《信号与系统导论》课件03(3.7)
[课件]第1章信号与系统分析导论PPT
信号处理
对信号进行某种加工或变换。 目的: 消除信号中的多余内容; 滤除混杂的噪声和干扰; 将信号变换成容易分析与识别的形式,便于估计 和选择它的特征参量。 信号处理的应用已遍及许多科学技术领域。
系统(System)
系统(system):由若干相互作用和相互依赖的事物组 合而成的,具有特定功能的整体。如通信系统、控制 系统、经济系统、生态系统等。 系统三要素:IOP:输入、输出、处理加工 系统可以看作是信号的变换器、处理器。 电系统具有特殊的重要地位,某个电路的输入、 输出是完成某种功能,如微分、积分、放大,也可 以称系统。 在电子技术领域中,“系统”、“电路”、“网 络”三个名词在一般情况下可以通用。
第1章信号与系统分 析导论
课程性质
– 电子信息类专业重要的专业基础 课; – 教学对象:电子信息、自动控制、电子技术 、电气工程、计算机技术、生物医学工程等;
课程性质
先修课 后续课程 《高等数学》 《通信原理》 《线性代数》 《数字识领域引入信号 处理与传输领域的关键性课程,在教学环节中起着承 上启下的作用 。
信号与系统之间的关系 信号与系统是相互依存的整体。
1. 信号必定是由系统产生、发送、传输与 接收,离开系统没有孤立存在的信号; 2. 系统的重要功能就是对信号进行加工、 变换与处理,没有信号的系统就没有存在 的意义
输出信号 输入信号 系统 响应 激励
信号理论与系统理论
信号分析:研究信号的基本性能,如信号 的描述、性质等。 信号理论 信号传输 信号处理
系统分析:给定系统,研究系统对于输入 激励所产生的输出响应。 系统理论 系统综合:按照给定的需求设计(综合) 系统。 重点讨论信号的分析、系统的分析,分析是综合的基础。 分析的目的:认识世界;综合的目的:改造世界。
信号与系统ppt课件
02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
《信号与系统教案》课件
《信号与系统教案》课件第一章:信号与系统导论1.1 信号的概念与分类讲解信号的定义和特性介绍常见信号的分类,如连续信号、离散信号、模拟信号和数字信号等1.2 系统的概念与分类讲解系统的定义和特性介绍常见系统的分类,如线性系统、非线性系统、时不变系统等1.3 信号与系统的研究方法讲解信号与系统的研究方法,如数学分析、仿真实验等第二章:连续信号与系统2.1 连续信号的基本性质讲解连续信号的定义和特性,如连续性、周期性、对称性等2.2 连续信号的运算介绍连续信号的基本运算,如加法、乘法、积分等2.3 连续系统的基本性质讲解连续系统的基本性质,如线性、时不变性等第三章:离散信号与系统3.1 离散信号的基本性质讲解离散信号的定义和特性,如离散性、周期性、对称性等3.2 离散信号的运算介绍离散信号的基本运算,如加法、乘法、求和等3.3 离散系统的基本性质讲解离散系统的基本性质,如线性、时不变性等第四章:模拟信号处理4.1 模拟信号处理的基本方法讲解模拟信号处理的基本方法,如滤波、采样、量化等4.2 模拟滤波器的设计与分析介绍模拟滤波器的设计方法,如巴特沃斯滤波器、切比雪夫滤波器等讲解滤波器的频率响应、阶数等特性分析4.3 模拟信号处理的应用讲解模拟信号处理在实际应用中的案例,如音频处理、通信系统等第五章:数字信号处理5.1 数字信号处理的基本方法讲解数字信号处理的基本方法,如离散余弦变换、快速傅里叶变换等5.2 数字滤波器的设计与分析介绍数字滤波器的设计方法,如IIR滤波器、FIR滤波器等讲解滤波器的频率响应、阶数等特性分析5.3 数字信号处理的应用讲解数字信号处理在实际应用中的案例,如图像处理、语音识别等第六章:信号与系统的时域分析6.1 线性时不变系统的时域特性讲解线性时不变系统的时域特性,如叠加原理和时移特性6.2 