 的收敛半径R=8、0=z 是函数zz 1sin 5的 奇点9、方程01237=+-z z 的根全在圆环 内 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w二、单选题(每小题2分)1、若函数()z f 在区域D 内解析,则函数()z f 在区域D 内( )A 在有限个点可导B 存在任意阶导数C 在无穷多个点可导D 存在有限个点不可导 2、使22z z =成立的复数是( )A 不存在B 唯一的C 纯虚数D 实数 3、⎰==-22)1(cos z dz z z( )A -i πsin1B i πsin1C -2i πsin1D 2i πsin1 4、根式3i 的值之一是( )A 223i -B 223i --C iD i -5、π=z 是π-z zsin 的( )A 可去奇点B 一阶极点C 一阶零点D 本质奇点6、函数()()()411++=z z z z f ,在以0=z 为中心的圆环内的洛朗展式有m 个,则m=( )A 1B 2C 3D 4 7、下列函数是解析函数的为( )A xyi y x 222--B xyi x +2C )2()1(222x x y i y x +-+-D 33iy x + 8、在下列函数中,()0Re 0==z f s z 的是( )A ()21ze zf z -= B ()z z z z f 1sin -= C ()z z z z f cos sin +=D ()ze zf z111--= 9、设a i ≠,C :i z -=1,则()=-⎰dz i a zz C2cos ( )A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是( )A )1(1>--=a z a a z e w i βB )1(1<--=a z a az e w i β C )1(>--=a a z a z e w i βD )1(<--=a az az e w i β三、判断题(每小题2分)1、( )幂级数∑∞=0n n z 在z <1内一致收敛2、( )z=∞是函数2cos 1z z-的可去奇点 3、( )在柯西积分公式中,如果D a ∉,即a 在D 之外,其它条件不变,则积分()=-⎰dz az z f i C π210,()D z ∈ 4、( )函数()=z f zctge1在0=z 的去心邻域内可展成洛朗级数____________________________________________________________________________________________________5、( )解析函数的零点是孤立的 四、计算题(每小题6分)1、计算积分()⎰+-Cdz ix y x 2,C :i →1+i 的直线段2、求函数()()()211+-=z z zz f 在所有孤立奇点(包括∞)处的留数3、将函数()iz i z z f --+=11在i z =的去心邻域内展成洛朗级数,并指出收敛域 4、计算积分()⎰+Cz z dz 122 , C:1222+=+y y x , 5、计算实积分I=⎰+πθθ20cos a d )1(>a6、求将单位圆1<z 共形映射成单位圆1<w 的分式线性变换()z L w =使符合条件021=⎪⎭⎫⎝⎛L ,()11-=L五、证明题(每小题7分)1、设函数()z f 在区域D 内解析,证明:函数()z f i 也在D 内解析2、证明:在0=z 解析,且满足的n n f 21121=⎪⎭⎫ ⎝⎛-,n n f 2121=⎪⎭⎫ ⎝⎛( 2,1=n )的函数()z f 不存在一填空题(每小题2分,视答题情况可酌情给1分,共20分) 1 ϕ19i e ,2 ππk e22--(k=0,±…) , 3 0, 4 u -, 5 96 n - ,7 ∞+ ,8 本质,9 21<<z , 10 z 1-二 单选题(每小题2分,共20分)1 B2 D3 C4 D5 A6 C7 C8 D9 A 10 A 三 判断题(每小题2分,共10分)1⨯ 2 ⨯ 3 ∨ 4 ⨯ 5 ⨯ 四 计算题(每小题6分,共36分)1解:C 的参数方程为: z=i+t, 01≤≤t dz=dt 3 分()⎰+-C dz ix y x 2=()⎰+-121dt it t =321i+- 6 分 2解: 1=z 为()z f 一阶极点 1 分1-=z 为()z f 二阶极点 2 分()411Re 11-='⎪⎭⎫ ⎝⎛-=-=-=z z z z z f s 3 分()()411Re 121=+===z z z zz f s 5 分 ()0Re =∞=z f s z …6分3 解:()i z i z z f --+=11=⎪⎪⎪⎪⎭⎫ ⎝⎛-++--i i z i i z 211211 …2分 = ()()()10211+∞=--+--∑n nn n i i z i z …5分 (0<i z -<2) …6分 4 解:在C 内()z f 有一个二阶极点z =0和一个一阶极点i z = …1分()011Re 020='⎪⎭⎫⎝⎛+===z z z z f s …3分()ii z z z f s iz iz 21)(1Re 2-=+=== …5分 所以原式=π2i π-=⎪⎭⎫ ⎝⎛-i 210 …6分____________________________________________________________________________________________________5 解:令θi e z =iz dzz z a I z ⎰=-++=1121 …1分=[][]⎰=-----+--122)1()1(2z a a z a a z dz i …3分 被积函数在1=z 内的有一个 一阶极点12-+-=a a z121)(Re 212-=-+-=a z f s a a z …5分I=121212222-=-a a i iππ …6分 6解:2212112121--=--=⎪⎭⎫ ⎝⎛=z z k z z kL w 2 分 ()121212111-=-=--=k kL 所以2=k 4 分 于是所求变换 2122212--=--=z z z z w 6 分 五 证明题(每小题7分,共14分)1 证明: 设f(z)=u (x ,y )+iv (x ,y ))(z f = u (x ,y )-iv (x ,y ))(z f i = v (x ,y )-i u (x ,y ) 2 分 f (z )在D 内解析,x y y x v u v u -==,)(z f i 四个偏导数为 v x ,v y ,-u x ,-u y 4 分比较f (z )的C -R 方程 )(z f i 也满足C-R 方程且四个偏导数在D 内连续 ∴)(z f i 在D 内解析 7 分2 证明:假设在0=z 解析的函数()z f 存在且满足n n f 21121=⎪⎭⎫ ⎝⎛-,n n f 2121=⎪⎭⎫ ⎝⎛( 2,1=n ) 2 分 点列⎭⎬⎫⎩⎨⎧n 21=n21以0=z 为聚点在点列⎭⎬⎫⎩⎨⎧n 21上,n n f 2121=⎪⎭⎫ ⎝⎛由解析函数的唯一性定理在0=z 的邻域内()z f =z 5 分但在这个邻域内又有n n f 21121=⎪⎭⎫ ⎝⎛-矛盾 ∴在0=z 解析的函数()z f 不存在 7 分。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。
