地震资料数字处理技术2

合集下载

(完整版)地震资料数字处理复习题答案

(完整版)地震资料数字处理复习题答案

地震资料数字办理复习题一、名词解说( 20 分)1、速度谱把地震波的能量有关于波速的变化关系的曲线称为速度谱。

在地震勘探中,速度谱通常指多次覆盖技术中的叠加快度谱。

2、反滤波又称反褶积,是指为提升纵向分辨率,去掉大地滤波器的作用,把持续几十至100ms 的地震子波b(t)压缩成本来的震源脉冲形式,地震记录变为反应反射系数序列的窄脉冲组合。

3、地震资料数字办理就是利用数字计算机对野外处震勘探所获取的原始资料进行加工、改良,以期获取高质量的、靠谱的地震信息,为下一步资料解说供给靠谱的依照和有关的地质信息。

4、数字滤波数字滤波就是指用数学运算的方式用数字电子计算机来实现滤波。

对失散化后的信号进行滤波,输入、输出都是失散数据。

5、水平叠加将不一样接收点遇到的来自地下同一反射点的不一样激发点的信号,经动校订叠加起来。

6、叠加快度在一般状况下,都可将共中心点反射波时距曲线看作双曲线,用一个相同的式子来表示: t2=t 2+x2 /V 2,此中, V就是叠加快度。

0αα7、静校订把因为激发和接收时地表条件变化所惹起的时差找出来,再对其进行校订,使畸变了的时距曲线恢复成双曲线,以便能够正确地解说地下的结构状况,这个过程叫做静校订。

8、动校订除去因为接受点偏离炮点所惹起的时差的过程,又叫正常时差校订。

9、假频一个连续信号用过大的采样获取的失散序列实质上含有连续信号中高频成分的贡献。

这些高频成分折叠到失散时间序列中较低的频次。

这类现象是由连续信号采样不足惹起的,称作假频。

10、亮点技术所谓“亮点”狭义地说是指地震反射剖面上因为地下油气藏存在所惹起的地震反射波振幅相对加强的“点” 。

利用地震反射波的振幅异样,同时也利用反射波的极性反转、水昭雪射的出现、速度的降低及汲取系数的增大等一系列亮点表记综合指示地下油、气藏的存在,从而直接寻找油、气藏的技术。

11、有关定量地表示两个函数之间相像程度的一种数学方法。

12、自有关表示波形自己在不一样相对时移值时的有关程度。

地震资料处理复习总结(第1-6章)

地震资料处理复习总结(第1-6章)

