华杯赛决赛小学模拟(31)无水印
“华杯赛”决赛赛前训练模拟题4(小学组决赛卷)
“华杯赛”赛前训练模拟题小学组决赛卷(四)一、填空题1、计算:3.14159-2.71828+1.414×0.732=( ).2、你心里想好一个数,将你想的数乘以2,然后加上6,再加上你想的数,然后将得到的数除以3,由此得到一个新的数,要使新的数为一个三位数,则你想的数至少为().3、一个数学兴趣小组共有10个人,小马和小虎同时计算这个小组在一次考试中的平均成绩.小马计算时,将小牛的成绩多加了一次,而小虎计算时,却漏加了小牛的成绩,结果他们算出来的这10个人的平均成绩分别是99和79.那么小牛的成绩是().4、如图,在边长为1的正方形中以边长为直径画两个半圆,若圆面积的计算公式为:⨯.3S半径×半径,则图中阴影部分的面积为=14m().5、将一根细线对折10次,然后拦腰剪断,则这根细线被剪成了()段.6、试将8个数1,1,2,2,3,3,4,4排成一行,使两个1之间夹着1个数,两个2之间夹着2个数,两个3之间夹着3个数,两个4之间夹着4个数,则合乎要求的一种排列结果为().二、解答下列各题,要求写出简要过程7、设S是分母不大于30的所有真分数的和,请求出S的值.8、将1到1000这些自然数由小到大紧凑地排列在一起,得到一个“大数”:12345678910111213141516171819202122232425…9979989991000,求这个“大数”从左至右的第1000个数字.9、如图,在4×4的方格纸的每个方格中分别填上数1,2,3,4,…,16.现在要从中选取4个数,使任何两个数不在同一行也不在同一列,问共有多少种不同的取数方法?1 2 3 45 6 7 89 10 11 1213 14 15 1610、王老师教学生学习两位数,他准备用90张卡片分别写上10,11,12,13,…,99这90个两位数供教学使用,但后来他发现有些卡片写上一个两位数之后,将卡片倒过来看便是另一个两位数.比如:16倒过来看是91.这样一来,有些卡片可以做两个两位数用,那么,王老师用这种方法可以少做多少张卡片?11、一项工程,甲乙两人合做x天能完成.若甲做乙所完成的那部分工程量,则需要8天;若乙做甲所完成的那部分工程量,则需要2天,求x.12、要用小刀将一个大蛋糕划分为15块,每次划分后不能将蛋糕叠合,至少要划几刀?请说明理由并给出一种具体的划分方法.。
第22届华杯赛总决赛全部四组题目
总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。
(完整版)第十六届华杯赛总决赛试题
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
(完整版)第十六届华杯赛总决赛试题
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
华杯赛试题及答案小学
华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。
2. 一个数的最大因数是______。
3. 一个数的因数的个数是______。
4. 一个数的倍数的个数是______。
三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。
2. 一个数的平方是64,求这个数。
3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。
请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。
答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。
小学华杯赛试题及答案
小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。
华杯赛小学试卷
