线性代数必记结论

合集下载

线性代数总结

线性代数总结

分块矩阵: 利用分块矩阵可进行加,减,数乘,乘积,各个子快间的运算扔满算矩阵的运算,总体运算 将子块看成数字即可。 同型的分块对角矩阵的和, 差, 数乘, 积及逆仍是分块对角矩阵, 且运算为对应子块的运算, (分块上或下三角矩阵也符合) 矩阵的初等变换:1. 交换,2. 倍加 A→B(或 A∽B,A 与 B 等价) 若 A 可逆,则 A 可以由初等变换最终得到单位矩阵 E 初等矩阵:由单位矩阵施以一次初等变换得到 E(i,j) 交换第 i,j 行(列)
12 n A
1 2 n a11 a22 a33 ann
一个特征值可以对应多个特征向量,一个特征向量只能对应一个特征值 属于不同特征值的的特征向量正交 A∽B(存在 P 使得 P-1AP=B) A∽B→特征值相同,秩相等,行列式相等 A 与 A 的特征值所组成的对角矩阵相似(且这些特征值所对应的特征向量(个数与特征值 相等) ,线性无关)
P 1 AP 其中 P 可逆,则称 A 可对角化
吴浩
5
T n T 8. n 阶方阵的行列式:由方阵元素构成的行列式 A = A , kA =k A , AB = A B
9. 若 A =A,即 aij=aji,则称 A 为对称矩阵(所有元素关于主对角线对称) ,对称矩阵的和, 差,数乘都为对称矩阵,但积不一定为对称矩阵 逆矩阵: 若 AB=BA=E A =B,B =A,
线性代数总结
线性代数总结
1.二阶行列式定义:记号
a11 a12 =a11a22-a12a21,称为二阶行列式(三阶与二阶类似) 。 a21 a22
2.对角线法则只适用于二阶与三阶,四阶及以后不能用。 3.n 级排列:由自然数 1,2,…,n 组成的不重复的每一种有确定次序的排列,称为一个 n 级 排列。 4.在一个 n 级排列(i1i2…it…ik…in)中,若数 it>ik,则称 it 与 ik 构成一个逆序。一个 n 级排 列中逆序的总数称为该排列的逆序数,记为 N(i1i2…in). 5.逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 6.注意:i. n 阶行列式是 n!项的代数和,且冠以正号的项和冠以负号的项(不包括元素本身 所带的符号)各占一半,因此,行列式实质上是一种特殊定义的数; ( ) ii.a 1jia2 j2…an jn 的符号为(-1)N j1j2…jn (不包括元素本身所带的符号) ; iii.一阶行列式 a =a,不要与绝对值记号相混淆。 7.行列式中各项正负号规定方法:当该项各元素的行(列)标按自然数顺序排列后,若对应 的列(行)标,构成的排列是偶排列则取正号,是奇排列则取负号。 8.对角行列式:非主对角线上元素全为零的行列式称为对角行列式,而对角线以上(下)的 元素全为零的行列式称为下(上)对角行列式。 9.任意一个排列对换一次,奇偶性发生改变 10.奇排列变成自然排列的对换次数为奇数;偶排列变成自然排列的对换次数为偶数 11.n 阶行列式的定义式为 N(j1j2j3…jn) D=Σ(-1) a1j1a2j2a3j3…anjn ※12.行列式的性质: T ①D=D ②用数 k 乘行列式的某一行(列) ,等于用数 k 乘以此行列式。 ③交换行列式两行 (列) ,行列式变号 ④行列式中,若两行(列)对应元素成比例,则行列式为零 ⑤行列式 的拆分是按一行(列) ,拆开,即一次拆一行或一列 ⑥将行列式的一行(列)对应的元素 上,行列式值不变 13.行列式按行(列)展开:D=a1j1A1j1+a2j2A2j2+…+anjnAnjn i+j 其中,Aiji 为代数余子式,Aij=(-1) Mij,Mij 为余子式 14.行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零 15.利用行列式求方程组的解(未知数的个数与方程组的个数相等) 非齐次:

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳2 线性代数知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i j i j ijij ij ijMA A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-;将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =;35. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BBO B C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)4⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T AA A A A A ----=== ***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12sA AA A =L ;5Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O;②、111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采6用初等行变换)①、 若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:7①、0()min(,)m nr Am n ⨯≤≤;②、()()Tr A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论); Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()na b +展开后有1n +项;8Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn nnnn n r CCCC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A AA X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;910. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭LL M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M );④、1122nna x a x a xβ+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mαααL 构成n m ⨯矩阵1012(,,,)m A =L ααα;m个n 维行向量所组成的向量组B :12,,,T T T mβββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:11若12,,,sαααL 线性相关,则121,,,,ss αααα+L 必线性相关;若12,,,sαααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P L ,使12lA P P P =L ;①、矩阵行等价:~rA B PA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m nA ⨯与l nB ⨯:12①、若A 与B 行等价,则A 与B 的行秩相等; ②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n rrBb b b ⨯L 可由向量组12:,,,n ssAa a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K=L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量13线性无关;②、对矩阵m nA ⨯,存在n mP ⨯,nPA E =()r A n⇔=、P 的行向量线性无关;14.12,,,sαααL 线性相关⇔存在一组不全为0的数12,,,sk k k L ,使得1122s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n rξξξ-L 为0Ax =的一个基础解系,则*12,,,,n rηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1TAA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;14注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)ra a a L11b a =;1222111[,][,]b a b a b b b =-gL L L121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B,其中可逆;⇔T x Ax与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=PAP B;5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则TC AC B =⇒A B:,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:15A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A⇔的所有特征值均为正数; A⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

数三线性代数必考知识点

数三线性代数必考知识点
7.伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、
8.关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
10.线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条件:(为未知数的个数或维数)
②、对矩阵,存在,、的行向量线性无关;
线性相关
存在一组不全为0的数,使得成立;(定义)
有非零解,即有非零解;
,系数矩阵的秩小于未知数的个数;
15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;
简言之:无关组延长后仍无关,反之,不确定;
7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;
向量组能由向量组线性表示,则;
向量组能由向量组线性表示
有解;
向量组能由向量组等价
8.方阵可逆存在有限个初等矩阵,使;
①、矩阵行等价:(左乘,可逆)与同解
②、矩阵列等价:(右乘,可逆);
③、矩阵等价:(、可逆);
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。

线性代数总结汇总+经典例题

线性代数总结汇总+经典例题

线性代数总结汇总+经典例题线性代数知识点总结1 ⾏列式(⼀)⾏列式概念和性质1、逆序数:所有的逆序的总数2、⾏列式定义:不同⾏不同列元素乘积代数和3、⾏列式性质:(⽤于化简⾏列式)(1)⾏列互换(转置),⾏列式的值不变(2)两⾏(列)互换,⾏列式变号(3)提公因式:⾏列式的某⼀⾏(列)的所有元素都乘以同⼀数k,等于⽤数k 乘此⾏列式(4)拆列分配:⾏列式中如果某⼀⾏(列)的元素都是两组数之和,那么这个⾏列式就等于两个⾏列式之和。

(5)⼀⾏(列)乘k加到另⼀⾏(列),⾏列式的值不变。

(6)两⾏成⽐例,⾏列式的值为0。

(⼆)重要⾏列式4、上(下)三⾓(主对⾓线)⾏列式的值等于主对⾓线元素的乘积5、副对⾓线⾏列式的值等于副对⾓线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德⾏列式数学归纳法证明★8、对⾓线的元素为a,其余元素为b的⾏列式的值:(三)按⾏(列)展开9、按⾏展开定理:(1)任⼀⾏(列)的各元素与其对应的代数余⼦式乘积之和等于⾏列式的值(2)⾏列式中某⼀⾏(列)各个元素与另⼀⾏(列)对应元素的代数余⼦式乘积之和等于0(四)⾏列式公式10、⾏列式七⼤公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)⾮齐次线性⽅程组的系数⾏列式不为0,那么⽅程为唯⼀解(2)如果⾮齐次线性⽅程组⽆解或有两个不同解,则它的系数⾏列式必为0 (3)若齐次线性⽅程组的系数⾏列式不为0,则齐次线性⽅程组只有0解;如果⽅程组有⾮零解,那么必有D=0。

