《变量与函数(1)》教案
《19.1.1 变量与函数》教案1
《变量与函数》(第一课时)设计单位:黑松驿初级中学八年级数学第十九章《一次函数》19.1《函数》19.1.1变量与函数第一课时(变量与常量)知识目标:理解变量与常量的概念。
重点:变量与常量的概念,变量之间的关系难点:对变量的判断教学设计:一.创设情景,引入新课(1)同学们,你们用过电话吗?假如每分钟的电话费为0.20元,那么我们在打电话的过程中,电话总费用M与通话时长t具有怎样的关系.提问:上述问题中,哪个量是固定不变的,哪些量又是可以变化的?二.讲授新课出示定义:在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量为常量.(2)每张电影票的售价为10元,如果第一场售出票150张,第二场售出票205张,第三场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(3)当圆的半径为r分别为10厘米,20厘米,30厘米时,圆的面积S分别是多少?S与r有怎样的关系?S的值随r的值得变化而变化吗?提问:请同学们指出上述问题中的变量和常量.学生活动:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?1. 小明到商店买练习本,每本单价2元,购买的总数x (本)与总金额y(元)有怎样的关系2. 盛满10千克水的水箱,每小时流出0.5千克水,则水箱中的余水量y(千克)与时间t(小时)之间的关系如何表示呢?3.一只蜡烛全长20厘米,点燃后每分钟燃烧0.2厘米。
燃烧时间t,蜡烛剩余部分L。
用含t的式子表示L4、小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬16元/时计算,设小明的哥哥这个月工作的时间为t 时,应得报酬为m 元,则m与t有怎样的关系?你能找出其中的变量与常量吗?5.长方形的面积为10平方米,那么它的长X与宽y具有怎样的关系。
你能找出其中的变量与常量吗?6.大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系.三、巩固练习1、学生叙述生活中的情景,并找出常量和变量2、投影变量与常量的练习题(试情况而定)四、课堂小结变量:在一个变化过程中数值发生变化的量常量:在一个变化过程中数值始终保持不变的量五、作业1.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为:y=________,其中常量是_____,y和x都是_____量.2.小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月末存12元.设x个月后小张的存款数为y,试写出小张的存款数y与从现在开始的月份数x之间的函数关系式,其中常量是,变量是.六、课后反思。
§14.1 .1 变量与函数教案
《14.1变量与函数》教案九原区沙河五校张成2010年11月1日人教版八年级上册《14.1变量与函数》教案教学内容:§14.1变量与函数(第一课时)教学目标:(一)知识与技能:1、理解变量、常量和函数的概念;2、会简单的用含一个变量的代数式表示另一个变量;3、初步理解感知变量间的关系。
(二)过程与方法:1、充分引入实例,结合实例了解变量、常量和函数的概念;2、通过实例抽象出函数的概念;3、进行启发式、探究式教学。
(三)情感、态度与价值观:1、积极参与数学活动,对数学产生好奇心和求知欲。
2、经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点。
3、形成实事求是的态度以及独立思考的习惯。
教学重点:1、认识识变量、常量。
2、理解函数的定义。
教学难点:1、用含有一个变量的式子表示另一个变量。
2、理解函数的定义。
教学方法:引导、探索法.教具准备:多媒体演示、课堂检测卷教学过程:一、创设情境引入:“万物皆变”(多媒体演示四幅图)──行星在宇宙中的位置随时间而变化;人体细胞个数随年龄而变化;汽车行驶里程随行驶时间而变化;气温随海拔而变化……师引入:这种一个量随另一个量的变化而变化的现象在现实世界中大量存在.为了深刻地认识千变万化的世界,人们经归纳总结得出一个重要数学工具──函数。
用它描述变化中的数量关系,它的应用是极其广泛的。
今天我们就来学习“14.1变量与函数”板书课题§14.1变量与函数二、教学变量和常量的概念出示探究一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,•行驶时间为t小时。
先填下面的表,再试用含t的式子表示s 。
请生解答,集体交流,注意评价和鼓励的语言。
可得:s=60t(板书)师过渡,“这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时。
变量与函数教案