《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。

应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。

连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。

它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。

)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。

其模量|),(|k X ω称为函数),(t x X 的振幅谱。

由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。

如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。

二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。

数字技术在地质勘探空间信息处理中的应用案例

数字技术在地质勘探空间信息处理中的应用案例

数字技术在地质勘探空间信息处理中的应用案例地质勘探一直是石油、矿产等资源行业的重要环节,而数字技术的快速发展和普及为地质勘探带来了巨大的变革。

数字技术在地质勘探中的应用为空间信息处理提供了高效准确的解决方案。

本文将以几个具体案例为例,探讨数字技术在地质勘探空间信息处理中的应用。

一、地震勘探中的数字技术应用地震勘探是地质勘探中常用的一种方法,通过记录并分析地壳中产生的地震波,获取地下结构的信息。

在过去,地震勘探主要依靠人工解读数据,效率低下且容易出错。

随着数字技术的发展,人们可以利用计算机算法和模型来处理地震数据,大大提高了勘探的效率和准确性。

比如,在地震数据处理中,使用数字滤波技术可以有效地去除背景噪声,突出地下结构的细节。

同时,数字技术还可以通过反演算法,将地震数据转换成可视化的地下模型,帮助地质学家更好地理解地下结构,为勘探决策提供可靠的依据。

二、地形测量中的数字技术应用地形测量是地质勘探的另一个关键环节,通过测量地表的起伏和形状,可以确定地质构造和沉积环境等重要信息。

数字技术在地形测量中的应用使得数据的获取和处理更加便捷和准确。

激光雷达技术(LiDAR)是地形测量常用的数字技术之一。

利用激光雷达仪器对地表进行扫描,可以高精度地获取地表的数据。

获取到的数据可以通过数字海拔模型(DEM)进行处理和分析,快速生成地形图、坡度图、等高线等多种地表表示方式,为地质勘探提供宝贵的信息。

三、地质模拟中的数字技术应用在地质勘探中,地质模拟是一种重要的辅助工具。

通过数字技术,地质模拟可以更真实、更复杂地还原地下地质结构和过程,帮助地质学家更好地理解地质演化和资源形成。

数值模拟技术是地质模拟的一种重要方法。

利用计算机进行数值模拟可以模拟地震、地壳运动、岩石变形、沉积过程等多种地质现象,生成准确的地质模型。

这些模型可以用于预测资源分布、评估地质灾害风险等,为勘探工作提供指导和支持。

四、地质数据库中的数字技术应用地质数据库是地质勘探中重要的数据存储和管理平台。

地震资料常规处理流程

地震资料常规处理流程

DM高分辨率的理由和目的 一方面,由于叠加的低通滤波效应,使叠前已经展宽的频带又变窄,有进一步展宽频带的需要。 另一方面,叠加后的地震记录的信噪比大幅度提高,为进一步提高分辨率地在奠定了基础。 叠后提高分辨率的目的就是进一步提高地震记录对薄层的识别能力。
反褶积前的叠加
反褶积后的叠加
七、CMP道集分选
CMP道集又称共中心点道集,当地震数据置完道头以后,每个地震道的CMP号、线号、炮检距等各种信息就已经存在了,因此,分选就是利用道头信息,按要求将地震道排列到一起。 CMP分选一般按CMP号从小到大,使用两级分选或三级分选: CMP、炮检距(站号) CMP、线号、炮检距(站号) CMP道集经过动校正后,就可以将道集内各道求和,形成叠加道。每个CMP都进行求和,就形成了叠加剖面。
2、常用的叠后噪音压制方法 叠后压噪方法非常多,这里只介绍常用的四种: (1)随机噪声衰减——提取可预测的线性同相轴,分离出噪音,达到提高信噪比的目的。 ——注意:线性假设并不符合实际情况,也容易失真。 (2)F—K域滤波——主要用于压制线性相干干扰。在F—k域中,线性相干干扰分布比较集中,范围较小,可以将其切除,达到压制线性相干干扰的目的。类似的还有F—X域滤波等等。 ——注意:容易引起“蚯蚓”现象,建议不使用扇形滤波因子。 (3)多项式拟合——基于地震道数据有横向相干性的原理,假设地震记录同相轴时间横向变化可用一高次多项式表示,沿同相轴时间变化的的各道振幅变化也可以用一待定系数的多项式表示。首先通过多项式拟合,求出地震信号的同相轴时间、标准波形和振幅加权系数,然后将它们组合成拟合地震道。——不保真。 (4)径向滤波——在定义的倾角范围和道数内,通过时移求出最大相关值所对应的倾角,然后沿这个倾角对相邻道加权求和,从而增强该倾角范围内的相干同相轴,虚弱随机噪音和倾角范围以外的同相轴。提高地震记录的信噪比。——不保真。