2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式 的值。
+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。
《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数课后习题答案(全)
习题一答案1.求以下复数的实部、虚部、模、幅角主值及共轭复数:( 1)1(2)i2i1)(i2)3(i(3)13i(4)i84i 21i i1i解:( 1)z132i 32i13,所以: Re z 3,Im z2,13 13( 2)z(ii2)1i3i ,1)(i3i10所以, Re z 3 ,Im z1,1010( 3)z 13ii33i35i i1i2,2所以, Re z 3 ,Im z5,32( 4)z i 84i 21i 1 4i i 1 3i 所以, Re z1,Im z3,2.将以下复数化为三角表达式和指数表达式:( 1)i ()13i() r (sin i cos ) 23( 4)r (cos i sin) (5)1 cos i sin(02)解:( 1)i cos i sini e2222(cos 2i sin22(2)13i)i 2e333( 3)r (sin i cos) r[cos()i sin()]() i re 222( ) r (cosi sin )r[cos( ) i sin( )] rei4(5) 1 cosi sin2sin 22i sin cos2 2 23. 求以下各式的值:(1)( 3i)5( 2) (1 i )100(1 i)100(13i )(cosi sin)(cos5 i sin 5 )2 (3)i )(cosi sin ) (4)(cos3 i sin 3 )3(1(5) 3i ( 6)1 i解:( 1) ( 3 i )5[2(cos() i sin())] 56 6(2) (1 i )100(1i)100(2i )50( 2i )502(2)50251(1 3i )(cos i sin )(3)i )(cosi sin )(1(4) (cos5i sin 5 ) 2 (cos3i sin 3 )3(5) 3i3cosi sin22(6) 1i2(cosi sin )444. 设z 1 1i, z 23 i, 试用三角形式表示 z z 与z 121 2z 2解: zcos i sin, z 22[cos() i sin( )] ,所以14466z 1z 2 2[cos(4) i sin(4)] 2(cos i sin ) ,6 612 125. 解以下方程:(1) (z i )51z4a 40 ( a 0)( 2)解:( 1) zi51,由此z51i2k ii , (k0,1,2,3,4)e5( 2)z4a44 a4 (cos i sin)a[cos 1(2k)i sin1(2k)] ,当 k0,1,2,3 时,对应的4个根分别为:44a(1i ),a(1i),a( 1 i ),a(1i)22226.证明以下各题:( 1)设z x iy, 则x yz x y 2证明:第一,明显有z x2y2x y ;其次,因 x2y2 2 x y , 固此有 2( x2y2 )( x y )2 ,进而 z x2y2x y2。
复变函数14套题目和答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数习题答案
复变函数习题答案复变函数习题答案复变函数是数学中的一个重要分支,它研究的是定义在复数域上的函数。
复变函数理论在物理学、工程学以及金融学等领域有着广泛的应用。
为了更好地理解和应用复变函数,我们需要进行大量的习题练习。
在本文中,我将为大家提供一些复变函数习题的答案,希望能够帮助大家更好地掌握这一领域的知识。
1. 求函数f(z) = z^2 - 1的解析性条件。
解答:根据复变函数的定义,函数f(z)在复平面上解析的条件是其对z的偏导数存在且连续。
对于函数f(z) = z^2 - 1,我们可以计算其对z的偏导数:∂f/∂x = 2x∂f/∂y = 0由于∂f/∂x存在且连续,而∂f/∂y为0,所以函数f(z) = z^2 - 1在复平面上解析。
2. 求函数f(z) = e^z的导数。
解答:根据复变函数的导数定义,对于函数f(z) = e^z,我们需要计算其对z的偏导数:∂f/∂x = e^x * cos(y)∂f/∂y = e^x * sin(y)因此,函数f(z) = e^z的导数为:df/dz = ∂f/∂x + i * ∂f/∂y = e^x * cos(y) + i * e^x * sin(y)3. 求函数f(z) = z^3 - 3z的奇点。
解答:奇点是指函数在某一点上不解析的点。
对于函数f(z) = z^3 - 3z,我们需要找到其奇点。
奇点的定义是函数在该点处不解析,即其导数不存在或者无穷大。
首先,我们计算函数f(z)的导数:df/dz = 3z^2 - 3然后,我们令导数等于零,解得z = ±1。
所以,函数f(z) = z^3 - 3z的奇点为z = ±1。
4. 求函数f(z) = sin(z)/z的留数。
解答:留数是指函数在奇点处的特殊值。
对于函数f(z) = sin(z)/z,我们需要计算其在奇点z = 0处的留数。
根据留数的计算公式,我们可以将函数f(z)在z = 0处展开为泰勒级数:f(z) = sin(z)/z = (z - z^3/3! + z^5/5! - ...) / z可以看出,分子中的z可以约去,所以:f(z) = 1 - z^2/3! + z^4/5! - ...因此,在z = 0处的留数为1。
复变函数
