2014年秋季新版新人教版八年级数学上学期第十三章 轴对称单元复习试卷28
2014年秋季新版新人教版八年级数学上学期第十三章 轴对称单元复习试卷31
第十二章 轴对称单元复习测试卷班级 姓名 座号 成绩一、选择题(每题5分,共25分)1.国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( )A.加拿大、瑞士、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士加拿大 澳大利亚 乌拉圭 瑞典 瑞士2.如图,如果直线m 是多边形ABCDE 的对称轴,其中130A ∠= ,110B ∠= .那么BCD ∠的度数等于( )A.40B.50C.60D.703.下列三角形:①有两个角等于60 的三角形;②有一个角等于60 的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A.①②③B.①②④C.①③D.①②③④4.如图,已知在ABC ∆中,AB AC =,BD DC =,则下列结论中错误的是( )A.BAC B ∠=∠B.BAD CAD ∠=∠C.AD BC ⊥D.B C ∠=∠5.如图,已知ABC ∆中,AB AC =,30C ∠= ,AB AD ⊥,则下列关系式正确的为( )A.BD CD =B.2BD CD =C.3BD CD =D.4BD CD =二、填空题(每题5分,共25分)第2题 第4题 第5题 第9题 第10题6.与点(3,2)P -关于y 轴对称的点是 .7.等腰三角形中的一个角等于100 ,则另两个内角的度数分别是 .8.在ABC ∆中,AB =AC ,B C ∠=∠,则A ∠= .9.P 、Q 是ABC ∆的边BC 上的两点,且BP PQ QC AP AQ ====,则BAC ∠等于 度.10.如图,在ABC ∆中,16AB AC cm ==,AB 的垂直平分线交AC 于点D ,如果10BC cm =, 那么BCD ∆的周长是 cm .三、解答题(共50分)11.(15分)如图,现准备在一条公路旁修建一个仓储基地,分别给A 、B 两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)12.(15分)已知:如图,ABC ∆中,AB AC =,D 是BC 延长线上一点,E 是AC 延长线上一点,且DE ∥AB ,求证ED EC =.13.(20分)在ABC ∆中,AB AC =,120A ∠= ,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证BM MN NC ==.参考答案一、选择题(每题5分,共25分)1.国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( C )A.加拿大、瑞士、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士加拿大 澳大利亚 乌拉圭 瑞典 瑞士2.如图,如果直线m 是多边形ABCDE 的对称轴,其中130A ∠= ,110B ∠= .那么BCD ∠的度数等于( C )A.40B.50C.60D.703.下列三角形:①有两个角等于60 的三角形;②有一个角等于60 的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( D )A.①②③B.①②④C.①③D.①②③④4.如图,已知在ABC ∆中,AB AC =,BD DC =,则下列结论中错误的是( A )A.BAC B ∠=∠B.BAD CAD ∠=∠C.AD BC ⊥D.B C ∠=∠5.如图,已知ABC ∆中,AB AC =,30C ∠= ,AB AD ⊥,则下列关系式正确的为( B )A.BD CD =B.2BD CD =C.3BD CD =D.4BD CD =二、填空题(每题5分,共25分)6.与点(3,2)P -关于y 轴对称的点是(,)32 .第2题 第4题 第5题 第9题 第10题7.等腰三角形中的一个角等于100 ,则另两个内角的度数分别是 40,40 .8.在ABC ∆中,AB =AC ,B C ∠=∠,则A ∠=60 .9.P 、Q 是ABC ∆的边BC 上的两点,且BP PQ QC AP AQ ====,则BAC ∠等于120 度.10.如图,在ABC ∆中,16AB AC cm ==,AB 的垂直平分线交AC 于点D ,如果10BC cm =,那么BCD ∆的周长是26 cm .三、解答题(共50分)11.(15分)如图,现准备在一条公路旁修建一个仓储基地,分别给A 、B 两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小?(保留作图痕迹及简要说明)解:如图,作点B 关于公路的对称点B ',连接AB ',交公路于点C ,则这个基地建在C 处,才能使它到这两个超市的距离之和最小.12.(15分)已知:如图,ABC ∆中,AB AC =,D 是BC 延长线上一点,E 是AC 延长线上一点,且DE ∥AB ,求证ED EC =.证明:∵AB AC =∴B ACB ∠=∠∵AB ∥ED∴B D ∠=∠∴ACB D ∠=∠又∵ACB ECD ∠=∠∴ECD D ∠=∠∴ED EC =13.(20分)在ABC ∆中,AB AC =,120A ∠= ,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证BM MN NC ==. 证明:连接AM 、AN∵AB AC = ∴1801801203022BAC B C -∠-∠=∠===∵M E 垂直平分AB∴M B M A =∴30MAB B ∠=∠=∴60NMA B MAB ∠=∠+∠=同理NA NC =,30NAC C ∠=∠= ,60MNA ∠= ∴120303060MAN BAC MAB NAC ∠=∠-∠-∠=--= 60NMA MAN MAN ∠=∠=∠=∴MAN ∆为等边三角形∴M N AM AN ==∴BM MN NC ==。
八年级数学上册《第十三章 轴对称》单元检测卷及答案(人教版)
八年级数学上册《第十三章轴对称》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.直角三角形C.角D.线段2.点M(2,−3)关于y轴的对称点坐标为( )A.(−2,3)B.(2,3)C.(−3,2)D.(−2,−3)3.到三角形各顶点的距离相等的点是三角形( )A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点4.如图,在△ABC中AB=AC,∠A=38∘,AB的垂直平分线MN交AC于D点,则∠DBC的度数是( )A.33∘B.38∘C.43∘D.48∘5.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC 于M,N,则△AMN的周长为()A.10 B.6 C.4 D.不确定6.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°则∠B的度数为()A.30°B.50°C.90°D.100°7.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°8.如图,在四边形ABCD中,连结AC,BD,若△ABC是等边三角形,AB=BD,∠ABD=20°,则∠BDC的度数为()A.50°B.60°C.70°D.75°二、填空题9.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m= .10.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为.11.如图,在锐角△ABC中,AC=10 S△ABC=25∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是12.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE 的度数为.13.如图,ΔABC中∠ACB=90°,AC=6,BC=8,CD是ΔABC的角平分线,点E是AC的中点,P是CD 上一点,则ΔAEP周长的最小值是.三、解答题14.已知等腰△ABC的周长为20,求腰长的取值范围.15.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.16.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.17.等边△ABC的边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.18.数学课上,张老师举了下面的例题:例1:在等腰三角形ABC中,∠A=110°,求∠B的度数. (答案:35°)例2:在等腰三角形ABC中,∠A=40°,求∠B的度数. (答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式:在等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案1. B2. D3. A4. A5.A6.D7.D8.C9.810.1211.512.30°13.3+3√514.解:设等腰△ABC的腰长为x,则底边长为20﹣2x,依题意有{2x>20−2xx+20−2x>x解得5<x<10.故腰长的取值范围是5<x<10.15.证明:∵MD⊥BC,且∠B=90°∴AB∥MD∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD∴∠D=∠MAD∴MA=MD16.证明:①连结CD∵D 在BC 的中垂线上∴BD=CD∵DE ⊥AB ,DF ⊥ACAD 平分∠BAC∴DE=DF∠BED=∠DCF=90°在Rt △BDE 和Rt △CDF 中{DE =DF BD =CD∴Rt △BDE ≌Rt △CDF (HL )∴BE=CF ;②解:由(HL )可得,Rt △ADE ≌Rt △ADF∴AE=AF=5∴△ABC 的周长=AB+BC+AC=(AE+BE )+BC+(AF ﹣CF )=5+6+5=16.17.(1)∵AB=8,AD=2∴BD=AB-AD=6在Rt △BDE 中,∠BDE=90°-∠B=30°∴BE= 12 BD=3∴CE=BC-BE=5在Rt △CFE 中,∠CEF=90°-∠C=30°∴CF= 12 CE= 52∴AF=AC-FC= 112 ;(2)在△BDE 和△CFE 中 {∠BED =∠CFE =90°∠B =∠C DE =EF∴△BDE ≌△CFE(AAS)∴ BE=CF∴BE=CF= 12EC∴BE= 13 BC= 83∴BD=2BE= 163∴AD=AB-BD= 83∴ 当AD= 83 时,DE=EF.18.(1)解:若∠A 为顶角,则∠B=(180°-∠A) ÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 也为底角,则∠B= 80°.故∠B 的度数是50°或20°或80°.(2)解:分两种情况:①当90≤x<180时,∠A 只能为顶角所以∠B 的度数只有一个;②当0<x<90时若∠A 为顶角,则∠B= (180−x 2)° ;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°;若∠A 为底角,∠B 也为底角,则∠B=x °当 180−x 2 ≠180-2x 且180-2x ≠x 且 180−x 2 ≠x即当x ≠60时,∠B 有三个不同的度数.综上,可知当0<x<90且x ≠60时,∠B 有三个不同的度数。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版 八年级数学上册 第十三章 轴对称 综合复习(含答案)