地震勘探原理与解释-复习资料

地震勘探原理与解释-复习资料

地震勘探原理与解释一、判断题(每小题2分,总分40分)1、“陆相生油”理论是由李四光先生提出来的(×)。

2、1951年中国成立了第一支石油地震勘探队(√)。

3、GeoEast是法国CGG的地震资料处理与解释软件(×)。

4、费马原理认为地震波走的是最短距离路径(×)。

5 、地震信号的视周期越大,主频就越低(√)。

6、剪切模量定义为体积应力与体积应变之比(×)。

7、实际采集的地震记录中观察不到零相位子波(×)。

8、地震反射波振幅有强有弱只是地下构造造成的(×)。

9、地震垂直分辨率主要与第一菲涅尔带半径有关(×)。

10、地震检波器组合提高了信噪比,但降低了地震分辨率(√)。

11、地震测线上激发点与炮检距的相互空间位置关系称为观测系统(√)。

12、地震反褶积只能用于提高地震分辨率(×)。

13、可以证明,地震均方根速度大于等于平均速度(√)。

14、地震水平叠加处理后,地震剖面上的绕射波得到了收敛(×)。

15、1987年中国地球物理学会成立(×)。

16、马在田院士主要从事工程地震勘探工作(×)。

17、地震叠加速度分析是在地震水平叠加以后进行的(×)。

18、地震动校正的“动”主要体现在动校正量随着炮间距和传播时间等因素变化(√)。

19、利用地震反射剖面上的不整一或与之可以对比的整一,可以划地震层序(√)。

20、地震反射波层位和地下地层界面是一一对应的(×)。

二、单选题(每小题2分,总分28分)21、地震勘探主要依据地下岩石的(A)A、弹性差异B、磁性差异C、电性差异D、密度差异22、美国勘探地球物理学家学会(SEG)是何时成立的(A)A、1930B、1940C、1950D、196023、CDP技术是哪位地球物理学家发明?(A)A、梅恩B、卡切尔C、费森登D、明特罗普24、地震波大概在以下哪个频率范围之内是正常的?(A)A、3Hz-130HzB、5000Hz-10000HzC、1KHz-20KHzD、 1MHz-100MHz25、哪位科学家首先提出了纵波和横波的概念?(B)A、牛顿B、泊松C、瑞利D、胡克26、某一水平地层界面产生折射波的主要条件是(C)A、地层界面下伏介质速度小于上覆介质速度B、地层界面上下有波阻抗差异C、地层界面下伏介质速度大于上覆介质速度D、地层界面上下有密度差异27、地震褶积模型是由哪位地球物理学家首先提出的?(B)A、梅恩B、Enders RobinsonC、卡切尔D、费马28、一个水平界均匀介质情况下共中心点记录的时距曲线方程是(A)A、双曲线B、抛物线C、直线D、折线29、以下哪个英文缩写指的是垂直地震剖面(A)A、VSPB、RVSPC、SWDD、LWD30、以下哪个不是地震预处理的内容?(A)A、动校正B、数据加载C、数据解编D、观测系统定义31、以下哪个不是地震数据的记录格式?(A)A、LasB、SEG-2C、SEG-2D、SEG-D32、地震数字滤波处理的目的是(B)A、提高分辨率B、提高信噪比C、速度分析D、提取子波33、地震地层学出现在什么年代(A)A、20世纪70年代B、20世纪50年代C、20世纪90年代D、20世纪80年代34、直接烃类指示“DHI”是什么英文的缩写 (2分)A、Direct Hydrocarbon IndicatorB、Direct Hydrocarbon InterpretationC、Direct Hydrocarbon IndexD、Direct Hydrophone Indicator35、地震偏移处理主要目的是(B)A、提高信噪比B、提高分辨率C、提高速度精度D、降低处理成本36、以下哪个是地震资料处理软件?(C)A、检波器B、可控震源C、GeoEastD、空气枪37、地震横波可以在哪种介质中传播(C)A、空气枪B、石油C、碳酸盐岩D、空气38、A VO指的是(B)A、地震反射波振幅随炮检距变化B、地震反射波振幅随频率变化C、地震反射波振幅随相位变化D、地震反射波振幅随波形变化39、A,B,C是什么地震干扰波?(A)A、声波B、面波C、多次波D、绕射波40、下面地震剖面中的断层是(A)A、正断层B、逆断层C、背斜D、向斜三、多选题(每小题3分,总分30分)41、地震波垂直入射情况下,产生反射波的主要条件是(B D)A、反射界面上下有温度差异B、反射界面上下有弹性差异C、反射界面上下有压力差异D、反射界面上下有波阻抗差异42、测量地震平均速度的方法主要有(A C)A、地震测井B、静校正C、声波测井D、密度测井43、制作影响合成地震记录质量的主要因素有(A B D)A、测井资料质量B、子波的频率C、自然伽玛测井D、地震子波类型44、地震多次波可以分为以下哪几种(A B C)A、全程多次波B、短程多次波C、微曲多次波D、点绕射波45、问题39 多选 (3分) (A C D)在地震反射波记录上,地震面波干扰的主要特征A、能量强B、速度高C、频散D、低频46、海上地震勘探与陆上的最大差别在于(B C D)A、没有干扰波B、使用空气枪震源C、使用拖揽D、在船上施工47、地震勘探对震源的基本要求是(A B C DE)A、能量足B、频带宽C、噪音小D、一致性好E、健康安全与环保48、陆上地震可控震源适合于哪些地区进行地震波激发?(A B D)A、城市B、沙漠C、沼泽D、极地49、以下哪些说法是相同的意思(A B C)A、NMOB、正常时差C、动校正量D、DMO50、求取低、降速带厚度和速度的主要方法有(B C)A、滤波B、浅层折射法C、微地震测井D、地震偏移(第1周)第1章石油勘探概论第一章石油勘探概论单元测验问题1 单选 (2分)美国勘探地球物理学家学会是哪个缩写词?AAPG美国石油地质家学会SEG美国勘探地球物理学家学会SPE美国石油工程师学会CGS中国地球物理学会问题2 单选 (2分)地震勘探的英文是以下哪一个?seismic exploration geophysics exploration earthquake exploration exploration seismology 问题3 单选 (2分)地震勘探主要依据地下岩石的电性差异弹性差异密度差异磁性差异问题4 单选 (2分)电法勘探主要依据地下岩石的电性差异磁性差异弹性差异密度差异问题5 单选 (2分)磁法勘探主要依据地下岩石的电性差异磁性差异弹性差异密度差异问题6 单选 (2分)重力勘探主要依据地下岩石的电性差异弹性差异密度差异磁性差异问题7 单选 (2分)美国勘探地球物理学家学会(SEG)是何时成立的?1930年1940年1950年1960年问题8 单选 (2分)CDP技术是哪位地球物理学家发明?梅恩卡切尔费森登卢德格尔·明特罗普问题9 单选 (2分)中国第一支石油地震勘探队成立于1921年1939年1945年1951年问题10 单选 (2分)以下哪个不是地球物理勘探公司BGP中国东方地球物理公司CGG法国地球物理总公司SPE是美国石油工程师学会WGC美国西方地球物理公司。

地震资料数字处理实验部分

地震资料数字处理实验部分

(5)AGC、振幅谱
(6)地震包函数(S4M)
(6)地震包函数
(6)地震包函数
(6)地震包函数
(6)地震包函数
(6)地震包函数
(6)测井包函数
(6)测井包函数
(6)地震包函数
(7)读测井数据(Las 文件)、显示测井曲线
TAUP变换 实验目的
1、了解TAUP变换的原理和方法 2、掌握Matlab中用于TAUP变换的有关函数 3、 TAUP变换前后地震数据的对比分析
原始野外记录中的道号 炮点号 CDP号 (xline) CDP道集内的道序号 道识别码 l=地震数据; 2=死道; 3=无效道(空道); 4=爆炸信号; 5=井口道; 6=扫描道; 7 =计时信号;
三、SEG-Y格式
垂直叠加道数 水平叠加道数 数据类型:1=生产;2=试验
炮点到接收点的距离(如果排列与激发前进方向相反取负值)(分米)
接收点的地面高程。高于海平面为正,低于海平面为负(cm)
炮点的地面高程(cm) 炮井深度(正数,cm)
接收点基准面高程(cm) 炮点基准面高程(cm)
炮点的水深(cm) 接收点的水深(cm)
ห้องสมุดไป่ตู้
三、SEG-Y格式
为(41一68字节中) 高程和深度的比例因 子=l, 土10,土100,土
1000 或者 土10000。 如果为正,乘以因子; 如果为负,则除以因 子
六、处理效果分析 1、地震数据的速度分析
2、CMP道集动校正的应用
3、剩余静校正
4、水平叠加处理
总结 通过本次地震数据处理课程设计,对地震数据处理的流程,包括速度分析、动校正、剩余静校正及叠加的方
法的使用有了更深一步的理解;将理论和实践相结合,熟悉了linux系统的操作环境和promax软件的基本操作 方法,提高了理论联系实际的能力。在处理的过程中要仔细认真的做好每一步,避免疏忽错误,得到较大误 差数据,不然实验结果就不准确,影响课程设计的效果。从各个方面提高了自己,不仅对上机过程遇到的问 题,还是一些理论知识的疏漏,在这次试验中得到了检验,并学会该如何处理问题,也提高了自己的实际操 作动手能了,给以后的实际工作打好基础。

《地震资料数字处理》复习

《地震资料数字处理》复习

《地震资料数字处理》复习地震资料数字处理围绕以下三方面工作:1、提高信噪比;2、提高分辨率;3、提高保真度。

一、提高信噪比的处理1、原理利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。

2、处理顺序提高信噪比包含消除噪声和增强信号两部分内容。

消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等,增强信号一般在叠后剖面上进行,主要针对随机噪声。

3、随机噪声是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。

随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。

随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。

4、一维滤波器(伪门、Gibbs现象)频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。

它压制通放带以外的频率成分,保留通放带以内的频率成分。

Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。

5、二维滤波器二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。

通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。

二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。

6、频率-波数域二维滤波实现步骤:(1)把时间和空间窗口里的数据变换到f-k域;(2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ;(3)从f-k域反变换到t-x域。