《复变函数》习题答案一、单选题1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3. 设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A )i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc 2)1(cos ( C ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A ) (A )i π22 (B )i π2 (C )0 (D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( C ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( D )(A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是( D )(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是( C )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )x v i x u ∂∂-∂∂16.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C ) (A )等于0 (B )等于1 (C )等于i (D )不存在17.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i18.下列级数中,绝对收敛的级数为( D )(A )∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 19.若幂级数∑∞=0n nnz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性(A ) (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定 20.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 21.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q(C )0 (D )∞+ 22.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A )1 (B )2 (C )2 (D )∞+23.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A ) (A ))1ln(z + (B ))1ln(z -(D )z +11ln(D) z-11ln 24.设函数ze zcos 的泰勒展开式为∑∞=0n nn zc ,那么幂级数∑∞=0n n nz c的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 25.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的26.函数21z在1-=z 处的泰勒展开式为(D ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n(D ))11()1(11<++∑∞=-z z n n n27.函数z sin ,在2=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n28.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰cdz z z z f 20)()(( B ) (A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π29.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( A ) (A )3141<<z (B )43<<z (C )+∞<<z 41 (D )+∞<<z 3130.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 31.函数32cot -πz z在2=-i z 内的奇点个数为 ( D )(A )1 (B )2 (C )3 (D )432.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )m 级极点 (D )小于m 级的极点33.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( C )(A )5 (B )4 (C)3 (D )2 34.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C )一级零点 (D )本性奇点35.∞=z 是函数2323zz z ++的( B ) (A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 36.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( D ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 37.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m 38、在下列函数中,0]0),([Re =z f s 的是( C )(A)21)(z e z f z -= (B )z z z z f 1sin )(-=(C ) z z z z f cos sin )(+=(D) ze zf z111)(--= 39、下列命题中,正确的是( D ) (A)设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m级极点.(B)如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C)若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D)若0)(=⎰cdz z f ,则)(z f 在c 内无奇点40. =∞],2cos[Re 3ziz s ( A ) (A )32-(B )32 (C )i 32(D )i 32-41.=-],[Re 12i e z s iz ( B )(A )i +-61 (B )i +-65 (C )i +61 (D )i +6542.下列命题中,不正确的是( D )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞43.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 44.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 45.积分=⎰=121sin z dz z z ( C )(A )0 (B )61-(C )3i π- (D )i π-46.