人教版八年级数学第十三章轴对称综合复习一、选择题(本大题共10道小题)1. 如图所示的图形有________条对称轴()A.1 B.2 C.3 D.42. 在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则() A.m=3,n=2 B.m=-3,n=2C.m=2,n=3 D.m=-2,n=-33. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB4. 如图,在△ABC中,DE垂直平分AB,交AB于点E,交BC于点D,若AD=4,BC=3DC,则BC等于()A.4B.4.5C.5D.65. 如,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个6. 如图,在四边形ABCD中,AB∥CD,AD⊥AB,P是AD边上的一动点,要使PC+PB的值最小,则点P应满足()A.PB=PC B.P A=PDC.∠BPC=90°D.∠APB=∠DPC7. (2020自贡)如图,在R t△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°8. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD9. 将平面直角坐标系内某个图形的各个点的横坐标都乘-1,纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.图形向左平移D.图形向下平移10. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 9二、填空题(本大题共8道小题)11. 如图K-16-10,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5 cm,CD=3.5 cm,则四边形ABCD的周长为________ cm.12. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图,在△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长为________.15. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.16. 如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长为________.17. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.18. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题(本大题共4道小题)19. 如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若ED=4 cm,FC=1 cm,∠BAC=76°,∠EAC=58°.(1)求BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?20. 如图,上午8时,一条船从A处出发以30海里/时的速度向正北方向航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求B处与灯塔C的距离.21. 如图①,在△ABC中,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC分别交AB,AC于点E,F.探究一:猜想图①中线段EF与BE,CF间的数量关系,并证明.探究二:设AB=8,AC=6,求△AEF的周长.探究三:如图②,在△ABC中,∠ABC的平分线BO与△ABC的外角平分线CO交于点O,过点O作EF∥BC交AB于点E,交AC于点F.猜想这时EF与BE,CF间又是什么数量关系,并证明.22. 如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,AD,AE.若△ADE的周长为12 cm,△OBC的周长为32 cm.(1)求线段BC的长;(2)连接OA,求线段OA的长.人教版八年级数学第十三章轴对称综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 如图所示,此图形有2条对称轴.2. 【答案】B[解析] ∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.3. 【答案】B4. 【答案】D[解析] ∵DE垂直平分AB,AD=4,∴BD=AD=4.∵BC=3DC,∴BD=2CD.∴CD=2.∴BC=BD+CD=6.故选D.5. 【答案】C[解析] 符合题意的三角形有3个,如图.6. 【答案】D7. 【答案】D.【解析】本题考查了直角三角形,圆,等腰三角形等知识,∵在R t△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,因此本题选D.8. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.9. 【答案】B[解析] 点的横坐标乘-1后变为原来的相反数,又因为纵坐标不变,故变化后的点与原来的点关于y轴对称.10. 【答案】C二、填空题(本大题共8道小题)11. 【答案】1712. 【答案】32213. 【答案】13【解析】∵DE垂直平分AB,∴AE=BE,∵AE+EC=8,∴EC +BE=8,∴△BCE的周长为BE+EC+BC=13.14. 【答案】4[解析] ∵∠B=∠C=60°,∴∠BAC=60°.∴△ABC为等边三角形.∵AB=8,∴BC=AB=8.∵AD为角平分线,∴BD=CD.∴CD=4.15. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.16. 【答案】15[解析] 由多边形的内角和定理可知,这个六边形的每个内角都是120°,因此直线AB,CD,EF围成一个等边三角形,且这个等边三角形的边长为7.因此AF=4,EF=2.所以这个六边形的周长=1+3+3+2+2+4=15.17. 【答案】918. 【答案】③三、解答题(本大题共4道小题)19. 【答案】解:(1)∵△ABC与△ADE关于直线MN对称,ED=4 cm,∴BC=ED=4 cm.又∵FC=1 cm,∴BF=BC-FC=3 cm.(2)∵△ABC与△ADE关于直线MN对称,∠BAC=76°,∴∠EAD=∠BAC=76°.又∵∠EAC=58°,∴∠CAD=∠EAD-∠EAC=76°-58°=18°.(3)结论:直线MN垂直平分线段EC.理由如下:∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.20. 【答案】解:根据题意,得AB=30×4=120(海里).在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°-∠NAC-∠ABC=32°.∴∠C=∠NAC.∴BC=AB=120海里,即从B处到灯塔C的距离是120海里.21. 【答案】解:探究一:猜想:EF=BE+CF.证明如下:∵BO平分∠ABC,∴∠ABO=∠CBO.∵EF∥BC,∴∠EOB=∠CBO.∴∠ABO=∠EOB.∴BE=OE.同理:OF=CF,∴EF=OE+OF=BE+CF.探究二:C△AEF=AE+EF+AF=AE+(OE+OF)+AF=(AE+BE)+(AF+CF)=AB+AC=8+6=14.探究三:猜想:EF=BE-CF.证明如下:∵BO平分∠ABC,∴∠EBO=∠CBO.∵EF∥BC,∴∠EOB=∠CBO.∴∠EBO=∠EOB.∴BE=OE.同理:OF=CF,∴EF=OE-OF=BE-CF.22. 【答案】解:(1)∵l1是AB边的垂直平分线,∴DA=DB. ∵l2是AC边的垂直平分线,∴EA=EC.∵△ADE的周长为12 cm,∴DA+DE+EA=12 cm.∴BC=BD+DE+EC=DA+DE+EA=12 cm.(2)如图,连接OA.∵l1是AB边的垂直平分线,∴OA=OB.∵l2是AC边的垂直平分线,∴OA=OC.∵△OBC的周长为32 cm,∴OB+OC+BC=32 cm.∵BC=12 cm,∴OA=OB=OC=10 cm.。
八年级数学上册《第十三章轴对称》单元试题(人教版含答案)
第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC 的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°∴∠A+∠ACB=65°∴∠ACB=(65×8)÷13=40°.14.【答案】4【解析】根据三线合一定理即可求解.解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.15.【答案】120【解析】根据△ABC是等边三角形,得出∠ABC的度数,进而求出∠ABD的度数即可.解:∵△ABC是等边三角形,∴∠ABC=60°,则∠ABD=120°.故答案为:120.16.【答案】等边 3【解析】本题考查平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.解:∵AB∥DE,∴∠MEC=∠B,∠CME=∠A,∵△ABC是等边三角形,∴∠MEC=∠EMC=∠ACB,∴△MEC是等边三角形,沿BC向右平移3cm,∴BE=3cm,EC=2cm,∴DM=DE﹣EM=5﹣2=3cm.17.【答案】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【解析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.18.【答案】解:(1)△MB1C1即为所求;(2)如图所示,点D即为所求点.【解析】(1)把△ABC向右平移,使点A与点M重合即可;(2)画出点B关于直线AC的对称点D即可.19.【答案】解:(1)如图:(2)△A′B′C′的面积=5×5-×5×3-=6.5.【解析】(1)分别作出点A,B,C的对称点A′,B′,C′,然后顺次连接各点即可,根据图形然后直接写出A′,B′,C′的坐标;(2)利用图形的面积的和差关系可计算出△A′B′C′的面积.20.【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).【解析】方法不唯一,至少可以有以上两种方法.如左图所示,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,则C,D为一对对称点,故连接BD,CE,可以利用三角形全等说明K即为所求.第二幅图,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,故延长BC,延长ED,则两线的交点必然为对称轴上一点,故连接AK即可.21.【答案】解:设三角形的腰AB=AC=x cm若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.【解析】两种情况讨论:当AB+AD=30 cm,BC+DC=24 cm或AB+AD=24 cm,BC+DC=30 cm,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16cm,16cm,22cm或20cm,20cm,14cm.。
新人教版八年级上数学第13章《轴对称》同步测试题含答案
第13章《轴对称》综合复习测试题一、精心选一选(每题3分,共30分)1.下列由数字组成的图形中,是轴对称图形的是( )。
2.下列图案中,不是轴对称图形的是( ) AB CD3.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )4.若等腰三角形底角为72°,则顶角为( ) A .108° B .72° C .54° D .36°5.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )6.如图,在△ABC 中,AB=AC ,D 为AC 边上一点,且BD=BC=AD ,则∠A 等于( )(A )30o (B )36o (C )45o (D )72oABCD① ② ③ ④A .B .C .D .第1题图第2题图 第3题图第5题图7.如图是一辆汽车车牌在水中的倒影,则该车的牌照号码是( ) A .W17639 B .W17936 C .M17639 D .M17936 8.下图形是轴对称图形的是( )(A ) (B ) (C ) (D ) 9.下列四个图形中,哪个不是轴对称图形( )(A )有两个内角相等的三角形(B )线段(C )有一个内角是300,一个内角是1200的三角形(D )有一个内角是600的直角三角形.10.把26个英文字母按规律分成5组,现在还有5个字母D 、M 、Q 、X 、Z ,请你按原规律补上,其顺序依次为( )① F ,R ,P ,J ,, ②H ,I ,O ③ N ,S ④ B ,C ,K ,E ⑤ V ,A ,T ,Y ,W ,U (A )Q ,X ,Z ,M ,D (B )D ,M ,Q ,Z ,X (C )Z ,X ,M ,D ,Q (D )Q ,X ,Z ,D ,M . 二、细心填一填(每题3分,共30分)11.如图,这是小亮制作的风筝,为了平衡做成轴对称图形,已知OC 是对称轴,∠A=35°,∠ACO=30°,那么∠BOC= °.第7题图第6题图第8题图第11题图12.将一张纸片沿任何一方翻折,得到折痕AB(如图1);再翻折一次, 得到折痕OC (如图2); 翻折使OA 与OC 重合, 得到折痕OD(如图3);最后翻折使OB 与OC 重合, 得到折痕OE(如图4);再恢复到图1形状,则∠DOE 的大小是 度 13.已知等腰三角形的一边等于3,一边等于6,则它的周长等于 14.已知△ABC 中,∠ACB=900,∠A 的平分线AD 分BC 为3cm 和5cm ,则D 到AB 的距离是15.设线段AB 的垂直平分线MN 交AB 于点C ,P 是MN 上不同于点C 的点,那么△PAB 是 三角形,PC 是这个三角形的 、 和16.如图,AB=AC ,∠A=400,AB 的垂直平分线MN 交AC 于点D ,则∠DBC= 17.等腰三角形两内角的和是1000,则它的顶角是18.在ABC 中,边AC 、BC 的垂直平分线相交于点P ,则PA ,PB ,PC 的大小 关系是19.如图,把一张长方形纸片对折,MN 是折痕,并且沿着图中的AE 剪这个图形 (1)如果∠NAE=700,则∠AEM= ,∠EMN= , ∠MNA=(2)如果AN=5,ME=3,MN=8,在纸片被剪成的几部分中, 四边形MEAN 的面积的2倍是第19题图第16题图第12题图20.