一次函数 复习课件 课件
合集下载
数学八年级上《一次函数》复习课件
函数平移
例1、将直线 y x 2 向下平移3个单 位后得到的直线是 。 直线平移:
y kx
向上平移b个单位 y kx b 向下平移b个单位 y kx b
配套练习
函数平移
2x 2x 4 1、直线 y 是由 y 3 3
向 平移 个单位得到的。
配套练习
1 2、将直线 y x 2 平移后经过点 2 (-4,-1)。
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
5、10千米龙舟比赛中,红队由于某些原因,晚 出发了。出发时蓝队已经划出了 500米,如图所示, ɭ和m分别表示蓝队和红队的行驶路程y(千米)和 时间x(分)之间的关系。 是哪个队获胜了?
y(千米) 8 6 4 2 0 5 10 15 20 25 x(分)
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法; (2).实际问题的应用 (3). 解决方程,不等式,方程组的有关问题
二、范例。
例1 填空题: ②
③
y x4
, ④ y 4 x 3 。其中过原点的直
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o
一次函数的图象ppt课件
3
探究新知
正比例函数的图象
知识点
探究1:画出正比例函数y=2x的图象
怎样画出给定函数的图象?一般可以分为哪几个步骤?
“描点法”,分成“列表、描点、连线”三个步骤.
(1) 列表:
x
… -3
-2
-1
0
1
2
3
…
y=2x
… -6
-4
-2
0
2
4
6
…
4
4
探究新知
探究1:画出正比例函数y=2x的图象
y=-2x
交点的坐标:y=3x 和y=-3x+2.
解:对于函数y=3x,取x=0,得y=0,
得到点(0,0);取x=1,得y=3,
得到点(1,3).
过点(0,0),(1,3)画直线,
就得到函数y=3x的图象,它与坐标
轴的交点是原点(0,0).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
பைடு நூலகம்-3
-4
2
它与x轴的交点是( 3 ,0),与y轴
的交点是(0,2).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
-3
-4
y=-3x+2
-5
15
15
探究新知
例3 画出一次函数y=2x-1与y=-0.5x+1的图象,并求出它们与
坐标轴的交点坐标.
y
y=2x-1
解:列表:
x
y=2x-1
y=-0.5x+1
第10讲 一次函数的图象与性质-中考数学一轮复习知识考点课件(35张)
A.y=- 1 x-5
2
C.y= 1 x-3
2
B.y=
1 2
x+3
D.y=-2x-8
上一页 下一页
9.(2020·内江)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,
已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且
只有4个整点,则t的取值范围是( D )
A. 1 ≤t<2
2
C.1<t≤2
B. 1 <t≤1
2
D. 1 ≤t≤2,且t≠1
2
上一页 下一页
10.(绵阳中考)在平面直角坐标系中,一条直线经过A(-1,5),P(-2,a),
B(3,-3)三点. (1)求a的值;
(2)设这条直线与y轴相交于点D,则△OPD的面积为_____3_______.
解:(1)设直线的解析式为y=kx+b.
