集合的含义及其表示1

合集下载

人教版,数学,高一,必修一,集合的含义与表示

人教版,数学,高一,必修一,集合的含义与表示

练 习
1. 下面的各组对象能否构成集合? (1)小于2004的数; (2)和2004非常接近的数.
2.再看下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国四大名著; (5)抛物线y=x2上的点.
2、元素与集合的关系
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c,…表示集合中的元素. 如果 a 是集合 A 的元素,就说 a 属于集合 A, 记作 a∈A;如果 a 不是集合 A 的元素,就说 a 不属于集合 A,记作 a A.
作业
活页:提能演练一
第2课时 集合的表示
回顾复习
1.集合与元素的定义; 2.集合元素的特征性质: 确定性,互异性,无序性; 3.元素与集合的关系
4. 数集及有关符号;
集合的表示
“我国的直辖市”组成的集合表示为 {北京,天津,上海,重庆} 把集合中的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
1.1.1 集合的含义与表示
“集合”是日常生活中的一个常用词,现代汉语解释为:
许多的人或物聚在一起。
康托尔(G.Cantor,1845~1918).德 国数学家,集合论创始人,他于1895
年谈到“集合”一词.
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
通知 8月27日上午8时,高一年级的学生 在体育馆集合进行军训动员. 校长室
例1:已知A由: 2,(a 1) a
2
, a 3a 3
2
三元素构成且 1 A ,求实数a的值
变.已知集合A含有三个元素1、0、x, 若 x 2 A ,求实数x的值。

集合的含义与表示

集合的含义与表示

(2)在集合的书写形式上,要注意规范性. 如关于x的方程x-a=0的解集应写成{a},而不是a. (3)在没有指定集合的表示方法时,能明确表示集 合的要明确表示出来. 如所有小于20的既是奇数 又是素数的数组成的集合表示{3,5,7,11,13,17,19} 更为明确; 又如非负奇数组成的集合表示为 {x|x=2n+1,n∈N}更为恰当,这一点需要注意.
(2)小于2003的数; (3)和2003非常接近的数。 (4)我国的小河流 (5)大于3小于11的偶数
3、元素与集合之间的关系:
集合常用大写字母A,B,C,D,……标记, 元素常用小写字母a,b,c,d,……标记。
若a是集合A的元素, 就说a属于集合A , 记作 a∈A ; 若a不是集合A的元素, 则a不属于集合A , 记作 aA。 例如:A={1,2,3,4,5}
问题探究:
“集合”是日常生活中的一个常用词,现代汉语解释 为:许多的人或物聚在一起. 在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
知识探究 考察下列问题: (1)1~20以内的所有质数;
(2)绝对值小于3的整数;
(3)大兴八中高一、3班的所有男同学; (4)平面上到定点O的距离等于定长的所有的点. 上述每个问题都由若干个对象组成,每组对象的全体分别 形成一个集合,集合中的每个对象都称为元素.上述4个集 合中的元素分别是什么?
1 2
、 | - |、 0.5 组成的集合有3个元素。 (3)1
(4)集合{1,3,5,7}与集合{3,1,7,5}表示 同一个集合。
(A) 0 (B) 1 (C) 2 (D) 3
2.给出下列关系 (1) 0.5 R (2) 2 R
(3) | -3 | N

集合的含义与表示

集合的含义与表示

集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。

1.1.1集合的概念及其表示(一)

1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征

集合的含义及其表示

集合的含义及其表示

集合的含义及其表示1.1集合的含义及其表示一.课标解读 1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.” 2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合. 二.要点扫描 1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。

集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。

2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。

设集合给定,若有一具体对象,则要么是的元素,要么不是的元素,二者必居其一,且只居其一。

⑵互异性特征:集合中的元素必须是互不相同的。

设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。

3.集合与元素之间的关系集合与元素之间只有“属于”或“不属于”。

例如:是集合的元素,记作,读作“ 属于”;不是集合的元素,记作,读作“ 不属于”。

4.集合的分类集合按照元素个数可以分为有限集和无限集。

特殊地,不含任何元素的集合叫做空集,记作。

5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。

⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。

例如:集合可以用它的特征性质描述为{ },这表示在集合中,属于集合的任意一个元素都具有性质,而不属于集合的元素都不具有性质。

除此之外,集合还常用韦恩图来表示,韦恩图是用封闭曲线内部的点来表示集合的方法(有时,也用小写字母分别定出集合中的某些元素),同学们在下节课中会接触到这个内容。

集合含义及表示

集合含义及表示

集合的含义及其表示【知识要点】1、集合一般地,一定范围内某些确定的、不同的对象的全体所构成的就是一个集合。

2、元素集合中的每一个对象称为该集合的元素。

3、元素与集合的关系元素与集合有属于和不属于两种关系4、特定集合的表示非负整数集(或自然数集)——记作N正整数集——记作,或整数集——记作Z有理数集——记作Q实数集——记作R5、集合的分类按集合中元素的个数分为有限集和无限集。