等腰三角形两边长为5cm 和10cm ,则它的周长为 . 三、耐心解一解(共60分)21.(本题10分)从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明理由.22.(本题10分)如图,表示把长方形纸片ABCD 沿对角线BD 进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.23.(本题10分)如图,在游艺室的水平地面上,沿着地面的AB 边放一行球,参赛者从起点C 起步,跑向边AB 任取一球,再折向D 点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利,如果邀请你参加,你将跑去选取什么位置上的球? 为什么?(2)(3)(1)(4)(5)BAC DE第22题图 第23题图B第21题图24.已知:线段m 、n(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).四、拓广探索25.如图, △ABC 中, D 、E 分别是AC 、AB 上的点, BD 与CE 交于点O. 给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.⑴ 上述三个条件中, 哪两个条件....可判定△ABC 是等腰三角形 (用序号写出所有情形);⑵ 选择第⑴小题中的一种情形, 证明△ABC 是等腰三角形.26.(1)如图,在△ABC 中,AB=AC ,∠B 与∠C 的角平分线交于点O ,过点O 作MN ∥BC ,分别交AB ,AC 于M ,N ,问M 与N 两点是什么关系?连结AO 得到的是什么线?图中有几个等腰三角形?(2)在△ABC 中,AB=AC ,M ,N 是对应点,O 为MN 的中点,则BO ,CO 分别是∠B 与∠C 的角平分线,这个结论对吗?为什么?第25题图第26题图 第24题图参考答案一、ACBDA DDDDD二、11.1150;12.90;13.15;14.3cm或5cm;15.等腰,顶角的平分线,底边的中线,底边的高16.300;17.800,200;18.相等;19.1100、900、900,64;20.周长为25cm.三、21.(3)比较独特,它有无数条对称轴,其他图形都只有两条对称轴.22.五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.23.如图,参赛者应向E点跑,因为AB所在直线是DD'的垂直平分线,所以ED=E D',C,D'两点之间CE+E D'是最短的(两点之间线段最短),所以CE+ED是最短的.24.如图:四、25.答案不唯一(略)26.(1)M与N是对应点,AO所在的直线是等腰三角形的对称轴,5个(2)结论不正确,角平分线与对应点连线的交点不一定在中点.。
人教版八年级数学上测第十三章《轴对称》检测题(含答案)
人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版八年级数学上:第13章《轴对称》单元测试(含答案)(含答案)
第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。
RJ人教版八年级上册第十三章《轴对称》单元测试卷内有答案与解析
第十三章《轴对称》单元测试卷(时间:120 分钟满分:120 分)第Ⅰ卷选择题(共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里)1.下列图形中,不是轴对称图形的是【】2.点(3,-2)关与x 轴的对称点的坐标为【】A.(-3,-2)B.(3,2)C.(-3,-2)D.(3,-2)3.等腰三角形的一个外角为60°,则底角为【】A.120°B.30°C.30°或120°D.30°或60°4.如图,直角三角形ABC 中,∠C=90°,AB 的垂直平分线交AC于D,则AD与BC 的大小关系是【】A.AD<BCB.AD=BCC.AD>BCD.不能确定第4题图第6题图5.等腰三角形的周长为13,其中一边的长为5,则其他两边的长可能是【】A.5 和3B.4 和4C.5和3 或4 和4D.不能确定6.如图,梯形ABCD 与梯形EFGH 成轴对称,则它们组成的图形的对称轴有【】A.1 条B.2 条C.3 条D.4条7.如图,公路BC 所在的直线恰为书店与学校连线AD 的垂直平分线,小花家与小梅家住在公路边,则下列说法中正确的是【】①小梅从家到书店与小花从家到书店的距离一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.①②B.②③C.③④D.①④第7题图第8题图第9题图8.如图,在△ABC 中,CD⊥AB,∠A=30°,AB=6,△ACB 的面积为6,则AC的长为【】A.2B.4C.12D.169.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC10.如图,在△ABC中,边AB的垂直平分线分别交AB,BC点于D,E,边AC的垂直平分线分别交AC,BC于点F,G,若BC=4,则△AEG的周长为【】A.12 B.10 C.8 D.4第10题图第11 题图11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO 的大小为【】A.70°B.110°C.140°D.150°12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,过点D 作DE∥AB交AC于点E,则△CDE 的周长为【】A.20 B.12 C.14 D.13第12 题图第13题图13.如图,小华把长方形纸片ABCD沿对角线折叠,重叠部分为△EBD,那么以下四种说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有【】A.1 个B.2 个C.3个D.4 个14.将一张等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是【】15.如图,在网格中有一个直角三角形(网格中的每一个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有【】A.4 个 B.6 个 C.7个 D.9 个第15题图第16 题图16.如图,在直角坐标系中,点A、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是【】A.(0,0)B.(0,1)C.(0,2)D.(0,3)第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.在十二地支“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”这12 个字中,可以看作接近于轴对称图形的有个.18.等腰三角形的对称轴有条.19.将一张长方形纸片ABCD按如图所示的方式折叠,EF、EG 是折痕,且使AE与BE 折叠后所对应的边EA´和EB´重合在同一条直线上.如果∠CFE=110°,那么∠AEG=°.第19题图第20题图20.在三角形纸片ABC 中,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD(如图),则△AED 的周长为__________.三、解答题(本大题共6个小题,共66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9 分)如图,∠A =90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,请分别求∠CDE 和∠ABC 的度数.22.(本小题满分10 分)找出下图中的轴对称图形,并画出它们的对称轴.23.(本小题满分10 分)如图,在游艺室的水平地面上,沿着地面AB边放一行球,参赛者从起点C 起步,跑向边AB任取一球,再折向D点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利.如果邀请你参加,你将跑去选取什么位置上的球?为什么?24.(本小题满分11 分)将一个等腰三角形沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示形状.若∠B=15°,求∠A 的度数.25.(本小题满分12 分)如图,△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE⊥BC,垂足为D.(1)请写出图中所有等腰三角形;(2)请判断AD与BE 是否垂直?为什么?(3)请比较AB垣AE与BC 的大小,并说明理由.26.(本小题满分14 分)如图,△ABC 是边长为6 的等边三角形,P是AC 边上一动点,由A 向C 运动(与A、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 沿CB 延长线方向运动(Q 不与B重合),过P 作PE⊥AB于E,连接PQ 交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE 的长;如果发生改变,请说明理由答案第十三章《轴对称》达标检测一、1.A 点拨:判断是否为轴对称图形关键是找对称轴,选项A 无对称轴,故不是轴对称图形.2.B 点拨:点(x,y)关于x 轴对称的点的坐标为(x,-y),关于y 轴对称的点的坐标为(-x,y).3.B 点拨:60°的外角只能是顶角的外角,故底角=12×60°=30°.4.C 点拨:连接BD,则BD=AD,又在直角三角形BDC 中,BD>BC,故AD>BC.5.C 点拨:本题应分情况讨论:当长为5 的边为腰时,另两条边的长为5 和3;当长为5的边为底边时,另两条边的长为4 和4.6.A7.B 点拨:∵BC 垂直平分AD,∴AB=BD,AC=CD,但AB 不一定等于AC,BD不一定等于CD.8.B 点拨:∵∠A =30°,∠CDA =90°,∴AC=2CD. 又∵S△ACB=12CD·AB=6,AB=6,∴CD=2.∴AC=2CD=2×2=4.9.C 点拨:由中垂线定理,知AB=AD,故A 正确,由三线合一知B正确,且有BC=CD,故D也正确,只有C 不一定成立.10.D 点拨:本题主要考查线段垂直平分线的性质,△AEG 的周长等于BC的长.11.D 点拨:因为OA=OB=OC,∴∠BAO=∠ABO,∠CBO=∠BCO,∴∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,∴∠DAO+∠DCO=360°-∠ABC-(∠BAO+∠BCO)-∠ADC=150°.12.C 点拨:由AB=AC及AD 平分∠BAC得BD=CD= 12BC=4.由DE∥AB及AD平分∠BAC得∠ADE=∠EAD,∴AE=DE.故△CDE 的周长=CE+DE+CD=CE+AE+CD=AC+CD=14.13.C 点拨:①③④正确,②中两角不一定相等.14.A 点拨:通过两次对折后,得到的三角形仍是等腰直角三角形.对于这个题目,可以通过动手操作解决问题,也可以利用轴对称的性质进行分析.15.C 点拨:解:如图所示,∵根据题意可知:以4 为腰的等腰三角形有2 个,以5 为腰的三角形有4 个,以5 为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7 个.第15 题图16.D 点拨:本题考查最短路线问题. 作B 点关于y 轴对称点B´点,连接AB´,交y 轴于点C,此时△ABC 的周长最小,∵点A、B 的坐标分别为(1,4)和(3,0),∴B´点坐标为:(-3,0),点C 的坐标是(0,3),故选D.二、17.4 点拨:“寅、未、申、酉”可以看作接近于轴对称图形.18.1 或3 点拨:本题应分类讨论,当等腰三角形底与腰不相等时,其对称轴只有1 条;当等腰三角形底与腰相等,即为等边三角形时,其对称轴有3 条.考虑问题不全面时,易漏掉其中的一种情况.19.20 点拨:由折叠易知∠GEF=90°,∠FEB=180°-110°=70°,∴∠AEG=90°-70°=20°.20.9 cm 点拨:由折叠易知BE=BC=7,DE=CD.故△AED 的周长=AD+DE+AE=AC+(AB-BE)=AC+(AB-BC)=6+(10-7)=9(cm).三、21.解:因为DE 垂直平分BC,所以DB=DC.所以∠C=∠DBC.又因为BD 平分∠ABC,所以∠ABD=∠DBC. 所以∠C=∠ABD=∠DBC=13×(180°-90°)=30°.所以∠CDE=90°-30°=60°,∠ABC=2∠ABD=2×30°=60°.22.解:第1个和第4个为轴对称图形.图略.23.解:作点D 关于AB 的对称点M,连接CM交AB于点P,则点P所在的球就是选取的球.利用了轴对称的知识.24.解:∠A=30°.25.解:(1)△ABC,△ABD,△ADE,△CDE都是等腰三角形;(2)AD与BE互相垂直.理由是:因为BE 平分∠ABC,DE⊥BC,AE ⊥AB,所以AE=DE(角平分线上的点到这个角两边的距离相等),所以∠DAE=∠ADE,从而∠BAD=∠BDA,所以AB=BD,所以BE⊥AD(“三线合一”);(3)AB+AE=BC.理由如下:因为△ABC 是等腰直角三角形,所以∠C=45°,因为∠CDE=90°,所以∠DEC =45°,所以CD=DE(等角对等边),由(2)知AB=BD,BE⊥AD.所以AF=DF,∠AFE=∠DFE=90°.又EF=EF.所以△AFE≌△DFE.所以AE=DE.所以AE=CD,所以AB+AE=BD+DC=BC.26.解:(1)过P 作PF∥QC 交AB 于点F,则△AFP是等边三角形.因为P,Q 同时出发,速度相同,即BQ=AP,所以BQ=PF,所以△DBQ≌△DFP,所以BD=DF.因为∠BQD=∠BDQ=∠FDP=∠FPD=30°,所以BD=DF=FP=AF=13AB=13×6=2,所以AP=2.(2)由(1)知BD=DF,而△APF是等边三角形,PE⊥AF,因为AE=EF,又DE+(BD+AE)=AB=6,所以DE+(DF+EF)=6,即DE+DE=6,所以DE=3 为定值,即DE 的长不变.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