华杯赛小学试卷一、选择题(每题2分,共20分)1. 下列哪个选项是华杯赛小学组的参赛年龄?A. 5-7岁B. 8-12岁C. 13-15岁D. 16-18岁2. 华杯赛小学组的考试科目通常包括哪些?A. 数学、语文B. 数学、英语C. 数学、科学D. 数学、美术3. 华杯赛小学组的考试形式是什么?A. 笔试B. 口试C. 实验操作D. 团队竞赛4. 下列哪个是华杯赛小学组的奖项设置?A. 一等奖、二等奖、三等奖B. 金杯、银杯、铜杯C. 特别奖、优秀奖D. 特等奖、一等奖、二等奖5. 华杯赛小学组的考试时间通常在每年的什么时候?A. 春季B. 夏季C. 秋季D. 冬季6. 参加华杯赛小学组的学生需要具备哪些基本条件?A. 良好的数学基础B. 良好的语文基础C. 良好的英语基础D. 良好的科学基础7. 华杯赛小学组的考试内容主要侧重于哪些方面?A. 基础数学知识B. 应用数学知识C. 数学思维能力D. 数学竞赛技巧8. 华杯赛小学组的试卷通常包括哪些题型?A. 选择题、填空题B. 选择题、判断题C. 选择题、简答题D. 选择题、计算题9. 华杯赛小学组的考试难度如何?A. 较易B. 中等C. 较难D. 极难10. 下列哪个不是华杯赛小学组的考试要求?A. 遵守考试纪律B. 携带有效身份证件C. 携带手机进入考场D. 按时提交试卷二、填空题(每题2分,共20分)11. 华杯赛小学组的考试通常采用______方式进行,以考查学生的数学思维能力。
12. 参加华杯赛小学组的学生需要具备良好的______基础。
13. 华杯赛小学组的考试内容侧重于考查学生的______知识。
14. 华杯赛小学组的试卷题型通常包括选择题和______题。
15. 华杯赛小学组的考试时间通常安排在每年的______季节。
16. 华杯赛小学组的奖项设置通常包括一等奖、二等奖和______。
17. 参加华杯赛小学组的学生需要携带有效身份证件,并______手机进入考场。
历届华杯赛决赛试题剖析.doc
历届华杯赛决赛试题剖析5华罗庚金杯少年数学邀请赛决赛试题(小学组)真题尝试填空题(每小题10分,共80分)1. ___________________________________________________________ 算式10 —10.5十[5.2x14.6 —(9.2x5.2 + 5.4x3.7 — 4.6xl.5)]的值为_______________________2.箱子里已右若干个红球和黑球,放入一些黑球后,红球占全部球数的四分之一;再放入一些红球后,红球的数量是黑球的三分之二.若放入的黑球和红球数量相同,则原来箱子里的红球与黑球数量之比为____________________ .3.有两个体积Z比为5:8的岡柱,它们的侧面的展开图为和同的长方形,如果把该长方形的长和宽同时增加6,其面积增加了114.那么这个长方形的面积为______________ .4.甲、乙两个粮库原來各存有整袋的粮食,如果从甲粮库调90袋到乙粮库,则乙粮库存粮的袋数是甲粮库的2倍.如果从乙粮库调若干袋到甲粮库,则甲粮库存粮的袋数是乙粮库的6倍.那么甲粮库原來最少存有_________ 袋的粮食.5.现有211名同学和四种不同的巧克力,每种巧克力的数量都超过633颗.规定每名同学最多拿三颗巧克力,也口J以不拿.若按照所拿巧克力的种类和数量都是否相同分组,则人数最多的一组至少有________________ 名同学.6. ___________________ 张兵1953年出生,在今年之前的某一年,他的年龄是9的倍数并11是这一年的各位数字之和, 那么这一年他岁.右图是一个五棱柱的平面展开图,图中的正方形边按图所示数据,这个五棱柱的体积等于_____________________ .在乘法算式草绿x花红亍=春光明媚中,汉字代表非零数字,不同汉字代表不同的数字,那么春光明媚所代表的四位数最小长都为2.7. &真题尝试二、解答下列各题(每题10分,共40分,要求写出简要过程)9.如右图,A3CD是平行四边形,£为A3延长K为4D延长线上一点.连接BK, DE相交于问:四边形ABOD与四边形ECKO的面积是请说明理由. 线上一点, 一点O. 否相等?10.能否用500个右图所示的1x2的小长方形拼成一个5x200的得5x200的长方形的每一行、每一列都有偶数个星?请说明大长方形,使理由.11.将一个加位数的前兀位数和后77位数各当成一个〃位数,如果这两个72位数Z和的平方止好等于这个加位数,则称这个加位数为卡布列克(Kabulek)怪数,例如,(30 + 25)2 =3025,所以3025是一个卡布列克怪数.请问在四位数屮有哪些卡布列克怪数?真题尝试12.已知98个互不相同的质数P1,P2,…,內8,记N = pj+ ”;+・・・+ ”;,问:N被3除的余数是多少?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.