有限集是指含有有限个元素的集合;无限集是指含有无限个元素的集合。

我们把不含任何元素的集合称为空集。

记作。

6、集合的表示方法列举法:将集合中的元素一一列举出来,写在花括号内表示集合的方法。

描述法:用集合所含元素的共同特征表示集合的方法。

Venn图示法(文氏图法):用封闭曲线(内部区域)表示集合及其关系的图形【方法与应用】1、集合的概念是一种描述性说明,用‘{}’表示,表示所有的、全部的,具有共同特征的研究对象都在花括号内,集合中的元素必须是确定的。

【J】例1、下列各组对象:1、接近于0的数的全体 2、比较小的正整数全体 3、平面上到点O的距离等于1的点的全体 4、正三角形的全体 5、的近似值的全体,其中能构成集合的组数是( A )A,2 B. 3 C. 4 D.5【L】例2、中国的直辖市是否是一个集合。

()【C】例3、下列各种对象,可以构成集合的是()A、某班身高超过1米8的女学生B、某班比较聪明的学生C、某书中的难题D、使||最小的x的值2、元素是指在集合中的每一个具体的对象。

(强行记忆)判定一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征。

【J】例1、下列各组中,(A D )是集合{b,o,k}中的元素,(BC )不是集合{b,o,k}的元素。

A、oB、cC、uD、 k【L】例2、已知集合{1,2,3,4,5,6,7},那么这个集合中有()个元素【C】例3、由实数x,-x,|x|,,-所组成的集合,最多含有元素()个A、2B、3C、4D、53、当元素a属于集合A时,记作aA,读作a属于集合A;当元素a不属于集合A,记作aA,读作a不属于集合A.。

集合的概念

集合的概念

第一节集合的概念及其表示1、集合的概念(1)集合:把一些具有共同特征的对象集在一起构成集合.(2)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a AÏ要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合分类根据集合所含元素个数不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分F,{}F,}0{,0等符号的含义根据集合的不同类型,可以把集合分为:数集、点集、集合集等4、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.,(2)非负整数集内排除0的集.记作N*或N+应用示例:用符号∈或Ï填空:(1)1______N,0______N,-3______N,0.5______N,2______N;(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;(3)1______Q,0______Q,-3______Q,0.5______Q,2______Q;(4)1______R,0______R,-3______R,0.5______R,2______R.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练:1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工例2.在数集{2x,x 2-x}中,实数x 的取值范围是__________________。

集合的含义-高中数学知识点讲解

集合的含义-高中数学知识点讲解

集合的含义1.集合的含义【知识点的认识】1、集合的含义:集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.2、集合的表示方法:列举法、描述法、图示法.(1)列举法就是把集合中的每一个元素全部写出来;描述法指的就是用词汇或者用数学语言描述出集合中的元素;区间表示法就是用区间的形式来表示集合中的元素;图示法(数轴表示法,韦恩图法)用图的形式来描述表示出集合的每一个元素.(2)有限集常用列举法表示,而无限集常用描述法或区间表示法表示,抽象集常用图示法表示.(有限集就是集合中的元素个数是能够确定的.无限集是集合的元素个数无法精确.抽象集合就是只给出集合元素满足的性质,探讨集合中的元素属性,要求有较高的抽象思维和逻辑推理能力.)用描述法表示集合时,集合中元素的意义取决于它的“代表”元素的特征.【典型例题分析】题型一:判断能否构成集合典例 1:下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于 5 的自然数;(2)某班所有个子高的同学;(3)不等式 2x+1>7 的整数解.分析:根据集合元素的确定性,互异性进行判断即可.解答:(1)小于 5 的自然数为 0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由 2x+1>7 得x>3,因为x 为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.点评:本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.1/ 3典例 2:下列集合中表示同一集合的是()A.M={(3,2)}N={3,2}B.M={(x,y)|x+y=1}N={y|x+y=1}C.M={(4,5)}N={(5,4)}D.M={2,1}N={1,2}分析:利用集合的三个性质及其定义,对A、B、C、D 四个选项进行一一判断.解答:A、M={(3,2)},M 集合的元素表示点的集合,N={3,2},N 表示数集,故不是同一集合,故A 错误;B、M={(x,y)|x+y=1},M 集合的元素表示点的集合,N={y|x+y=1},N 表示直线x+y=1 的纵坐标,是数集,故不是同一集合,故B 错误;C、M={(4,5)} 集合M 的元素是点(4,5),N={(5,4)},集合N 的元素是点(5,4),故C 错误;D、M={2,1},N={1,2}根据集合的无序性,集合M,N 表示同一集合,故D 正确;故选D.点评:此题主要考查集合的定义及其判断,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.题型二:集合表示的含义典例 3:下面三个集合:A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},请说说它们各自代表的含义.分析:根据集合的代表元素,确定集合元素的性质,A 为数集,B 为数集,C 为点集.解答:A 是数集,是以函数的定义域构成集合,且A=R;B 是数集,是由函数的值域构成,且B={y|y≥1};C 为点集,是由抛物线y=x2+1 上的点构成.点评:本题的考点用描正确理解用描述法表示集合的含义,要通过代表元素的特点正确理解集合元素的构成.【解题方法点拨】研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清楚其元素表示的意义是什么.2/ 32.函数的值【知识点的认识】函数不等同于方程,严格来说函数的值应该说成是函数的值域.函数的值域和定义域一样,都是常考点,也是易得分的点.其概念为在某一个定义域内因变量的取值范围.【解题方法点拨】求函数值域的方法比较多,常用的方法有一下几种:①基本不等式法:如当x>0 时,求 2x +8的最小值,有 2x +푥8푥≥ 2 2푥⋅8푥= 8;②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5 和x=3 的距离之和,易知最小值为 2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较例题:求f(x)=lnx﹣x 在(0,+∞)的值域解:f′(x)=1푥― 1=1―푥푥∴易知函数在(0,1]单调递增,(1,+∞)单调递减∴最大值为:ln1﹣1=﹣1,无最小值;故值域为(﹣∞,﹣1)【命题方向】函数的值域如果是单独考的话,主要是在选择题填空题里面出现,这类题难度小,方法集中,希望同学们引起高度重视,而大题目前的趋势主要还是以恒成立的问题为主3/ 3。