上一页 下一页
2.(2019·荆门)若函数y=kx+b(k,b是常数)的图象不经过第二象限,则k,b
应满足的条件是( A ) A.k≥0,且b≤0
B.k>0,且b≤0
C.k≥0,且b<0
D.k>0,且b<0
上一页 下一页
3.(2020·天门)对于一次函数y=x+2,下列说法不正确的是( D ) A.图象经过点(1,3) B.图象与x轴交于点(-2,0) C.图象不经过第四象限 D.当x>2时,y<4
对点训练 1.(2020·荆州)在平面直角坐标系中,一次函数y=x+1的图象是( C )
A
B
C
D
上一页 下一页
2.(2020·泰州)点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值
等于( C )Βιβλιοθήκη A.5B.3C.-3
人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件
7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
中考数学复习讲义课件 第3单元 第11讲 一次函数
第三单元 函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
一次函数课件(共50张PPT)
例2.画出函数y =-6x与 y =-6x +5的图 象。
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2
论
这时函数的图象从左到右上升;
观察分析:
y 2 x 1和
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2
论
这时函数的图象从左到右上升;
观察分析:
y 2 x 1和
义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt
问题10:
已知x点A(-4,0),B(2,0),若点C在一次函数y 1 x 2 2
的图象上,且△ABC是直角三角形,则满足条件点C
有(
)
A.1个 B.2个 C.3个 D.4个
C
C
x
2C C
A
OB4
y
问题11: 如图,直线AB与y轴,x轴交点分别为A(0,2) B(4,0),以坐标轴上有一点C,使△ACB为等腰三角形
45x 30(6 x) 240
120x
1680
2300
解得xx3641
∵x是整数,∴x 取4,5 ∵k=120>O ∴y 随x的增大而增
∴当x=4时,Y的最小值=2160元
2.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗
震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地
需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分
3.某蓄水池的横断面示意图如右图,分深 水区和浅水区,如果这个注满水的蓄水池 以固定的流量把水全部放出.下面的图象 能大致表示水的深度h和放水t时间之间的
关系的是( A )
h
h
h
h
h
O tO
tO t O
t
A
B
C
D
1.已知y+1与x-2成正比例,当x=3时,y=-3, (1)求y与x的函数关系式; (2)画出这个函数图象; (3)求图象与坐标轴围成的三角形面积; (4)当-1≤x≤4时,求y的取值范围;
v y
v
v
0
x
x O
A B
函数的定义要点:
0
x
C
0
x
D
(1)在一个变化过程中有两个变量x,y
《一次函数的图象与性质》课件精品 (公开课)2022年数学PPT
第十九章 一次函数
19.2.2 一次函数
第2课时 一次函数的图象和性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.会画一次函数的图象,能根据一次函数的图象理
解一次函数的增减性;(重点)
2.能灵活运用一次函数的图象与性质解答有关问
题.(难点)
导入新课
复习引入
形如 y=kx(k是常数,k≠0)的函数,叫做正比例函数;
-(+1.1)表示什么?-(-7)呢? -(-9.8)呢?它们的结果应是多少?
填一填
(1) 4是_+__4_的相反数, 4_-_ 4 __
(2)
(
1) 5
是____15 __的相反数,
(
1) 5
1 =____5 __ .
(3) 7.1是___7__. 1__的相反数,7.1_7 _ . 1 _.__
(4)100是___1_0_0__的相反数,100 _1 0_0 _ . _
归纳总结
在一个数前面加上“-”号表示求这个数的相反数.
思考:如果在一个数前面加上“+”号所得得到的 结果是什么呢?
例2 化简下列各数(先读后写)
(1)-(+10)
(2)+(-0.15)
(3)+(+3)
(4)-(-12)
(5)+[-(-1.1)] (6)-[+(-7)]
讲授新课
活动2:请观察这两个数,它们有什么异同点?你还能 列举两个这样的数吗?
符号不同
2.5
2.5
数字相同
要点归纳
1.定义:只有符号不同的两个数叫做互为相反数.
2.一般地,a和-a互为相反数.
19.2.2 一次函数
第2课时 一次函数的图象和性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.会画一次函数的图象,能根据一次函数的图象理
解一次函数的增减性;(重点)
2.能灵活运用一次函数的图象与性质解答有关问
题.(难点)
导入新课
复习引入
形如 y=kx(k是常数,k≠0)的函数,叫做正比例函数;
-(+1.1)表示什么?-(-7)呢? -(-9.8)呢?它们的结果应是多少?
填一填
(1) 4是_+__4_的相反数, 4_-_ 4 __
(2)
(
1) 5
是____15 __的相反数,
(
1) 5
1 =____5 __ .
(3) 7.1是___7__. 1__的相反数,7.1_7 _ . 1 _.__
(4)100是___1_0_0__的相反数,100 _1 0_0 _ . _
归纳总结
在一个数前面加上“-”号表示求这个数的相反数.