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( B ) (A )21<z (B )211<+z (C )21>z (D )211>+z 47.映射iz iz w +-=3在i z 20=处的旋转角为( D ) (A )0 (B )2π (C )π (D )2π- 48.映射2iz ew =在点i z =0处的伸缩率为( B )(A )1 (B )2 (C)1-e (D )e49.在映射ie iz w 4π+=下,区域0)Im(<z 的像为( A )(A)22)Re(>w (B )22)Re(->w (C )22)Im(>z (D )22)Im(->w50.下列命题中,正确的是( D )(A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43+=在0=z 处的伸缩率为零(C )若)(1z f w =与)(2z f w =是同时把单位圆1<z 映射到上半平面0)Im(>w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射51.i +1关于圆周4)1()2(22=-+-y x 的对称点是( C )(A )i +6 (B )i +4 (C )i +-2 (D )i52.函数iz iz w +-=33将角形域3arg 0π<<z 映射为 ( A )(A)1<w (B )1>w (C ) 0)Im(>w (D )0)Im(<wA . 将点1,,1-=i z 分别映射为点0,1,-∞=w 的分式线性变换为( C )(A)11-+=z z w (B )zz w -+=11(C )z z e w i-+=112π(D) 112-+=z z e w i π54.分式线性变换zz w --=212把圆周1=z 映射为( A ) (A ) 1=w (B) 2=w (B ) 11=-w (D) 21=-w55.分式线性变换zz w -+=11将区域:1<z 且0)Im(>z 映射为( D ) (A )ππ<<-w arg 2(B ) 0arg 2<<-w π(C )ππ<<w arg 2(D )2arg 0π<<w56.设,,,,d c b a 为实数且0<-bc ad ,那么分式线性变换dcz baz w ++=把上半平面映射为w 平面的( D )(A )单位圆内部 (B )单位圆外部 (C )上半平面 (D )下半平面57.把上半平面0)Im(>z 映射成圆域2<w 且满足1)(,0)(='=i w i w 的分式线性变换)(z w 为( B )(A )z i z i i+-2 (B )i z i z i +-2 (C )z i z i +-2 (D )iz iz +-2 58.把单位圆1<z 映射成单位圆1<w 且满足0)0(,0)2(>'=w iw 的分式线性变换)(z w 为( C )(A)iz i z --22 (B )iz z i --22 (C )iz i z +-22 (D )izzi +-2259.把带形域2)Im(0π<<z 映射成上半平面0)Im(>w 的一个映射可写为( B )(A )z e w 2= (B )z e w 2= (C )z ie w = (D )ize w =60.函数ie ie w z z +---=11将带形域π<<)Im(0z 映射为( C )(A )0)Re(>w (B )0)Re(>w (C )1<w (D )1>w61.函数32cot -πz z在2=-i z 内的奇点个数为 ( D )(A )1 (B )2 (C )3 (D )462.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )m 级极点 (D )小于m 级的极点63.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( C )(A )5 (B )4 (C)3 (D )2 64.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点65.∞=z 是函数2323zz z ++的( B ) (A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 66.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( D ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 67.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--mA . 在下列函数中,0]0),([Re =z f s 的是( C ) (A)21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= A . 下列命题中,正确的是( D )(A)设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B )如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C )若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D)若0)(=⎰cdz z f ,则)(z f 在c 内无奇点 70. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 71.=-],[Re 12i ez s i z ( B ) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 72.下列命题中,不正确的是( D )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞73.设1>n 为正整数,则=-⎰=211z n dz z ( A )(A)0 (B )i π2 (C )n iπ2 (D )i n π274.积分=-⎰=231091z dz z z ( B )(A )0 (B )i π2 (C )10 (D )5iπ75.积分=⎰=121sin z dz zz ( C )(A )0 (B )61- (C )3iπ- (D )iπ-76.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( B )(A )21<z (B )211<+z (C )21>z (D )211>+z77.映射i z iz w +-=3在i z 20=处的旋转角为( D )(A )0 (B )2π(C )π (D )2π-78.映射2iz e w =在点i z =0处的伸缩率为( B )(A )1 (B )2 (C)1-e (D )e79.