高中数学知识点总结第一章

高中数学知识点总结第一章

高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

人教版-高一-数学-1.集合的含义与表示

人教版-高一-数学-1.集合的含义与表示

集合的含义与表示一、知识概括1、集合的概念一般地,我们把研究对象统称为元素(element ),通常用小写拉丁字母a,b,c ,…表示。

把一些元素组成的总体叫集合(set ),也简称集,通常用大写拉丁字母A,B,C ,…表示。

集合如同平面几何中点、线、平面等概念一样,是集合论中的原始概念,只进行描述说明,无法定义概念。

某些教材中对集合的描述是:指定的某些对象的全体称为集合。

其中,注意理解(1)指定即说明某些对象具有共同的特征或共同的属性,说明已具备判定对象是否成为该集合的元素的判定标准,而不是随意组合。

(2)对象在不同的集合中,应有不同的内涵。

在不同的集合中,元素还可能是人、物、质点或抽象事物等。

(3)全体说明集合是一个整体概念,针对全部对象而言,并且在这个整体中各元素间无先后排列要求,没有一定的顺序关系。

【注】(1)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

(2)构成集合的元素除了常见的数、式、点等数学对象外,还可以是其他任何确定的对象。

2、集合元素的特性集合元素具有确定性、互异性、无序性三大特性。

(1)确定性集合中的元素必须是确定的,也就是说,给定一个集合,按照该集合的构成标准能够明确判定一个对象是否属于这个集合。

如“个子高的同学”这一组对象就不能构成一个集合,因为“个子高”这个标准不够明确,而“身高超过170cm 的同学”这一组对象可以构成一个集合。

(2)互异性集合中的元素一定是不同的(或说是互异的)也就是说,相同的元素在一个集合中只能出现一次。

如方程0122=+-x x 的解构成的集合是{1},而不能写成{1,1}(3)无序性集合中元素的排列次序无先后之分,如集合{1,2}和{2,1}是同一个集合。

3、集合与元素的关系元素与集合有属于(∈)和不属于(∉)两种关系。

如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。

集合的含义及其表示

集合的含义及其表示
第二课
一、复习
请你说一说昨天学过的主要内容:
集合的含义:一定范围内某些确 定的、不同的对象的全体构成一 个集合 集合中元素的三个特征是: (1)确定性(2)互异性 (3)无序性
集合与元素的关系:只能用 属于∈或不属于
集合的表示方法有:(1)列举法;(2)描述法; (3)venn(韦恩)图法
则a ___,b ___.
4 :已知1{x | 3x2 px 1 0},求p的值及集合中
的所有元素。
5 : 若{x | x2 mx n 0} {1}, 则m __,n ___.
6 : A {2n | n Z}与B {x | x 2k, k Z}相等吗? 7: 下列各对集合中, 有相等关系的是____.
如果两个集合的元素完全相同,则它们相等
含有有限个元素的集合称为有限集, 特别, 不含任何元素的集合称为空集,记为 若一个集合不是有限集,则该集合称为无限集
常用数集的记法
二:练习 1、请各举有限集、无限集、空集的 一个实例 2、用列举法表示下列集合:
(1){(x, y) | x {1,2}, y {1,2}}
(2){x | x (1)n , n N}
(3){(x, y) | 3x 2y 16, x N, y N} (4){x x是15的约数,x N}
(5) x,{y) | x( y 2且x 2y 4}
3: 若A {1,2},B {x | x2 ax b 0},且A B,
10 : A {x a | b | c | abc | , a,b, c R}中有几个元素?
| a | b | c | abc 用列举法表示A.
11: 若A {x | x2 2x a 0}是空集, 则实数a的取值集合是