思考:如果在一个数前面加上“+”号所得得到的 结果是什么呢?
例2 化简下列各数(先读后写)
(1)-(+10)
(2)+(-0.15)
(3)+(+3)
(4)-(-12)
(5)+[-(-1.1)] (6)-[+(-7)]
讲授新课
活动2:请观察这两个数,它们有什么异同点?你还能 列举两个这样的数吗?
符号不同
2.5
2.5
数字相同
要点归纳
1.定义:只有符号不同的两个数叫做互为相反数.
2.一般地,a和-a互为相反数.
2022届高考一轮专题复习-一次函数、反比例函数及二次函数复习课件
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间[m,n]均是确定的; ②动轴定区间,即对称轴不确定,区间[m,n]是确定的;
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;
④动轴动区间,即对称轴不确定,区间[m,n]也不确定.
以上四种情况,对于①可数形结合,较易解决.对于②和③, 应按对称轴在区间的左侧、内部、右侧分三类,结合其图象特
函数在区间[-1,1]上存在零点,则必有
f1≤0, f-1≥0,
即11- +1166+ +qq+ +33≤ ≥00, .
∴-20≤q≤12,即 q 的取值范围是[-20,12].
(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,
10]上是增函数,且对称轴方程是 x=8.
①当80-≤tt≥≤180,-8, 即 0≤t≤6 时, 在区间[t,10]上,f(t)最大,f(8)最小,
t2-2t+2t>1, 综上所述,f(x)min=g(t)=10≤t≤1,
t2+1t<0. 答案:ABC
题组二 走进教材
2.(必修 1P39 第 1 题改编)(2013 年重庆)y= 3-aa+6
(-6≤a≤3)的最大值为( )
9
32
A.9
B.2
C.3
D. 2
解析:y= -a2-3a+18= -a+322+841(-6≤a≤3), ∴当 a=-32时,y 最大=92,故选 B.
综上知,f(x)max=2277+ -1100aaaa> ≤00, . f(x)min=22-7+a210-a5a≤<a-≤55,,
27-10aa>5. 【题后反思】(1)函数 f(x)在[a,b]上单调递增时,f(x)max= f(b);函数 f(x)在[a,b]上单调递减时,f(x)max =f(a);函数 f(x) 在[a,b]上不是单调函数时,找出图象上最高点的纵坐标,即 为函数 f(x)的最大值,图象上最低点的纵坐标,即为函数 f(x)的 最小值.
八年级数学一次函数复习PPT省名师优质课赛课获奖课件市赛课一等奖课件
3、考点题型:
单一旳求解析式【题型】:已知y是x旳正百分比函数,而且当x=3 时,y=6,假如点A(a,a+3)是它旳图象上旳点,(1)求a旳值; (2)求平行于该图象,而且经过点B(- a , a +1)旳一次函数旳 解析式。
解(1)设正百分比函数解析式为:y=kx 把x=3 y=6代入y=kx得:k=2 ,即正百分比函数解析式
一次
图象
y
y
y
y
函数 y=kx
+b
b
ox
ox
b
b(b≠0) • k,b旳 k>0
符号
b>0
k>0
k<0
b<0
b>0
k<0 b<0
经过象限 一、二、三 一、三、四 一、二、四 二、三、四
•正 百 分 比 函
增减性
y随x旳增 大而增大
y
y随x旳增 大而增大
y随x旳增 大而降低
y
y随x旳增 大而降低
3、复习一次函数图像旳平移
温馨提醒:直线y=k1x+b1在同一平面直角坐标系中平移到 y=k2x+b2时,有k1=k2且b1≠b2即:两直线位置关系为:平行;直 线平移规律:上加下减;左加右减。
(3) 考点题型:(2023.武汉) 点旳平移思索题(1):点(0,1)向下平移2个单位后坐 标为__(__0_,-_1_)___ 直线旳平移思索题:(1):直线y=2x+1向下平移2个单位 后旳解析式为: y=2x-;1 (2)直线y=2x+1向右平移2个单位后旳解析式:Y=2(x-2)+1
2
0
y
D 23
l2 A(4,0)
人教版初中八年级数学下册第19章《一次函数》复习ppt课件
(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组
为
x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb
的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.