常用时域分析方法介绍常用时域分析方法,如单位脉冲响应、零输入响应和零状态响应6.3 时域分析在实际应用中的案例讲解时域分析在实际应用中的案例,如信号的滤波、去噪等第七章:信号与系统的频域分析7.1 傅里叶级数与傅里叶变换讲解傅里叶级数的概念和性质介绍傅里叶变换的定义和性质,包括连续傅里叶变换和离散傅里叶变换7.2 频域分析方法介绍频域分析方法,如频谱分析、滤波器设计等7.3 频域分析在实际应用中的案例讲解频域分析在实际应用中的案例,如通信系统、音频处理等第八章:信号与系统的复频域分析8.1 拉普拉斯变换和Z变换讲解拉普拉斯变换的概念和性质介绍Z变换的定义和性质8.2 复频域分析方法介绍复频域分析方法,如系统函数分析、滤波器设计等8.3 复频域分析在实际应用中的案例讲解复频域分析在实际应用中的案例,如数字通信系统、信号的调制与解调等第九章:信号与系统的状态空间分析9.1 状态空间模型的概念和性质讲解状态空间模型的定义和性质,如状态向量、状态方程和输出方程等9.2 状态空间分析方法介绍状态空间分析方法,如状态预测、状态估计等9.3 状态空间分析在实际应用中的案例讲解状态空间分析在实际应用中的案例,如控制系统的设计和分析等第十章:信号与系统的应用案例分析10.1 通信系统中的应用讲解信号与系统在通信系统中的应用,如信号的调制与解调、信道编码与解码等10.2 音频处理中的应用讲解信号与系统在音频处理中的应用,如音频信号的滤波、均衡等10.3 图像处理中的应用讲解信号与系统在图像处理中的应用,如图像的滤波、边缘检测等重点解析信号与系统的基本概念及其分类信号与系统的研究方法连续信号与系统的性质和运算离散信号与系统的性质和运算模拟信号处理的基本方法和应用数字信号处理的基本方法和应用信号与系统的时域分析方法及其应用信号与系统的频域分析方法及其应用信号与系统的复频域分析方法及其应用信号与系统的状态空间分析方法及其应用信号与系统在不同领域中的应用案例分析难点解析信号与系统理论的数学基础和抽象概念的理解不同信号与系统分析方法的相互转换和应用信号与系统在实际工程应用中的复杂性和挑战高频信号处理和数字信号处理的算法优化和实现状态空间分析方法的数学推导和系统设计的实践应用。
《信号与系统概论》课件
2
系统的分类
讨论线性系统、非线性系统、时不变系统和时变系统的特点和应用。
3
系统分析
通过系统的输入和输出关系,分析系统的性质和特征。
时域分析
时域分析是研究信号在时间上的变化规律和特性。
时域图像
冲激响应
解释如何绘制和分析时域图像, 如波形和幅度谱。
介绍冲激响应的概念和计算方 法,以及其在系统分析中的应 用。
时频分析
时频分析是研究信号在时间和频率上的变化规律和特性。
1
短时傅里叶变换
介绍短时傅里叶变换(STFT)的原理和应用,以及它在语音和图像处理中的重要性。
2
小波变换
讲解小波变换的概念和计算方法,以及它在时频分析中的应用。
3
时频分析工具
介绍常用的时频分析工具和算法,如Gram-Schmidt正交化和Gabor滤波器。
实验演示与案例分析
示波器实验
通过使用示波器进行信号采集 和分析,加深对信号与系统的 理解。
信号处理实验
利用实验室设备和软件进行信 号处理实验,探索实际应用场 景。
案例分析
通过实际案例分析,应用信号 与系统的知识解决实际问题。
卷积运算
讲解卷积运算的原理和计算方 法,以及它在信号处理中的重 要性。
频域分析
频域分析是研究信号在频率上的变化规律和特性。
频谱分析 傅里叶变换 频率响应
探讨如何将时域信号转换频域信号,并进行 频谱分析。
介绍傅里叶变换的基本原理和在信号处理中的 应用。
解释频率响应的概念和计算方法,以及它在系 统分析和设计中的重要性。
学以致用,通过实验与案例分 析加深对信号与系统的理解。
信号的定义与分类
什么是信号?
