线性空间上的线性变换
线性空间与线性变换
线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
线性空间与线性变换
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;
第六章 线性空间与线性变换
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
线性空间与线性变换
线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
5.4第5章 线性空间与线性变换
4. 线性变换T的象集T (V n )是一个线性空间V n ( 的子空间), 称为线性变换T的象空间. 证明 设 1 , 2 T (Vn ), 则有 1 , 2 Vn ,
使 T1 1 , T 2 2 , 从而
1 2 T1 T 2 T (1 2 ) T (Vn ), (因1 2 Vn ); k1 kT1 T (k1 ) T (Vn ), (因k1 Vn ),
所以, B X AX
1
18
例19 设V是一个二维线性空间, 1 , 2 是一组基,线性 变换 在 1 , 2 下的矩阵是 2 1 1 0
1 1 1 , 2 为V的另一组基,且 (1 ,2 ) (1 , 2 ) 1 2 求 在基 1 , 2 下的矩阵.
19
小结
R 给定了线性空间 R 的一组基以后, 中的线 性变换与 R nn 中的矩阵形成一一对应.因此,在 线阵.
n n
同一变换在不同基下的矩阵是相似的.
20
思考题
已知R 的两个线性变换
22
T ( X ) XN , S ( X ) MX , X R22
这样,在取定一组基之后,就建立了由数域P上的n维 线性空间V的线性变换到数域P上的 n n 矩阵的一个 13 映射.
定理3 设 1 , 2 ,, n 是数域P上n维线性空间V的一组基, 在这组基下,V的每个线性变换都唯一对应一个 n n 矩阵,这个对应具有以下性质: 1)线性变换的和对应于矩阵的和; 2)线性变换的乘积对应于矩阵的乘积; 3)线性变换的数量乘积对应于矩阵的数量乘积; 4)可逆的线性变换与可逆矩阵对应,且逆变换对应于 逆矩阵.
第一章线性空间与线性变换
下面讨论子空间的生成问题
设S = {α1,α2,Λ ,αm}是数域 P上 V 中的一个向量 组,在 P 中任取m个数 k1,k2,Λ ,km,做S中向量 的线性组合
α = k1α1 + k 2α2 + Λ + kmαm (1.2.1)
显然 α ∈ V ,这样 α 全体的集合表示成
子空间 V3 也可以写成:
V3 = L(e1,e2,e3,)
={αα = x1e1 + x2e2 + x3e3}
V1 , V2 也可以写成以上类似形式。
像空间和零空间
设A=( aij)∈Rm×n,以a(i i=1,2,Λ , n)表示
A的第 i个列向量,称子空间L (α1 ,α 2 ,Λ ,α n)为
x
+
y
=
⎜ ⎜ ⎜⎜⎝
x2 xn
+y Μ +y
2 n
⎟⎟, ⎟⎟⎠
kx
=
⎜ ⎜ ⎜⎜⎝
kx2 Μ
kxn
⎟ ⎟ ⎟⎟⎠
对于线性空间 R n中的加法和数乘,有:
v2 v1 v3 = v1 + v2
kv v
定理 1 .1 .1 线性空间V 中,有唯一的零 向量,V中 任一向量也有唯 一的负向量 。
( x1-y1)α1 +(x2-y2)α 2 + Λ +(xn-y n)α n=0
由于S是线性无关 的,所以 xi = y i i = 1,2,Λ , n
定 义 1. 1. 5 设V n与Vn*同为域P上的两个线
性空间,若 α ↔ α *,(α ∈ Vn ,α * ∈ Vn* ), 且当 α ↔ α *,β ↔ β *,α , β ∈ Vn , α * , β * ∈ Vn*时,有 α + β = α * + β *
线性代数与解析几何 第7章 线性空间与线性变换
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.