小李和小张在一个圆形跑道上匀速跑步,两人同时同地出发,小李顺时针跑,每72秒跑一圈;小张逆时针跑,每80秒跑一圈.在跑道上划定以起点为屮心的丄圆弧区间,那么两人同时在划定4的区间内所持续的时间为多少秒?14.把一个棱长均为整数的长方体的表而都涂上红色,然后切割成棱长为1的小立方块,其屮,两面有红色的小立方块有40块,一面有红色的小立方块有66块,那么这个长方体的体积是多少?第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A参考答案(小学高年级组)、填空(每题10分,共80分)题号 1 2 3 4 5 6 7 8 答案9.31:24015371874396二、解答下列各题(每题10分,共40分,要求写出简要过程)9・答案:是.解答.连接AC.则因此S ECKO =S A 哋•即四边形ABOD 的而积二四边形ECKO 的而积.10.答案:能解答•首先构造5x4的长方形如下:令令 令&令令令令 -V-然后用50个5 x 4的即可拼成5 x 200的长方形.11.答案:2025,3025,9801.=S® + S、BCACE = SAEAD所以S ECKB —S解答.设一个四位卡布列克怪数为100x+y,其中105x599,0<yW99•贝i川I题意知100% +y = (x + y)2,两边模99 得x+y = (x+y)2 (mod 99),因此99l(x+y)Cx+y — l),故兀+y与兀+丁一1中有一个能被9整除,也有一•个能被11整除(可能是同一个数),且有102<(x+y)2=100x + y<1002,即10S + yv 100. (*)若x+y能被99整除,由(*)知兀+y只能是99,满足条件的四位数是9801;若x + y—l 能被99整除,由(*),显然没有满足条件的四位数;此外,可设x+y =9/n, x+y—1 = 1M,则有9/n-lln=l,由(*),加和几均为小于12的正整数,故得到加=5, n=4, x+y 只能是45,满足条件的四位数是2025;反乙可设x+y-1=9/77, x+y=\\n,满足条件的四位数是3025.故四位数中冇三个卡布列克怪数,它们分别为2025, 3025和9801.12・答案:1或2解答.对于质数3, 32被3整除.其余的质数,耍么是3R + 1型的数,耍么是3R+2型的数. 由于(3k +1)2=9k + 6k + l = 3(3 疋 + 2約 +1,被3除余1,且(3£ + 2)2 =9/+12R+ 4 = 3(3/+4£+ 1) + 1,被3除也余I.因此有(1)若这98个质数包含3时,/V被3除的余数等于97被3除的余数,等于1.(2)若这98个质数不包含3吋,N被3除的余数等于98被3除的余数,等于2.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.答案:3,9,11,18解答.设起跑时间为()秒时刻,则小李和小张在划定区间跑的时间段分别为[0,9], [72—9,72k+9], k = 1,2,3,…,[0,10], [80m -10,80m + 10],加= 1,2,3,…. 其中S,b]表示第。
18~22届华杯赛【小高组】决赛试题打印版
18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。
第十六届“华杯赛”小学组决赛试题D及参考答案
所以
bk 2 15d 14b 34 , dk 3 15d 14b 51 .
这两个分数是
75 70 和 . 34 51
6 7 5 7 1 ; bk dk 6
(7)
④ c 2 , a 3 , m 5 5 7 ,此时,
3 5 7 2 5 7 1 ; bk dk 6
( 8)
⑤ c 1 , a 2 , m 3 5 5 7 ,此时,
2 3 5 7 3 5 7 1 . bk dk 6
15 14 1 15 14 15d 14b , kbd bk dk 6 bk dk
1 1 , kbd 6 15d 14b
(10)
根据(1) , (2)和(3) ,应当有
b,15d 14b 1, d ,15d 14b 1 ,
此即意味着:
k (15d 14b) n ,
75 70 , 34 51 am cm 和 , 其中 : bk dk
解答 . 设这两个最简分数为
b,d 1 ; a,c 1 ; am,bk 1 ; cm,dk 1 .
既然 m am cm , 所以有
(1) (2) (3)
a c 1.