集合的含义及其表示

集合的含义及其表示

1.1集合1.1.1 集合的含义及其表示1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

①我国的直辖市;②十四中高一③班全体学生;④较大的数⑤young 中的字母;⑥大于100的数; 2.关于集合的元素的特征: ①确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; ①如果a 是集合A 的元素,就说a 属于A ,记作a ∈A②如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (不能把a ∈A 颠倒过来写) 4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。

5. 集合的分类①有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合; ②无限集:集合中元素的个数是不可数的; ③空集:不含有任何元素的集合,记做∅. 6.常用数集的记法:①非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N②正整数集:非负整数集内排除0的集记作N *或N +{},3,2,1*=N③整数集:全体整数的集合记作Z , {} ,,,210±±=Z ④有理数集:全体有理数的集合记作Q , {}整数与分数=Q⑤实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:①自然数集与非负整数集是相同的,也就是说,自然数集包括数0②非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *7.集合的表示方法:①自然语言法:用文字叙述的形式描述集合。

集合的含义及其表示

集合的含义及其表示
集合的含义及其表示
康托尔是19世纪末20世纪初德国伟大的数学家,集合论的创立者。集合 论被誉为20世纪最伟大的数学创造,大大扩充了数学的研究领域,给数学结 构提供了一个基础,不仅影响了现代数学,而且深深影响了现代哲学和逻辑 。 1903年罗素发表了他的著名悖论。集合论的内在矛盾才突出出来,成为 20世纪集合论和数学基础研究的出发点。 集合论是数学上最具有革命性的理论,处理了数学上最棘手的对象---无 穷集合,发展道路很不平坦。康托尔抛弃了一切经验和直观,用彻底的理论 来论证,所得出的结论既高度地另人吃惊,难以置信,又确确实实,毋庸置 疑。数学史上没有比康托尔更大胆的设想和采取的步骤了。因此,它不可避 免地遭到了传统思想的反对。 希尔伯特宣称:“没有人能把我们从康托尔为我们创造的乐园中驱逐出去。 ”特别自1901年之后,集合论得到了公认,康托尔获得崇高的评价。当第三 次国际数学大会于1904年召开时,“现代数学不能没有集合论”已成为大家 的看法。康托的声望已经得到举世公认。 集合论是现代数学中重要的基础理论。渗透到代数、拓扑和分析等许多 数学分支以及物理学和质点力学等一些自然科学,改变了这些学科的面貌。 几乎可以说,如果没有集合论的观点,很难对现代数学获得一个深刻的理解 。集合论已成为整个数学大厦的基础,康托尔也因此成为最伟大的数学家之 一。

我们要了解集合的特征,先看看这些问题:
(1)A={1,3},问3,5哪个是A的元素?
(2)A={我国的小河流}能否表示集合? (3)AБайду номын сангаас{2,2,4}表示是否正确?
(4)A={太平洋,大西洋},
B={大西洋, 太平洋} 是否表示同一集合?
二、集合的表示
1、字母表示
通常用大写拉丁字母A、B、C、……表示 集合,用小写拉丁字母a、b、c、……表示 元素。 如果a是集合A的元素,就说a属于集合A, 记作a∈A;如果a不是集合A中的元素,就 说a不属于集合A,记作a∈A。

高中数学 1.1集合的含义及其表示

高中数学 1.1集合的含义及其表示

1.1集合的含义及其表示一.课标解读1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.”2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合.二.要点扫描1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。

集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。

2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。

设集合A 给定,若有一具体对象x ,则x 要么是的元素,要么不是的元素,二者必居其一,且只居其一。

⑵互异性特征:集合中的元素必须是互不相同的。

设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。

3.集合与元素之间的关系集合与元素之间只有“属于)(∈”或“不属于)(∉”。

例如:a 是集合的元素,记作A a ∈,读作“属于”;不是集合的元素,记作A a ∉,读作“不属于”。

4.集合的分类集合按照元素个数可以分为有限集和无限集。

特殊地,不含任何元素的集合叫做空集,记作∅。

5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。

⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。

A A A A A a A a A a A例如:集合A 可以用它的特征性质)(x p 描述为{)(x p I x ∈},这表示在集合I 中,属于集合A 的任意一个元素x 都具有性质,而不属于集合的元素都不具有性质)(x p 。