变量与函数教案标题:变量与函数教案1. 教学目标- 了解变量的概念并能正确使用变量- 理解函数的定义和调用过程- 掌握如何在编程中使用变量和函数来解决问题- 培养学生分析和解决问题的能力2. 预备知识- 学生应已掌握基本的编程概念和基础语法知识3. 教学步骤步骤一:引入变量的概念- 通过一个简单的例子引入变量的概念,例如:小明和小红的年龄之和是多少?- 引导学生思考,如果不用变量,我们如何解决这个问题?步骤二:变量定义和使用- 清晰地解释变量如何定义和使用,例如:以年龄为例子,可以使用age作为变量名,通过赋值语句如age = 10来进行变量定义- 引导学生思考不同类型的变量(整数、浮点数、字符串)及其在编程中的应用步骤三:函数的定义和调用- 解释函数的概念和作用,函数是什么以及为什么要使用函数- 通过一个简单的例子,如计算两个数字的和,来引导学生定义自己的函数,并进行函数的调用步骤四:函数参数和返回值- 解释函数参数的概念,如何定义有参数的函数,并如何传递参数- 引导学生思考函数的返回值,例如:一个计算两个数平均值的函数,应该返回什么?步骤五:实际应用- 提供一些实际问题,如求圆的面积、判断一个数是否为素数等- 引导学生思考如何利用变量和函数来解决这些问题,鼓励他们亲自实践并完成代码4. 拓展练习- 提供一些更复杂的问题,如排序算法、递归算法等,让学生应用变量和函数进行解决,并加强他们的编程能力。
5. 总结与评价- 总结本节课学习到的内容,引导学生回顾变量和函数的概念与应用- 评价学生在课堂练习和拓展练习中的表现,并鼓励他们继续深入学习和探索尽管本教案是一个基本框架,但要根据具体年级和学生能力进行相应调整。
通过合理的教学组织和辅助材料,学生将能够全面理解变量和函数的概念,并能够熟练运用它们来解决问题。
初中数学《变量与函数》教案
初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别生活中的变量。
2. 让学生掌握函数的定义,能够判断生活中的函数关系。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 变量:定义、分类及表示方法。
2. 函数:定义、表示方法及生活中的函数关系。
三、教学重点与难点1. 重点:变量与函数的概念及表示方法。
2. 难点:函数关系的判断及应用。
四、教学方法1. 采用情境教学法,结合生活实例讲解变量与函数的概念。
2. 利用数形结合法,引导学生理解函数的表示方法。
3. 运用小组合作学习,培养学生的团队协作能力。
五、教学过程1. 导入:通过展示生活中的一些变化现象,引导学生认识变量。
2. 新课导入:介绍变量的定义、分类及表示方法。
3. 案例分析:分析生活中的函数关系,让学生理解函数的概念。
4. 课堂练习:让学生自主完成一些关于变量与函数的练习题。
六、教学评价1. 评价目标:检查学生对变量与函数概念的理解,以及能否运用所学知识解决实际问题。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。
3. 评价内容:a. 学生能否正确识别生活中的变量。
b. 学生能否理解并运用函数的定义。
c. 学生能否判断生活中的函数关系。
d. 学生能否运用数学知识解决实际问题。
七、教学资源1. 教学课件:展示生活中的变化现象,图片、图表等。
2. 练习题:提供一些关于变量与函数的练习题,包括选择题、填空题、解答题等。
3. 小组讨论材料:提供一些实际问题,让学生在小组内进行讨论和分析。
八、教学进度安排1. 第1周:介绍变量概念,让学生认识生活中的变量。
2. 第2周:讲解函数的定义,让学生理解函数关系。
3. 第3周:练习题讲解,巩固所学知识。
4. 第4周:小组合作学习,解决实际问题。
九、课后作业1. 复习本节课的主要内容,整理笔记。
2. 完成练习题,巩固所学知识。
3. 思考生活中的函数关系,尝试运用所学知识解决实际问题。
初中数学《变量与函数》教案
初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别常量和变量。
2. 让学生掌握函数的定义,能够判断两个变量之间的函数关系。
3. 培养学生运用函数解决实际问题的能力。
二、教学内容1. 常量与变量的概念。
2. 函数的定义及其相关性质。
3. 函数关系的判断。
三、教学重点与难点1. 教学重点:常量与变量的概念,函数的定义及其性质。
2. 教学难点:函数关系的判断。
四、教学方法1. 采用问题驱动法,引导学生主动探究常量与变量、函数的关系。
2. 利用实例分析,让学生直观理解函数的概念。
3. 运用小组合作学习,培养学生解决实际问题的能力。
五、教学过程1. 导入新课:通过展示生活中常见的变化现象,引导学生认识常量和变量。
2. 自主学习:让学生通过教材自主学习常量与变量的概念,并尝试判断生活中的常量和变量。
3. 课堂讲解:讲解常量与变量的概念,并通过实例让学生理解函数的定义。
4. 课堂练习:设计相关练习题,让学生判断生活中的函数关系。
5. 拓展应用:让学生运用函数解决实际问题,如计算购物时的折扣等。
6. 总结反馈:对本节课的内容进行总结,收集学生反馈,为后续教学做好准备。
六、教学评价1. 课后作业:布置有关常量、变量和函数的练习题,要求学生在课后进行自主复习和巩固。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答以及合作学习的表现,了解学生的学习情况。
3. 实际问题解决:评估学生在解决实际问题时的应用能力,如购物折扣、行程规划等。
七、教学拓展1. 介绍函数在现实生活中的应用,如经济学中的需求函数、物理学中的速度与时间函数等。
2. 引导学生探究函数的图像,如直线、曲线等,并了解它们的特点和应用。
八、教学资源1. 教材:提供《变量与函数》的相关章节内容,供学生自主学习和参考。
2. 实例素材:收集生活中的实例,用于讲解和展示函数的应用。
3. 练习题库:准备不同难度的练习题,用于课堂练习和课后巩固。