人教版初中八年级数学上册第十三章《轴对称》经典复习题(含答案解析)
一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键. 2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】 关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 3.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 A解析:A【分析】 先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.4.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.5.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.6.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm B解析:B【分析】 根据折叠的性质得到:DE=CD ,BE=BC=5cm ,求出AE=4cm ,根据△ADE 的周长为AD+DE+AE=AC+AE 代入数值计算即可得解.【详解】由折叠得:DE=CD ,BE=BC=5cm ,∵AB=9cm ,∴AE=AB-BE=9cm-5cm=4cm ,∴△ADE 的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm ,故选:B .【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.7.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C . .【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.8.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③C解析:C【分析】 根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm B解析:B【分析】解决本题要注意分为两种情况4cm 为底或8cm 为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm 和8cm ,∴此题有两种情况:①4cm 为底边,那么8cm 就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm 是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm .故选:B .【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二、填空题11.如图,已知∠AOB=30°,点P在射线OA上,OP=16,点E、点F在射线OB上,PE=PF,EF=6.若点D是射线OB上一动点,当∠PDE=45°时,DF的长为___________.5或11【分析】过点P作PH⊥OB于点H根据PE=PF可得EH=FH=EF=3根据∠AOB=30°OP=16可得PH=OP=8当点D运动到点F右侧或当点D运动到点F左侧时分别计算可得DF的长【详解】解析:5或11【分析】过点P作PH⊥OB于点H,根据PE=PF,可得EH=FH=12EF=3,根据∠AOB=30°,OP=16,可得PH=12OP=8,当点D运动到点F右侧或当点D运动到点F左侧时,分别计算可得DF的长.【详解】如图,过点P作PH⊥OB于点H,∵PE=PF,∴EH=FH=12EF=3,∵∠AOB=30°,OP=16,∴PH=12OP=8,当点D运动到点F右侧时,∵∠PDE=45°,∴∠DPH=45°,∴PH=DH=8,∴DF=DH-FH=8-3=5;当点D 运动到点F 左侧时,D′F=D′H+FH=8+3=11.所以DF 的长为5或11.故答案为:5或11.【点睛】本题考查了含30度角的直角三角形的性质、等腰三角形的性质,解决本题的关键是分两种情况画图解答.12.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC=DC,BE=BC=EC,但AC不一定等于BC,故AD不一定等于BE,所以②错误;③∵∠APB是△APD的外角,∴∠APD=∠ADP+∠DAP由①得△ACE≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC,故③正确;④如图,分别过点C作CH⊥AE于H,CG⊥BD于G,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.∠=︒,13.如图,点D、E是ABC的边BC上的点,且AED n∠∠∠=,若点D在边AC的垂直平分线上,点E在边AB的垂直CAD DAE BAE::1:3:2平分线上,则n=________.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C∠BEA=∠B再根据比例关系设根据三角形内角和定理可求得x再根据三角形外角的性质可得∠AED【详解】解:∵点D在边AC的垂直平分线上点解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C,∠BEA=∠B,再根据比例关系设∠=∠=∠=,根据三角形内角和定理可求得x,再根据三角形外CAD x DAE x BAE x,3,2角的性质可得∠AED.【详解】解:∵点D在边AC的垂直平分线上,点E在边AB的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.14.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.【分析】先根据折叠的性质求出∠B′EM 根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN 【详解】解:根据折叠可知:EM 平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM ,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN .【详解】解:根据折叠可知:EM 平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN 平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′, 故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.15.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒.故答案是:25︒.【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 16.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.17.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm 为底时其它两边都为10cm5cm10cm10cm 可以构成三角形;当5cm 为腰时解析:10【分析】因为等腰三角形的两边分别为5cm 和10cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm 为底时,其它两边都为10cm ,5cm 、10cm 、10cm 可以构成三角形;当5cm 为腰时,其它两边为5cm 和10cm ,因为5+5=10,所以不能构成三角形,故舍去.所以三角形三边长只能是5cm 、10cm 、10cm ,所以第三边是10cm .故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 18.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD,故①正确;在Rt△ABE中,显然AB=2AE,而OA>AE,∴AB≠2OA,故②错误;根据中垂线性质可得OA=OB,OA=OC,∴OA=OB=OC,故③正确;在四边形ADOE中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.19.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE =∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.20.如图,在△ABC中,AB=AC,∠BAC=36°,AD、CE是△ABC的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.10【分析】连结CP 利用等腰三角形顶角平分线所在直线为对称轴得BP=CPBD=CD=5当点CPE 在一直线是BP +EP 最小值最小值为BP +EP=EC 由∠BAC=36°AB=AC 求出∠ABC=∠ACB=解析:10【分析】连结CP ,利用等腰三角形顶角平分线所在直线为对称轴得 BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,最小值为BP +EP= EC ,由∠BAC=36°,AB=AC ,求出∠ABC=∠ACB=72°,又CE 是△ABC 的角平分线有∠BCE=36°,求出∠BEC=72º,得CE=BC =10即可.【详解】连结CP ,点P 在AD 上运动,∵AB=AC ,AD 平分∠BAC ,∴AD 所在直线为对称轴,∴BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,∴BP +EP=PC+EP=EC ,∵∠BAC=36°,AB=AC ,∴∠ABC=∠ACB=()1180-36=722︒︒︒, ∵CE 是△ABC 的角平分线, ∴∠BCE=1ACB=362∠︒, ∴∠BEC=180º-∠EBC-∠BCE =180º-72º-36º=72º,∴∠BEC=∠EBC ,∴CE=BC=BD+CD=10.故答案为:10.【点睛】本题考查等腰三角形的判定和性质,角平分线性质,轴对称性质,掌握等腰三角形的判定和性质,角平分线性质,线段和最短问题经常利用轴对称性质作出对称线段,三点在一线时最短作出图形是解题关键.三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度所得到的△A1B1C1,并写出点A1,B1的坐标;(2)画出△DEF关于x轴对称后所得到的△D1E1F1,并写出点E1,F1的坐标;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,请画出它的对称轴.解析:(1)图见解析,A1(3,2),B1(4,1);(2)图见解析,E1(﹣2,﹣3),F1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A1,B1,C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点D1,E1,F1的坐标,然后描点即可;(3)直线C1F1和C1F1的垂直平分线都是△A1B1C1和△D1E1F1组成的图形的对称轴.【详解】解:(1)如图,△A1B1C1为所作,A1(3,2),B1(4,1);(2)如图,△D1E1F1为所作,E1(﹣2,﹣3),F1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.解析:(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.23.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.解析:(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.24.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.解析:AC BD ⊥,见解析【分析】根据垂直平分线的判定证明即可.