又因为 am,cm 1050 1 2 3 5 5 7 ,并结合(4) ,可得到 : ①
1 12 22 32 42 52 62 72 50 ,
所以红色朝上的卡片共有 7 张. 12. 答案: 11 厘米. 解答 . 如图,
球的内接正方体 ABCD- A1 B1 C1 D1 的顶点在球面上, 它的 (体) 对角线 AC1 就是球 的直径, 即
“华杯赛”决赛赛前训练模拟题
“华杯赛”决赛赛前训练模拟题小学组决赛卷一、填空题1、计算 ⎪⎭⎫ ⎝⎛÷-⨯⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛÷+⨯-2.143625401.005.205425215.2129516.0= .2、一次英语竞赛满分是100分,某班前五名同学的平均得分是95.2分,排第五名同学的得分是86分(每人得分是互不相同的整数),那么排第三名的同学最少得 分.3、下面等式中,相同字母表示同一数字,不同字母表示不同的数字:若365DEE DE EBBC =÷,那么=EBBC .4、如图,三角形ABC 中,AB=AC ,AE=AD ,︒=∠30BAD .︒=∠40ACD ,那么,=∠EDC 度.5、在1、2、3、…、30这30个自然数中,最多能取出个数,使取出的数中,任意两个不同的数的和都不是7的倍数.6、快、慢两辆汽车分别从A 、B 两市同时相对开出,沿同一高速公路分别到B 市和A 市,快、慢车的速度比为4∶3,快车于上午9点驶完全程的31到达途中的C 市;慢车于下午4点到达C 市.那么两车相遇时刻是 ;慢车到达A 市的时刻是 .二、解答题7、服装店购进A 型和B 型两批服装,成本共2160元,A 型服装按25%的利润定价,B 型服装按10%的利润定价.实际都按定价的90%打折出售,结果仍获利140.4元,那么A 型服装的成本价多少元?8、如图,四边形ABCD 中,E 为BC 的中点,AE 与BD 交于F ,且F 是BD 的中点,O 是AC ,BD 的交点,AF =2EF .三角形AOD 的面积是3平方厘米,求四边形ABCD 的面积.9、C市汽车牌号有一类编号是“CA”后面排上5个阿拉伯数字,即“CA·□□□□□”,如果编号中出现相邻的数字“68”就称为幸运车牌号,那么这类车牌号中从10000到99999的“幸运车牌号”共有多少个?10、小张和小王要加工同样多的零件,用旧机床每小时加工20个,后来工厂为他们改换了新型机床,每小时加工60个.小张改换机床前后所完成的零件数的比为2∶3,小王改换机床前后的时间比为3∶2.结果小王比小张少用18分钟完成任务.他们每人完成了多少个零件?11、某幼儿园的大、小班共有37名小朋友,老师把558个弹子分给两个班的小朋友做游戏,如果同一个班的小朋友分的弹子数都相同,而且大、小班每人分得的弹子数的比是3∶2.那么,小班有多少个小朋友?小班共分得多少个弹子?12、有三堆石子的个数分别是19、8、9,现在进行如下操作:每次从这三堆中的任意两堆中各取出一个石子,然后把这2个石子都加到另一堆中去,试问:能否经若干次这样的操作后,使得:(1)三堆石子的个数分别是22、2、12?(2)三堆石子的个数分别是21、3、12?如果能,写出最少次数完成的操作过程;如果不能,试说明理由.。
小学第十二届华杯赛决赛试题及解答
小学第十二届华杯赛决赛试题及解答第十二届华杯赛决赛试题及解答一、填空1.“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.2.计算:____3.如图所示,两个正方形abcd和defg的边长都是整数厘米,点e在线段cd上,且ce<de,线段cf=5厘米,则五边形abcfg的面积等于________平方厘米.4.威尔、、、、从小到大排列,第三个数是________.5.下图a是密封水瓶的剖面图。
上半部分为圆锥形,下半部分为圆柱形。
底部直径为10cm,水瓶高度为26cm,瓶内液位高度为12cm。
倒置水瓶后,如下图B所示,水瓶内液位高度为16cm,则水瓶容积等于________________________6.一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每一个数是前面所有数的和的2倍,则第六个数等于________,从这列数的第________个数开始,每个都大于2021.7.对于一个自然数,它的最大除数和下一个最大除数之和是111,这个自然数是___8.用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如下图a,从正面看这个立体,如下图b,则这个立体的表面积最多是________.二、简要回答以下问题(需要一个简短的过程)9.如图,在三角形abc中,点d在bc上,且∠abc=∠acb、∠adc=∠dac,∠dab=21°,求∠abc的度数;并回答:图中哪些三角形是锐角三角形.10.李云坐在一列时速60公里的火车上,看到一辆30节车厢的卡车迎面驶来。
当卡车的前部驶过车窗时,他开始计算时间,直到最后一节车厢驶过车窗。
记录的时间是18秒。
据了解,货车长15.8m,车距1.2m,货车车头长10m。
小学华杯赛试题及答案
小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。
第十一届“华杯赛”小学组决赛试题