集合一

集合一

第1讲 集合及其表示1.集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集),常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……(2)元素:集合中每个对象叫做这个集合的元素,常用小写的拉丁字母表示,如a 、b 、c 、p 、q …… 2.常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合.记作N ,{} ,2,1,0=N ; (2)正整数集:非负整数集内除0的集合.记作N *或N +,{}*1,2,3,N = ;(3)整数集:全体整数的集合.记作Z,{} ,,,210±±=Z ; (4)有理数集:全体有理数的集合.记作Q ,{}整数与分数=Q ;(5)实数集:全体实数的集合.记作R ,{}数数轴上所有点所对应的=R ; 3.元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4.集合中元素的特性(1)确定性:按照明确的判断标准,给定一个元素或者在这个集合里,或者不在,二者居其一而且只居其一.不能模棱两可;(2)互异性:集合中的元素没有重复;(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出). 5.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合; 如:{}6,4,8A =,{}B =刘,世,华,{}C =刘,思,法…(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法,格式:{x ∈A|P (x )}含义:在集合A 中满足条件P (x )的x 的集合; 如:{}x R 2x-30∈≥…(3)文氏图:用一条封闭的曲线的内部来表示一个集合的方法. 点拨:{}21A x y x ==-,{}21B y y x ==-,(){}2,1C x y y x ==-是互不相同的集合.6.按元素的多少,集合可分为以下三类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x点拨:注意Φ,0,{}0三者的区别与联系.三【典例精析】例1.下列语句能确定是一个集合的是 (要简述理由)(1)著名的科学家:(2)留长发的女生;(3)不超过π的正整数;(4)视力差的男生:(5)本班中成绩好的同学;(6)高一数学课本中所有的简单题;(7)平方后等于自身的数. 例2.下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学; (3)方程210x -=的所有解;(4)不等式20x ->的所有解. 例3.由实数,,x x x -,332,x x -所组成的集合中,最多含几个元素?例4.用描述法表示下列集合:(1){1,4,7,10,13}; (2){-2,-4,-6,-8,-10};(3)所有奇数组成的集合; (4)坐标平面内到两坐标轴的距离相等的点组成的集合.例5.用列举法表示下列集合(1){(x ,y )|x ∈{1,2},y ∈{1,2}}; (2)⎩⎨⎧=-=+}422|),{(y x y x y x ;(3)},)1(|{N n x x n ∈-=; (4)},,1623|),{(N y N x y x y x ∈∈=+;(5)设a,b 是非零实数,那么bb aa +可能取的值组成集合.例6. 用符号“∈”或“∉”填空:(1)−3 N ,0.5 N ,3 N ; (2)1.5 Z ,−5 Z ,3 Z ; (3)−0.2 Q ,π Q ,7.21 Q ; (4)1.5 R ,−1.2 R ,π R .例7.设集合A=(x,y,x+y ),B=(0,2x ,xy)且A=B ,求实数x ,y 的值例8. 指出下列各集合中,哪个集合是空集?(1)方程210x +=的解集; (2)方程22x +=的解集.例9 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合; (2)方程2560x x --=的解集.例10 用描述法表示下列各集合: (1)不等式210x +…的解集; (2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.例11.用列举法表示下列各集合:(1)方程2340x x --=的解集;(2)方程430x +=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合. 2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x -=的解集; (3)大于5的所有偶数所组成的集合;(4)不等式253x ->的解集.四【过关精练】一.选择题1.给定四个集合:(){}(){}1,22,1M N ==,,{}{}1,22,1P ==,Q ,则( )A.M N =B.N P =C.M P =D.P Q = 2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .A a ∉C .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( ) A .2 B .3 C .0或3 D .0,2,3均可 6.集合{x ∈N +|x -3<2}用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}7.将集合⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3} D .(2,3)8.集合,,,b a c x x a b c R a b c ⎧⎫⎪⎪=++∈⎨⎬⎪⎪⎩⎭的列举法表示应该是( ) A .{-3,-1,1,3} B .{1,3} C .{-1,1,3} D .{-1,1}二.填空题9.集合A=}{0122=++x ax x 中只有一个元素,则a 的值是______10.已知P=}{R k N x k x x ∈∈<<,,2,若集合P 中恰有3个元素,则实数k 的取值范围是_____ 11.用列举法表示集合A ={x |x ∈Z ,86-x∈N}=____________12.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,()14A -∉,则满足条件的a 的值为________. 三.解答题13.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?14.用适当的方法表示下列集合:①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.15.对于,a b N +∈,现规定:()()b b a b a a b a b a ⎧+⎪*=⎨⨯⎪⎩,与的奇偶性相同,与的奇偶性不同集合(){},36,,M a b a b a b N +=*=∈.(1)用列举法表示,a b 奇偶性不同时的集合M ; (2)当a 与b 的奇偶性相同时集合M 中共有多少个元素?第2讲 子集、全集、补集1.子集的概念:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,那么集合A 为集合B 的子集.记作A B (B A)⊆⊇或,读作A B (B A )“包含于”或“包含”.当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A 2.集合相等与真子集的概念:(1)如果A B ⊆,且B A ⊆,则称 ,记作A B = (2)如果A B ⊆,但存在元素B A x x ∈∉,且,则称A 是B 的真子集,记作A B(B A)⊂⊃≠≠或3.空集:我们把不含任何元素的集合叫做空集,记为∅.并规定: 空集是任何一个集合的子集;空集是任何非空集合的真子集. 4.集合之间的基本关系.(1)任何一个集合都是它本身的子集,即A A ⊆;(2)对于集合A B C 、、,如果A B B C ⊆⊆,,那么A C.⊆+结论:含n 个元素的集合共有2n个子集;有 个真子集;有 个非空真子集. 5.补集:引入:观察下列三个集合: U ={高一年级的同学}——全集; A ={高一年级参加军训的同学}; B ={高一年级没有参加军训的同学}. 可知:(1)A U ⊆,B U ⊆;(2)集合B(或A)就是集合U 中除去集合A(或B)之外.——补集(1)定义定义(1)所要研究的集合都是某个给定集合的子集,这个给定的集合就是全集.全集常用U 表示. 定义(2)设S 是一个集合,A 是S 的一个子集(即S A ⊆),则由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作S A ð, (2)符号语言:{|}且ðS A x x S x A =∈∉ (3)图形语言:如右图:(3)性质:ðU U φ=;ðU U φ=:()痧U UA A =.三【典例精析】例1.写出集合{}1,2,3A =的所有子集和真子集.例2.说出下列每对集合之间的关系: (1){}1,2,3,4,5A =,{}1,3,5B =; (2){}21P x x ==,{}1Q x x ==;(3){}21,C x x k k Z ==+∈,{}D x x Z =∈.例3.(1)填空:N___Z ; N___Q ; R___Z ; R___Q ; Φ___{0}.(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗?(3)是否对任意一个集合A ,都有A ⊆A ,为什么? (4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 . 点拨:(1)“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}.(2){0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合.例4.填空:(1)U={x|0≤X<6,X ∈Z},A={1,3,5},B={1,4}, 则U A ð=_____________,U B ð=_____________(2)U={3,6,9},{}210A x R x x =∈++=,则U A ð=____ ____ (3)U={实数},A={有理数},则U A ð=____ ____(4)A={1,3,5},U A ð={2,4,6},B={4,6},则U B ð=____ ____ (5)全集U={x|0<x<10},A={x|2<x<5},则U A ð=_____________ ______例5.已知全集U =R ,集合A ={x |1≤2x +1<9},求U A ð.例6.已知U ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与U Bð的关系四【过关精练】一、选择题1.下列八个关系式①{0}=φ;②φ=0;③φ={φ};④φ∈{φ};⑤{0}⊇φ;⑥0∉φ;⑦φ≠{0};⑧φ≠{φ}其中正确的个数( )A.4B.5C.6D.7 2.集合{1,2,3}的真子集共有( )A.5个B.6个C.7个D.8个 3.集合A={x Z k k x ∈=,2};B={Z k k x x ∈+=,12};C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有( )A.(a+b )∈AB.(a+b)∈BC.(a+b)∈CD.(a+b)∈A 、B 、C 任一个 4.下列各组对象不能形成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=1图象上所有的点 5.设集合M =},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( ) A .M N = B.M ⊆N C .M ≠⊃N D .M≠⊂N 6.下列各式中,正确的是( )A.2}2{≤⊆x xB.{12<>x x x 且}C.{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D.{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}7.设一元二次方程()200ax bx c a ++=<的根的判别式042=-=∆ac b ,则不等式20ax bx c ++≥的解集为( )A.RB.φC.{abx x 2-≠} D.{a b 2-}8.集合A={x|x=2n +1,n∈Z}, B={y|y=4k ±1,k ∈Z},则A 与B 的关系为 ( ) A .A ≠⊂B B .A ≠⊃B C .A=B D .A≠B二、填空题9.在直角坐标系中,坐标轴上的点的集合可表示为__________________10.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围 是 。