【详解】解:AC BD ⊥;证明:∵AB AD =,∴点A 在BD 的垂直平分线上,∵CB CD =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ,即AC BD ⊥.【点睛】本题考查了线段的垂直平分线的性质,根据与一条线段两个端点距离相等的点,在这条线段的垂直平分线上和两点确定一条直线证明是解题关键.25.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.解析:(1)证明见详解;(2)证明见详解.【分析】(1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.26.如图1,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,点E 在AD 上.(1)连接BE ,CE ,求证:BE CE =;(2)如图2,若BE 的延长线交AC 于点F ,且BF AC ⊥,45BAC ∠=︒,原题设其他条件不变.求证:AB BF EF =+.解析:(1)见解析;(2)见解析【分析】(1)先根据等腰三角形的性质得出∠BAE=∠CAE ,再根据SAS 证明△ABE ≌△ACE 即可; (2)由BF ⊥AC ,∠BAC=45°就可以求出AF=BF ,在由条件证明△AEF ≌△BCF 就可以得出EF=CF ,结合已知AB=AC 即可得出结论.【详解】证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠CAE ,在△ABE 和△ACE 中,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵BF ⊥AF ,∴∠AFB=∠CFB=90°.∵∠BAC=45°,∴∠ABF=45°,∴∠ABF=∠BAC ,∴AF=BF .∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,EAF CBF AF BFAFE BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△BCF (ASA )∴EF=CF .∴AB=AC=AF+FC=BF+EF【点睛】本题考查了全等三角形的判定性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.27.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD ≌△ACE 是解本题的关键.28.如图,在平面直角坐标系xOy 中点(6,8)A ,点(6,0)B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法);①点P 到A ,B 两点的距离相等;②点P 到xOy ∠的两边的距离相等.(2)在(1)作出点P 后,直接写出点P 的坐标______.解析:(1)作图见解析;(2)(4,4)【分析】(1)作AB 的垂轴平分线和∠xOy 的角平分线,它们的交点即为P 点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【详解】(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。
2014年秋季新版新人教版八年级数学上学期第十三章 轴对称单元复习试卷25
第2题第4题 第5题 第9题 第十二章 轴对称期末复习卷班级 姓名 座号 成绩一、选择题(每题5分,共25分)1.如图是用纸折叠成的图案,其中是轴对称图形的有( )2.如图是一个风筝的图案,它是轴对称图形,量得30B ∠= ,则E ∠的大小为( )3.等腰三角形中的一个角等于100 ,则另两个内角的度数分别为( )4.如图所示,15A ∠= ,AB BC CD DE EF ====,则DEF ∠等于( )5.如图,l 是四边形ABCD 的对称轴,如果AD BC ∥,则有以下结论:①AB CD ∥,②AB BC =,③AB BC ⊥,④AO CO =.那么其中正确的结论序号是( )二、填空题(每题5分,共25分)6.已知直角三角形中30 角所对的直角边为2cm ,则斜边的长为 .7.已知点(,2)A a -和(3,)B b ,若A 和点B 关于y 轴对称,则ab = .8.等边ABC ∆的两条角平分线BD 和CE 交于点I ,则BIC ∠等于 .9.如图所示,有一块三角形田地10AB AC m ==,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得BDC ∆的周长为17m ,则BC 的长为 .10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n 次,可以得到 条折痕.A.1个B.2个C.3个D.4个A.30B.35C.40D.45A.40,40B.50,50C.100,20D.40,40 或100,20A.90B.75C.70D.60A.①③④B.①②④C.②③④D.①②③ 第一次对折 第二次对折 第三次对折三、解答题(共50分)11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ?12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠.13.(12分)在ABC ∆中,90C ∠= ,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若30CAE B ∠=∠+ ,求AEB ∠.14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==.第2题 第4题 第5题 第9题 参考答案一、选择题(每题5分,共25分)1.如图是用纸折叠成的图案,其中是轴对称图形的有( C )2.(07武汉)如图是一个风筝的图案,它是轴对称图形,量得30B ∠= ,则E ∠的大小为( A )3.等腰三角形中的一个角等于100 ,则另两个内角的度数分别为( A )4.如图所示,15A ∠= ,AB BC CD DE EF ====,则DEF ∠等于( D )5.如图,l 是四边形ABCD 的对称轴,如果AD BC ∥,则有以下结论:①AB CD ∥,②AB BC =,③AB BC ⊥,④AO CO =.那么其中正确的结论序号是( B )二、填空题(每题5分,共25分)6.已知直角三角形中30 角所对的直角边为2cm ,则斜边的长为 4cm .7.已知点(,2)A a -和(3,)B b ,若A 和点B 关于y 轴对称,则ab =6 .8.等边ABC ∆的两条角平分线BD 和CE 交于点I ,则BIC ∠等于120 .9.如图所示,有一块三角形田地10AB AC m ==,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得BDC ∆的周长为17m ,则BC 的长为7m .10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n 次,可以得到21n - 条折痕.A.1个 B.2个 C.3个 D.4个A.30B.35C.40D.45A.40,40B.50,50C.100,20D.40,40 或100,20A.90B.75C.70D.60A.①③④B.①②④C.②③④D.①②③ 第一次对折 第二次对折 第三次对折三、解答题(共50分)11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ? 解:如图,作点A 关于EF 的对称点A ',连接AB ', 交EF 于点C ,将白球A 打到台边EF 的点C 处,反弹后能击中彩球B .12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠. 证明:连接BD∵AD AB =∴ABD AD B ∠=∠又∵ADC ABC ∠=∠∴BDC DBC ∠=∠∴DC BC =∴在ACD ∆与ACB ∆中AD ABDC BC AC AC=⎧⎪=⎨=⎪⎩ ∴ACD ∆≌ACB ∆ ∴12∠=∠ 13.(12分)在ABC ∆中,90C ∠= ,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若30CAE B ∠=∠+ ,求AEB ∠. 解:∵DE 垂直平分AB∴EA EB =∴EAB B ∠=∠∵90C ∠=∴90CAE EAB B ∠+∠+∠= ∴3090B B B ∠++∠+∠= ∴20B ∠=∴1802140AEB B ∠=-∠=14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==. 证明:∵ABC ∆是等边三角形 ∴60ABC ACB ∠=∠=∵OM ∥AC ,ON ∥AB∴60ONM ABC ∠=∠=60OMN ACB ∠=∠= ∴60MON ∠= ∴OMN ∆是等边三角形 ∴ON OM MN ==又∵ON ∥ABBO 平分ABC ∠ ∴23∠=∠,13∠=∠ ∴12∠=∠ ∴=ON BN 同理OM MC = ∴BN MN MC ==。
人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)
第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。
2013-2014学年人教版八年级数学上册单元目标检测:第十三章 轴对称(含答案点拨)
数学人教版八年级上第十三章轴对称单元检测一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列由数字组成的图形中,是轴对称图形的是().2.下列语句中正确的个数是().①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于().A.8 cm B.2 cm或8 cmC.5 cm D.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为().A.42°B.69°C.69°或84°D.42°或69°5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有().①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个B.2个C.3个D.4个6.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段有().A.AC=AE=BE B.AD=BDC.CD=DE D.AC=BD7.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是().8.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是().A.1号袋B.2号袋C.3号袋D.4号袋二、填空题(本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上)9.观察规律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图)(第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________.13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠P AQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三、解答题(本大题共5小题,共52分)17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O 点,求证:OB=OC.18.(本题满分10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的三角形△A1B1C1;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.19.(本题满分10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC 全等,所以△A′B′C′的腰长也有两种相同的情况:8 cm或5 cm.4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角存在两种情况,∴42°或69°.5.B点拨:①③不正确,②④正确.6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各选项图案按原步骤折叠复原).8.B点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题答案为6组成的轴对称图形.10.2-5点拨:点E、F关于y轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm点拨:△ABC为等边三角形,AB=BC=CA,AD⊥BC,所以点D平分BC.