2矩阵(⼀)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后⾏⼀致;(2)矩阵乘法不满⾜交换律;(因式分解的公式对矩阵不适⽤,但若B=E,O,A-1,A*,f(A)时,可以⽤交换律)(3)AB=O不能推出A=O或B=O。

考研数学公式定理背诵手册(数学二):线性代数

考研数学公式定理背诵手册(数学二):线性代数

性质 3 行列式的某一行(列)中所有的元素都乘以同一数 k ,等于用数 k 乘此行列式.
推论 行列式中某一(列)的所有元素的公因子可以提到行列式符号的外面.
性质 4 行列式中如果有两行(列)元素成比例,则此行列式等于零.
性质 5 若行列式的某一列(行)的元素都是两数之和,如第 i 列的元素都是两数之和:
(2)若 A 可逆,则 A−1 亦可逆,且 ( A−1)−1 = A . (3)若 A 可逆,数 λ ≠ 0 ,则 λ A 可逆,且 (λ A)−1 = 1 A−1 .
λ (4)若 A, B 为同阶矩阵且均可逆,则 AB 亦可逆,且 ( AB)−1 = B−1A−1 .
(5)若 A 可逆,则 AΤ 亦可逆,且 ( AΤ )−1 = ( A−1)Τ .
A = O 或 B = O ;A2 = O
A=O;
109
AB = AC
B = C . 但 是 A, B 为 方 阵 , 则 有 | AB |=| BA |=| A || B | ;
| AB |= 0 ⇔| A |= 0 或| B |= 0 .
2.逆矩阵的性质
(1)若矩阵 A 是可逆的,则 A−1 是唯一的.
定理 设非齐次线性方程组 Ax = b ,其系数矩阵的秩 r( A) = r(r > 0) ,增广矩阵的秩
第二部分 线性代数
一、行 列 式
1. 行列式的重要定理及公式
定理 对换改变 n 元排列的奇偶性. 定理 任一 n 元排列与排列1 2 3 n 可以经过一系列对换互变,并且所作对换的次数 与这个 n 元排列有相同的奇偶性.
2.行列式的基本性质 性质 1 行列式与它的转置行列式相等. 性质 2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)完全相同,则此行列式等于零.

高中数学线性代数知识点全归纳

高中数学线性代数知识点全归纳

1
②、
2
,左乘矩阵
A

i

A
的各行元素;右乘,
i

A
的各列元素;
3
n
1
1
1
③、对调两行或两列,符号 E(i, j) ,且 E(i, j)1 E(i, j) ,例如: 1
1

1
1
④、倍乘某行或某列,符号
E (i (k ))
,且
E(i(k))1
E(i( 1))
1
,例如:
k
AO
A (1)m n A B
CB OB
BO BC
⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;
n
6. 对于 n 阶行列式 A ,恒有: E A n (1)k Sknk ,其中 Sk 为 k 阶主子式; k 1
7. 证明 A 0 的方法:
①、 A A ; ②、反证法; ③、构造齐次方程组 Ax 0 ,证明其有非零解; ④、利用秩,证明 r(A) n ; ⑤、证明 0 是其特征值;
1 a c
②、型如
0
1
b
的矩阵:利用二项展开式;
0 0 1
A O
C 1 A1
B
O
A1CB B1
1
;(拉普拉斯)
⑤、
A C
O
1
A1
B
B1CA1
O B1
;(拉普拉斯)
3、 矩 阵 的 初 等 变 换 与 线 性 方 程 组
1.
一个
mn
矩阵
A
,总可经过初等变换化为标准形,其标准形是唯一确定的:
F
Er O
O O