在映射i e iz w 4π+=下,区域0)Im(<z 的像为( A ) (A)22)Re(>w (B )22)Re(->w(C )22)Im(>z (D )22)Im(->w80.下列命题中,正确的是( D )(A )n z w =在复平面上处处保角(此处n 为自然数)(B )映射z z w 43+=在0=z 处的伸缩率为零(C ) 若)(1z f w =与)(2z f w =是同时把单位圆1<z 映射到上半平面0)Im(>w 的分式线性变换,那么)()(21z f z f =(D )函数z w =构成的映射属于第二类保角映射81.i +1关于圆周4)1()2(22=-+-y x 的对称点是( C )(A )i +6 (B )i +4 (C )i +-2 (D )i 82.函数iz i z w +-=33将角形域3arg 0π<<z 映射为 ( A ) (A)1<w (B )1>w (C ) 0)Im(>w (D )0)Im(<w83.将点1,,1-=i z 分别映射为点0,1,-∞=w 的分式线性变换为( C )(A ) 11-+=z z w (B )z z w -+=11 (C )z z e w i -+=112π (D) 112-+=z z e w i π84.分式线性变换zz w --=212把圆周1=z 映射为( A ) (C ) 1=w (B) 2=w(D ) 11=-w (D) 21=-w85.分式线性变换zz w -+=11将区域:1<z 且0)Im(>z 映射为( D ) (A )ππ<<-w arg 2 (B ) 0arg 2<<-w π(C )ππ<<w arg 2 (D )2arg 0π<<w86.设,,,,d c b a 为实数且0<-bc ad ,那么分式线性变换dcz b az w ++=把上半平面映射为w 平面的( D )(A )单位圆内部 (B )单位圆外部(C )上半平面 (D )下半平面87.把上半平面0)Im(>z 映射成圆域2<w 且满足1)(,0)(='=i w i w 的分式线性变换)(z w 为( B )(A )z i z i i +-2 (B )i z i z i +-2 (C )z i z i +-2 (D )iz i z +-2 88.把单位圆1<z 映射成单位圆1<w 且满足0)0(,0)2(>'=w iw 的分式线性变换)(z w 为( C ) (A) iz i z --22 (B )iz z i --22 (C )iz i z +-22 (D )izz i +-22 89.把带形域2)Im(0π<<z 映射成上半平面0)Im(>w 的一个映射可写为( B )(A )z e w 2= (B )z e w 2= (C )z ie w = (D )iz e w =90.函数ie i e w z z +---=11将带形域π<<)Im(0z 映射为( C ) (A )0)Re(>w (B )0)Re(>w (C )1<w (D )1>w91.当ii z -+=11时,5075100z z z ++的值等于(B ) A i B i - C 1 (D )1-92.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z (A ) (A )i 31+-(B )i +-3(C )i 2321+-(D )i 2123+- 93.复数)2(tan πθπθ<<-=i z 的三角表示式是(D ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i94.若z 为非零复数,则22z z -与z z 2的关系是(C )(A )z z z z 222≥-(B )z z z z 222=-(C )z z z z 222≤-(D )不能比较大小95.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆(B )椭圆(C )双曲线(D )抛物线96.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是(A )(A )2(B )i 31+(C )i -3(D )i +397.使得22z z =成立的复数z 是(D )(A )不存在的(B )唯一的(C )纯虚数(D )实数98.设z 为复数,则方程i z z +=+2的解是(B )(A )i +-43(B )i +43(C )i -43(D )i --43 99.满足不等式2≤+-i z i z 的所有点z 构成的集合是(D ) (A )有界区域(B )无界区域(C )有界闭区域(D )无界闭区域100.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周(D )中心为i 32-,半径为2的圆周 101.下列方程所表示的曲线中,不是圆周的为(B )(A )221=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 102.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f (C )(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+-103.00)Im()Im(lim 0z z z z x x --→(D ) (A )等于i (B )等于i - (C )等于0 (D )不存在 104.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续105.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A ) (A )3- (B )2- (C )1- (D )1106.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导107.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件108.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析109.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x + 110.函数)Im()(2z z z f =在0=z 处的导数( A ) (A )等于0 (B )等于1 (C )等于1- (D )不存在 111.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( C )(A )0 (B )1 (C )2 (D )2-112.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数 113.