8、数字滤波有两个特殊性质:(1)数字滤波由于时域离散化会带来伪门现象,(2)由于频域截断会造成吉卜斯现象。

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。

本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。

1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。

纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。

当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。

2.地震波探测方法地震波探测方法包括折射波法和反射波法。

折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。

反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。

在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。

3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。

野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。

室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。

4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。

预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。

5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。

构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。

地震数据处理 第一章:地震数据处理基础

地震数据处理 第一章:地震数据处理基础

3.速度分析(velocity Analysis);
4.动校正(Normal Moveout Correction)消除由于炮检距不同引起同一
反射波达到时间的差异;
5.叠加(Stack); 6.显示叠加剖面 (Display) (有波形、变面积、波形+变面积三种显示方式);
从波形可看出波的振幅、周期、频率等动力学特点;从变面积的角度,它又突出了 反射层,较直观地反映地下构造形态的特点
ICTFT
f (t )
时 域 恢 复 时 域 抽 样
LT
F ( s)
S j j S
F ( j )
截 取 主 周 期 频 域 周 期 延 拓
ILT
j j n F ( e ) f ( n ) e n- DTFT : j j n f ( n) 1 F ( e ) e d 2
地震波不是简谐波,从波剖面中可得到相邻两峰或谷 间的距离称为视波长,其倒数为视波数。
地 震 波 场
地 震 波 场 时 间 切 片, 即 波 动 图
一ቤተ መጻሕፍቲ ባይዱ付里叶变换
一个正弦运动要用频率、振幅和相位才能完整 的描述。
在计算机中用快速算法实现付里叶变换(FFT)。
付里叶变换:
正变换:时域信号 分解 频域信号;
时 间 (s)
频率(Hz)
图1.1-11 几个没有相位延迟但峰值振幅相同的正弦波的总和产生一个带限对称子波, 表示在右边一道上(由星号标出),这是一个零相位非对称子波
图1.1—12表示给在图1.l-11中的各正弦 波一个线性相位移所产生的结果。线性相 位移在频率域定义为:

时 间 (s)
模拟与数字信号 一道地震信号是一个连续的时间函数。在地震记录中,连续(模拟) 的地震信号在时间域按照固定的比例取样,叫做采样间隔。典型采样间 隔范围在1到4ms,高分辨率要求采样间隔小到0.25ms。 一般地说,给定采样间隔 ,则可恢复的最高频率为尼奎斯特(Niquist) 频率。公式如下:

地震资料的处理

地震资料的处理

地震资料的一般处理过程分三个阶段:预处理、参数提取和分析、资料处理。

处理的最终结果是得到供解释用的水平叠加时间剖面或叠加偏移时间剖面。

1.预处理对原始数据进行初步加一U,以满足计算机及操作系统中各处理方法的要求。

一、数据解编野外磁带记录数据是按时序排列的,即依次记一F每道的第一个采样值,各道记完后,再依次记下各道的第二个采样值,依此类推。

在数据处理中,时序排列的形式很不方便,必须转换为道序排列,即第一道的所有数据都排在第二道之前,使同一道数据都排放在一起,这种预处理称为数据解编或重排。

二、编辑在浅层地震数据采集中,由于施工现场复杂,外界干扰大,难免出现一些不正常道和共炮点记录,这些记录信噪比低,如果参与叠加处理会严重影响处理效果。

在止式处理之前,需要对这些不正常的记录进行编辑处理,例如对信噪比很低的不正常道进行充零处理,发现极性反转的工作道对它们进行改正等。

另外,还要显示有代表性的记录并观察初至同相轴,以便进行初至切除。

切除是为了消除包括噪声的记录开始部分所存在的高振幅,这样做对避免以后处理时出现的叠加噪声有好处。

切除的方法就是用零乘需要切除的记录段。

三、抽道集抽道集也叫共深度点选排,是把具有相同共反射点的记录道排成一组,按共深度点号次序排在一起。

抽道集处理后,磁带上记录的次序是以共深度点号为次序的记录,以后所有的处理都将方便地以共深度点格式进行。

四、真振幅恢复处理在野外数据采集过程中,为了使来自不同深度信号的能量能够以一定的水平记录在磁带上,数字地震仪采用了增益控制,对浅层信号放大倍数低,深层信号放大倍数高。