所以DC=12BC=2.5 cm.12.5点拨:∠C=90°,∠A=30°,则∠ABC=60°,BD是∠ABC的平分线,则∠CBD=30°,所以CD=12BD=5.13.40°点拨:因为MP、NQ分别垂直平分AB和AC,所以P A=PB,QA=QC,∠P AB=∠B,∠QAC=∠C,∠P AB+∠QAC=∠C+∠B=180°-110°=70°,所以∠P AQ的度数是40°.14.25°点拨:设∠C=x,那么∠ADB=∠B=2x,因为∠ADB+∠B+∠BAD=180°,代入解得x=25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB=AC,CD为一腰上的高,过A点作底边BC的垂线,图(1)中,∠BAC=60°,图(2)中,∠BAC=120°.16.2 m点拨:根据30°角所对的直角边是斜边的一半,可知DE=12AD=14AB=2m.17.证明:∵BD、CE分别是AC、AB边上的中线,∴BE=12AB,CD=12AC.又∵AB=AC,∴BE=CD.在△BCE和△CBD中,,,,BE CDABC ACB BC CB=⎧⎪∠=∠⎨⎪=⎩∴△BCE≌△CBD(SAS).∴∠ECB=∠DBC.∴OB=OC.18.解:(1)如图所示的△A1B1C1.(2)如图所示的△A2B2C2.19. 解:如图,在CH上截取DH=BH,连接AD,∵AH⊥BC,∴AH垂直平分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证明:如图,过D作DG∥AC交BC于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG 和△EFC 中,∴△DFG ≌△EFC(ASA).∴CE=GD ,∵BD=CE.∴BD=GD. ∴∠B=∠DGB.∴∠B=∠ACB. ∴△ABC 为等腰三角形. 21. 证明:如图,∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°. ∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE . 又∵C 在线段AE 上, ∴∠3=60°.在△ACD 和△BCE 中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE .∴∠1=∠2. 在△APC 和△BQC 中,,12,360,AC BC ACB =⎧⎪∠=∠⎨⎪∠=∠=︒⎩∴△APC ≌△BQC .∴CP =CQ .∴△PCQ 为等边三角形(有一个角是60°的等腰三角形是等边三角形).。
人教版八年级数学上册《第十三章轴对称》单元检测卷带答案
人教版八年级数学上册《第十三章轴对称》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列说法正确的是( )A .等腰三角形的高线、中线、角平分线互相重合B .有两个角是60︒的三角形是等边三角形C .两个全等的三角形一定关于某直线对称D .有两边及一角相等的等腰三角形全等3.如图,ABC 中,点D 为BC 边上的一点,且BD BA =,连接AD ,BP 平分ABC ∠交AD 于点P ,连接PC ,若ABC 面积为26cm ,则BPC 的面积为( )A .23cmB .24cmC .27cm 2D .216cm 54.如图,直线EF GH ∥,等腰三角形ABC 的顶点B C ,分别在直线GH EF ,上,边AB 交EF 于点D .若CD 平分ACB ∠,顶角50A ∠=︒,则DBG ∠=( )A .82.5︒B .83︒C .83.5︒D .84︒5.如图,在ABC 中,AB=AC ,AD 、CE 是ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .ADC .CED .AC6.如图,在Rt ABC △中90ACB ∠=︒ BAC ∠的平分线交BC 于点D ,过点C 作CG AB ⊥于点G ,交AD 于点E ,过点D 作DF AB ⊥于点F ,下列这些结论:①CED CDE ∠=∠;①::AEC AEG S S AC AG =△△;①2ADF FDB ∠=∠;①CE DF =,其中正确的是( )A .①①①B .①①①C .①①D .①①①①7.ABC 中90AC BC C AD =∠=︒,,平分BAC DE AB ∠⊥,于E ,则下列结论:①AD 平分CDE ∠;①BAC BDE ∠=∠;①DE 平分ADB ∠;①BE AC AB +=.其中正确的有( )A .1个B .2个C .3个D .4个8.如图,在ABC 中,AB=AC ,120A ︒∠= 6BC cm = AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm二、填空题9.在平面直角坐标系中,点(),2m -与点()3n ,关于x 轴对称,则m n += .10.已知等边三角形的边长为2,则该等边三角形的周长为 .11.在ABC 中60A B ∠=∠=︒ 3AB =则BC 等于 .12.若点()2,M a 与点()1,3N b +关于x 轴对称,则()2a b -的值为 . 13.等腰三角形的两边长分别为3和6,则这个三角形的周长为 .14.如图,在Rt ABC △中90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD = .15.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG GH 、上,若4AB =,则AG 的长度为 .16.如图,AD 是等边ABC 的高,点M 是线段AD 上一点,连接BM ,以BM 为边向右下方作等边BMN ,当BN DN +的值最小时,BMD ∠的大小为 .三、解答题17.如图,在ABC中,请用尺规作图法,作边BC上的高.(保留痕迹,不写作法)DE AC交BC于点E,求证:BDE是等18.如图,ABC是等边三角形,D是边AB上的点,过点D作∥边三角形.19.如图,已知,在①ABC中90∠=︒,AB的垂直平分线DE交AC于点D,垂足为E,若①A=30°,CD=4cm,C求AC的长.20.如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上.(1)画出ABC 关于y 轴对称的111A B C △;(2)直接写出点1A 的坐标为___________.21.如图,在ABC 中,AB=AC ,60BAC ∠=度,AD 是BAC ∠的平分线,E 为AD 上一点,以BC 为一边,且在BE 下方作等边BEF ,连接CF .(1)求证,ABE CBF ≌;(2)求ACF ∠的度数.22.如图所示,A 、C 、B 三点共线,DAC △与EBC 都是等边三角形,AE BD 、相交于点P ,且分别与CD CE 、交于点M ,N .(1)求证:ACE DCB ≌(2)求APD ∠的度数23.如图,在ABC 中,BD 是ABC 的角平分线,且BD BC =,E 为BD 延长线上一点,BE BA =连接AE 、CE .(1)AD 与CE 相等吗?为什么?(2)若75BCD ∠=︒,求ACE ∠的度数.24.如图,在ABC 中,AD 平分CAB ∠,过点D 作DM AB ⊥于M ,DN AC ⊥的延长线于N ,且BM CN =.(1)求证:点D 在BC 的垂直平分线上;(2)若8AB =,AC=4,求BM 的长.25.如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 度;(2)若8cm AB =,MBC △的周长是14cm .①求BC 的长度;①若点P 为直线MN 上一点,请你直接写出PBC △周长的最小值.26.如图,在平面直角坐标系中,点A 的坐标是(1,0),以线段OA 为边向下侧作等边①AOB ,点C 为x 轴的正半轴上一动点(1OC >),连接BC ,以线段BC 为边向下侧作等边①CBD ,连接DA 并延长,交y 轴于点E .(1)①OBC 与①ABD 全等吗?请说明理由;(2)当以A ,E ,C 为顶点的三角形是等腰三角形时,求点C 的坐标.参考答案1.A【分析】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形.根据轴对称图形的定义,依次判断即可.【详解】解:B 、C 、D 选项中的图形分别沿一条直线折叠,直线两旁的部分能够完全重合,是轴对称图形;而选项A 中的图形不是轴对称图形.故选: A .2.B【分析】根据等腰三角形的 “三线合一”、等边三角形的判定、轴对称的定义及全等三角形的判定逐一判断即可求解.【详解】解:A 、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,则A 选项说法错误,故不符合题意;B 、有两个角是60︒的三角形是等边三角形,则B 说法正确,故符合题意;C 、两个全等的三角形不一定关于某直线对称,则C 说法错误,故不符合题意;D 、有两边及一对应角相等的等腰三角形全等,则D 说法错误,故不符合题意故选B .【点睛】本题考查了等腰三角形的 “三线合一”、等边三角形的判定、轴对称的定义及全等三角形的判定,熟练掌握其基础知识是解题的关键.3.A【分析】本题考查的是等腰三角形的性质、三角形的面积计算,掌握等腰三角形的三线合一是解题的关键.根据等腰三角形的性质得到AP PD =,根据三角形的面积公式计算,得到答案. 【详解】解:BD BA = BP 平分ABC ∠ ∴AP PD =∴APB DPB SS = APC DPC S S = ∴21163cm 22BPC DPB DPC ABCS S S S =+==⨯= 故选:A .4.A 【分析】先由等腰三角形性质及三角形内角和定理求出ABC ACB ∠∠、,再由角平分线定义及平行线性质得到32.5CBH BCD ∠=∠=︒,最后由平角定义求解即可得到答案.【详解】解:ABC 是等腰三角形50A ∠=︒18050652ABC ACB ︒-︒∴∠=∠==︒ CD 平分ACB ∠116532.522ACD BCD ACB ∴∠=∠=∠=⨯︒=︒ EF GH32.5CBH BCD ∴∠=∠=︒1801806532.582.5DBG ABC CBH ∴∠=︒-∠-∠=︒-︒-︒=︒故选:A .【点睛】本题考查求角度,涉及等腰三角形性质、三角形内角和定理、角平分线定义、平行线性质及平角定义等知识,熟练掌握相关几何性质求角度是解决问题的关键.5.C【分析】本题考查了等腰三角形的性质,线段垂直平分线的性质,两点间线段最短,掌握等腰三角形“三线合一”的性质是关键.由等腰三角形三线合一的性质,得到AD 垂直平分BC ,则BP CP =,从而得出BP EP CP EP CE +=+≥,即可求解.【详解】解:如图,连接CPAB AC =,AD 是ABC 的中线AD BC ∴⊥ BD CD =AD ∴垂直平分BCBP CP ∴=BP EP CP EP CE ∴+=+≥即BP EP +的最小值是线段CE 的长故选:C .6.A【分析】本题主要考查了角平分线的性质定理、垂直的定义、三角形外角的定义和性质、等腰三角形的判定与性质等知识.熟练掌握相关知识是解题的关键.结合题意证明CAD BAD ∠=∠,ACE B ∠=∠结合CED CAE ACE ∠=∠+∠ CDE B DAB ∠=∠+∠可证明CED CDE ∠=∠,可判定结论①;证明CDE 为等腰三角形,再结合角平分线的性质定理可得CD DF =,可知CE DF =,即可判定结论①;过点E 作EH AC ⊥于点H ,结合角平分线的性质定理可得EH EG =,结合三角形面积公式可得::AEC AEG S S AC AG =△△,即可判断结论①;无法证明2ADF FDB ∠=∠,故结论①不正确.【详解】解:①AD 平分BAC ∠①CAD BAD ∠=∠①90ACB ∠=︒ CG AB ⊥①90ACE BCG ∠+∠=︒ 90B BCG ∠+∠=︒①ACE B ∠=∠①CED CAE ACE ∠=∠+∠ CDE B DAB ∠=∠+∠①CED CDE ∠=∠故结论①正确;①CED CDE ∠=∠①CE CD =①AE 平分CAB ∠ DC AC ⊥ DF AB ⊥①CD DF =①CE DF =,故结论①正确;如下图,过点E 作EH AC ⊥于点H①AE 平分CAB ∠ EG AB ⊥ EH AC ⊥①EH EG = ①12AEC SAC EH =⨯ 12AEG S AG EG =⨯ ①11:::22AEC AEG S S AC EH AG EG AC AG =⨯⨯=,故结论①正确; 无法证明2ADF FDB ∠=∠,故结论①不正确.综上所述,正确的结论是①①①.故选:A .7.C【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理等知识,由“AAS ”可证,ACD AED ≌可得,,,CD DE AC AE CDA ADE ==∠=∠可判断①①,由等腰直角三角形的性质可判断①①.【详解】解:①AD 平分,BAC ∠,CAD DAB ∴∠=∠且90C DEA AD AD ∠=∠=︒=,()AAS ,ACD AED ∴≌,,,CD DE AC AE CDA ADE ∴==∠=∠AD ∴平分,,CDE AB AE BE AC EB ∠=+=+①①①正确,90AC BC C =∠=︒45CAB B ∴∠=∠=︒,且DE AB ⊥45,B BDE ∴∠=∠=︒①180135,CDE BDE ∠=︒-∠=︒ ①167.52ADE CDE ∠=∠=︒ ,67.5,BAC BDE ADE BDE ∴∠=∠∠=︒≠∠①①正确,①错误故选:C .8.C【分析】本题考查了等边三角形的判定与性质、线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.