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数114.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 115.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2π-e116.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析117.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期 (C )2)(iziz e e z f --= (D ))(z f 是无界的 118.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 119.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e23π- 120.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍121.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是(A )(A )2(B )i 31+(C )i -3(D )i +3122.使得22z z =成立的复数z 是(D )(A )不存在的(B )唯一的(C )纯虚数(D )实数123.设z 为复数,则方程i z z +=+2的解是(B )(A )i +-43(B )i +43(C )i -43(D )i --43 124.满足不等式2≤+-i z i z 的所有点z 构成的集合是(D ) (A )有界区域(B )无界区域(C )有界闭区域(D )无界闭区域125.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周(D )中心为i 32-,半径为2的圆周二、判断题1、若函数()f z 在0z 解析,则()f z 在0z 连续.( T )2、若函数()f z 在0z 满足Cauchy-Riemann 条件,则()f z 在0z 处解析.( F )3、如果0z 是()f z 的本性奇点,则0lim ()z z f z →一定不存在.( T ) 4、若函数()f z 是区域D 内解析,并且()0()f z z D '≠∀∈,则()f z 是区域D 的单叶函数.( F )5、若函数()f z 是区域D 内的解析函数,则它在D 内有任意阶导数.( T )6、若函数()f z 是单连通区域D 内的每一点均可导,则它在D 内有任意阶导数.( T )7、若函数()f z 在区域D 内解析且()0f z '=,则()f z 在D 内恒为常数.( T )8.存在一个在零点解析的函数()f z 使1()01f n =+且11(),1,2,22f n n n ==.( F )9.如果函数()f z 在{}:1D z z =≤上解析,且()1(1)f z z ≤=,则()1(1)f z z ≤≤.( T )10.sin z 是一个有界函数.( F )11、若函数()f z 在0z 可导,则()f z 在0z 解析.( F )12、若函数()f z 在0z 满足Cauchy-Riemann 条件,则()f z 在0z 处解析.( F )13、如果0z 是()f z 的极点,则0lim ()z z f z →一定存在且等于无穷大.( T ) 14、若函数()f z 在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有()0C f z dz =⎰.( T )15、若函数()f z 在0z 处解析,则它在该点的某个领域内可以展开为幂级数.( T )16、若函数()f z 在区域D 内的解析,且在D 内某一条曲线上恒为常数,则()f z 在区域D 内恒为常数.( T )17、若0z 是()f z 的m 阶零点,则0z 是1()f z 的m 阶极点.( T ) 18、如果函数()f z 在{}:1D z z =≤上解析,且()1(1)f z z ≤=,则()1(1)f z z ≤≤.( T )19、lim z z e →∞=∞.( F ) 20、如果函数()f z 在1z ≤内解析,则11max{()}max{()}.z z f z f z ≤==( T ) 21、若函数()f z 在0z 解析,则()f z 在0z 的某个邻域内可导.( T )22、如果0z 是()f z 的本性奇点,则0lim ()z z f z →一定不存在.( T ) 23、若函数()(,)(,)f z u x y iv x y =+在D 内连续,则(,)u x y 与(,)v x y 都在D 内连续.( T )24、cos z 与sin z 在复平面内有界.( F )25、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点.( T )26、若()f z 在0z 处满足柯西-黎曼条件,则()f z 在0z 解析.( F )27、若0lim ()z z f z →存在且有限,则0z 是函数的可去奇点.(T ) 28、若()f z 在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有()0C f x dz =⎰.( T ) 29、若函数()f z 是单连通区域D 内的解析函数,则它在D 内有任意阶导数.( T )30、若函数()f z 在区域D 内解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数.( T )31.当复数0z =时,其模为零,辐角也为零. ( F )32.若0z 是多项式110()n n n n P z a z a z a --=+++(0)n a ≠的根,则0z 也()P z 是的根.( T )33.如果函数()f z 为整函数,且存在实数M ,使得Re ()f z M <,则()f z 为一常数.( F )34.设函数1()f z 与2()f z 在区域内D 解析,且在D 内的一小段弧上相等,则对任意的z D ∈,有1()f z 2()f z ≡. ( T )35.若z =∞是函数()f z 的可去奇点,则Re ()0z s f z =∞=. ( T ) 36.设复数111z x iy =+及222z x iy =+,若12x x =或12y y =,则称1z 与2z 是相等的复数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i ei i i ii-++++++.