对经过增益控制的地震记录恢复到地面检波器接收到的振幅值的处理称为增益恢复。

数字仪对信号进行增益控制时的增益指数己记录在记录格式的阶码上,因此增益恢复的公式为:A=AO/2”其中A。

为记录到的采样值,A为地面检波器接收到的增益控制前的振幅值,n为阶码(即增益指数)。

2参数提取与分析参数提取与分析的目的是为寻找在常规处理或其他处理中常用的最佳处理参数,以及有用的地震信息,如频谱分析、速度分析、相关分析等。

地震资料数字处理

地震资料数字处理

MB1 MB2 MB3
四、处理流程
(1) 观测系统定义 (2) 野外静校正 (3) 线性动校正 (4) 叠前去噪 (5) 反褶积 (6) 速度分析 (7) 动校正、切除 (8) 剩余静校正 (9) 叠加 (10)叠后去噪 (11)绘图
1、定义观测系统 运行如下模块: 3D Land Geometry Spreadsheet* 弹出如下菜单:
横线方向覆盖次数: N y P * R /(2d )
P 排列不动所需的激发点数;R 接收线数; d 束线间接收线移动距离相当的激发点数。
例 如 : 对 于8线8炮 制 的 采 集 方 式 , 其R和P分 别 为8; 束线间接收距为4 200m 800m,横线炮距100m, d 800/100 8, 故 N y 8 8 /(2* 8) 4
10。用MB1击,则 将数据输入表中。
● Sources (填写炮点参数表)
Source Line Station St Index x y z FFID Time Date Offset Skid Shot fold* Pat Shift Static
用户定义的震源编号 震源线号 震源站号 同一炮点识别器(1~9) 震源点的X坐标 震源点的Y坐标 震源点的高程 野外文件号 放炮时间 放炮日期 炮点垂直炮线的偏移距,+右、-左 炮点平行炮线的偏移距,+大、-小号 接收道数 排列滚动的站点值 用户定义的静校量
● Receivers (填写接收点参数表)
Station Pt index x y Elev Line Static
接收点站号(桩号) 站点识别器(1~9) 接收点x坐标 接收点y坐标 接收点高程 接收点线号 接收点静校量
本例为498~825/线 全1 为测量数据 为测量数据 为测量数据 本例线号为1~9 全0

地震数据数字处理总结.

地震数据数字处理总结.

中国石油大学(北京)《地震数据处理方法》勘查2011级复习重点总结第一章地震数据处理基础1、地震信号的特点:1)实信号2)离散3)有限长4)能量有限5)非周期2、采样定律内容:一个连续信号,如果其最高频率小于尼奎斯特折叠频率,即信号的采样频率大于信号最高频率的两倍,则利用离散采样后的信号可以恢复原始信号。

3、采样定律的应用条件:信号的采样频率大于信号最高频率的两倍,即:最高频率至少要在一个周期内采到两个样点4、采样频率、折叠(尼奎斯特)频率、信号最高频率定义:5、假频的定义:高于尼奎斯特频率的高频成分以尼奎斯特频率为中心向低频方向折叠,形成假的频率成分,称为假频。

6、假频的判断和计算:7、地震信号的频谱特点:1)有限带宽(带限)2)有一定主频(主频越高,分辨能力越强)8、判别相位性质的三种办法:1)相位延迟(不常用)2)能量延迟3)Z变换的多项式求根(根都在单位圆外,为最小相位(延迟)信号)9、一维数字滤波实现方法、具体步骤:1)频率域:实现方法:(以零相位为例,翻译略)具体步骤:a、地震频谱分析:确定分析有效频率范围b、设计滤波器:压制噪声保留有效信号c、地震记录FFT变换:标准化变换长度d、进行滤波运算:振幅谱相乘相位谱相加e、滤波结果IFFT2)时间域:(也叫褶积滤波)实现方法:(以零相位为例,翻译略)具体步骤:a、地震记录频谱分析:确定中心频率、带宽b、设计滤波器:确定滤波算子长度(频带越宽,长度越短)c、确定滤波因子离散值:双边对乘实参数d、进行滤波运算:地震记录与滤波因子褶积10、伪门的定义:对连续的滤波因子用时间采样间隔离散采样后,得到离散的滤波因子,若再按离散的滤波因子计算出与它相应的滤波器的频率特性,这时在频率特性的图形上,除了有同原来连续的滤波因子的频率特性对应的“门”外,还会周期性地重复出现很多“门”,这些门称为“伪门”。

产生“伪门”的原因:由于对滤波因子离散采样。

11、吉布斯现象:当对滤波因子用有限项代替无限项时,在原始信号突变点(间断点)处,通过信号出现的明显的振荡现象。

地震资料数字处理方法

地震资料数字处理方法

地震资料数字处理方法The method for seismic data processing张白林更多资料:/h/user.php?uid=1078354141&fixed=ishare地震资料数字处理的目的、任务和特点利用数字计算机对野外地震勘探所获得的原始资料进行加工.改造,以期得到高质量的.可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息.特点:借助于计算机或数字化设备根本目的:提高信噪比、提高分辨率、提供岩性参数无论方法多么先进,技术如何发展,地震资料数字处理的根本目的仍然是:提高信噪比.提高分辨率.提供岩性参数第一章数字滤波第1-1节数字滤波基础第1-2节二维滤波第1-3节二维滤波的实现组成一个复杂振动的所有简谐振动成份的振幅、初相位与频率关系的总和。

信号按随时间变化的特点理的过程。

反射波与面波、声波和微震等干扰波,在频谱上有明显差别,故利用这种差别,可进行频率滤波,以便减少干扰波的能量,提高信噪比。

(或波形)进行加工、改造的过程。

不同类型的波具有不同的频率分布范围,,去掉干扰波,保留有效波,最终达到提高信噪比的目的;对信号的频谱进行修正的过程.方法:物理频率滤波:利用电子元器件的组合对信号频谱进行改造的过程;数字频率滤波:利用数学手段,在计算机上对信号的频谱成分进行修正的过程.其目的:压制干扰信号,突出有效信号,也即是提高信噪比.数字频率滤波的实现:①时域褶积: x(t)*h(t)= y(t)②频域乘积: X(f)•H(f) = Y(f)地震资料数字滤波的关键是选择恰当的滤波器,也即确定h(t)或H(f)。

实现数字滤波的步骤⑴时域①根据工区内有效波和干扰波的频谱分布情况设计滤波器的频率特性H(f);②由H(f)作傅氏反变换,得到h(t);③褶积:y(t)=x(t)﹡h(t),其中x(t)是待处理的地震道,y(t)是滤波后的地震道。