信号与系统ppt课件
a 0 呈单调指数上升。
精品课件
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x (t) ej 0 t c o s0 tjsin0 t
• 连续时间情况下:
E lT im T Tx(t)2d t x(t)2dt
•离散时间情况下:
N
E N l i m nNx(n)2n x(n)2
精品课件
在无限区间内的平均功率可定义为:
x(t) P
lim1 T2T
T T
2
dt
PN l i m 2N 11nN Nx(n)2
精品课件
1.2 自变量变换
究确知信号。
精品课件
连续时间信号的例子:
精品课件
离散时间信号的例子:
精品课件
连续时间信号在离散 时刻点上的样本可以构成一个 离散时间信号。
精品课件
二. 信号的能量与功率:
连续时间信号在 [ t1 , t 2 ] 区间的能量定义 为:
E t2 x(t) 2 dt t1
连续时间信号在 [ t1 , t 2 ]
率定义为:
区间的平均功
P 1 t2 x(t)2 dt
t2 t1 t1
精品课件
离散时间信号在 [ n1 , n 2 ]
的能量定义为n2
E
x(n) 2
n n1
区间
离散时间信号在 [ n1 , n 2 ] 平均功率为
P 1
n2 x(n)2
n2 n11nn1
精品课件
区间的
在无限区间上也可以定义信号的总 能量:
•给定信号和系统求变换后的 信号。
《信号与系统》课程讲义课件
这份课程讲义课件为大家提供了关于《信号与系统》的详细介绍,让您轻松 了解这一重要学科。
课程简介
这门课程涵盖了数字信号处理和系统分析的基础知识,旨在让学生了解信号的特性、表示和处理 方法,以及在实际应用中的相关工具和技能。
1 信号分析
了解不同类型的信号及其特性,如周期信号、离散信号和非周期信号等
1
分析总结
对意见和反馈进行深入分析和总结
3
改进课程
针对性改进课程和教学方法
作业和考核方式
为了评估学生对课程知识的掌握程度,我们采用以下方式进行作业和考核:
作业
• 每周一次作业 • 包括习题集、实验和项目作业等 • 占总评成绩的30%
考试
• 期中、期末闭卷考试 • 包括理论和实践题目 • 占总评成绩的70%
课程反馈和改进
我们非常重视您的反馈,它将帮助我们不断改进课程和教学方法。请通过学校邮件系统或班级论坛,随 时提出您的意见和建议。
数字信号处理应用
掌握数字信号处理相关的技 术和应用,如音频处理和图 像处理等
课程大纲
第一章 第二章 第三章 第四章 第五章 第六章
信号与系统的基本概念 时域分析方法 傅里叶分析方法 滤波器 离散信号的频域分析 离散信号的滤波器设计
教学方法
为了帮助学生更好的掌握课程内容,我们采用了以下教学方法:
小组讨论
2 系统分析
掌握系统的基本概念,如线性时不变系统、滤波器和傅立叶变换等
3 信号处理方法
学会数字信号处理的基本方法,如离散傅立叶变换、数字滤波器和采样等
课程目标
通过本课程,学生将获得以下核心能力:
分析信号
了解信号的特性并进行分析, 从而为实际应用提供解决方 案
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。
分类:连续信号、离散信号、模拟信号、数字信号等。
1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。
图形方法:波形图、频谱图、相位图等。
第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
2.2 连续系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。
齐次运算:连续信号的常数倍仍然是连续信号。
第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
3.2 离散系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。
齐次运算:离散信号的常数倍仍然是离散信号。
第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。
特点:连续性、模拟性、无限可再生性。
4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。
模拟调制:将信息信号与载波信号进行合成。
第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。
特点:离散性、数字化、抗干扰性强。
5.2 数字系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
《信号与系统讲义》课件
信号与系统是理解和分析信号处理的基础。本课件将介绍信号与系统的基本 概念、时域信号与频域信号、连续信号与离散信号、线性时不变系统、卷积 运算、采样与重构,以及系统的频率响应和频率特性。
信号与系统的基本概念
了解信号与系统的基本概念是理解信号处理的关键。本节将介绍信号的定义、 分类以及常见的信号类型,以及系统的定义和特性。
卷积运算
卷积运算是信号处理中常用的操作。本节将介绍卷积运算的定义和性质,并 通过实例演示如何使用卷积运算来处理信号。
采样与重构
采样是将连续信号转换为离散信号的过程,而重构则是将离散信号还原为连续信号的过程。本节将介绍 采样和重构的原理和方法。
பைடு நூலகம்
系统的频率响应和频率特性
系统的频率响应和频率特性描述了系统对不同频率的信号的响应情况。本节 将介绍频率响应和频率特性的概念,以及它们在信号处理中的应用。
时域信号与频域信号
在信号处理中,时域信号和频域信号是两种常见的表示方式。本节将解释时 域和频域的概念,以及如何在两个域中相互转换。
连续信号与离散信号
信号可以是连续的,也可以是离散的。本节将讨论连续信号和离散信号的区别,以及在信号处理中如何 处理这两种类型的信号。
线性时不变系统
线性时不变系统是信号处理中常用的模型。本节将介绍线性时不变系统的基本概念和特性,以及如何利 用系统的响应来分析信号的处理过程。
信号与系统分析导论课件
信号与系统分析导论
信号的描述及分类 系统的描述及分类 信号与系统分析概述
信号的描述与分类
信号的基本概念 信号的分类
确定信号 与 随机信号 连续信号 与 离散信号 周期信号 与 非周期信号 能量信号 与 功率信号
一、信号的基本概念
1.信号:消息的运载工具和表现形式
2.表示: 函数:f(t)=Amcos(t+) 波形:
抽样信号——
时间离散 幅值连续
数字信号——
时间离散 幅值离散
f (t )
f (n)
f (n)
抽样
t O
n
n
判断下列波形是连续时间还是离散时间信号,若是 离散时间信号是否为数字信号?