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
人教版数学八年级下册19.1.1《变量与函数》教学设计1
人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
《变量与函数》教案
《变量与函数》教案第一章:变量的概念与分类1.1 引入变量通过现实生活中的实例引入变量的概念,让学生理解变量表示事物变化的量。
讲解变量可以用字母表示,如x, y等。
1.2 变量分类讲解常量和变量的区别,常量是固定不变的数,变量是可以改变的数。
讲解自变量和因变量的概念,自变量是独立变量,因变量是依赖于自变量的变量。
第二章:函数的定义与性质2.1 函数的定义讲解函数的概念,函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。
讲解函数的表示方法,如解析式、表格、图象等。
2.2 函数的性质讲解函数的单调性,即函数值随自变量变化的趋势。
讲解函数的奇偶性,即函数关于原点的对称性。
讲解函数的周期性,即函数值随自变量变化的周期性。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义,一次函数是形式为y=kx+b的函数,其中k和b是常数。
讲解一次函数的图象特征,如直线、斜率等。
3.2 二次函数讲解二次函数的定义,二次函数是形式为y=ax^2+bx+c的函数,其中a、b、c是常数且a≠0。
讲解二次函数的图象特征,如抛物线、开口方向、顶点等。
第四章:函数的图像4.1 函数图像的绘制讲解如何绘制函数的图像,如利用描点法、直线平移法等。
讲解如何利用函数图像分析函数的性质,如单调性、奇偶性、周期性等。
4.2 函数图像的变换讲解如何对函数图像进行平移,如向上平移、向下平移、向左平移、向右平移等。
讲解如何对函数图像进行缩放,如水平缩放、垂直缩放等。
第五章:函数的应用5.1 函数在实际问题中的应用讲解如何利用函数解决实际问题,如成本问题、利润问题等。
讲解如何建立函数模型,即将实际问题转化为函数问题。
5.2 函数在数学问题中的应用讲解如何利用函数解决数学问题,如求解函数的零点、最值等。
讲解如何利用函数性质解决数学问题,如证明不等式等。
第六章:函数的极限与连续性6.1 函数的极限讲解函数在某一点邻域内的极限概念,即当自变量趋近于该点时,函数值的趋近行为。
人教版八年级下册19.1.1变量与函数(教案)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。
19.1.1变量与函数第一课时教学设计
《19.1.1变量与函数(1)》教学设计南于庄中学闫雅慧一.内容和内容解析【教学内容】《19.1.1变量与函数(1)》是义务教育教科书人教版八年级下册第十九章第一节第1课时,介绍变量与函数的概念,是典型的概念课,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节课核心内容。
【教材分析】函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。
方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。
本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系。
本节课中涉及的列函数解析式不是新的教学内容(将来学的待定系数法才是新的教学内容),也不是本节课能解决的问题,因此把设计的重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.”【学情分析】变量与函数的概念把学生由常量数学的学习引入变量数学学习中.“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.另一方面,学生在日常生活中也接触到函数图象、两个变量的关系等生活实例.在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和函数的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念.二.目标和目标解析【知识与能力目标】(1)了解常量、变量和函数的意义,并能在具体实例中分清常量、变量。
(2)初步理解函数的定义,能判断两个变量是否具有函数关系。
【过程与方法目标】借助简单实例,体会从生活实例抽象出数学知识的方法,经历函数概念的抽象概括过程,体会函数的模型思想,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.让学生主动地充实观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解。
人教版八年级下册19.1.1 变量与函数(1)教学设计
《19.1.1 变量与函数》教学设计(第1课时)一、内容和内容解析1.内容变量与常量的概念.2.内容解析本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从学生身边的常见问题及四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,且问题中变量的单值对应关系也为学习函数的定义作了铺垫.二、教学问题诊断分析变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系,类似于一元一次方程,没有用运动与变化的观点去体会两个变量之间相互依赖的变化.三、教学目标1.了解变量与常量的意义,体验在一个过程中常量与变量是相对存在的;2. 在较复杂问题中辨别常量与变量;3. 通过列举同学们身边的事例,激发同学们探究问题的兴趣,体会数学的应用价值,在探索活动中获得成功的体验。