第十一届“华杯赛”决赛试卷(小学组)一、填空(每题10 分,共80 分)1.计算:1510(30.85)126.3206⎡⎤+-÷÷⎢⎥⎣⎦=( )2.图la 是一个长方形,其中阴影部分由一副面积为1 的七巧板拼成(如图lb ) ,那么这个长方形的面积是( ) .3.有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3 分,负者得O 分,如果踢平,两队各得1 分.现在甲、乙和丙分别得7 分、1 分和6 分,已知甲和乙踢平,那么丁得()分.4.图2 中,小黑格表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大的信息量.现在从结点A 向结点B 传递信息,那么单位时间内传递的最大信息量是( ) .5.先写出一个两位数62 ,接着在62 右端写这两个数字的和8 ,得到628 ,再写末两位数字2 和8 的和10 ,得到62810 ,用上述方法得到一个有2006 位的整数:628101123 ……,则这个整数的数字之和是( ) .6.智慧老人到小明的年级访问,小明说他们年级共一百多同学.老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是()人.7.如图3 所示,点B 是线段AD的中点,由A , B , C , D 四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500 ,则线段AB 的长度是( ) .8. 100 个非O 自然数的和等于2006 ,那么它们的最大公约数最大可能值是( )二.解答下列各题,要求写出简要过程(每题10 分,共40 分)9.如图4 ,圆O 中直径AB 与CD 互相垂直,AB = 10 厘米.以C 为圆心,CA 为半径画弧AEB.求月牙形ADBEA(阴影部分)的面积.10.甲、乙和丙三只蚂蚁爬行的速度之比是8 : 6 : 5 ,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行.问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻).11.如图5 ,ABCD是矩形,BC= 6c m ,AD=10cm ,AC 和BD 是对角线.图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?( 取3.14 )12.将一根长线对折后,再对折,共对折10 次,得到一束线.用剪刀将这束线束剪成10 等份,问:可以得到不同长度的短线段各多少根?三、解答下列各题,要求写出详细过程(每题15 分,共30 分)13.华罗庚爷爷在一首诗文中勉励青少年:“猛攻苦战是第一,熟练生出百巧来,勤能补拙是良训,一分辛劳一分才.”现在将诗文中不同的汉字对应不同的自然数,相同的汉字对应相同的自然数,并且不同汉字所对应的自然数可以排列成一串连续的自然数.如果这28 个自然数的平均值是23 ,问“分”字对应的自然数的最大可能值是多少?14.一根长为L 的木棍,用红色刻度线将它分成m 等份,用黑色刻度线将分成n等份(m>n )①设x 是红色与黑色刻度线重合的条数,请说明:x +1 是m和n 的公约数;②如果按刻度线将该木棍锯成小段,一共可以得到170 根长短不等的小棍,其中最长的小棍恰有100 根.试确定m 和n 的值.。
“华杯赛”总决赛赛前训练模拟题(8套).docx
“华杯赛”决赛赛前训练模拟题•小学组决赛卷一.填空题8 4(16 ——x 2.375+ 12 ——x 4.75) x 19.98 247 285 ----------- 167 ------- = 6.66x(48x2一-) 1952、一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排第六名同学的得分是89 分,每人得分是互不相同的整数,那么排名第三的同学最少得 ___________ 分。
7、相同的正方块码放在桌面上,从正面看,如图4;从侧面看,如图5,则正方块最多有 个,最少有 个.8、有一种饮料的瓶身如下图所示,容积是3升。
现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米。
那么瓶内现有饮料 ____________ 升。
二、解答题9、如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。
则两个正方形的空白 AD 4、在梯形ABCD 中,上底长5厘米,下底长10厘米,S^oc=20 平方丿車米,则梯形ABCD 的面积是平方丿車米。
厶 B C3、在下血的等式中,和同的字母表示同一数字,不同字母表示不同的数字:若abed —dcba= □ 997,那么□中应填 ________________5、 已知:10A3=14, 8A7=2,丄△丄=14 4 1.计算: X= ____________________ O6、 图中共有 __________ 个三角形。
图5 (从侧血看)部分的面积相差多少平方厘米?1()、水桶中装有水,水中插有A、B、C二根竹杆,露出水面的部分依次是总长的.?.二根竹杆长度总和为98厘米,求水深。
11、养猪专业户王大们说:“如果卖掉75头猪,那么饲料可维持20天,如果买进100头猪,那么饲料只能维持15天。
”问:王大们一共养了多少头猪?12、A、B两地之间是山路,相距60千米,具中一部分是上坡路,具余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了 4.5小时,返冋时用了 3.5小时。