此类题要通过作辅助线来沟通各角之间的关系,首先求出BMA △与CNA 是等腰三角形,再证明AMN 为等边三角形即可.【详解】解:连接AM AN ,.①AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F①BM AM CN AN ==,①MAB B CAN C ∠=∠∠=∠,.①AB AC = 120A ∠=︒①30B C ∠=∠=︒①6060BAM CAN AMN ANM ∠+∠=︒∠=∠=︒,①AMN 是等边三角形①AM AN MN ==①BM MN NC ==.①6cm BC①2cm MN =.故选:C .9.5【分析】先根据点坐标关于x 轴对称的变换规律求出,m n 的值,再代入计算即可得. 【详解】解:点(),2m -与点()3n ,关于x 轴对称3,2m n ∴==325m n ∴+=+=故答案为:5.【点睛】本题考查了点坐标关于x 轴对称的变换规律,熟练掌握点坐标关于x 轴对称的变换规律(横坐标相同,纵坐标互为相反数)是解题关键.10.6【分析】本题考查等边三角形的性质,三角形的周长,根据等边三角形的三条边相等求解.【详解】解:①等边三角形的三边相等①周长为326⨯=.故答案为6.11.3【分析】本题主要考查了等边三角形的判定与性质.由已知三角形两个角都是60︒,可判定三角形ABC 是等边三角形,进而利用等边三角形的性质得出结论.【详解】解:ABC 中60A B ∠=∠=︒60C ∴∠=︒ABC ∴是等边三角形又3AB =3BC ∴=故答案为:3.12.16【分析】此题主要考查了关于x 轴对称点的坐标特点.关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;先求出a 、b 的值,再代入计算即可.【详解】解:①点()2,M a 与点()1,3N b +关于x 轴对称①12b += 3a =-①1b =①()()223116a b -=--=.故答案为:16.13.15【分析】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.分3是腰长与底边长两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为3、3、6 336+=∴不能组成三角形①3是底边时,三角形的三边分别为6、6、3能组成三角形周长66315=++=.综上所述,这个等腰三角形的周长为15.故答案为:15.14.6【分析】本题主要考查线段垂直平分线的性质、30︒所对的直角边是斜边的一半,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.由角平分线和线段垂直平分线的性质可求得30B CAD DAB ∠=∠=∠=︒,在Rt ACD △中,根据直角三角形的性质可求得AD ,则可得出BD 的长.【详解】解:DE 垂直平分ABDA DB ∴=B DAB ∴∠=∠ AD 平分CAB ∠CAD DAB ∴∠=∠90C ∠=︒390CAD ∴∠=︒30CAD ∴∠=︒26AD CD ∴==6BD AD ∴==.故答案为:6.15.6【分析】本题考查的是正多边形的有关计算;求出正六边形的内角的度数,根据直角三角形的性质求出BG ,再根据正多边形的性质计算. 【详解】正六边形的内角的度数(62)1801206-⨯︒==︒ 则18012060CBG ∠=︒-︒=︒ 30BCG ∴∠=︒11222BG AB BC ∴=== 6AG AB BG ∴=+=故答案为:6.16.60°/60度【分析】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,轴对称的性质等等,连接CN ,证明()SAS ABM CBN ≌,得到30BCN BAD ∠=∠=︒,则点N 在直线CN 上运动,如图,作点D 关于CN 的对称点G ,连接NG CG ,,则DN GN =,故当B ,N ,G 在同一直线上时,NG BN +的最小值,即此时BN DN+最小,由轴对称的性质,可得260DCG BCN ∠=∠=︒,CD=CG ,则CDG 是等边三角形,得到60CDG ∠=︒CD DG BD ==求出1302DBN DNB CDG ===︒∠∠∠则BD MN ⊥,进而可得M D N 、、三点共线,据此可得答案.【详解】解:连接CN ,如图所示:①ABC 、BMN 都是等边三角形,AD 是等边ABC 的高①AB BC = BM BN = 60∠=∠=︒ABC MBN 30BAD ∠=︒①ABC MBC MBN MBC ∠-∠=∠-∠①ABM CBN ∠=∠①()SAS ABM CBN ≌①30BCN BAD ∠=∠=︒①点N 在直线CN 上运动如图,作点D 关于CN 的对称点G ,连接NG CG ,,则DN GN =①当B ,N ,G 在同一直线上时,NG BN +的最小值,即此时BN DN +最小由轴对称的性质,可得260DCG BCN ∠=∠=︒ CD CG =①CDG 是等边三角形①60CDG ∠=︒ CD DG BD == ①1302DBN DNB CDG ===︒∠∠∠ ①BD MN ⊥又①AD BC ⊥①M D N 、、三点共线①60BMD ∠=︒故答案为:60︒.【点睛】本题主要考查了三角形全等的判定和性质,等边三角形的性质,三角形内角和定理,轴对称的性质,垂线段最短,解题的关键是作出辅助线,证明BAE BCF ≌.17.见解析【分析】根据三角形的高的定义以及垂线的作图方法画图即可.【详解】解:如图,AD 即为所求.18.见解析【分析】本题考查了等边三角形的判定,利用平行线的性质,证明三角形的三个内角都是60︒即可.【详解】①ABC 是等边三角形①60∠=∠=∠=︒A B C .①∥DE AC①60A BDE C BED ∠=∠=∠=∠=︒①BDE 是等边三角形.19.12cm【分析】由题意易得①ABC=60°,进而可得①A=①ABD=30°,则有①CBD=30°,然后根据含30°直角三角形的性质可得AD=BD=8cm ,进而问题可求解.【详解】解:①90,30∠=︒∠=︒C A①①ABC=60°①DE 是AB 的垂直平分线①BD=AD①①A=①ABD=30°①①CBD=30°①CD=4cm①BD=2CD=8cm①AD=8cm①AC=CD+AD=12cm .【点睛】本题主要考查垂直平分线的性质及含30°直角三角形的性质,熟练掌握垂直平分线的性质及含30°直角三角形的性质是解题的关键.20.(1)作图见详解(2)()1,3-【分析】本题主要考查平面直角坐标系中图形的变化,坐标与图形(1)根据轴对称图形的性质作图即可求解;(2)根据坐标与图形即可求解.【详解】(1)解:根据题意,作图如下(2)解:根据图形可得,()11,3A -故答案为:()1,3-.21.(1)见解析;(2)90︒.【分析】(1)根据等边三角形的判定得ABC 是等边三角形 于是可得到AB BC = BE BF = ABE CBF ∠=∠ 即可得到证明;(2)根据角平分线及全等三角形得到==30BCF BAE ∠∠︒ 结合等边三角形每个角都是60︒即可得到答案.【详解】(1)证明:①AB AC = 60BAC ∠=度①ABC 是等边三角形①AB BC = 60ABE EBC ∠+∠=︒①BEF △是等边三角形①BE BF = 60CBF EBC ∠+∠=︒①ABE CBF ∠=∠在ABE 和CBFAB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩①SAS ABE CBF ≌(); (2)解:①等边ABC 中 AD 是BAC ∠的角平分线①=30BAE ∠︒ =60ACB ∠︒①ABE CBF △≌△①==30BCF BAE ∠∠︒①==3060=90ACF BCF ACB ∠∠+∠︒+︒︒.【点睛】本题考查等边三角形性质及全等三角形判定与性质,解题的关键是根据等边三角形性质得到角度加减从而得到角相等.22.(1)证明见解析(2)60APD ∠=︒【分析】考查了等边三角形的性质及全等三角形的判定方法,关键是根据等边三角形的性质解答. (1)根据等边三角形的性质和全等三角形的判定证明即可;(2)根据三角形的内角和相等,对顶角相等,即可求解;【详解】(1)证明:DAC 与EBC 都是等边三角形60AC CD CE BC ACD ECB ∴︒==∠=∠=,,180120180120ACE ECB DCB ACD =︒-∠=︒︒∠∠=︒-∠=,ACE DCB ∴∠=∠在ACE △和DCB △中AC CD ACE DCB CE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)ACE DCB ∴△≌△(2)解:ACE DCB ≌CAM CDP ∴∠=∠在DMP 和AMC 中180MDP DMP APD CAM AMC ACM ∠︒∠∠∠++=++=∠∠又,CAM CDP DMP AMC ∠=∠∠=∠60APD ACM ∴∠=∠=︒23.(1)=AD CE ,理由见解析;(2)30︒.【分析】(1)由SAS 证明ABD EBC ∆≅∆,根据全等三角形的性质即可得出=AD CE ;(2)根据等腰三角形的性质可得75BCD BDC ∠=∠=︒,由三角形的内角和以及角平分线的定义得出30DBC ABD ∠=∠=︒,再根据全等三角形的性质和三角形的内角和即可求解.【详解】(1)解:=AD CE理由:BD 为ABC ∆的角平分线ABD CBE ∴∠=∠在ABD ∆和EBC ∆中BA BE ABD CBE BD BC =⎧⎪∠=∠⎨⎪=⎩()ABD EBC SAS ∴∆≅∆AD CE ∴=;(2)解:BD BC = 75BCD ∠=︒75BCD BDC ∴∠=∠=︒30DBC ABD ∴∠=∠=︒60ABC ∴∠=︒由(1)知ABD EBC ∆≅∆BAD BEC ∴∠=∠ADB EDC ∠=∠30ACE ABD ∴∠=∠=︒.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质与判定、角平分线、三角形内角和定理等知识,解题的关键是证明三角形全等.24.(1)见解析(2)2【分析】本题主要考查了角平分线的性质和全等三角形的判定和性质、线段垂直平分线的判定. (1)连接BD ,CD ,由角平分线性质可得DM DN =,再证明DMB DNC ≌△△(SAS ),可得BD CD =,即点D 在BC 的垂直平分线上.(2)证明Rt Rt DMA DNA ≌△△(HL ),可得AM AN =,由线段的和差即可求解.【详解】(1)证明:如图,连接BD ,CDAD 是CAB ∠的平分线DM AB ⊥ DN AC ⊥∴DM DN =在DMB 和DNC △中90DM DN DMB DNC MB NC =⎧⎪∠=∠=︒⎨⎪=⎩∴DMB DNC ≌△△(SAS )∴BD CD =∴点D 在BC 的垂直平分线上.(2)解:在Rt DMA △和Rt DNA △中,AD AD DM DN =⎧⎨=⎩∴Rt Rt DMA DNA ≌△△(HL )∴AM AN =AM AB BM =- AN AC CN =+∴AB BM AC CN -=+.BM CN =∴2844BM AB AC =-=-=∴2BM =.25.(1)50(2)①6cm ;①14cm【分析】本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记这些性质是解题的关键.(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM BM =,然后求出MBC △的周长AC BC =+,再代入数据进行计算即可得解;①连接PA ,当点P 与M 重合时,PBC △周长的值最小,于是得到结论.【详解】(1)解:AB AC =70C ABC ∴∠=∠=︒40A ∴∠=︒ AB 的垂直平分线交AB 于点N90ANM ∴∠=︒50NMA ∴∠=︒故答案为:50;(2)解:①MN 是AB 的垂直平分线AM BM ∴=∴MBC △的周长BM CM BC AM CM BC AC BC =++=++=+8AB =,MBC △的周长是141486(cm)BC ∴=-=;①连接PA ,如图则PA PB =;当点P 与M 重合时,PBC △周长的值最小PB PC PA PC +=+ PA PC AC +≥P ∴与M 重合时PA PC AC +=,此时PB PC +最小∴PBC △周长的最小值8614AC BC =+=+=.26.(1)全等,见解析(2)(3,0)【分析】(1)先根据等边三角形的性质得60OBA CBD ∠=∠=︒,OB=BA ,BC=BD ,则OBC ABD ∠=∠,然后可根据“SAS ”可判定OBC ABD ∆≅∆;(2)先根据全等三角形的性质以及等边三角形的性质,求得120EAC ∠=︒,进而得出以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰,最后根据Rt AOE 中,OA=1,30OEA ∠=︒求得2AC AE ==,据此得到123OC =+=,即可得出点C 的位置.【详解】(1)解:OBC ABD ∆∆≌.证明:AOB ∆,CBD ∆都是等边三角形OB AB ∴= CB DB = ABO DBC ∠=∠OBC ABD ∴∠=∠在OBC ∆和ABD ∆中OB AB OBC ABD CB DB =⎧⎪∠=∠⎨⎪=⎩()OBC ABD SAS ∴∆∆≌;(2)解:OBC ABD ∆∆≌60BOC BAD ∴∠=∠=︒又60OAB ∠=︒180606060OAE ∴∠=︒-︒-︒=︒120EAC ∴∠=︒,30OEA ∠=︒∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰在Rt AOE 中1OA = 30OEA ∠=︒2AE ∴=2AC AE ∴==123OC ∴=+=∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解题的关键是利用等腰三角形的性质求出点C 的坐标.。