学习重难点:重点:能找出一个变化过程中的变量与常量,难点:体会运动变化过程中量的变化.四、设计理念:1.改变知识的呈现方式,创设良好的游戏,情景氛围,激发学生的学习欲望,理清知识的来龙去脉。
2.改变单纯的学习方式,通过观察,分析,归纳,运用等活动,体验用数学的思维解决问题,增强应用意识,形成数学能力。
3.优化提问设计,给学生充分思考,交流的时空,引导学生自主构建变量与常量的定义。
新课标指出学生是学习的主人,是学习的主体。
本节课的整个教学过程,学生的思维处于活跃状态,学生获得知识的同时,学习能力和学习方法也得到了相应的发展,通过对比,学生主动建构知识,在总结中增强了学习的信心,并体验到了数学来源于生活,服务于生活。
五、设计思路:从学生感兴趣的生活实例入手,自然的创设了愉快的学习氛围,使学生轻松的理解了变量与常量这一比较枯燥的概念,接着通过四个探究,使学生从解析式,表格,图像等三种形式中辨析出变量与常量,在对比中主动观察,分析和讨论,感知理解从初步到深刻,从数字到字母,从特殊到一般,逐步深入。
《变量与函数》教案
《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够区分常量与变量。
2. 让学生掌握函数的定义,理解函数的表示方法。
3. 培养学生运用变量和函数解决实际问题的能力。
二、教学内容1. 变量概念的引入和区分2. 函数的定义和表示方法3. 函数的性质和特点4. 实际问题中的函数应用三、教学重点与难点1. 重点:变量、函数的概念及表示方法。
2. 难点:函数的性质和实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究变量和函数的关系。
2. 利用实例分析,让学生直观理解函数的概念。
3. 运用小组合作学习,培养学生解决问题的能力。
五、教学准备1. 课件、教案、blackboard2. 实例素材(如:温度随时间的变化、商品价格等)3. 练习题一、教学目标1. 让学生理解变量的概念,能够区分常量与变量。
二、教学内容1. 引入变量概念:通过生活实例,引导学生认识变量,理解变量表示事物变化的概念。
2. 区分常量与变量:讲解常量和变量的定义,让学生能够识别生活中的常量和变量。
三、教学重点与难点1. 重点:理解变量的概念,能够区分常量与变量。
2. 难点:识别生活中的常量和变量。
四、教学方法1. 采用情境教学法,以生活实例引入变量概念,激发学生兴趣。
2. 运用讲解法,明确常量与变量的区别。
五、教学准备1. 课件、教案2. 生活实例素材(如:身高、体重等)教学过程:1. 导入:通过展示身高、体重等生活实例,引导学生认识变量。
2. 新课导入:讲解常量与变量的定义,明确它们的概念和区别。
3. 实例分析:让学生举例说明常量和变量,加深对概念的理解。
4. 课堂练习:设计练习题,让学生区分常量和变量。
六、教学内容1. 函数的定义和表示方法2. 函数的性质和特点七、教学重点与难点1. 重点:理解函数的定义,掌握函数的表示方法。
2. 难点:函数的性质和特点的理解与应用。
八、教学方法1. 采用案例分析法,通过具体实例让学生理解函数的概念。
人教版八年级下册第十九章:19.1.1变量与函数(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数的基本概念。函数是一种特殊的关系,每个输入值对应唯一的输出值。它在描述现实世界中的数量关系方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调函数的定义和三要素这两个重点。对于难点部分,如函数图像的识别与绘制,我会通过具体例题和图像分析来帮助大家理解。
五、教学反思
在今天的课堂中,我们探讨了变量与函数的概念,我发现学生们对这个话题的兴趣还是挺高的。他们对于生活中各种变量关系的例子非常敏感,比如身高和体重、时间和速度等。在导入新课的时候,通过提问的方式激发了学生的好奇心,这是一个不错的开始。
在新课讲授环节,我注意到了一些问题。对于函数的定义,虽然我尽力用简单明了的语言解释,但仍然有一些学生显得有些迷茫。我可能需要寻找更多生动的例子,或者尝试用图形来直观展示输入和输出之间的关系,以便让学生更好地理解函数的本质。
4.掌握常量函数、线性函数、反比例函数等基本函数类型。
二、核心素养目标
1.培养学生运用数学语言描述现实世界中变量关系的抽象思维能力,提升数学建模素养。
《变量与函数(1)》参考教案