a
,
b
,
c
R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和
线性空间与线性变换
映射:设M 和M'是两个非空集合,如果对M 中的每个元素,按照某种法则T 都有M'中的一个确定的元素与之对应,则称T 是从M 到M'中的一个映射,记作T :M →M'称M 为T 的定义域。
如果映射T 使α∈M 与β∈M'相对应,则称β是α在映射T 下的象,而称α为β的一个原象,记作T (α)=β(α∈M )集合M 到自身的映射称为M 上的变换。
设T 和S 都是集合M 到M'的映射。
如果对任一元素α∈M 都有T (α)=S (α),则称T 和S 相等,记作T=S如果对于M'中的每一个元素β,都有α∈M 使T (α)=β,则称T 是一个满射。
如果对于任意α1,α2∈M ,当α1≠α2时,都有T (α1)≠T (α2),则称T 是单射。
如果映射T 既是满射又是单射,则称之为一一映射(或一一对应)映射T 下所有象所成的集合称为T 的值域(或象集合),记作R (T ),即R(T)={ T (α)︱α∈M}显然R(T)⊂ M',一个集合M 到M'的映射T 是满射的充分必要条件是R (T )= M';而T 是单射的充分必要条件是,对任意α1,α2∈M ,由T (α1)= T (α2)可以推出α1=α2 设M 是一个非空集合,定义E (α)=α(α∈M )则E 是M 上的变换,称为M 的单位映射(或恒等映射),记作M I 。
E 是一一映射。
对于映射,定义它的乘积如下(ST )(α)﹦S (T (α))(α∈M )所确定的从M 到M''的映射ST 称为S 与T 的乘积。
映射的乘积是复合函数的推广,但不是任意两个影射都可以求他们的乘积。
由映射T 和S 得到乘积ST 的充分必要条件是T 的值域含与S 的定义域。
例1 设M=K n ×n .定义 T 1(A )=det A (A ∈K )则T 是K n ×n 到K 的一个映射,它是满射,但不是单射。
第六章线性空间与线性变换
高等代数第六章 线性空间与线性变换第六章 线性空间与线性变换§6.1 线性空间与简单性质一、线性空间的概念定义 设V 是一个非空集合,F 是一个数域.在V 上定义了一种加法运算“+”,即对V 中任意的两个元素α与β,总存在V 中唯一的元素γ与之对应,记为βαγ+=;在数域F 和V 的元素之间定义了一种运算,称为数乘,即对F 中的任意数k 与V 中任意一个元素α,在V 中存在唯一的一个元素δ与它们对应,记为αδk =.如果上述加法和数乘满足下列运算规则,则称V 是数域F 上的一个线性空间.(1) 加法交换律:αββα+=+;(2) 加法结合律:()()γβαγβα+=+++;(3) 在V 中存在一个元素0,对于V 中的任一元素α,都有αα=+0; (4) 对于V 中的任一元素α,存在元素β,使0=+βα; (5) α⋅1=α;(6) βαβαk k k +=+)(,∈k F ; (7) ()∈+l k l k l k ,,ααα+=F ; (8) ()()ααkl l k =,其中γβα,,是V 中的任意元素,l k ,是数域F 中任意数.V 中适合(3)的元素0称为零元素;适合(4)的元素β称为α的负元素,记为α−.下面我们列举几个线性空间的例子. 例1数域F 上的所有n 维列向量集nF 算规则,它是数域F 上的一个线性空间.特别地,当R F =时,n R 称为n 维实向量空间;当C F =时,n C 称为n 维复向量空间.例2 数域F 上的全体n m ×矩阵构成一个F 上的线性空间,记为)(F n m M ×. 例3数域F 上的一元多项式全体,记为][x F ,构成数域F 上的一个线性空间.如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域F 上的一个线性空间,记为n x F ][.高等代数讲义例4实系数的n 元齐次线性方程组0=Ax 的所有解向量构成R 上的一个线性空间.称之为方程组0=Ax 的解空间.例5闭区间],[b a 上的所有连续实函数,构成一个实线性空间,记为],[b a C .例6 零空间.注:线性空间中的元素仍称为向量.然而其涵义比n 维有序数组向量要广泛的多.二、性质性质1 零向量是唯一的. 性质2 负向量是唯一的.注:利用负向量,我们定义减法为:)(βαβα−+=−.性质3 对V 中任意向量γβα,,,有(1) 加法消去律:从γαβα+=+可推出γβ=;(2) 0=⋅α0,这里左边的0表示数零,右边的0表示零向量; (3) 00=⋅k ; (4) αα−=−)1(;(5) 如果0=αk ,则有0=k 或0=α.注:线性空间上的加法和数乘运算与nF 的一样,都满足八条运算规律,所以第四章 中关于向量组的一些概念以及结论,均可以平行地推广到一般的n 维线性空间中来.在这里不再列举这些概念和结论,以后我们就直接引用,不另加说明.§6.2 基与维数本节讨论线性空间的结构一、定义与例子定义1 设V 是数域F 上的一个线性空间,如果V 中的n 个向量n εεε,,,21L 满足 (1)n εεε,,,21L 线性无关;(2)V 中的任意向量都可由n εεε,,,21L 线性表示,则称n εεε,,,21L 为线性空间V 的一组基,n 称为V 的维数,记为n V =dim ,并称V 为数域F 上的n 维线性空间.注1:零空间没有基,其维数规定为0.注2:如果在线性空间V 中存在无穷多个线性无关的向量,则称V 为无限维线性空间,第六章 线性空间与线性变换例:连续函数空间],[b a C 就是一个无限维空间.推论1 n 维线性空间中的任意1+n 个向量必线性相关.注3: 将线性空间V 看成一个向量组,那么它的任意一个极大线性无关组就是V 的一组基,其秩就是维数.推论2 n 维线性空间V 中的任意n 个线性无关的向量组成V 的一组基.定义2 设n εεε,,,21L 是n 维线性空间V 的一组基,则对V 中的任意向量α,存在唯一数组n x x x ,,,21L ,使得n n x x x εεεα+++=L 2211,我们称n x x x ,,,21L 为向量α在基n εεε,,,21L 下的坐标,记作()Tn x x x ,,,21L .例1 在n 维向量空间nF 中,显然⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=100,,010,00121ML M M n εεε,是nF 的一组基.对任一向量Tn a a a ),,,(21L =α都可表示成n n a a a εεεα+++=L 2211,所以Tn a a a ),,,(21L 就是向量α在这组基下的坐标.选取另一组基:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=111,,011,00121ML M M n ηηη,对于向量Tn a a a ),,,(21L =α,有()()()n n n n n a a a a a a a ηηηηα+−++−+−=−−11232121L ,所以α在这组基下的坐标为()Tn n n a a a a a a a ,,,,13221−−−−L .例2 在线性空间n x F ][中,容易验证121,,,1−===n n x x αααL高等代数讲义是n x F ][的一组基.在这组基下,多项式1110)(−−+++=n n x a x a a x f L 的坐标就是它的系数()Tn a a a 110,,,−L .考虑n x F ][中的另一组基()121,,,1−−=−==n n a x a x βββL .由泰勒(Taylor)公式,多项式)(x f 可表示为()1)1()(!1)())((')()(−−−−++−+=n n a x n a fa x a f a f x f L ,因此,)(x f 在基n βββ,,,21L 下的坐标为()Tn n a f a f a f ⎟⎟⎠⎞⎜⎜⎝⎛−−!1)(,),('),()1(L . 