集合的含义及其表示

集合的含义及其表示

(3) 比 2 大 3 的实数的全体;
解:{ 5 }.
注:有的集合只有一个元素如 { a }等,但是 { a }是集合,a 是集合{ a }的一个元素,有 a { a }.
想一想:{1,2} 与 {2,1} 是否表示同一个集合?
注:用列举法表示集合时不必考虑元素的前后次序.
例1
用列举法表示下列集合:
如: x在集合中与x不在集合中必居其一.
(2)互异性:
集合中的元素必须是互不相同 的.
(3)无序性: 集合中的元素是无先后顺序 的.集合中的任何两个元素都可以 交换位置.
3. 集合及元素
集合及元素的字母表示: 通常用大写拉丁字母A,B,C,· · · 表示 集合, 用小写拉丁字母a,b,c,· · · 表示集合 中的元素。
y,o,u, n,g
4、数轴法:

-2
0
x
表示 x x 2

0
2.5
x
表示 x x 2.5
5.补充知识:集合的分类
⑴有限集:含有有限个元素的集合.
⑵无限集:含有无限个元素的集合.
⑶空 集:不含任何元素的集合. 记作.
思考:我们看这样一个集合: { x |x2+x+1=0},它有什么特征? 显然这个集合没有元素.我们把这样的 集合叫做空集,记作.
3. 集合及元素
元素与集合的关系: 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A; 如果a不是集合A的元素,就说a不 属于集合A,记作a A.