19.1.1 变量与函数(1)教学目标(一)教学知识点1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.(二)能力训练要求1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量.2.用式子表示变量间关系.教学难点用含有一个变量的式子表示另一个变量.教学方法引导、探索法.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是________.变变化的量是__________.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.Ⅱ.导入新课[师]我们首先来思考上面的几个问题,可以互相讨论一下,然后回答.[生]从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60•千米/小时是不变的量.[师]很好!谢谢你正确的阐述.这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.[活动一]活动内容设计:1.每张电影票售价为10元,如果第一场售出票150张,第二场售出205张,第三场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师活动:引导学生通过合理、正确的思维方法探索出变化规律.学生活动:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.活动结论:1.第一场电影票房收入:150×10=1500(元)第二场电影票房收入:205×10=2050(元)第三场电影票房收入:310×10=3100(元)关系式:y=10x2.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10[师]通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10 cm……都是常量.Ⅲ.随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.Ⅳ.课时小结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.1.确定事物变化中的变量与常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系区.Ⅴ.课后作业课后思考题、练习题.Ⅵ.活动与探究瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y 与层数x 之间的关系式.过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.结论:从题意可知:堆放1层,总数y=1堆放2层,总数y=1+2堆放3层,总数y=1+2+3… …堆放x 层,总数y=1+2+3+…x 即y=21x (x+1)。
变量与函数第一课时 教案 (1)doc
§17.1.1 变量与函数(1)教师学科数学年级八年级课题§17.1.1 变量与函数(1)时间2005年3月17日三维目标知识与技能(1) 掌握常量和变量、自变量和因变量(函数)基本概念;(2)了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法(1) 通过实际问题,引导学生直观感知,领悟函数基本概念的意义;(2) 引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.情感、态度与价值观经历对有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图形欣赏的意识。
教学重点函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.教学难点对函数概念的理解,说出生活实际中有函数关系的量的实例.关键点函数基本概念教具学具课件、刻度尺等教学环节知识内容教师活动学生活动设计意图一、回顾与探索在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1如图是某地一天内的气温变化图.(让B层的学生回答问题,并适当加以鼓励)学生回答问题,并让学生互相补充创设问题情景引导学生回忆,并巩固所学知识教学环节知识内容教师活动学生活动设计意图看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:(让A层学生举出生活中实例并适当的加以鼓励)观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.让学生充分思考,互相交流,并让学生代表回答问题解随着存期x的增长,相应的年利率y也随着增长.学生在教师引导下主动学习并积极思考相关问题问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:教师巡视全班,对有困难的学生加以点拨指导,对学生交流及反馈情况加以总结并引导学生得出结论观察上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f就________.学生思考,探索交流,并尝试解题解(1) l 与 f的乘积是一个定值,即f=300 000,或者说l300000f.(2)波长l越大,频率f就越小.探究新知2学生在教师引导下主动学习并积极思考相关问题,并作出概括。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1变量与函数(1)
一、知识技能目标
1.掌握常量和变量、自变量和因变量(函数)基本概念;
2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.