例3 在所有二阶实矩阵构成的线性空间)(22R ×M 中,考虑向量组⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=1000,0100,0010,000122211211E E E E . 首先这是一组线性无关组.事实上,若有实数4321,,,k k k k ,使=+++224213122111E k E k E k E k O k k k k =⎟⎟⎠⎞⎜⎜⎝⎛4321, 则有04321====k k k k ,这就说明了22211211,,,E E E E 线性无关.其次,对于任意二阶实矩阵⎟⎟⎠⎞⎜⎜⎝⎛=22211211a aa a A , 可表示为2222212112121111E a E a E a E a A +++=,因此22211211,,,E E E E 是22×M 的一组基,22×M 是4维实线性空间,并且A 在这组基下的 坐标为()Ta a a a 22211211,,,.第六章 线性空间与线性变换二、同构关系1.映射设M,N 是两个集合.如果给定一个法则ϕ,使M 中的每个元素a 都有N 中的一个唯一确定的元素'a 与之对应,则称ϕ是集合M 到集合N 的一个映射.'a ∈N 称为a 在映射ϕ下的像,而a 称为'a 在映射ϕ下的原像.记作')(a a =ϕ.M 中元素在ϕ下像的全体构成N 的一个子集,记之为ϕIm 或)(M ϕ。
线性空间与线性变换
线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。
它是指由向量集合组成的集合,满足特定的运算规则。
线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。
线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。
一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。
即对于任意的标量a和b,有a*u + b*v∈V。
2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。
3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。
4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。
5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。
6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。
7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。
8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。
二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。
线性变换也被称为线性映射或线性算子。
线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。
2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。
3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。
线性空间与线性变换解析
线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。
线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。
通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。
一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。
1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。
二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。
若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。
2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。
线性的变换
一、线性变换的概念§1.3 线性变换. () K V T V V T V β αT T αβT ααββα=定义对数域上的线性空间,如果通过某个规则,使得中任一向量与中一个由完全确定的向量对应,那么,这个对应规则称为的一个变换.称为在变换下的,记作:,称为在变换像下的原像..变换的概念是函数概念的推广121212 V (1), ()()()(2) (. 1)()V T T V T T T V k K T k kT T V ααααααααα∀∈+=+∀∈∈=设是数域K 上的线性空间,为的一个变换,如果变换满足:,有,,有那么,就称为线性空线间定的义性变换。
(1) (2) , , .T A B 说明:线性变换就是性质的变换;一保持线般用大写字母表示运算线性变换性K[](11.) x D 例在线性空间中求导运算是一线性变换323210332321032232132132332211002332K[] K[] 32 32()[()() ()()]3()2(a x a x a x a x b x b x b x b x D a x a x a D b x b x b D D a b x a b xa b x a b a b x a b ∀=+++∈=+++∈=++=++∴+=+++++++=+++p q p q p q 21122321321) ()(32)(32)x a b a x a x a b x b xb D D ++=++++=+p q(2) ()1, .() 1 112 ()T T T T T T T T =+=+=+=+≠+p p q p q p q p q如果那么是一个变换,但不是一个线性变换这是因为所以3232102321 ()[]32 D k D ka x ka x ka x ka ka x ka x ka kD =+++=++=p p.2.( V K k K V S S k V S V ααα=∈设是数域上的线性空间,是中某个数,定义的变换如下:)()所以是上的线性变数换,常称为乘变换例() ().() .().E E E E E E k k kE =∈∀∈+=+=+==例V V V 线性空间中的恒等变换或称单位变换:,是线性变换这是因为、恒有所以恒等变换是线性变换ααααβαβαβαβαααO O() O()O O , O()O 0V 00ααβαβααααk k =∀∈+==+==线性空间中的零变换:是线性变换。
第一章线性空间与线性变换4-7
下证唯一性 T 设有V1到V2 上的线性映射 T1, 2 使得 T1 (α 1, 2, , n ) = ( β 1, 2, , m ) A, α Lα β L β
T2 (α 1, 2, , n ) = ( β 1, 2, , m ) A α Lα β L β ⇒ T1 (α 1, 2, , n ) = T2 (α 1, 2, , n ), α Lα α Lα 任取α ∈ V1 且α = (α 1, 2, , n ) X,则 α Lα T1 (α ) = T1 [(α 1, 2, , n ) X ] = [T1 (α 1, 2, , n )] X α Lα α Lα = [T2 (α 1, 2, , n )] X = T2 [(α 1, 2, , n ) X ] = T2 (α ), α Lα α Lα ⇒ T1 = T2,故唯一性成立 .