一次函数和反比例函数的综合复习课--精品课件
(2)解: 由题意知:m +1= 2,解得 m = 1; 当m=1时,2m-6=-4 ≠5, 所以函数的解析式: y = 2x-4
4.某软件公司开发出一种图书管理软件,前期投入 的开发、广告宣传费用共50000元,且每售出一 套软件,软件公司还需支付安装调试费用200元.
(1)试写出总费用y(元)与销售套数x(套)之间的函 数关系式;
一次函数和反比例函数 复习课
一、知识要点
1.一次函数的概念
一次函数的概念:如果函数y=k__x_+__b__(k、b为 常数,且k__≠_0___),那么y叫做x的一次函数。
特别地,当b_=__0__时,函数y=_k_x__(k_≠_0__)叫做正比
例函数。
★理解一次函数概念应注意下面两点:
⑴、解析式中自变量x的次数是_1__次,
A.当x 0时, y 0
(D)
B.在每个象限内, y随x的增大而减小.
y
C.图象在第一三象限
D.图象在第二四象限.
O
x
1.若正比例函数y k x(k 0)与反比例函数
1
1
y k2 (k 0)的函数值都随x的增大而增大, x2
那么它们在同一直角坐标系内的大致图
象是 _D___ .
y
Ox A
y
O
x
B
y
(2)如果每套定价700元,软件公司至少要售出多 少套软件才能确保不亏本?
解: (1) y=200x+50000 (2) 由题意,得 700x≥200x+50000
解得 x ≥100
所以软件公司至少要售出100套软件才能确保不亏本。
反比例函数
复习提问
下列函数中哪些是正比例函数?哪些是反比例
4.某软件公司开发出一种图书管理软件,前期投入 的开发、广告宣传费用共50000元,且每售出一 套软件,软件公司还需支付安装调试费用200元.
(1)试写出总费用y(元)与销售套数x(套)之间的函 数关系式;
一次函数和反比例函数 复习课
一、知识要点
1.一次函数的概念
一次函数的概念:如果函数y=k__x_+__b__(k、b为 常数,且k__≠_0___),那么y叫做x的一次函数。
特别地,当b_=__0__时,函数y=_k_x__(k_≠_0__)叫做正比
例函数。
★理解一次函数概念应注意下面两点:
⑴、解析式中自变量x的次数是_1__次,
A.当x 0时, y 0
(D)
B.在每个象限内, y随x的增大而减小.
y
C.图象在第一三象限
D.图象在第二四象限.
O
x
1.若正比例函数y k x(k 0)与反比例函数
1
1
y k2 (k 0)的函数值都随x的增大而增大, x2
那么它们在同一直角坐标系内的大致图
象是 _D___ .
y
Ox A
y
O
x
B
y
(2)如果每套定价700元,软件公司至少要售出多 少套软件才能确保不亏本?
解: (1) y=200x+50000 (2) 由题意,得 700x≥200x+50000
解得 x ≥100
所以软件公司至少要售出100套软件才能确保不亏本。
反比例函数
复习提问
下列函数中哪些是正比例函数?哪些是反比例
(中考数学复习)第12讲-一次函数及其图象-课件-解析
课堂回顾 · 巩固提升
(2)由题意,得xy=2 000,
浙派名师中考
-x2+130x-4 000=0, 解得x1=50,x2=80>70(舍去). 答:该机器的生产数量为50台. (3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z= ka+b,由函数图象,得
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 6.如图12-3所示,直线y=kx+b经过点A(-1,-2)和点B(-
2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为 __-__2_<__x_<__-__1___.