线性代数总结

线性代数总结

第一章1、矩阵乘法矩阵乘法通常满足分配律而一般不满足交换律即AB!=BAf(x),g(x)为多项式,有:f(A)g(A)=g(A)f(A)f(A)g(B)!=g(B)f(A)2、矩阵的转置(A+B)^T=A^T+B^T (AB)^T=B^TA^T(kA)^T=kA^T(A^T)^T=A若A^t=-A 称A为反对称矩阵(斜对称矩阵)任意n阶方阵都可以写成对称矩阵和反对称矩阵之和。

3、矩阵的初等变换4、逆矩阵B唯一,B的逆为A。

(AB)^(-1)=B^(-1)A^(-1)(kA)^(-1)=(1/k)A^(-1)①A可逆②AX=0只有零解③Ab=0有唯一解〔①、③即为克拉默法则〕④A≌Ⅰ(等价)最简判断方法:det!=0逆矩阵求法:(A , I)—→(I , A^(-1))5、分块矩阵(注意使用即可)第二章1、性质(①、②为矩阵的某两行)某一行全为零,det=0某两行对应元成比例,则det=0 ①→k·①,则det→k·det①→k·②+①,则det不变①←→②,则det→(-det)detA=det(A^T)detA^-1=1/detAdetAB…N=detAdetB……detN det(kA)=k^n(detA)#伴随矩阵的性质y推导基础:AA*=A*A=(detA)Ⅰ若A可逆,则A^(-1) = (1/detA)A* det(A*)=(detA)^(n-1)(kA)*=k^(n-1)A*(A*)^(-1)= A^(-1)*(A^T)* =(A*)^T(AB)* = B*A*(A*)*=(detA)^(n-2) Ar(A*)={n(rA=n),1(rA=n-1),0(rA<n-1)} 2、矩阵的秩定义:矩阵A的非零子式的最高阶数称为A的秩,零矩阵的秩为0。

性质:A可逆←→R(A)=nR(A)=0←→A=0R(A)=R(A^T)k≠0时,R(kA)=R(A)若P,Q为可逆矩阵,则R(A)=R(PA)=R(AQ)=R(PAQ)A≌B←→R(A)=R(B)(1) 有:初等变换不改变矩阵的秩经过行初等变化把矩阵换为行最简,即可得到秩。

线性代数各要点整理

线性代数各要点整理

第一章行列式主要知识点一、行列式的定义和性质1. 余子式 L和代数余子式的定义2. 行列式按一行或一列展开的公式I牛吐二工岭牛八口...那啊二忖| (1)7屮「手i行… |_0 k3. 行列式的性质1)叶⑷2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍.推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数.推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等二、行列式的计算1. 二阶行列式和三角形行列式的计算•2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算3. 对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开4. 行列式中各行元素之和为一个常数的类型.5. 范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1. 要分清矩阵与行列式的区别2. 几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1. 矩阵A , B的加、减、乘有意义的充分必要条件2. 矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点)(肚卯二屮別+於心+引(小二护+胡」乩护;(AB)k = ABAB艸計;(4 ±卯二才±2虫+£3. 转置对称阵和反对称阵1)转置的性质(A±Bf =A r±B r,(财)『=2",(朋)「=2)若A T=A(A T= - A ),则称A为对称(反对称)阵4. 逆矩阵1)方阵A 可逆(也称非异,非奇异,满秩)的充分必要条件是3) 重要结论:若 n 阶方阵A,B 满足AB=E 贝U A,B 都可逆,且 A -1=B ,B -1=A. 4) 逆矩阵的性质:5)消去律:设方阵 A 可逆,且AB=AC (BA=CA ,则必有B=G (若不知 A 可逆, 仅知A M0结论不一定成立。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结第一章 行列式第一节:二阶与三阶行列式把表达式11221221aa a a -称为11122122a a a a 所确定的二阶行列式,并记作11122112aa aa ,即1112112212212122.a a D a a a a a a ==-结果为一个数。

(课本P1)同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数表111213212223313233a a a a a a a a a 所确定的三阶行列式,记作111213212223313233a a a aa a a a a 。

即111213212223313233a a a aa a a a a =112233122331132132112332122133132231,aa a a a a a a a a a a a a a a a a ++---二三阶行列式的计算:对角线法则(课本P2,P3)注意:对角线法则只适用于二阶及三阶行列式的计算。