①解:i4πππecos i sin 442222-⎛⎫⎛⎫⎛⎫=-+-=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z aa z a -∈+); 33311;;;.22n z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y ax a y z a z ax y ax a yx a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222R e z a x a y z a x a y---⎛⎫= ⎪+⎝⎭++, ()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++.②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i 33iz x y x y x y x y xy x y x x yxyy x y x y x xy x y y=+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}332321113131288-+⎡⎤⎡⎤==--⋅-⋅+⋅--⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02⎛= ⎝⎭.④解:∵()()(()2332313131i 28⎡⎤--⋅-⋅+⋅-⋅⎢⎥⎣⎦=⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02⎛= ⎝⎭. ⑤解: ∵()()1,2i 211i,k n k n k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()R e i 1kn =-,()Im i 0n =;当21n k =+时,()R e i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2i i i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++==.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 222++==()1i 11i 222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==.∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222R e z z z w w z w wz z w z w w zwz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222zw z w z wz w z w++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z wzz w w-=-⋅+()22222z wz w zw++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w zz w w z w-=-⋅-=--=-⋅-⋅+()222Re zz w w=-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e50255i θ⋅--===其中8πarctan19θ=-.②解:e i i θ⋅=其中π2θ=.π2ei i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi38π116πe--+=⋅⑤解:32π2πcos i sin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos i sin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i932π2πcos i sin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根.解:()13ππ2π2πππ22cossincos i sin0,1,22233++⎛⎫=+=+= ⎪⎝⎭k k i k∴1ππ1cos i sini 6622=+=z .2551cos πi sin πi6622=+=-+z3991cosπi sin πi 6622=+=--z⑵-1的三次根解:()()132π+π2ππcos πi sin πcosi sin0,1,233k k k +=+=+=∴1ππ1cos i sin3322=+=+z2cos πi sin π1=+=-z3551cosπi sinπ3322=+=--z⑶的平方根.解:πi4e 22⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos i sin0,122k kk⎛⎫++⎪==⋅+=⎪⎝⎭∴π11i8441ππ6cos i sin6e88⎛⎫=⋅+=⋅⎪⎝⎭z911πi8442996cosπi sinπ6e88⎛⎫=⋅+=⋅⎪⎝⎭z.9.设2πe,2inz n=≥. 证明:110nz z-+++=证明:∵2πie nz⋅=∴1nz=,即10nz-=.∴()()1110nz z z--+++=又∵n≥2.∴z≠1从而211+0nz z z-+++=11.设Γ是圆周{:},0,e.iz r r a c rz cα=>=+-令:Im0z aL zbβ⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭,其中e ibβ=.求出Lβ在a切于圆周Γ的关于β的充分必要条件.解:如图所示.因为Lβ={z: Im z ab-⎛⎫⎪⎝⎭=0}表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA⊥Lβ.过C作直线平行Lβ,则有∠BCD=β,∠ACB=90°故α-β=90°所以Lβ在α处切于圆周T的关于β的充要条件是α-β=90°.12.指出下列各式中点z所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)R e Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
(4)、Re(z )>Im z .解:表示直线y =x 的右下半平面5、Im z >1,且|z |<2.解:表示圆盘内的一弓形域。