一 第 章线 空 和 性 换 性 间 线 变
第四节 线性映射
上页
下页
返回
一、线性映射 1、定义:设V1, 2为线性空间,若映射 T : V1 → V2 满足: 定义: V 为线性空间, 满足: ∀α,β ∈ V1,λ ∈ F,有 (1)T (α + β ) = T (α ) + T ( β ); ( 2)T (λα ) = λT (α ). 的线性映射, 称为原像, 则称T为V1到V2的线性映射, 其中α称为原像,T (α )称为α的像 . 例1、定义T : V → V如下T (α ) = α, T为线性映射, 则 为线性映射, 记为T = E . 称为恒等映射或恒等变 换 例 2、定义T : V1 → V2如下T (α ) = 0, T为线性映射, 则 为线性映射, 记为 T = O . 称为零映射 例 3、设A = (aij ) m×n,定义T : R n → R m 如下T (α ) = Aα, T 则
第五讲线性空间与线性变换
第五讲线性空间与线性变换第五讲线性空间与线性变换⼀、基本概念1. 数域K 数的集合,且1) 0,1K ∈;2) K 关于,,,+-?÷运算封闭.例如:数域,,Q R C* 任意数域都包含有理数域(有理数域是最⼩的数域). 数域有⽆穷多.2. 数域K 上的线性空间K V ⾮空集合V + 数域K + 集合V 在数域K 上关于“+”与“数乘”运算封闭 + ⼋条规律线性空间也称为向量空间,其中的元素也称为向量. * n 维实向量线性空间nR 例如,例5.1-例5.73. ⼦空间K U 1) K K U V ?;2) 且K U 是数域K 上的线性空间.⽣成⼦空间K U 1)12,,,s K V ααα? ;2){}112212,,,K s s s U L k k k k k k K ααα=+++∈ . (P84 例5.10)4. 基维数坐标基线性空间中的“极⼤线性⽆关组” P84 维数 “极⼤线性⽆关组”的秩 P84 例如,例5.11-例5.14坐标线性空间中的向量由基线性表⽰的系数 P85 例如,例5.15-例5.165. 基变换和坐标变换基变换基之间的线性变换 P87过渡矩阵构成基变换的矩阵(过渡矩阵是可逆矩阵) P88 坐标变换向量在不同的基下的坐标之间的线性变换 P88 6. 线性变换线性变换线性空间K V 到K V 的满⾜线性运算的映射 P89 例如,例5.17-例5.20线性变换的矩阵基表⽰基的像的线性变换矩阵 P90 例如,例5.21-例5.227. 欧⽒空间内积设V 是实数域R 上的⼀个线性空间,在V 上定义⼀个⼆元函数,记作[],αβ,如果它满⾜:1),,,V k R αβγ?∈∈,有 1) [][],,αββα=(对称性); 2) [][][],,,αβγαγβγ+=+, [][],,k k αββα=(线性性); 3)[],0αα≥,当且仅当αο=时,[],0αα=(正定性),则称这个⼆元函数[],αβ是V 上的内积. P93欧⽒空间定义了内积的实线性空间(实数域上的线性空间) P93 * n 维实向量线性空间nR 是欧⽒空间例如,例5.24-例5.261α=(规范性) P94向量的夹⾓[],,a r c c o sαβαβαβ=?,0,αβπ≤≤ P94 向量的正交 [],,02παβαβ==(正交性) P94 例如,标准单位向量组中的向量是相互正交的向量例1(P94 例5.27)8. 规范正交基规范向量组向量长度皆为1的向量组正交向量组向量皆⾮零且互相正交的向量组(正交向量组线性⽆关) P94规范正交向量组满⾜规范性和正交性的向量组,即若12,,,s ααα满⾜:,0,,i j i j αα=?,1,i i α=? P94正交基/规范正交基由正交向量组成的基/由规范正交向量组成的基 P95 正交矩阵 TA A E = P97⼆、基本结论1. 线性空间的基本性质 P831)线性空间的零向量是唯⼀的;2)每⼀个向量的负向量是唯⼀的; 3)0,,k k K αοοο==?∈; 4)若k αο=, 则0k αο=或=.2. ⼦空间的判定定理1(P84 定理5.1)例如,例5.8-例5.9推论(P85)如果线性空间U V ?,则()()r U r V ≤.3. 基的性质定理2(P85 定理5.2)(产⽣基的⽅法)推论(P85)含有⾮零向量的线性空间⼀定存在基. 推论(P95)⾮空的欧⽒空间⼀定存在规范正交基.4. 坐标变换与基变换的关系定理3(P88 定理5.3)例1(P88)5. 线性变换的性质线性变换的性质(P88)定理4(P91 定理5.4)(向量与向量的像在同⼀基下的坐标的关系) 定理5(P92 定理5.5)(两组基的线性变换矩阵之间的关系)例2(P92 例5.23)三、向量组的规范正交化定理1(P95 定理5.7)例1(P95 例5.28)例2(P96 例5.29)四、习题解答 1. P98 3.提⽰: 即求1234,,,αααα的极⼤线性⽆关组极其秩. 2. P98 5.提⽰: (1)1V 是1n -维线性空间. 23,,,n e e e是1V 的⼀组基.(3)3V 是1n -维线性空间. ()()()1,0,,0,1,0,1,,0,1,,0,0,,1,1TTT--- 是3V 的⼀组基.(5)5V 是1维线性空间, ()1,2,,1,Tn n - 是5V 的⼀组基.