类似地,也可得到频率域实现滤波的相应步骤。

地震数据处理过程及格式说明

地震数据处理过程及格式说明

向相反取负值) (分米) 。
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
11 21—22
12 23—24 13 25—26 14 27—28 15 29—30 16 31—32 17 33—34 l8—l 35
18—2 36
19 37—38 20 39—40 21 41—42 22 43—44
45—48 炮点的地面高程(cm)。 49—52 炮井深度(正数,cm)。 53—56 接收点基准面高程(cm)。 57—60 炮点基准面高程(cm)。 61—64 炮点的水深(cm)。 65—68 接收点的水深(cm)。 69—70 对 41 一 68 字节中的所有高程和深度应用此因
子给出真值。比例因子=l,土 10,土 100,土 1000 或者 土 10000。如果为正,乘以因子;如果为负, 则除以因子。(此约定中= -100) 71—72 对 73—88 字节中的所有坐标应用此因子给出真 值。比例因子=1,土 10,土[00,土 1000 或者 土 10000。如果为正,乘以因子;如果为负,则 除以因子。(此约定中= -10) 73—76 炮点坐标—X(分米)。(如果坐标单位是弧度·秒, 77—80 炮点坐标—Y(分米)。X 值代表径度,Y 值代表 81—84 接收点坐标—X(分米)。纬度;正值代表格林威 85—88 接收点坐标—Y(分米)。治子午线东或者赤道北的
4=其他 34—2 68 135—136 扫描道起始斜坡长度,以 ms 表示。 35—1 69 137—138 扫描道终了斜坡长度,以 ms 表示。 35—2 70 139—140 斜坡类型:1=线性;2=COS²;3=其他 36—1 71 141—142 滤假频的频率(如果使用) 36—2 72 143—144 滤假频的陡度 37—1 73 145—146 陷波频率(如果使用) 37—2 74 147—148 陷波陡度 38—1 75 149—150 低截频率(如果使用) 38—2 76 151—152 高截频率(如果使用) 39—1 77 153—154 低截频率陡度 39—2 78 155—156 高截频率陡度 40—1 79 157—158 数据记录的年 40—2 80 159—160 日 41—1 81 161—162 小时(24 小时制) 41—2 82 163—164 分 42—1 83 165—166 秒 42—2 84 167—168 时间代码:1=当地时间;2=格林威治时间;

地震勘探资料处理流程与方法

地震勘探资料处理流程与方法

地震勘探资料处理流程与方法提纲引言一、数据加载二、置道头三、静校正四、叠前噪音压制五、振幅补偿六、叠前反褶积七、动校正、切除与叠加八、剩余静校正九、倾角时差校正(DMO) 与叠前时间偏移十、叠后提高分辨率处理十一、叠后噪音压制引言地震勘探分三个阶段。

地震资料采集、地震资料处理、地震资料解释。

其中地震资料处理是连接野外采集和资料解释的关键环节。

所谓地震资料处理,就是利用数字计算机对野外地震助探所获得的原始资料进行加工、改造,以期得到高质量的、可靠的地震信息,为下一步资料解释提供直观的、可靠的依据和有关的地质信息。

野外地震资料中包含着有关地下构造和岩性的信息,包这些信息是叠加在于扰背景上且被些外界因素所扭曲,信息之间往往是互相交织的,不宜直接用于地质解释。

因此,需要对野外采集的地震资料进行室内处理。

常规处理流程,数据输入→置道头→静校正→叠前噪音压制→振幅补偿→叠前反褶积→抽cmp道集→速度分析,动校正、初叠加→剩余静校正→DMo或叠前时间前移→叠后褶积→随机噪音衰减→偏移→时变滤波,增益一、数据加载1、数据输入:将野外磁带数据转换成处理系统格式,加载到磁盘上;2、输入数据质量检查:炮号、道号波形、道长、采样间隔等等。

二、置道头●道头: 每个地震道的开始部分都有个固定字节长度的空余段,这个空余段用来记录描述本道各种属性的信息,称之为道头。

如第8炮第2道,第126MP等。

观测系统定义:定义一个相对坐标系,将野外的激发点、按收点的实际位置放到这个相对的坐标系中。

观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值井放入地震教据的道头中。

当道头置入了内容后,我们任取道都可以从道头中了解到这一道属于哪炮、哪一道? CIP号是多少?炮检距是多少?炮点静校正量、检波点静校正量是多少等。

后续处理的各个模块都是从道头中获取信息,进行8的处里,如抽MP道集,只要将数据道头中cmP号相同的道排在一起就可以了因此道头有错误,后续工作也是错误的。

地震资料处理的关键环节

地震资料处理的关键环节

地震资料数字处理
1.试述地震资料处理的关键环节。

答:所谓地震资料处理,就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改造,以期得到高质量的、可靠的地震信息,为下一步资料解释提供直观的、可靠的依据和有关的地质信息。

处理的流程大致如下图:
地震资料处理是一个系统的过程,不是说做好哪一步就能完全取得很好的结果。

但在整个流程中,静校正和速度分析是关键环节。

地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。

但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。

为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。

广义的静校正还包括相位校正及对仪器因素影响的校正。

在我国西部山地地区,静校正的重要性尤为突出。

地震波在地层中传播的速度是一个十分重要的参数,但是很难精确的测量它的值。

速度信息的应用在地震勘探的各个环节都十分广泛,在处理过程中的动校正、水平叠加需要叠加速度,偏移归位需要偏移速度,深度偏移需要速度场;解释中,平均速度主要用于时深转换,层速度主要用于地层岩性解释,也可以用于储层参数、含油性预测等。

由此可见,速度信息的准确与否,对整个地震勘探都有至关重要的作用。

地震数据处理方法

地震数据处理方法

安徽理工大学一、名词解释〔20分〕1、、地震资料数字处理:就是利用数字电脑对野外地震勘探所获得的原始资料进行加工、改良,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。

2、数字滤波:用电子电脑整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。

〔对离散化后的信号进行的滤波,输入输出都是离散信号〕3、模拟信号:随时间连续变化的信号。

4、数字信号:模拟数据经量化后得到的离散的值。

5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt.6、采样定理:7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。