图12-3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
B.x>0
C.x<2
D.x>2
图12-2
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
5.(2013·泰安)把直线y=-x+3向上平移m个单位后,与直线y =2x+4的交点在第一象限,则m的取值范围是 ( C ) A.1<m<7 B.3<m<4 C.m>1 D.m<4 解析:把直线y=-x+3向上平移m个单位后可得:y=-x +3+m,求出直线y=-x+3+m与直线y=2x+4的交点, 再由此点在第一象限可得出m的取值范围.解得m>1.
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 函数、方程、不等式的结合 【例4】 (2012·乐山)已知一次函数y=ax+b的图象过第一、
北师大版八年级上册数学《一次函数的图象》一次函数PPT教学课件
即
y
3 4
x
x
0
.
y/元
(2)列表 x 0 4
6
描点 y 0 3
5 4
连线
3
2
(3)当x=220时,
1
y 3 220 165(元).
O 1 2 34 5 67
x/k m
4
答:该汽车行驶220 km所需油费是165元.
正比例函 数的图象 和性质
课堂小结
画正比例函数图象的一般 步骤:列表、描点、连线
__2__个单位长度而得到.
比较三个函数的解析式, 自变量系数k 相同,
它们的图象的位置关系是 平行
.
要点归纳
思考:与x轴的交 点坐标是什么?
b k
,
0
一次函数y=kx+b(k≠0)的图象经过点(0,b),
可以由正比例函数y=kx的图象平移 b 个单位长度得到
(当b>0时,向 上 平移;当b<0时,向 下 平移).
当k<0时,直线y=kx+b由左到右逐渐下降,y 随x的增大而减小.
① b>0时,直线经过 一、二、四象限; ② b<0时,直线经过二、三、四象限.
练一练
两个一次函数y1=ax+b与y2=bx+a,它们在同
一坐标系中的图象可能是( C )
例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的 m的值: (1)函数值y 随x的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限; 解:(1)由题意得1-2m>0,解得 m 1
导入新课
复习引入
(1)什么叫一次函数?从解析式上看,一次函数 与正比例函数有什么关系?
浙教版数学中考复习:函数(一)课件 (共69张PPT)
• 解析:因为一次函数y=kx+b过点(2,3),(0,1),
•
所以ቊ3
= 1
2������ + = ������
������,解得ቊ������������
= =
1 1
•
所以一次函数的解析式为������ = ������ + 1.
•
当y=0时,x+1=0,x=-1,
•
所以一次函数������ = ������ + 1的图象与x轴交于点(-
4. 实际应用
考点1:反比例函数的概念
定义:形如________(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函
数,k是比例系数.
表达式:
或
或xy=k(k≠0).
防错提醒:(1)k≠0; (2)自变量x≠0; (3)函数y≠0.
考点2:反比例函数的图象与性质
(1)反比例函数的图象:反比例函数y=������������(k≠0)的图象是________,且关于________对称. (2)反比例函数的性质:
• C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
2.1反比例函数的图象与性质
【练6】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数y=���6���的图象上,则y1,y2,y3的 大小关系是( )
A.y3<y1<y2
B.y1<y2<y3
C.y2<y1<y3
1.3一次函数的解析式
【例4】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为 2,求此一次函数的解析式.
解析:
【例4】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为 2,求此一次函数的解析式.