(6)6V 是2维线性空间, ()()1,0,,0,0,0,1,,1,1TT是6V 的⼀组基.3. P98 6.提⽰:(1)()1234,,,αααα11111111111111112121014101110111111002010023002301110111007400013----------- ? ? ? ?=→→→------ ? ? ? ?-()1234,,,4R αααα=, 所以1234,,,αααα是线性空间4K 的⼀组基.(2)设()1234,,,x βαααα= , 则()11234,,,x ααααβ-=.()123451513421,,,23-→-- ---32-6,, 所以β在基1234,,,αααα下的坐标为()1,2,1,3T-.4. P98 7.提⽰: 令()()()21123n n k k x a k x a k x a ο-+-+-++-= , 有120n k k k ==== , 故()()()211,,,,n x a x a x a ---- 线性⽆关, 可以成为线性空间[]n R x 的⼀组基.因为()()()()()()()()21(1)112!!n n f x f a f a x a f a x a f a x a n --'''=+-+-++- , 所以()211n f x x x x -=++++ 在基()()()211,,,,n x a x a x a ---- 下的坐标为()()()()(1)11,,,,2!(1)!Tn f a f a f a f a n -??''' ?-??, 即 ()()2121,121,,1Tn n a aa a n a --+++++++- .5. P98 8.提⽰: (1)过渡矩阵()()1123123,,,,C αααβββ-=;(2)()()()()1123123123123,,,,,,,,,TTx x x y y y ααααβββα--==.6. P99 10.提⽰: 计算基的像()()()()11122122,,,A E A E A E A E , 表⽰()()()()() 11122122,,,A E A E A E A E =()()()()()11122122,,,A E A E A E A E C , 则C 即是所求.7. P99 11. 提⽰: 同上题 8. P99 12.提⽰:(1)同上题;(2)⽤123,,εεε表⽰123,,ηηη, 并计算像()()()123,,A A A ηηη. 余下同(1).9. P99 13.提⽰:(1)()()321123001,,,,010100εεεεεε?? ?= ? ???. 余下同12.(2);(2)()()123123100,,,,00001k k εεεεεε?? ?= ? ???, 余下同上;(3)()()1223123100,,,,110001εεεεεεε?? ?+= ? ???, 余下同上.10. P100 14.提⽰: ()32214212413211110111011101021*********111011101110111000000002311011100000000r r r r r r r r r r r +-+--?------ ? ? ? ?---- ? ? ? ?---故由1234,,,αααα⽣成的⼦空间V 的⼀组基为1110,0123.正交化 11110177711066663244--???????? ? ? ? ?-- ? ? ? ?-= ? ? ? ? ? ? ? ? ? ? ? ????????? ,单位化 1117610206610224--,. 故空间V 的⼀组规范正交基为1117610206610224--,. 11. P100 16. 17.提⽰:(1)、(2)C 是正交矩阵1T T CC E CC -?=?=(3)()TT TAB AB ABB A E ==(4)TTT A O A O A O A O E O B O B O B OB ??==12. P100 3.提⽰: P64 11. 13. P100 4.12,,,n ααα是⼀组基.14. P100 5.提⽰:(1)()()()22123111,,1,1,11,,011001x x x x x ααα??=+++=;(2)()223321,,21x x x x ??++=.14. P100 6.提⽰: 同12.(2). 15. P101 7.提⽰: (1)关于y 轴对称;(2)投影到x 轴;(3)关于直线y=x 对称; (4)逆时针旋转900.16. P101 8.提⽰: ()()()(),,,x x A A B B C C D D A y y ''''?=?=?=?=??= ? ? ????? .(1)1001x x x y y y ??--==;(2)10202x x x y y y==;(3)2222 11x x y x y x y y ??+== -+-.17. P102 10.x ααα=的解即为所求.18. P102 11.提⽰:(2)设{}1U α=, 有()()()()()()1111011R U R U nU U R U R U n R U R U n αοαο=?=?=?⊥+=≠?=?=- 19. P102 12.提⽰: A 是正交矩阵12 11T TA A AA E A A -?