所以当y →∞时有|cos z |→∞.习题二1. 求映射1w z z=+下圆周||2z =的像.解:设i ,i z x y w u v =+=+则2222221i i i i i()i x y x y u v x y x y x y x yx yx yx y-+=++=++=++-++++ 因为224x y +=,所以53i44u iv x y +=+所以 54u x =,34v y=+5344,uvx y ==所以()()2253442uv+=即()()222253221uv+=,表示椭圆.2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ϕρ=或i w u v =+.(1)π02,4r θ<<=; (2)π02,04r θ<<<<;(3) x=a, y=b .(a, b 为实数)解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-=(1) 记e i w ϕρ=,则π02,4r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即π04,.2ρϕ<<=(2) 记e i w ϕρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2ρϕ<<<<(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限. (1) 21lim1z z →∞+;解:令1z t=,则,0z t →∞→. 于是2221limlim011z t tzt→∞→==++.(2) 0Re()limz z z→;解:设z =x +y i ,则R e()i z x zx y=+有00Re()1limlimi 1i z x y kx z x zx kxk→→=→==++显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim(1)z iz i z z →-+;解:2lim(1)z iz iz z →-+=11limlim()()()2z iz iz i z i z z i z i z →→-==-+-+.(4) 2122lim1z z z z z z →+---.解:因为222(2)(1)2,1(1)(1)1z z z z z z z z z z z +--+-+==-+-+所以2112223limlim112z z z z z z z z z →→+--+==-+.4. 讨论下列函数的连续性:(1) 22,0,()0,0;xyz x y f z z ⎧≠⎪+=⎨⎪=⎩解:因为22(,)(0,0)lim ()limz x y xy f z x y →→=+, 若令y =kx ,则222(,)(0,0)lim1x y xy k x yk→=++,因为当k 取不同值时,f (z )的取值不同,所以f (z )在z =0处极限不存在. 从而f (z )在z =0处不连续,除z =0外连续.(2) 342,0,()0,0.x yz f z x y z ⎧≠⎪=+⎨⎪=⎩解:因为33422022xyx x y x yx y≤≤=+,所以342(,)(0,0)lim0(0)x y x y f x y→==+所以f (z )在整个z 平面连续.5. 下列函数在何处求导?并求其导数. (1) 1()(1)n f z z -=- (n 为正整数);解:因为n 为正整数,所以f (z )在整个z 平面上可导.1()(1)n f z n z -'=-.(2) 22()(1)(1)z f z z z +=++.解:因为f (z )为有理函数,所以f (z )在2(1)(1)0z z ++=处不可导. 从而f (z )除1,i z z =-=±外可导.2222232222(2)(1)(1)(1)[(1)(1)]()(1)(1)2543(1)(1)z z z z z z f z z z z z z z z ''+++-+++'=++-+++=++(3) 38()57z f z z +=-.解:f (z )除7=5z 外处处可导,且223(57)(38)561()(57)(57)z z f z z z --+'==---.(4) 2222()ix y x y f z x yx y+-=+++.解:因为2222222i()i i(i )(i )(1i)(1i)1i ()x y x y x y x y x y z f z x yx yx yzz++--+--+++=====+++.所以f (z )除z =0外处处可导,且2(1i)()f z z+'=-.6. 试判断下列函数的可导性与解析性. (1) 22()i f z xy x y =+;解:22(,),(,)u x y xy v x y x y ==在全平面上可微.22,2,2,y u v v y xy xy xxy x y∂∂∂∂====∂∂∂∂所以要使得u v xy∂∂=∂∂,u v yx∂∂=-∂∂,只有当z =0时,从而f (z )在z =0处可导,在全平面上不解析. (2) 22()i f z x y =+.解:22(,),(,)u x y x v x y y ==在全平面上可微.2,0,0,2u u v v x yxyxy ∂∂∂∂====∂∂∂∂ 只有当z =0时,即(0,0)处有u v xy ∂∂=∂∂,u v yy∂∂=-∂∂.所以f (z )在z =0处可导,在全平面上不解析.(3) 33()23i f z x y =+;解:33(,)2,(,)3u x y x v x y y ==在全平面上可微.226,0,9,u u v v x y xyxy∂∂∂∂====∂∂∂∂=时,才满足C-R 方程.从而f (z )0±=处可导,在全平面不解析. (4) 2()f z z z =⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++3232(,),(,)u x y x xy v x y y x y =+=+22223,2,2,3u u v v x y xy xy y xxyxy∂∂∂∂=+===+∂∂∂∂所以只有当z =0时才满足C-R 方程. 从而f (z )在z =0处可导,处处不解析.7. 证明区域D 内满足下列条件之一的解析函数必为常数. (1) ()0f z '=;证明:因为()0f z '=,所以u u xy∂∂==∂∂,0v v xy∂∂==∂∂.所以u ,v 为常数,于是f (z )为常数. (2) ()f z 解析.证明:设()i f z u v =-在D 内解析,则()u v u v x yxy∂∂-∂∂=⇒=-∂∂∂∂()u v v y x y ∂-∂-∂==+∂∂∂,u v u v xy yx∂∂∂∂=-=∂∂∂∂而f (z )为解析函数,所以,u u u v x y y x ∂∂∂∂==-∂∂∂∂所以,,v v v v xx yy∂∂∂∂=-=-∂∂∂∂即u u v v xyx y∂∂∂∂====∂∂∂∂从而v 为常数,u 为常数,即f (z )为常数. (3) Re f (z )=常数.证明:因为Re f (z )为常数,即u =C 1,u u xy∂∂==∂∂因为f (z )解析,C-R 条件成立。