第11讲 一次函数中考复习课件
的解为一次函数y1=k1x+b1与y2=k2x 函数y =k x+b 的图象
2
2
2
+b2的图象的交点坐标值
上方时自变量x的取值
范围
考点 5
建立函数模
型解决实际
问题的步骤
一次函数的应用
第一步:审题,明确变量;
第二步:根据两变量间的等量关系,确定函数解析式;
第三步:确定自变量的取值范围,利用函数性质解决问题;
待定系数法
(1)一设:设出一次函数的解析式y=kx+b(k≠0);
一般
步骤
(2)二列:找出函数图象上的两个点,代入y=kx+b中,得到关
于k,b的二元一次方程组;
(3)三解:解这个二元一次方程组,得到k,b的值;
(4)四还原:将所求k,b的值代入所设的函数解析式
【知识拓展】若已知一次函数图象上两点(x1,y1),(x2,y2),则
5. [2021省卷5题]将直线y=5x向下平移2个单位长度,所得直线的表达式为
( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2) D.y=5(x-2)
命题点 3
一次函数与一元一次不等式(组)(省卷2018.16)
6. [2018省卷16题]如图,一次函数y=-x-2与y=2x+m的图象相交于点P
函数图象从左向右呈下降
k<0⇔ 趋势“\”
y随x的增大而② 减小
b决定函数图 b>0⇔交
b<0⇔交 b=0⇔
b>0⇔交 b<0⇔交 b=0⇔
象与y轴交点 点在正半
点在负半 交点即
点在正半 点在负半 交点即原
轴上
轴上
位置
轴上
原点
轴上
点
大致图象
2
2
2
+b2的图象的交点坐标值
上方时自变量x的取值
范围
考点 5
建立函数模
型解决实际
问题的步骤
一次函数的应用
第一步:审题,明确变量;
第二步:根据两变量间的等量关系,确定函数解析式;
第三步:确定自变量的取值范围,利用函数性质解决问题;
待定系数法
(1)一设:设出一次函数的解析式y=kx+b(k≠0);
一般
步骤
(2)二列:找出函数图象上的两个点,代入y=kx+b中,得到关
于k,b的二元一次方程组;
(3)三解:解这个二元一次方程组,得到k,b的值;
(4)四还原:将所求k,b的值代入所设的函数解析式
【知识拓展】若已知一次函数图象上两点(x1,y1),(x2,y2),则
5. [2021省卷5题]将直线y=5x向下平移2个单位长度,所得直线的表达式为
( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2) D.y=5(x-2)
命题点 3
一次函数与一元一次不等式(组)(省卷2018.16)
6. [2018省卷16题]如图,一次函数y=-x-2与y=2x+m的图象相交于点P
函数图象从左向右呈下降
k<0⇔ 趋势“\”
y随x的增大而② 减小
b决定函数图 b>0⇔交
b<0⇔交 b=0⇔
b>0⇔交 b<0⇔交 b=0⇔
象与y轴交点 点在正半
点在负半 交点即
点在正半 点在负半 交点即原
轴上
轴上
位置
轴上
原点
轴上
点
大致图象
中考数学专题《一次函数》复习课件(共20张PPT)
2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
第12章一次函数小结评价与复习PPT课件(沪科版)
6. 填空题:
有下列函数:① y 6x 5 , ② y = 2 x ,
③ y x 4 , ④ y 4x 3 . 其中过原点的直
线是__②___;函数y随x的增大而增大的是_①__、__②__、__③__;函 数y随x的增大而减小的是__④____;图象在第一、二、三象 限的是__③___.
解不等式ax+b>0(a,
求直线y= ax+b在 x轴上
b是常数,a≠0) . 从“形”的角度看 方的部分(射线)所对
应的横坐标的取值范
围.
四、一次函数与二元一次方程 一般地,任何一个二元一次方程都可以转化为一次函
数y=kx+b(k、b为常数,且k≠0)的情势,所以每个二元一 次方程都对应一个一次函数,也对应一条直线.
10· · O· s5·=2x 1·(00≤x≤5) x(秒)
课堂小结
变
函
量
数
解析法 列表法 图象法
一次函数y=kx+b(k,b为常数, 且k≠0),特例y=kx(k为常 数,且k≠0).
一次函数与一元一次 方程、一元一次不等式
一次函数与二 元一次方程
用待定系数 法求一次函 数的解析式
1. 设所求的一次函数表达式为y=kx+b; 2. 根据已知条件列出关于k、b的方程组; 3. 解方程,求出k、b; 4. 把求出的k,b代回表达式即可.
x
当x>1时,y1在y2上方,据此解题即可.
【答案】C.