8、假频:抽样数据产生的频率上的混淆。

某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。

抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。

这两个频率fN+Y和fN-Y相互成为假频。

9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。

如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。

产生伪门的原因就是由于对h(t)离散采样造成的。

10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w〔t〕。

11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。

12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。

地震数据处理第二章:预处理及真振幅恢复

地震数据处理第二章:预处理及真振幅恢复

j 2f
设补偿前数据为x(t),补偿后为y(t),即
y(t) x(t) * h(t, )
第三节 振幅平衡
浅层能量、深层能量弱,给显示带来困难,动平衡就 是为解决这类问题而提出的。
一、道内动平衡
设待平衡记录道长度为N个样点,将其分为K个时 窗,每时窗为2M+1个样点,则每时窗的平均振幅为:
A j
第二节 真振幅恢复 一、波前扩散能量补偿 二、地层吸收能量补偿
第一节 预处理
一、数据解编 (1)野外数据格式:
① SEG-D ② 时序 (2)解编:将时序变为道序
(3)解编后数据格式:SEG—Y 地震资料数字处理输入/输出均为SEG-Y
SEG_Y 格式: 卷头(4字节/字,共100字):
40行说名信息
2 卷内道序号 (字节5 ~ 8)
3 FFID & ILN (字节9 ~12)
4 道号
(字节13~16)
5 震源点号
(字节17~20)
6 CMP号 & XLN (字节21~24)
7 CMP集内道号 (字节25~28)
8 道识别码: (字节29~30) 1=地震数据;2=死道;3=空道 4 =爆炸信号;5 井口道;~
1
M
|
2M 1 mM
a jm
|
权系数:
w j
1 Aj
均衡处理: aj a j •w j
二、道间均衡
地震记录上反射能量随炮检距增大而衰减,也可能因 激发及接收条件的差异,使道与道之间的能量不均衡。 在共中心点叠加时,因能量不均衡会影响叠加效果,故 而进行道间均衡。
Q 2 E 2
A2 0
2
1
E
A2 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
优点:运算速度快 缺点:不易修改,适应面 较窄,成本高。
C
RC无源网络形成的低通滤波器
一、数字滤波的概念
3.数字滤波器:用数学运算方式通 过数字计算机技术对离散信号进行滤 波处理的系统。 特点:①输入、输出都是离散数据; ②方便、灵活、多样。
一、数字滤波的概念
连续信号经过离散抽样得到离散数据,抽样过程满足抽样定理, 不然会频谱混叠,产生假频。抽样定理可由下面两个公式描 述: 1) 频率域 ………… (2-1-1) s N max
n i 2nf
X( f )
n 1
x(n)e
2

i 2nf
x ( n)
2 1 2
1
X ( f )e
i 2nf
df
x ( n) 12 X ( f )e i 2nf df
△为时间采样间隔。
令为1则
~ X ( ) x ( n)
§2.1
概述
从左至右它 包括间隔为 48ms、24ms、 12ms的三个 反射层和一 个在1秒处 的单一反射 层。限带响 应(带宽相 同都为10Hz, 中心在不同 频率处)不 能提供好的 分辨率
§2.1
概述
对于有大的间 隔 ( 48ms ) 的 反射层,带宽 较 低 为 10 ~ 30Hz 即 可 分 辨 而间隔较小的 反 射 层 ( 24ms 和 12ms ) 需 要 增加带宽才能 分辨
最小相位性质

h1 ( n) (1,0.5) h2 ( n ) (0.5,1)
………….(2-1-15) ………….(2-1-16)
则二者的 Z 变换分别为:
H 1 ( Z ) 1 0 .5 Z H 2 ( Z ) 0 .5 Z
………….(2-1-17) ………….(2-1-18)

式中, x 为输入,h 为滤波因子(滤波器的时间特性,也

称系统的单位脉冲响应) x 为输出。 ,
傅氏变换
Fourier 分析是信号分析与处理的基本工具, 是频率滤波的基 础。 离散 Fourier 变换有快速算法(FFT) ,在数字处理中有广泛 的应用。 故在此再作简单介绍。傅氏正反变换的公式如下:
有一种普遍的误解,认为要增加时间分 辨率只需要高频,这是不真实的。 只有低频或只有高频不能改善时间分辨 率。要增加时间分辨率低频和高频两者都需 要。注意,紧靠的反射层用逐步增加的带宽 能够分辨,10~30Hz带宽分辨48ms间隔的 反射层是足够了,10~50Hz带宽分辨24ms 间隔的反射层也足够了,最后,10~100Hz 的带宽分辨12ms间隔的反射层是必需的。
X ( ) X ( ) H ( )