利用行列式计算二元方程组和三元方程组:对二元方程组11112212112222ax a x b ax a x b +=⎧⎨+=⎩设11122122a a D a a =≠1121222b a D b a =1112212.a b D a b =则1122221111122122b a b a D xa a Da a ==,1112122211122122.a b a b D x a a Da a ==(课本P2)对三元方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,设1112132122233132330a a a D aa a a a a =≠,1121312222333233b a a D b a a b a a =,1111322122331333a b a Da b a a b a =,1112132122231323a ab Da ab a a b =,则11D x D=,22D xD=,33D xD=。

线性代数必须熟记的结论

线性代数必须熟记的结论

1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式; n 2n !n 2n2. 代数余子式的性质:①、ij A 和的大小无关;ij a ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A ++=−=−M4. 设行列式n D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D −=−; 将D 顺时针或逆时针旋转90,所得行列式为o2D ,则(1)22(1)n n D D −=−;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n −× −;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n −× −;⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m n CA OA AB B OB C==−⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk k k E A S λλλn k −=−=+−∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =−; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是阶可逆矩阵:n ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组有非零解; 0Ax =⇔n b R ∀∈,总有唯一解; Ax b =⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;线性代数必须熟记的结论⇔A 的行(列)向量组是的一组基; n R ⇔A 是中某两组基的过渡矩阵;n R 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3.1**111**()()()()()()T T T T A A A A A A −−−−===1***11()()()T T TAB B A AB B A AB B A −−−===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠O,则: Ⅰ、12s A A A A =L ;Ⅱ、; 111121s A A A A −−−−⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠O②、111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟;(主对角分块) ③、111O A O B B O A O −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟1⎟;(副对角分块) ④、;(拉普拉斯) 1111A C A A CB O B OB −−−−−⎛⎞−⎛⎞=⎜⎜⎟⎝⎠⎝⎠⑤、11111A O A O C B B CAB −−−−−⎛⎞⎛⎞=⎜⎜⎟−⎝⎠⎝⎠⎟;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m 矩阵n ×A ,总可经过初等变换化为标准形,其标准形是唯一确定的:;r m nE OF O O ×⎛⎞=⎜⎟⎝⎠等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则(,)(,)rA E E X A 可逆,且1X A −=;②、对矩阵做初等行变化,当(,)A B A 变为E 时,B 就变成1A B −,即:;1(,)(,)cA B E A B − ∼ ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且; 1x A b −=4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j −=,例如:;1111111−⎛⎞⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠④、倍乘某行或某列,符号(())E i k ,且11(())((E i k E i k −=,例如:1111(011k k k −⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠); ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k −=−,如:;11111(11k k k −−⎛⎞⎛⎞⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0))5. 矩阵秩的基本性质:①、0(;)min(,m n r A m n ×≤≤②、;()()T r A r A =③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则;(可逆矩阵不影响矩阵的秩) ()()()()r A r PA r AQ r PAQ ===⑤、max ;(※) ((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※) ()()()r A B r A r B +≤+⑦、;(※)()min((),()r AB r A r B ≤)⑧、如果A 是矩阵,m n ×B 是矩阵,且n s ×0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为阶方阵,则;n ()()()r AB r A r B n ≥+−6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎞⎜⎜⎜⎟⎝⎠⎟⎟m 二项展开式:01111110()nnnn m n mmn n n nm m n nnnnnnm a b C a C a b C a b Ca b C b Ca b −−−−=+=++++++=∑L L −;注:Ⅰ、(展开后有项;)n a b +1n +Ⅱ、0(1)(1)!1123!()!−−+==−LL L m n n n n n n m n C C m m n m ==n C −=1Ⅲ、组合的性质:;111102−−+−===+=∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()nr A n r A r A n r A n = ⎧⎪==⎨⎪−<−⎩;②、伴随矩阵的特征值:*1*(,AAAX X A A A A X X λλλ− == ⇒ =);③、*1A A A −=、1*n A A−=8. 