方法总结 本题考查了一次函数与一元一次不等式,从函数的角度看,
就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取 值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上 (或下)方部分所有的点的横坐标所构成的集合.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从实际问题说起
小王骑自行车从A 地到B 地办事情,半小时后,小 张开汽车沿着同一条路从A地赶往B地。小王的速度是 10km/h,小张的速度为60km/h。
(3)在同一直角坐标系中画出这两个函数图象,并 从函数角度分析什么时候小王在前,什么时候小张在前?
解:(3)图象如图:
y y =10x
8 6 4 2 y =60x-30
甲乙丙 A型汽车每辆运输量(吨) 2 2 — B型汽车每辆运输量(吨) 4 — 2 C型汽车每辆运输量(吨) — 1 6
综合运用
这个问题难在哪里? 怎样找出变量之间的关系?
建立函数模型
A
2x 吨
x辆
2x 吨
甲
(2x+4y)吨
总辆数 y 辆 B
4y 吨 2y 吨
21 辆
(21-x-y)吨
(21-x-y)辆
第十九章 一次函数 复习课件
• 学习目标: 1.能整理本章学习内容,建立相关知识之间的联系,优化 知识结构;
2.会用一次函数模型描述和研究实际问题中的运动变化规 律;
3.进一步体会函数模型思想、数形结合思想及变化和对应 的思想。
课件说明
• 学习重点: • 整理知识,优化知识结构;解决问题,感悟数学思想方
基础检测
练习5 直线 y=k1x+b1 与直线 y=k2x+b2(k2<k1<0) 交于点(a,b),则方程k1x+b1=k2x+b2 的解为___x_=_a__; 不等式k1x+b1<k2x+b2 的解集为__x_<__a__。
综合运用
例:某公司决定组织21辆汽车装运甲、乙、丙三种 土特产共111吨到城市去销售。现有A型、B型、C型三 种汽车可供选择。已知每种型号汽车可同时装运两种土 特产,且每辆车必须装满。设A型汽车安排 x 辆,B型汽 车安排y辆。
C 6(21-x-y)吨
乙 2x+(21-x-y)吨 总吨数
111 吨
丙
2y+6(21-x-y)吨
(2x+4y)+2x+21-x-y+2y+6(21-x-y)=111, y=-3x+36。
综合运用
(1)求y与x之间的函数关系式;
解:y与x之间的函数解析式是 y=-3x+36,C型车辆
为(2x -15)辆,
整理知识
能用适当的方法把这些知识整理成容易记忆的知识 体系吗?试一试。
某些运动变化 建立函 的现实问题 数模型
函数
应用
一次函数
y=kx+b(k≠0)
一次函数与方程(组)、 不等式之间的关系
定义
自变量取值范围
表示法
图象:一条直线
数形结合
性质: k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小
从实际问题说起
小王骑自行车从A 地到B 地办事情,半小时后,小 张开汽车沿着同一条路从A地赶往B地。小王的速度是 10km/h,小张的速度为60km/h。
(2)假设小王出发后行驶的时间为xh,小王、小张 离A地的路程都是x的函数吗?如果是,请分别求出函数 解析式;
解:小王、小张离A地的距离都是x的函数。小王离 A地路程y与x之间的函数解析式为y=10x,小张离A地 的路程y与x之间的函数解析式是y=60x-30。
基础检测
练习1 下列各坐标系中的曲线中,表示y是x的函 数的是( D )。
y
y
y
y
O
x
O
xO
x
O
x
A
B
C
D
基础检测
练习2 写出下列问题中变量之间的函数解析式和 相应的自变量取值范围:
(1)圆环形垫片的外圆半径为12mm,内圆半径为 x,垫片面积S(单位:mm)随着x的变化而变化;
(2)等腰三角形的周长为16,底边长为x,腰长为y; (3)某汽车加满油(50 L)后在高速公路上行驶, 耗油量为8L/100km,该汽车油箱中的剩油量w(单位: L)随汽车行驶的公里数s(单位:km)的变化而变化。
因为
-23x-x+153≥6≥0。0,(x,y 是整数),
所以 8≤x≤12。
综合运用
(2)如果A,B,C三种汽车的运费分别为600元/ 辆、800元/辆、1000元/辆,请设计一种运费最省的 运输方案,并求出至少需要运费多少元。
解:设总运费为w元, 则w=600 x+800(-3x+36)+ 1000(2x-15), 即w=200x+13800,(8≤x≤12)。 因为w随着x的增大而增大,所以当x=8时,w最小,w 的最小值为15400。 即用A型车8辆、B型车12辆、C型车1辆运输时费用最 省,最小运费为15400元。
基础检测
练习3 已知 y 是 x 的一次函数,且图象经过(2, 1),(0,3)两点,求这个函数的解析式,并求当 x = 100 时对应的函数值。
基础检测
练习4 一次函数 y =kx+b(k≠0)的图象不经过第 二象限,则函数y =bx-k(b≠0)的图象不经过第__一___ 象限,y 随着x 的增大而___减__小____。
课后反思
在解决这个问题中,是按照怎样的步骤进行的?