………….. (2-1-9)
傅氏变换 连续信号傅氏变换
X ( ) x(t ) e
j t
dt
1 x (t ) 2



X ( ) e d
j t
离散信号傅氏变换:
X ( f ) x ( n)e

较看,系统稳定,则滤波器能量有限;反之,则不然。 以上两条性质在滤波器设计时必须考虑到。如果滤波过程不收敛,得到的将 是不正确的结果。
最小相位性质
最小相位信号是具有对相同振幅谱的物理可实现信号中 相位最小的信号,或者说能量延迟最小的信号。 最小相位滤波器是具有同样振幅响应的一切可能的滤波 器簇中能量延迟最小的滤波器,也称最小延迟滤波器 最小相位在时间域也叫最小能量延迟,在频率域则常称 为最小相位滞后。 若最小相位滤波器的输入是最小相位,则其输出也是最 小相位,对于地震子波,除了零相位子波外,最小相位子 波的分辨率最高。
X ( ) x(t ) e
j t
dt
……………. (2-1-7)
1 j t x(t ) X ( ) e d ………….. (2-1-8) 2 对于一线性时不变系统,褶积运算在频率域可方便地用乘积实现。
若 x(t ) x(t ) * h(t ) ,则有
频率(Hz)
频率(Hz)
(a)
(b)
(c)
(d)
(e)
一系列零相位子波(上)和它们的相对振幅谱(下),随着带宽增加,子波在时 间上也相应的压缩
§2.1 概述
原单 始炮
反积 褶后
图 4- 反褶积后有效波 5 时段频谱分析图
§2.1 概述
一、数字滤波的概念 1. 滤波和滤波器:广义上任何一种对输 入信号的改造作用都可看成滤波,实现 这种滤波的系统称为滤波器。滤波器可 分为模拟滤波器和数字滤波器。 2.模拟滤波器:也叫电滤波器,它由电 阻、电感和电容等元器件组成。
1 ( ) tg 1
最小相位性质
H ( )
1 ( )
2 ( )
图2-3 滤波器的振幅谱
图2-4 滤波器的相位谱
2 ( )
1 ( )
图2-5 相位滞后特合相位(混合延迟)信号、最大相位(最大延迟) 信号和最小相位(最小延迟)信号,例如下面的四个子波: 子波 A: (4,0,-1) 子波 B: (2,3,-2) 子波 C: (-2,3,2) 子波 D: (-1,0,4) 振幅谱相同-图 2-6 相位滞后特性不同-图 2-7:A 是最小相位,D 是最大相位,B,C 是混合相位。 从能量角度则可看出它们不同的能量延迟。 每个子波的累加能量。 子波 A: (16,16,17) 子波 B: (4,13,17) 子波 C: (4,13,17) 子波 D: (1,1,17) 能量示意图-图 2-8:四个子波总能量相同,但分布不同,子波 A 很快集中了 能量, 能量集中在头部, 这是最小能量延迟子波; 而子波 D 大部分能量集中在尾部, 是最大能量延迟子波;子波 B、C 能量集中在中部,是混合延迟子波。
滤波器的稳定性
定义 2 滤波器的稳定性,是指当输入信号为有限时,其输出也是有限的。 即对于任意有限大的正数 M,存在正数 L 使下式成立: 若 x(n) L ,则有 以上叙述也可用 h(n)来描述: 定理 2 滤波器稳定的充要条件是
x ( n) M 。

n
h( n)

褶积


线性时不变滤波系统的滤波过程可以用 褶积来描述:

x(t ) x(t ) * h(t ) x( )h(t )d x ( n) x ( n) * h( n)

……….. (2-1-5) …….. (2-1-6)
x( )h(n )
滤波器是物理可实现的
定理 1 滤波器是物理可实现的充要条件是
h( n) 0,
由褶积公式 x(n)

n0
………… (2-1-13)
h( ) x(n ) 可知,滤波器物理可实现

的另一叙述:n 时刻的输出只与 n 时刻及 n 时刻以前的输入有关, 而与将来的输入值无关。也就是说在没有输入前,不可能有输出, 滤波器是零状态响应滤波器。这一性质在设计滤波器,讨论初值条 件时经常用到。
线性时不变系统

线性滤波系统:满足迭加定理的滤波系 统(叠加信号的滤波输出等于原信号输 出的叠加)。
ax1 ( t ) bx2 ( t ) a x1 ( t ) bx2 ( t )



时不变系统:若滤波系统的输入延迟一 个时间,其输出也是原输出延迟同样一 个时间。
x(t ) x(t )

第二章 数字滤波
本章主要回顾和介绍数字滤波器的有关 知识,以及利用干扰波与有效波在频率、 传播方向、速度以及能量等方面的差异进 行干扰波压制或消除,从而突出有效波, 提高地震资料的质量和精度的方法原理。 §2.1 概述(4) §2.2 一维滤波 (6) §2.3 二维滤波 (4)
§2.1 概述
计算它们的振幅谱和相位谱:
H1 ( )
1.25 cos
……………. (2-1-19) ……………. (2-1-20) ……………. (2-1-21) ……………. (2-1-22)
H 2 ( )
1.25 cos
0.5 sin 1 0.5 cos sin 2 ( ) tg 1 0.5 cos

n
…………
(2-1-10)
得到了 Z 变换后,令 Z
可以很方便地得到频谱。因此,
Z 变换是很重要的数学工具,在解决实际工程问题时非常有用。
注意:指数 j 前有一负号,Z 的 n 次幂前没有负号,这与有 些教科书上的描述恰好相反。
三.滤波器的物理性质
数字滤波器应当与模拟滤波器具有相似的物理性 质: 1. 滤波器是实参数的 2. 滤波器是物理可实现的 3. 滤波器的稳定性 4. 滤波器能量有限输出 5. 最小相位性质 6. 纯振幅滤波器
2 2
式中ωs称为采样频率,ωN称为折叠频率,也称为Nyquist频率, ωmax为信号的最高角频率。 2)时间域
1 t 2 f max
…………. (2-1-2)
式中Δt称为采样间隔,fmax为信号的最高频率。
有效信号 有效 信号
图2-2 数字滤波示意图
二. 数字滤波器的数学特性和描述手段 1.线性时不变系统 2. 褶积 3.傅氏变换 4.差分方程和Z变换
最小相位性质
图2-6 子波A、B、C、D的振幅谱
图 2-7 子波A、B、C、D的相位滞后特性 图2-8 不同延迟信号的能量分布 (a) 最小延迟 (b) 混合延迟 (c) 最大延迟
(4,0,-1)
(-2,3,2 )
(-1,0,4)
最小相位性质
信号的相位特性可以利用 Z 变换来分析, 利用Z变换还可在几种信号之 间转换: 滤波器为最小相位的条件是其 Z 变换在单位圆内没有根(其根均在单位 圆外)。 非最小相位滤波器可通过将z变换单位元以内的根转换到单位圆外。 以子波 B 为例,其 Z 变换为:
相关文档
最新文档