关于A 矩阵秩的描述:①、,()r A n =A 中有阶子式不为0,n 1n +阶子式全部为0;(两句话)②、,()r A n <A 中有阶子式全部为0; n ③、,()r A n ≥A 中有阶子式不为0;n 9. 线性方程组:,其中Ax b =A 为矩阵,则:m n ×①、m 与方程的个数相同,即方程组Ax b =有个方程;m ②、n 与方程组得未知数个数相同,方程组Ax b =为元方程; n 10. 线性方程组的求解:Ax b =①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成n 元线性方程:n m ①、;11112211211222221122n n n n m m nm n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L LLLLLLLLLLL L n②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⇔=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L M M O M M M L (向量方程,A 为m n ×矩阵,个方程,个未知数)m n ③、()1212n n x x a a a x β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M (全部按列分块,其中);12n b b b β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠M ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(为未知数的个数或维数)n 4、向量组的线性相关性1.个维列向量所组成的向量组m n A :12,,,m αααL 构成n m ×矩阵12(,,,)m A =L ααα;m 个维行向量所组成的向量组n B :12,,,T T TmβββL 构成m n ×矩阵12T T T m B βββ⎛⎞⎜⎟⎜=⎜⎟⎜⎟⎜⎟⎝⎠M ⎟; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)0Ax ⇔=②、向量的线性表出是否有解;(线性方程组) Ax b ⇔=③、向量组的相互线性表示 是否有解;(矩阵方程)AX B ⇔=3. 矩阵与m n A ×l n B ×行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ;(()(T r A A r A =)101P 例15) 5.维向量线性相关的几何意义:n ①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααL α线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s ααL α线性无关,则121,,,s ααα−L 必线性无关;(向量的个数加加减减,二者为对偶) 若维向量组r A 的每个向量上添上个分量,构成n 维向量组n r −B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为)能由向量组r B (个数为)线性表示,且s A 线性无关,则r (二版s ≤74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; (()(,)r A r A B ⇔=85P 定理2)向量组A 能由向量组B 等价(()()(,)r A r B r A B ⇔ ==85P 定理2推论) 8. 方阵A 可逆存在有限个初等矩阵,使⇔12,,,l P P P L 12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵与m n A ×l n B ×:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则与0Ax =0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若,则:m s s n m n A B C ×××=①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是的解,考试中可以直接作为定理使用,而无需证明; 0ABx =①、 只有零解0ABx =0Bx ⇒ =只有零解;②、0Bx = 有非零解一定存在非零解;0ABx ⇒ =12. 设向量组12:,,,n r r B b b b ×L 可由向量组线性表示为:(12:,,,n s s A a a a ×L 110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中为,且K s r ×A 线性无关,则B 组线性无关()r K r ⇔=;(B 与的列向量组具有相同线性相关性) K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q 注:当时,为方阵,可当作定理使用;r s =K 13. ①、对矩阵,存在, m n A ×n m Q ×m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵,存在, m n A ×n m P ×n PA E =()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααL α线性相关⇔存在一组不全为0的数,使得12,,,s k k k L 11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设的矩阵m n ×A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:;()r S n r =−16. 若*η为的一个解,Ax b =12,,,n r ξξξ−L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ−L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵或T A A E ⇔=1T A A −=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即;1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ②、若A 为正交矩阵,则也为正交阵,且1T A A −=1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L 1b a =1;122211[,][,]b a b a b b b =−1LLL12112112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b −1−−−=−−−− L ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、可逆; Q ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ,其中可逆;⇔=T C AC B⇔与有相同的正、负惯性指数; T x Ax T x Bx ③、A 与B 相似 1−⇔=P AP B ; 5. 相似一定合同、合同未必相似;若为正交矩阵,则C T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. 元二次型为正定:n T x Ax A ⇔的正惯性指数为;n A ⇔与E 合同,即存在可逆矩阵,使C T C AC E =; A ⇔的所有特征值均为正数;的各阶顺序主子式均大于0; A ⇔0,0ii a A ⇒>>;(必要条件)。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