=??=??=?=±??另⼀⽅⾯,由**1T AA A E A A A A A -=?==, 1,1ij ij ij ij A a A A a A ?===-=-??当当20. P102 13.提⽰: 由12.(1)及01A B A B +=??=-及()()TTTT T BA B A B A B A +=+=+()0TB A B A B A B A B A B A ??+?=+?-+=+?+=五、知识扩展1. 设B 是秩为2的54?矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次⽅程组Bx ο=的解向量, 求Bx ο=的解空间的⼀组规范正交基.提⽰: ()2R B =?基础解系含有两个解向量, 即Bx ο=的解空间的基中含有两个解向量. ⼜12,αα线性⽆关, 故12,αα是Bx ο= 的解空间的⼀组基. 将12,αα正交化规范化, 即得Bx ο=的解空间的⼀组规范正交基.。
空间几何的线性变换
空间几何的线性变换在空间几何学中,线性变换是一项重要的概念。
它被广泛应用于各个领域,如计算机图像处理、物理学、统计学等。
本文将从空间几何的角度出发,详细讨论线性变换的概念、性质、以及在实际应用中的一些例子。
1. 线性变换的概念线性变换是指一个向量空间中的一个函数,将空间中的任意一个向量映射到另外一个向量。
对于一个线性变换T,它的定义可以表示为:T(x + y) = T(x) + T(y)T(kx) = kT(x)其中,x和y是空间中的向量,k是一个标量。
在空间几何学中,线性变换可以改变向量的大小、旋转角度和位置。
这类变换通常用一个矩阵来表示,矩阵的每一行代表一个向量在变换后的位置。
2. 线性变换的性质线性变换有许多重要的性质,其中最重要的是保持向量的线性组合。
具体来说,如果T是一个线性变换,x和y是向量,k和l 是标量,则有:T(kx + ly) = kT(x) + lT(y)这个性质可以被证明是线性变换的基本性质,因为它说明了线性变换是一个在向量空间中保持线性性质的函数。
此外,线性变换还有一些其他的性质。
比如说,如果T是一个线性变换,那么它就是一个双射(又称为一一映射),这意味着每一个向量都有唯一的映射结果。
同时,线性变换还满足复合性质,也就是说,如果T1和T2都是线性变换,那么它们的复合T1T2也是一个线性变换。
3. 线性变换的应用线性变换在实际应用中有着广泛的用途。
其中一个重要的应用领域是计算机图像处理。
在数字图像处理中,线性变换可以用来对图像进行旋转、缩放等处理,从而提高图像的质量和效果。
另一个应用领域是物理学。
在物理学中,线性变换可以用来描述一些粒子的运动和旋转。
此外,它还可以用来解决一些比较复杂的问题,如电场和磁场之间的相互作用等。
在统计学中,线性变换也有重要的应用。
例如,在多元正态分布中,当协方差矩阵不满足对称和正定性的条件时,线性变换可以直接对协方差矩阵进行修正,从而得到更加准确和可靠的结果。
6线性空间与线性变换
与A中的
对应,就记
在映射下的像, 在下的原像.
返回
上一页
下一页
的像的全体构成的集合称为的像集,记作 (A),即
例
设A=R, B=R+, (x)=x2+3是R到R+的一个映
射, 它把 x 映射到 x2+3 , 7 是 -2在 下的像.
返回
上一页
下一页
定义6 设U,V是R上的两个线性空间,是V到U 上的一个映射,如果满足
(4) 对任何a∈R+,有 a a 1 a a 1 1 (a-1叫做a的负元素);
(5) 1 a a a ; k (6) k ( a ) k a a (k ) a;
1
(7 ) (k ) a a
(k )
故
1 x1 0 x2 x3 0 x4 0 1 1 0 0 0 0 1 2 0 x1 x 2 x1 x2 x2 . 1 x3 x3 2 x4 x4
因此 f(x)在基
下的坐标为
返回
上一页
下一页
返回
上一页
下一页
于是
返回
上一页
下一页
在线性空间Vn中取定一个基 ,则Vn中 的向量 与n维数组向量空间Rn中的向量(x1,x2,…xn)之 间有一个一一对应的关系,且这个对应关系保持线性 组合的对应,即设 则
Vn与Rn有相同的结构,称为Vn与Rn同构。 一般地,设V与U是R上的两个线性空间,如果在 它们的元素之间有一一对应关系,且这个对应关系保 持线性组合的对应,那么就说线性空间V与U同构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性空间上的线性变换6.1 特征多项式Cayley-Hamilton 定理是特征多项式中的一个重要定理,其传统证明方法是通过其伴随矩阵的变换来证明,过程较为繁长。
我们可以利用分块矩阵简化Cayley-Hamilton 定理的证明过程。
首先,我们先引进两个引理。
引理1:令n n A P ⨯∈.则A 总复相似于证明:A 的特征多项式在复数域上恒有根,令其中一根为11b ,1β为其对应的特征向量,即1111A b β=β.将1β扩充为W 的一个基底12n )βββ(,,,,从而有因此,A 总复相似于引理2:令,若f(x)为数域P 上的一多项式,则f(A)可如下分块接下来,我们来证明Cayley-Hamilton 定理,引入记号A ()∆λ表示E A λ-。