(1)读题目,画图表; (2)标数据,做表示; (3)找关系,建模型; (4)解模型,做解释。
总结分享
通过本课学习,请结合下面问题,说说你对函数和 一次函数的新认识:
(1)函数有什么用?函数中,变量之间的对应关系 是怎样的?有哪些方法可以表示函数?
法。
从实际问题说起
小王骑自行车从A地到B地办事情,半小时后,小 张开汽车沿着同一条路从A地赶往B地。小王的速度是 10km/h,小张的速度为60km/h。 (1)用语言描述小王和小张在路上前后位置的变化; (2)假设小王出发后行驶的时间为xh,小王、小张 离A地的路程都是x 的函数吗?如果是,请分别求出函数 解析式; (3)在同一直角坐标系中画出这两个函数图象,并从函 数角度分析什么时候小王在前,什么时候小张在前?
自变量取值范围
表示法
图象:一条直线
数形结合
性质: k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小
建立函数模型的步骤:
(1)读题目,画图表;(2)标数据,做表示; (3)找关系,建模型;(4)解模型,做解释。
谢谢
从实际问题说起
小王骑自行车从A地到B地办事情,半小时后,小 张开汽车沿着同一条路从A地赶往B地。小王的速度是 10km/h,小张的速度为60km/h。 (1)用语言描述小王和小张在路上前后位置的变化;
解:小王先出发0.5h,因此开始时小王在前,小张 在后;由于小张的速度比小王快,因此,后来小张追上 小王,追上以后,小张一直在前。
甲乙丙 A型汽车每辆运输量(吨) 2 2 — B型汽车每辆运输量(吨) 4 — 2 C型汽车每辆运输量(吨) — 1 6
综合运用
(1)求y与x之间的函数关系式; (2)如果A,B,C三种汽车的运费分别为600元/辆、 800元/辆、1000元/辆,请设计一种运费最省的运输方 案,并求出至少需要运费多少元?
O 12x
回顾知识
(1)什么是函数?怎样确定函数的自变量取值范围? (2)函数有哪几种表示方法?它们各有什么特点? (3)上面问题中出现的函数是什么函数?这类函数 的解析式和图象分别有什么特点?有什么性质? (4)上述问题中涉及两个一次函数,由上述函数的 图象和解析式,你能回忆起一次函数和方程(组)、不 等式之间的关系吗? (5)函数主要作用是什么?函数主要研究什么?主 要的研究方法是什么?
(2)什么叫一次函数?正比例函数与一次函数有什 么关系?我们主要研究了一次函数的哪些性质?
(3)我们是怎样研究一次函数性质的? (4)函数、方程(组)、不等式有什么联系?
课堂小结
某些运动变化 建立函 的现实问题 数模型
函数
应用
一次函数
y=kx+b(k≠0)
一次函数与方程(组)、 不等式之间的关系
定义