f (t) sint (t)
值域连续 t
0
f(t)
0
值域不连续 t
连续时间信号
连续时间信号(可包含不连续点)
t<0时,ff((tn))=0的信号称为有始信号
f(n)
(2)
(1)
(1)
0 12 345
n
0 12 34
n
离散时间信号(抽样信号)
数字信号
二、信号的分类
3. 周期信号 与 非周期信号
➢ 连续时间周期信号定义: t R,存在正数T,使得
f (t T ) f (t) 成立,则 f (t) 为周期信号。
➢ 离散时间周期信号定义: kI , 存在正整数N,使得
[例] 判断下列系统是否为线性系统。
(1) y(t) t 2 f (t) (2) y(t) 3 f (t) 4
(3) y(t) 4 df (t) dt
解: (2) y(t) 3 f (t) 4
f1(t) 3 f1(t) 4 Kf1(t) 3Kf1(t) 4 不满足均匀特性,该系统为非线性系统。
《信号与系统导论》课件03(3.1-3.2)
•傅里叶分析方法应用范围非常广泛:它不仅应用 于电力工程、通信和控制领域,而且应用于力学、 光学、量子物理等领域。
付里叶光学
现代光学的一个分支,将电信理论中使用的傅里叶分析方 法移植到光学领域而形成的新学科。在电信理论中,要研究线 性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频 谱分析方法。在光学领域里,光学系统是一个线性系统,也可 采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的 传播。两者的区别在于,电信理论处理的是电信号,是时间的 一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶 变换;在光学领域,处理的是光信号,它是空间的三维函数, 不同方向传播的光用空间频率来表征,需用空间的三维函数的 傅里叶变换。
第三章 傅里叶变换
§3.1 引言
频域分析,P89-90
从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解(分解为三角函数 或复指数函数的组合), 频域分析将时间变量变换成频率变量,揭示了信号 内在的频率特性以及信号时间特性与其频率特性之间的 密切关系,从而导出了信号的频谱、带宽以及滤波、调 制和频分复用等重要概念。
1.偶函数
信号波形相对于纵轴是对称的
例如课本P95,图3-3 所示周期三角信号的展开式。
2.奇函数
例如课本P96,图3-4 所示周期三角信号的展开式。
3.奇谐函数
若波形沿时间轴平移半个周 期并相对于该轴上下反转, 此时波形并不发生变化:
f(t)的傅氏级数的直流分量为零,即 f(t)的傅氏级数偶次谐波为零,即 n=2,4,6,…时, n=1,3,5,…时,
参式3-13, P94
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明见后
对应式(3-55)
证明
因为
综合上述两种情况
3.意义
(1) 0<a<1 时域扩展,频带压缩。
脉冲持续时间增加a倍,变化慢了,信号在频域的频 带压缩a倍。高频分量减少,幅度上升a倍。
(2)a>1 时域压缩,频域扩展a倍。
持续时间短,变化快。信号在频域高频分量增加,频 带展宽,各分量的幅度下降a倍。 此例说明:信号的持续时间与信号占有频带成反比, 有时为加速信号的传递,要将信号持续时间压缩,则 要以展开频带为代价。
•用性质求F(ω);
•了解在通信系统领域中的应用。
主要内容
对称性质 线性性质
奇偶虚实性
时移特性
尺度变换性质
频移特性
微分性质
时域积分性质
一.对称性质
1.性质
证明:
例如,矩形脉冲信号的频谱为抽样函数,则抽样函数信 号的频谱必为矩形脉冲。图3-30,P124 直流信号的频谱为冲激函数,则冲激函数信号的频谱必 为常数。图3-31,P125
E 2
F
0
O
0
0
2
(b)矩形调幅信号的频谱
教材例3-5,P135
利用频移定理,求出余弦信号f t cos0t 的频谱. 解 : 取f ( t ) 1为直流信号,由傅氏变换1 2 ( ), 1 所以f ( t )cos(0 t ) [F( 0 ) F( 0 )] 2 [ ( 0 ) ( 0 )] 可见周期信号的频谱集中于两点 0,是冲激信号。