例如:A表示方程x2=1的解. 2A,1∈A.
认识重要的数集:
(1) N: 自然数集(含0) 即非负整数集 (2) N+: 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集

1、集合的含义及表示

1、集合的含义及表示

集合的含义及表示一、集合1. 集合的概念:一般地,研究对象统称为元素,一些元素组成的总体叫集合,也简称集. (1)对于集合一定要从整体的角度来看待它;(2)要注意组成集合的“对象”的广泛性:一方面,任何一个确定的对象都可以组成一个集合,如人、动物、数、方程、不等式等都可以作为组成集合的对象;另一方面,就是集合本身也可以作为集合的对象.2. 集合中元素的3个特征:(1)确定性:设A是一个给定的集合,x是某一个具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合.3. 元素与集合间的关系(1)如果a是集合A的元素,就说a属于A,记作a∈A;(2)如果a不是集合A的元素,就说a不属于A,记作a A∉.4. 集合的分类(1)空集:不含有任何元素的集合称为空集,记作∅;(2)有限集:含有有限个元素的集合叫做有限集;(3)无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其表示非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.二、集合的表示方法1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合.2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x2,3x+2,5y 3-x ,x 2+y 2},….3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例1:集合的概念及元素的性质集合A 由形如(,)m m Z n Z +∈∈A 中的元素? 例2:元素与集合的关系下列六个关系中,正确的关系是 .(1)0∈N * (2)0∉{-1,1} (3)∅∈{0}例3:集合中元素的性质 6M={a Z,|N}5-a∈∈,则M=( ) A. {2,3} B. {1,2,3,4} C. {1,2,3,6} D. {-1,2,3,4}例4:集合的表示方法分别用列举法和描述法表示下列集合:(1)方程230x -=的所有实数根组成的集合;(2)由大于15小于25的所有整数组成的集合.巩固练习一、选择题1.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-2.集合{}|(31)(4)0x Z x x ∈--=可化简为( )A .13⎧⎫⎨⎬⎩⎭B .{}4C .1,43⎧⎫⎨⎬⎩⎭D .1,43⎧⎫--⎨⎬⎩⎭3.集合{}1,3,5,7,A =⋅⋅⋅ 用描述法可表示为( )A .{}|,x x n n N =∈B .{}|21,x x n n N =-∈C .{}|21,x x n n N =+∈D .{}|2,x x n n N =+∈4.若以集合{},,S a b c =中的三个元素为边长可构成一个三角形,则这个三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题5.若集合A ={x |x 2﹣(a +2)x +2﹣a <0,x ∈Z }中有且只有一个元素,则正实数a 的取值范围是6.用列举法表示集合7.设215|022x x ax ⎧⎫∈--=⎨⎬⎩⎭,则集合219|02x x x a ⎧⎫--=⎨⎬⎩⎭中所有元素之积为 . 8. 设a ,b ∈R ,集合{}10b ,a b ,b ,,b a ⎧⎫+=⎨⎬⎩⎭,则b -a = . 三、解答题9. 已知集合A ={a +2,2a 2+a },若3∈A ,求a 的值.10.设集合A ={x |kx 2﹣4x +2=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .11.已知方程ax 2+x +b =0.(1)若方程的解集为{1},求实数a ,b 的值;(2)若方程的解集为{1,3},求实数a ,b 的值.12.已知集合M ={﹣2,3x 2+3x ﹣4,x 2+x ﹣4},若2∈M ,求x 的值.13.已知集合A ={x ∈R |ax 2﹣3x +2=0,a ∈R }.(1)若集合A 是空集,求a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并写出此时的集合A .14.试分别用列举法和描述法表示下列集合.(1)由方程x (x 2﹣2x ﹣3)=0的所有实数根组成的集合;(2)大于2且小于7的整数.15.已知集合A ={x |x 2+x +p =0}.(1)若A =∅,求实数p 的取值范围;(2)若A 中的元素均为负数,求实数p 的取值范围.16.设集合{}22|,,M a a x y x y z ==-∈.求证:(1)一切奇数属于集合M ;(2)偶数42()k k z -∈不属于M ;(3)属于M 的两个整数,其乘积仍属于M .。