线性代数重要定理

线性代数重要定理

=( a1 , a2 ,..., an )
有时,向量也可以写成一列:
a1 a 2 = an
称为列向量。 二、把分量全是零的向量,称为零向量,记作 0,即 0=(0,0,...,0) 把向量( - a1 ,-a2 ,...,-an )称为向量 =( a1 , a2 ,..., an )的负向量,记作- ,即 - =( - a1 ,-a2 ,...,-an ) 三、设向量 =( a1 , a2 ,..., an )和向量 (b1 , b2 ,..., bn ) ,如果它们对应的分量均相等,即
k1 1, k 2 k3 ... k m 0 ,于是 1, k 2 ,..., k m 是一组不全为 0 的数,从而有 k11 k 2 2 ... k m m 1 1 0 2 ... 0 m 0 ,
因此向量组 1 , 2 ,..., m 线性相关。 十一、两个向量线性相关的充分必要条件是它们的各对应分量成比例。 十二、如果一个向量组的一部分向量线性相关,则整个向量组就线性相关。 十三、如果一个向量组线性无关,那么它的任意一个部分分向量也线性无关。 十四、设向量 1 , 2 ,..., m 线性无关, 若添加向量β后所得向量组 1 , 2 ,..., m , 线性相关, 则β可由 1 , 2 ,..., m 线性表示。 十五、设
ai bi
(i=1,2,...,n),
则称这两个向量相等,记作 =β。 n 维向量之间的基本关系是以向量的加法和数量乘法来表示的。 四、设向量 = ( a1 , a2 ,..., an ) 和向量 (b1 , b2 ,..., bn ) , 则向量 ( a1 b1 , a2 b2 ,..., an bn ) 称为向量 和β的和,记作 +β,即

线性代数笔记

线性代数笔记

线性代数笔记Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性代数笔记第一章行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。

性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。

性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。

性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。

范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)克莱姆法则定理1.4.1 对于n阶行列式定理如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。

推论如果齐次方程组有非零解,则必有系数行列式D=0。

第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n ,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。

《线性代数》知识点 归纳整理-大学线代基础知识

《线性代数》知识点 归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 ............................................................................................................................................. - 2 -02、主对角线 ................................................................................................................................................................. - 2 -03、转置行列式 ............................................................................................................................................................. - 2 -04、行列式的性质 ......................................................................................................................................................... - 3 -05、计算行列式 ............................................................................................................................................................. - 3 -06、矩阵中未写出的元素 ............................................................................................................................................. - 4 -07、几类特殊的方阵 ..................................................................................................................................................... - 4 -08、矩阵的运算规则 ..................................................................................................................................................... - 4 -09、矩阵多项式 ............................................................................................................................................................. - 6 -10、对称矩阵 ................................................................................................................................................................. - 6 -11、矩阵的分块 ............................................................................................................................................................. - 6 -12、矩阵的初等变换 ..................................................................................................................................................... - 6 -13、矩阵等价 ................................................................................................................................................................. - 6 -14、初等矩阵 ................................................................................................................................................................. - 7 -15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 -16、逆矩阵 ..................................................................................................................................................................... - 7 -17、充分性与必要性的证明题 ..................................................................................................................................... - 8 -18、伴随矩阵 ................................................................................................................................................................. - 8 -19、矩阵的标准形: ..................................................................................................................................................... - 9 -20、矩阵的秩: ............................................................................................................................................................. - 9 -21、矩阵的秩的一些定理、推论 ............................................................................................................................... - 10 -22、线性方程组概念 ................................................................................................................................................... - 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 -24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 -25、线性方程组的向量形式 ....................................................................................................................................... - 12 -26、线性相关与线性无关的概念 ......................................................................................................................... - 12 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 -29、线性表示与线性组合的概念 ......................................................................................................................... - 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 -31、线性相关(无关)与线性表示的3个定理 ......................................................................................................... - 12 -32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 -33、线性方程组解的结构 ........................................................................................................................................... - 12 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

[线性代数知识点总结(免费)]线性代数期末知识点总结

[线性代数知识点总结(免费)]线性代数期末知识点总结

[线性代数知识点总结(免费)]线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数必考的知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ); ④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性 1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关; 5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定: A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档