等效脉冲宽度与等效频带宽度
f 0
f t
F 0
F
O
t
O
f t d t f 0
t 0
1 f 0 2 1 2
F e jt d F d
F 0
F d F 0B
解:
课本P138-139,例题3-7
显然,对比上题,截平斜变函数的频谱,可由上 题作平移得到。
频域积分特性
设f(t)是实奇函数:
例3-7-3:偶实函数的频谱必为偶实函数
对称性
例3-7-3:奇实函数的频谱必为奇虚函数
• 参课本P127,例3-1 • 波形与频谱见P128,图3-32。
四.尺度变换性质
证明见下页
意义
(1) 0<a<1 时域扩展,频带压缩。 (2) a>1 时域压缩,频域扩展a倍。
说明见后
信号在时域反褶等效于频域反褶。
下面从另一个角度说明尺度变换特性
(1)、(2)两式表明:f(t)与F(ω)所覆盖的面积分别等于F(ω) 与2π f(t)在零点时的数值F(0)与2π f(0)。 如果F(0)与 f(0)各自等于相应曲线的最大值,见P130 (图3-34),这是定
义τ和B分别对应f(t)与F(ω)的等效宽度,则有以下关系是:
§3.7 傅里叶变换的性质
正变换 变换对 逆变换
傅氏变换的性质揭示了信号的时域特性和频域特 性之间的确定的内在联系。其中一个函数确定,另一 个函数随之被确定下来。在实际信号分析过程中,我 们既可以借助以上关系由此及彼直接变换,也可借助 于一些傅氏变换的基本性质间接进行。
意义
傅里叶变换具有惟一性。傅氏变换的性质揭示了 信号的时域特性和频域特性之间的确定的内在联系。 讨论傅里叶变换的性质,目的在于: •了解特性的内在联系;
例3-7-1 例3-7-2
相移全通 网络
二.线性性质
1.性质
2.例3-7-3
傅里叶变换是一种线形变换。相加信号的频谱 等于各个信号频谱之和。
三.奇偶虚实性
在§3.4的“傅里叶变换的表示”中曾介绍过。
证明: 由定义 可以得到
证明
设f(t)是实函数(为虚函数或复函数情况相似,略)
显然
进一步设f(t)是实偶函数,以上结论进一步简化:
B
f t d t
等效脉冲宽 度与占有的 等效带宽成 反比。
B
2
Bf
1
五.时移特性
幅度频谱无变化,只影响相位频谱,
时移加尺度变换
证明
课本公式(P130-131)
P127 (3-55)
例3-7-9(尺度变换,时移特性)
方法一:先标度变换,再时延
方法二:先时延再标度变换
相同
课本例题P131,例3-2
课本例题P131,例3-3
单Sa信号由直流分量,双Sa信号无直流分量,更利于传输。
六.频移特性
1.性质
2.证明
3.说明
4.应用
通信中调制与解调、变频、频分复用等 技术都是在频移特性基础上实现的。
例3-7-6(教材例3-4),P134 f t 已知矩形调幅信号 f t Gt cos 0 t ,
其中G t 为矩形脉冲,脉冲幅度 E, 为
E
脉宽为 , 试求其频谱函数。 o t 解: 2 2 已知矩形脉冲Gt 的频谱G 为 (a)矩形调幅信号的波形 G E Sa 2 因为 1 f t G t e j 0t e j 0t 2 根据频移性质, t 频谱F 为 f 1 1 F G 0 G 0 2 2
频谱图(P135,图3-39)
1 1 F G 0 G 0 2 2 E 0 E 0 Sa Sa 2 2 2 2 将包络线的频谱一分为 二,向左、右各平移 0
2.频域微分性质
推广 或
如何证明?
例3-7-8
解:
例3-7-9
解:
八.时域积分性质
也可以记作:
证明
变上限,积分用带时移 的单位阶跃的无限积分 表示成为
交换积分顺序 , 即先求时移的单位阶跃 信号的傅里叶变换
续……
……续
即下节的卷积定理
例3-7-10
1. 求单位阶跃函数的傅里叶变换 解:
七.微分性质
时域微分性质(证明在后页)
频域微分性质(证明在后页)
或
1.时域微分
注意
证明即应用举例来自例3-7-5(课本例题3-6,P137)
求三角脉冲函数的频谱密度函数.
分析
我们先解决其二阶导数的频 谱,再利用微分性质,导出 原函数的频谱。
X
第
解:
37 页
X
注意
如果f(t)中有确定的直流分量,应先取出单独求傅里 变换,余下部分再用微分性质。否则容易丢失频谱中 的冲激函数项。