定理1(Cayley-Hamilton )[4]:令n n ij A A=(a )P ,(A)=0⨯∈∆则。
证明:数学归纳法。
当n=1时,结论显然成立。
1112n n22b B C 0B ⨯⎛⎫∈ ⎪⎝⎭111212n 12n 22bB A A A ))0B ⎛⎫βββ=βββ ⎪⎝⎭(,,,(,,,1112n n22b B C 0B ⨯⎛⎫∈ ⎪⎝⎭。
1112n n22A A A P 0A ⨯⎛⎫=∈ ⎪⎝⎭,111222f (A )B 0f (A )⎛⎫ ⎪⎝⎭。
假设定理对于任意阶数为n-1(n ≥2)的矩阵都成立。
由上引理1可知,存在可逆矩阵n n T C ⨯∈,使得再由引理2及知存在某个D 12使得由归纳法假设知,因此,A (B)=0∆,从而得证。
利用分块矩阵,我们还可以证明另一个与特征多项式有关的定理。
定理2[3]:令m n n m m n AB BA A P B P m n (x)=x *(x)⨯⨯-∈∈≥∆∆,,。
则。
特别地,当m=n 时,AB BA (x)=(x).∆∆证明:(1)当m=n ,且A 可逆时,有BA=A -1(AB)A ,由于相似矩阵有相同的特征多项式,因此AB BA (x)=(x)∆∆。
(2)当利用分块矩阵,将B 分块为 其中r r (n r)(n r)14B P B P ⨯-⨯-∈∈,。
于是因此m rn rA B mr 1B A n r 1(x )=x E AB xx E B ,(x )=x EBA x x E B --∆-=-∆-=-。
联立两式即可得m n AB BA (x)=x *(x)-∆∆。
(3)考虑一般情况。
令r A =r ,由于任意矩阵A 都等价于其等价标准形故存在可逆矩阵m m n n P P Q P ⨯⨯∈∈,,使得(r)A=PE Q 。
再反复(1)(2)步骤,有(r )(r )(r )(r )m n m n m n AB BA PE QB E QBP QBPE BPE Q (x)=(x)=(x)x (x)x (x)x (x)---∆∆∆=∆=∆=∆。
1112-11122bB T AT B b C0B ⎛⎫==∈ ⎪⎝⎭,()222222B 111212B 11n B 2211n 1B 22(b )D 0B (B)=B bE (B)0B b E 0(B )-∆⎛⎫⎛⎫∆∆= ⎪ ⎪ ⎪-∆⎝⎭⎝⎭-。
22B 22(B )=0∆,()22B 11B ()=b ()∆λλ-∆λ,-1A B (A)=T (B)T =∆∆0。
r E 0A=00⎛⎫ ⎪⎝⎭,1234BB B=B B ⎛⎫⎪⎝⎭,1123B 0B B AB=BA=B 000⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,r(r)m nE 0E00⨯⎛⎫= ⎪⎝⎭。
6.2 最小多项式最小多项式在代数中占有非常重要的地位,在求某些特殊形式的矩阵的最小多项式时,适当利用分块矩阵可以简化运算。
对于准对角矩阵,我们有以下定理: 定理3:设A 是由若干矩阵组成的准对角矩阵,其中i A 的最小多项式为i g (x)(i 12s)=,,,,,那么A 的最小多项式为12s [g (x)g (x)g (x)],,,。
由于相似的矩阵具有相同的最小多项式,最小多项式相同的矩阵不一定相似,因此,我们可以利用最小多项式来判断两个矩阵是否相似。
例:设判断A ,B 是否相似。
解:令其中我们可以算出1A 的最小多项式为(x-1)2,2A 的最小多项式为(x-1)(x-2),故A 的最小多项式为(x-1)2 (x-2);1B 的最小多项式为(x-1),2B 的最小多项式为(x-2)2,故B 的最小多项式为(x-1) (x-2) 2。
由于A 和B 的最小多项式不同,故A 与B 不相似。
利用矩阵的最小多项式,我们还可以进一步判断矩阵是否可以对角化:数域P 上的n 阶矩阵A 与对角矩阵相似,即可对角化的充分必要条件是A 的最小多项式是数域P 上互素的一次因式的乘积。
6.3 矩阵的分解矩阵在很多地方都有大量的应用,但有时候直接应用,很难看出其性质及优1s A A=A ⎛⎫ ⎪ ⎪ ⎪⎝⎭,11111A=B=12122⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,1122A B A=B=A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,121110A =A =0102⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭,,121021B =B =0102⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,点。
然而若将一些矩阵分解为某些特殊矩阵或比较简单的矩阵的运算,一方面可以反映原矩阵的秩,特征值,奇异值等某些数值特性,另一方面矩阵分解可以利用特殊矩阵的特殊性质,简化计算,有利于我们对分解矩阵的讨论。
以下,我们将利用分块矩阵分解几个特殊矩阵。
例1:矩阵A m ×n 的秩为r ,则存在m×r 的列满秩矩阵P ,及r×n 的行满秩矩阵Q ,使得A=PQ 。