集合的含义及其表示

集合的含义及其表示

1.我国古代的四大发明 A={我国古代的四大发明}
2.我国的直辖市 B={我国的直辖市} 3.book中的字母 C={ book中的字母}
概念理解
1、是一定范围内的确定的对象
2、是不同的对象
3、是这些对象的全体
集合元素的特征
1.确定性
2.互异性
3.无序性
集合与元素的关系
若一个元素a在集合A中,则称a∈A, 读作“元素a属于集合A” 如: R 2 否则,称为aA,读作“元素a不属于集合A。 如: 2 Q 注:两个集合之间不能用属于的关系,只能是元 素与集合之间。 如:N∈Z (×) 即这种写法是错误的
集合的表示方法
1.列举法 将集合的元素一一列举出来,并置 于花括号“{}”内。 注:元素间要用逗号隔开,元素的次序无关 (习惯上按字母或数字的次序写)。 2.描述法 将集合的所有元素具有的性质(满 足的条件)表示出来,写成 { x | p(x) }
有时用Venn图表示集合,更加形象直观。 如:
火药,印刷术, 指南针,造纸术 b, o, k
数集的分类
根据元素个数的多少来分 含有有限个元素的集合称为有限集 特别地,不含任何元素的集合称为空集,记为 注意:不能表示为{}。 含有无限个元素的集合称为无限集
小结
1.集合的定义、表示 2.常用数集及表示 3.属于、不属于 4.集合相等 作业:P7 1,2,4
定义
一般地,一定范围内某些确定的、不同的对象 的全体构成一个集合(set),简称集。 其中,集合中的每一个对象称为该集合的元素 (element),简称元。 规定:集合用大括号“{ }” 表示且常用大写 字母表示。如集合A,集合B等。 元素用小写字母表示,如元素a,元素b等

1.1集合的含义及其表示

1.1集合的含义及其表示
◆数学•必修1•(配苏教版)◆
集 合
1.1
集合的含义及其表示
金品质•高追求
我们让你更放心 !
◆数学•必修1•(配苏教版)◆
金品质•高追求
我们让你更放心!
返回
◆数学•必修1•(配苏教版)◆
在初中,我们已经接触过一些有关集合的例子, 那么,集合的具体含义是什么呢?我们如何进行表示 呢?这就是我们这节所要解决的问题.
◆数学•必修1•(配苏教版)◆
数集A满足条件:a∈A,则 1 ∈A,其中 1-a
a∈R,
试证:(1)若2∈A,则A中还有另外两元素. (2)集合A不可能只含一个元素.
解析:(1)利用条件,逐步代换. (2)这是证明不可能问题,宜采用反证法. 答案:(1)∵2∈A, 1 ∴ =-1∈A, 1- 2 1 1 又∵-1∈A,∴ = ∈A, 1--1 2 1 ∴2∈A时,-1和 在A中. 2
金品质•高追求
我们让你更放心!
返回
◆数学•必修1•(配苏教版)◆
集合的表示方法:列举法、描述法、Venn图 用列举法、描述法表示集合时,应注意根据问题的不 同情境或形式选择合理的表示方法.列举法不宜表示无限集, 用描述法表示集合时,应该注意代表元素的性质.例如表示 数集时代表元素可用一个字母x表示,而表示点集时代表元 素则用(x,y)来表示.此外用Venn图表示集合的最大优势在于 形象直观.总之应根据不同的情况合理地选择应用. 两集合相等 若两个集合所含的元素完全相同,即A中的元素都是B中 的元素,B中的元素也都是A中的元素,则称两个集合相等. 例如{x|x2-1=0}={-1,1}. 金品质•高追求 我们让你更放心!
(1)确定性:给定集合A,对于某个对象x,“x∈A”或“x∉A” 这两者必居其一且仅居其一. 互不相同,不允许重复. (2)互异性:集合中的元素_______________________
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的表示方法
1、列举法: 2、描述法:
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的形式 特征性质 无序 互异 }内 将集合中的元素一一列举出来,并置于{
3、Venn图法:
形象 直观
a,b,c…
ห้องสมุดไป่ตู้
集合的分类
有限集:含有限个元素的集合
无限集:含无限个元素的集合 空集:不含任何元素的集合
φ
判断:(小试牛刀)
1、“知名作家”构成一个集合 ( 2、集合{0}中不含元素 ( ) )
3、方程x2-2x+1=0的解集中含2个元素(

4、集合{1,3,5,7}与集合{3,7,5,1} 表示同一集合 ( ) 5、集合{y︱y=x2-1}与集合{(x,y)︱y=x2-1} 表示同一集合 数集 ( )
——狄尔曼
下列各组对象能构成集合的是: (1)接近于0的数全体; (2)比较小的正整数的全体; (3)平面上到原点O的距离等 于1的点的全体; (4)正三角形的全体; (5)淮安市今年考上好大学的 学生的全体。 3、4
常用数集
自然数集:N
N+或N* 正整数集:
整数集: Z 有理数集: Q 实数集: R
点集
引申: 1、含有三个元素的集合可表示为 也可以表示为 a 2 , a b , 0 。 求 a 2 0 0 8 b 2 0 0 8 的值。
b ,1 a, a
2、 2 x | ax bx 1 0 ,求 a , b 的值。
2
江苏省淮阴中学教育集团
北京路中学
汪俊红
集合:
一般地,一定范围内某些 确定 确定的、不同的对象的全 体构成一个集合。 每

A
x
元素
y
x∈A y A
渔民与 数学家
数学也是一种语言,从它的结构和内容来看,这 是一种比任何国家的语言都要完善的语言。
通过数学,自然界在论述;通过数学,世界的创 造者在表达;通过数学,世界的保护者在讲演。
相关文档
最新文档