2014年秋季新版新人教版八年级数学上学期第十三章 轴对称单元复习试卷58
第十四章 轴对称检测试卷一、选择题(每题3分,共30分)1.如图是用纸折叠成的图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个2.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是 ( ) A.圆 B.正方形 C.长方形 D.等腰梯形3. 已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④若A 、B 之间的距离为4,其中正确的有( )A .1个B .2个C .3个D .4个 4.下列长度的三线段,能组成等腰三角形的是 ( ) A. 1,1,2 B.2,2,5 C. 3,3,5 D. 3,4,55. 如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列 结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .① 6.如图,△ABC 中,∠A=36°,AB=AC ,BD 平分∠ABC,DE∥BC, 则图中等腰三角形的个数 ( ) A .1个 B.3个 C.4个 D.5个7.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) A.75°或30° B.75° C.15° D.75°和15°8. 正在理发的小明在镜子中看到背后电子钟显示的时间为12:01,那么这时实际时间为( )A.21:10B.10:21C.10:51D.12:019.等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( )A 横坐标B 纵坐标C 横坐标及纵坐标D 横坐标或纵坐标10.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折A EB CDE DA BF第5题 图 第6题 图叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于 ( )A.108°B.114°C.126°D.129°二、填空题(每题3分,共30分) 11.等边三角形的内角都等于________.12.三角形三个角的度数之比为1:2:3,它们的最大边长等于16cm ,则最小边长______。
八年级数学上册《第十三章 轴对称》单元检测卷及答案-人教版
八年级数学上册《第十三章轴对称》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.等腰三角形的两条边长分别为15cm和7cm,则它的周长为()A.37cm B.29cm C.37cm或29cm D.无法确定3.在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为()A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )4.等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A.锐角三角形B.直角三角形C.锐角三角形或直角三角形D.以上结论都不对5.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC 的长为()A.16 B.14 C.12 D.66.如图∠A=∠B,AE=BE ,点D在AC边上∠1=∠2,AE和BD相交于点O,若∠1=400,则∠BDE为()度.A.300B.400C.600D.7007.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.已知等边ABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边△CDE,连接BE和AE,下列结论:①∠BAE=120°;②当D在线段AB或BA延长线上时,总有∠BED﹣∠AED=1∠BDC.2下列说法正确的是()A.①②都对B.①②都错C.①错,②对D.①对,②错二、填空题9.若等腰三角形有两边长为2cm,5cm则第三边长为cm.10.在△ABC中∠A=100∘,当∠B=∘时,△ABC是等腰三角形.11.已知点M(1−2m,m−1)关于x轴的对称点在第二象限,则m的取值范围是.12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,∠B=40∘,∠C=36∘则∠DAC的度数是.13.如图,已知∠AOB=60∘,点P在OA上OP=8,点M,N在边OB上PM=PN,若MN=2,则OM=.三、解答题14.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,画出△ABC关于x轴对称的△A2B2C2 并写出△A2B2C2的顶点坐标.15.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.16.如图,在△ABC中,D是BC边上一点,连接AD,AD=AC=BD,∠DAC=40°,∠BAC的度数.17.如图,在△ABC中,AB=AC,点D是BC边的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.求证:BE=CF.18.尺规作图画线段AB的中垂线CD(E为垂足)时,为了方便起见,通常把四段弧的半径取成相等;其实不必如此,如图,若能确保弧①、②的半径相等(即AC=BC),再确保弧③、④的半径相等(即AD=BD),直线CD同样是线段AB的中垂线.请你给出证明.19.如图,在△ABC中,AB=AC,D为AB边的中点,DE⊥AC于点E,DF⊥BC于点F,DE=DF.求证:△ABC 是等边三角形.1.B2.A3.A4.C5.C6.D7.D8.B9. 510. 40<m<111. 1212. 34∘13. 314.解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示15.证明:如图∵DE∥AC∴∠1=∠3∵AD平分∠BAC∴∠1=∠2∵AD⊥BD∴∠2+∠B=90°,∠3+∠BDE=90°∴∠B=∠BDE∴△BDE是等腰三角形.16.解:∵AD=AC∴△ACD是等腰三角形.∴∠ADC=∠ACD.∵∠DAC=40°∴2∠ADC=180°−40°=140°.∴∠ADC=70°.∵AD=BD∴△ABD是等腰三角形.∴∠ABC=∠BAD.又∠ADC是△ABD的一个外角∴∠ADC=∠ABD+∠BAD=2∠BAD.∴∠BAD=35°.∵∠BAC=∠CAD+∠BAD∴∠BAC=40°+35°=75°.17.证明:∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD.∵∠EAB=∠BAD,∴∠EAB=∠CAD.又∵AE=AF,AB=AC,∴△ABE≌△ACF(SAS).∴BE=CF18.解:∵AC=BC,AD=BD,CD=CD,∴△ACD≌△BCD,∴∠ACE=∠BCE,∴AE=BE,CD⊥AB,即CD是AB 的中垂线.19.证明:∵D为AB的中点∴AD=BD.∵DE⊥AC DF⊥BC∴∠AED=∠BFD=90°.在Rt△ADE和Rt△BDF中{AD=BDDE=DF∴Rt△ADE≌Rt△BDF(HL)∴∠A=∠B∴CA=CB∵AB=AC∴AB=BC=AC ∴ΔABC是等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8题
A
B
D
O
E
第十二章 轴对称单元检测B 卷
(考试时间为60分钟,满分100分)
一、填空题(每题3分,共30分) 1.等边三角形的内角都等于________. 2.等腰三角形的对称轴最多有___________条.
3.等腰三角形一个底角是30°,则它的顶角是__________.
4.如图,△ABC 中,AB =AC ,AD ⊥BC ,BD =5,则CD =____________.
5.等腰直角三角形的斜边的长为2,则斜边上高线的长为________. 6.等腰三角形中,已知两边的长分别是9和4,则周长为_______.
7.观察字母A 、E 、H 、O 、T 、W 、X 、Z ,其中不是轴对称的字母是______________. 8.如图,△ABD 、△ACE 都是正三角形,BE 和CD 交于O 点,则∠BOC =__________. 9.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.
10.在平面直角坐标系中,x 轴一动点P 到定点A (1,1)、B (5,7)的距离分别为AP 和BP ,那么当BP +AP 最小时,P 点坐标为_______________. 二、选择题(每题3分,共30分)
11.下列图形:①角②两相交直线③圆④正方形,其中轴对称图形有( )
(A )4个 (B )3个 (C )2个 (D )1个 12.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是( )
(A )圆 (B )正方形 (C )长方形 (D )等腰梯形 13.点(
3,-2)关于x 轴的对称点是( )
A
B
D
C
第4题
第9题
(A )(-3,-2) (B )(3,2) (C )(-3,2) (D )(3,-2) 14.下列长度的三线段,能组成等腰三角形的是( )
(A ) 1,1,2 (B ) 2,2,5 (C ) 3,3,5 (D ) 3,4,5 15.如图,已知AC ∥BD ,OA =OC ,则下列结论不一定成立的是( ) (A )∠B =∠D (B )∠A =∠B (C )OA =OB (D )AD =BC
16.如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中等腰三角形的个数( )
(A )1个 (B )3个 (C )4个 (D )5个
17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( ) (A )75°或30° (B )75° (C )15° (D )75°和15° 18.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ) (A )AD DH AH ≠= (B )AD DH AH == (C )DH AD AH ≠= (D )AD DH AH ≠≠
19.等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶
点的坐标,能确定的是( )
(A )横坐标 (B )纵坐标 (C )横坐标及纵坐标 (D )横坐标或纵坐标 20.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )
(A )108° (B )114° (C )126° (D )129°
A B
C
D O
第15题
A
E B
C
D
第16题
A
B
C
D
M
N H
E
第18题
三、解答题(每小题8分,共40分)
21.(1)把图中(实线部分)补成以虚线L为对称轴的轴对称图形,你会得到一只美丽的蝴蝶图案.
(2)如图,在直线l上找一点,使P A=PB.
B
A
l
22.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
A
D
B C
23.如图,△ABC 中,边AB 、BC 的垂直平分线交于点O . (1)求证:P A =PB =PC .
(2)点P 是否也在边AC 的垂直平分线上?由此你还能得出什么结论?
24.如图:△ABC 和△ADE 是等边三角形.证明:BD =CE .
25.如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O .给出下列四个条件:①∠EBD =∠DCO ;②∠BEO =∠CDO ;③BE =CD ;④OB =OC .
(1)上述四个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形); (2)选择第(1)小题中的一种情形,证明△ABC 是等腰三角形.
O
E
D
C
B A
A
B
C
D
E
答案:
1.60°2.3 3.120° 4.5 5.1 6.22 7.Z 8.120° 9.略 10.3
(,0)
2 11.A 12.D 13.B 14.C 15.C 16.D 17.D 18.B 19.A 20.C.21.略 22.72°,72°,36° 23.略 24.证△ABD≌△ACE得.
25.(1)①③;①④;②③;②④.(2)略.。