证明:已知A 的秩为r ,则存在m 阶可逆方阵P 1,n 阶可逆方阵Q 1,使例2:设n 阶方阵A 的n-1个顺序主子式∣A 1∣,∣A 2∣,…,∣A n-1∣皆不为零,则A 存在如下分解A =LDM ,其中M ,L 分别是上,下三角可逆矩阵,D 是对角矩阵。
证明:利用分块矩阵及归纳法。
对n 作归纳法。
n=1时显然成立,设n-1时结论已经成立,要证n 时结论成立。
进一步变化,1()()()1r 11m n r r 1r n m r r r 1r n m r 1P P E O A=P Q O O E E O Q O E E O Q O PQ ⨯⨯⨯⨯⨯⎛⎫⎪⎝⎭⎛⎫= ⎪⎝⎭⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭=。
n-1nn A A=n-1n-11a β⎛⎫α⨯β⨯ ⎪α⎝⎭令,其中为1()阵,为()阵。
-1-1n-1n-1n-1n-1n-1n-1n-1-1-1n-1nn nn n-1n-1-1nn n-1E 0A A E -A E -A =-A 1a 0a -A 0101A 0=0a -A ββ⎛⎫⎛⎫ββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪αααβ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪αβ⎝⎭()r r1r n m r1E P=Q=E O Q P O P Q ⨯⨯⎛⎫⎪⎝⎭其中,。
且,分别是行满秩和列满秩矩阵。
由以上假设可知,n-1A 为n-1阶,故存在M 1,L 1分别是上,下三角可逆矩阵,D 1是对角矩阵,使L 1D 1M 1=A n-1。
令-1-11111Q =M P =L ,,它们仍为上,下三角可逆矩阵,且1n-111P A Q =D 。
则有例3[6]:n×n 复方阵A 称为半单的,如果A 相似于对角形。
证明对n×n 复方阵A 存在n×n 复方阵B 及C 使得1) A=B+C ;2) B 是半单的,C 是幂零的; 3) BC=CB 。
证明:A 可相似与若尔当形矩阵,即有可逆阵T 使T -1JT=A.其中它们满足1)B 相似对角阵,故是半单的。
2)N i 皆幂零,故C 为幂零的。
3)λi E i 与N i 都交换,故B 与C 是交换的。
4)B+C=T -1JT=A 。
得证。
n-1111-1-1nn n-1nn n-1-1n-111-1-1n-1n-1-1n-1A 0D 0P 0Q 0=D 0Q -A 0a -A 0101E 0P 0Q 0E -A L =M =-A 1010101L M A=LDM ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪αβαβ⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫β⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪α⎝⎭⎝⎭⎝⎭⎝⎭为对角形。
令及,它们是下,上三角可逆矩阵。
则,分别仍是下,上三角可逆阵。
这时有,得证。
i i i1i i k i i n k k 00000J 10000J J =E N N i 12s 01000J 00010⨯⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=λ+== ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭。
而,,,,,。
1s 1k 1-1-1s k s E N B=T T C T T E N 0000⎛⎫λ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪λ⎝⎭⎝⎭令,,定理1[7]:设λ1是矩阵A ∈C n×n 的特征值,n 1=dimN[(A -λ1E n )u1],u 1为λ1的指标,则存在n×n 1的列满秩矩阵 使这里是n 1阶矩阵。
它由0ρ个Jordan 块组成,且只有特征值λ1。
定理2[7]:设λ1,λ2,…,λi 是矩阵A ∈C n×n 的互异特征值,λi (i=1,2,…,s )的代数重数为n i ,则必存在满秩矩阵P ,使其中J i 是由λi 的Jordan 块组成的n i 阶准对角阵。
我们称上式右边的矩阵为A 的Jordan 标准型,记为J ,即()1111u 1u 1u 10111(u )(u )(u 1)(u 1)(1)(1)11121P V V ,V V V V ----ρρ+ρ-ρ+ρ=,,,,,,,,111AP P J =1111111(u )1u 1(u )1(u 1)1u -2u 11(u 1)1(1)101(1)1J J J -J J J -J ----⎧⎫⎛⎫⎪⎪ ⎪ρ⎨⎬⎪⎪⎪ ⎪⎩⎭ ⎪⎧⎫ ⎪⎪⎪ ⎪ρρ⎨⎬⎪=⎪⎪ ⎪⎩⎭⎪⎪ ⎪⎧⎫ ⎪⎪⎪⎪ρρ⎨⎬ ⎪⎪⎪⎝⎭⎩⎭个个个12-1s J J P AP=J ⎛⎫⎪⎪ ⎪ ⎪⎝⎭12s J J J=J ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭从而有A=PJP-1,称为A的Jordan标准分解。