二、教学重、难点:
重点:领悟函数基本概念的意义;
难点:引导学生联系代数式和方程的相关知识,继续探索数量关系。
三、教学过程
(一)、创设情境
在学习与生活中,经常要研究一些数量关系,先看下面的问题.
问题1如图是某地一天内的气温变化图.
看图回答:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃.最低气温是-4℃;
(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?
(二)、探究归纳
问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表:
观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快?
解 随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快.
问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
观察上表回答:
(1)波长l 和频率f 数值之间有什么关系? (2)波长l 越大,频率f 就________. 解 (1) l 与 f 的乘积是一个定值,即 lf =300 000, 或者说 l
300000
=
f . (2)波长l 越大,频率f 就 越小 .
问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S =_________.
利用这个关系式,试求出半径为1 cm 、1.5 cm 、2 cm 、2.6 cm 、3.2 cm 时圆的面积,并将结果填入下表:
由此可以看出,圆的半径越大,它的面积就_________. 解 S =πr 2.
圆的半径越大,它的面积就越大.
在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t 和气温T ,气温T 随着时间t 的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable ).
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量(independent variable ),y 是因变量(dependent variable ),此时也称y 是x 的函数(function ).
表示函数关系的方法通常有三种: (1)解析法,如问题3中的l
300000
=
f ,问题4中的S =π r 2,这些表达式称为函数的关系式. (2)列表法,如问题2中的小蕾的体重表,问题3中的波长与频率关系表. (3)图象法,如问题1中的气温曲线.
问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题3中的300 000,问题4中的π等.
在研究函数时,必须注意自变量的取值范围.实际问题中,自变量的取值必须符合实际意义.例如,上述问题4中,自变量r表示圆的半径,不能为负数和零,即它的取值范围为一切正实数.
(三)、实践应用
例1 下表是某市2012年统计的中小学男学生各年龄组的平均身高:
(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?
(2)该市男学生的平均身高从哪一岁开始迅速增加?
(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?
解(1)平均身高是155cm;
(2)约从14岁开始身高增加特别迅速;
(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.
例2 写出下列各问题中的关系式,并指出其中的常量与变量,指出自变量的取值范围:
(1)圆的周长C与半径r的关系式;
(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;
(3)n边形的内角和S与边数n的关系式.
解(1)C=2π r,2π是常量,r、C是变量,r≥0;
(2)s=60t,60是常量,t、s是变量,t≥0;
(3)S=(n-2)×180,2、180是常量,n、S是变量,n≥3.
(四)、交流反思
1.函数概念包含:
(1)两个变量;
(2)两个变量之间的对应关系.
2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量.
3.函数关系三种表示方法:
(1)解析法;
(2)列表法;
(3)图象法.
4. 函数的取值范围:
在研究函数时,必须注意自变量的取值范围.实际问题中,自变量的取值必须符合实际意义.
(五)、作业
(六)、课后反思:。