实数(第二课时)

合集下载

实数复习(2课时)

实数复习(2课时)

2、 “
”, “ ”开不尽的数 (3)、 类似于0.0100100010 0001
3
8是
《恒谦教育教学资源库》 64
的平方根
教师备课、备考伴侣 专注中国基础教育资 源建设
64的平方根是 ±8
不 要 -4 64 的立方根是 搞 错 -4,-3,-2,-1, ___ 了大于 17小于 11 的所有整数为___ 0,1,2,3 .
3
表示方法
a的取值 a ≥
性 质
正数 0 负数 0
a
0

a a≥ 0
0 没有
a 是任何数
0 负数(一个)
a
正数(一个) 互为相反数(两个) 正数(一个)
ቤተ መጻሕፍቲ ባይዱ
没有

方 是本身
0,1
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方 0,1,-1 0
无限不循环的小数 叫做无理数.
有理数和无理数统称实数.
记作: 0 0
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
这就是说,如果x = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
3.平方根的性质: 正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
2
4.立方根的定义:
64的值是 8
9的平方根是 3
《恒谦教育教学资源库》
1.说出下列各数的平方根
教师备课、备考伴侣 专注中国基础教育资 源建设
(1)
17 2 16
(2)
256
(3)
5 2 ( ) 3
2.x取何值时,下列各式有意义

第二章 实数全章教案-

第二章 实数全章教案-

第二章实数1.数怎么又不够用了第一课时 数怎么又不够用了(1)教学目标1.通过拼图活动,让学生感觉无理数产生的实际背景和学习它的必要性。

2.进一步丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数产生感性认识。

重点:对无理数的感识难点:对无理数的认识教学过程一、复习1.什么叫有理数,举出例子。

2.勾股定理的内容?若Rt △ABC 的两个直角边分别是5、12,求它的斜边。

二、创设问题情境,引导学生思考,引入课题出示投影(一)P25页首图文1教师指出:随着人类的认识不断发展,人们发现,现实生活中确实存在不同于有理数的数,本章我们将学习元理数、实数、平方根、立方根的概念,学习利用估算或借助计算器求出一个无理数的近似值,并解决有关的实际问题。

出示课题:数怎么不够用了.三、师生共同参与教学活动,获得生活中大量存在的不是有理数的认识1.拼图活动(1)让学生把准备好的两块边长相同的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(2)鼓励学生充分思考,交流并给予引导。

(3)教师把学生的几种做法在全班展示。

2.对拼图的结果作进一步分析(1)设大正方形的边长为a ,a 满足什么条件?(2)a 可能是整数吗?说说你的理由。

(3)a 可能是以2为分母的分数吗?可能是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,并与同伴交流。

教师鼓励学生充分进行思考、交流,给予适时引导。

学生的回答可能是。

“l 2=1,22=4,32=9……越来越大,所以a 不可能是整数。

”“(21)2=41,(32)2=94……结果都是分数,所以a 不可能是分数。

”“两个相同的最简分数的乘积仍然是分数,所以a 不可能是分数”等。

这里只要学生能进行简单的说理即可。

教师归纳:事实上,在等式a 2=2中,a 既不是整数也不是分数,所以a 不是有理数。

说明在生活中存在着不是有理数的数。

3.做一做出示投影(三):P25页“做一做”内容(1)让学生用勾股定理算出以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?(4)让学生分组交流以上问题后回答。

初中数学北师大版八年级上册第二章实数第2节平方根(二).2平方根(二)

初中数学北师大版八年级上册第二章实数第2节平方根(二).2平方根(二)
3. 0的平方根是0,算术平方根也是0.
区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为 ,而算术平方根表示为
出示例1,探索求平方根的方法,教师示范(1),两名学生板演(2)(3),关注学困生的表现,适时进行点拨引导评价。
口算练习,指定学生抢答。引导学生发现并归纳不同类型的数平方根的特点。
板书课题
检查自学情况,展示相关问题的答案。板书平方根的概念、符号表示。引导学生对平方根的概念深度剖析。
分析开平方运算和平方运算的互逆关系
问题引发学生思考,产生探究学习的兴趣.
自学教科书相关内容,独立解决并口答问题1-3。列举事例理解概念,
配合教师检查,对照
完善答案。
复习平方运算的知识,提出问题,为本节课的学习做好知识的预备,并让学生体会知识之间的联系。
出示例2,求各式的值,指导学生先明确各式子的意义再计算,对学生的回答进行点拨评价。
引导学生展开讨论,从区别和联系两方面归纳总结。教师对学生的结论适时点评鼓励。
通过对例1的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.
熟练口算,归纳平方根的性质
口答各式子的意义及计算结果,初步感受平方根与算术平方根的区别与联系。
形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并明白它们之间的互逆关系.
教学环节
教师活动
预设学生行为
设计意图
三、例题示范,应用新知
例1.求下列各数的平方根:
(1)81;(2) ;(3)0.49;
练习:口答下列各数的平方根:
教学环节

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。

2. 学会实数的运算方法,包括加、减、乘、除、乘方等。

3. 能够运用实数解决实际问题,提高学生的数学应用能力。

二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。

2. 实数的性质:实数的加减法、乘除法、乘方运算。

3. 实数的应用:解决实际问题,如长度、面积、体积等计算。

三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。

2. 难点:实数运算的灵活应用,解决实际问题。

四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。

2. 运用案例分析法,分析实际问题,引导学生运用实数解决。

3. 开展小组讨论,让学生互动交流,巩固所学知识。

五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。

2. 讲解实数的分类:有理数、无理数、实数。

3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。

4. 运用案例分析,让学生体会实数在实际问题中的应用。

5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。

6. 总结本节课内容,布置课后作业。

六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。

2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。

3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。

七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。

2. 探讨实数与生活中的实际问题,提高学生的数学素养。

八、教学资源:1. 教材:八年级数学上册,北师大版。

2. 教案:实数教案。

3. PPT:实数相关内容。

4. 练习题:实数运算练习题。

九、教学时间安排:1. 第一课时:实数的定义与分类。

2. 第二课时:实数的性质与运算。

3. 第三课时:实数的应用与拓展。

十、课后作业:1. 复习实数的定义、性质及运算方法。

2. 完成练习题,巩固所学知识。

八年级数学上册 第二章 实数

八年级数学上册 第二章 实数

第二章实数目录第二章实数 (1)第一课时:实数的认识 (1)知识要点一:认识无理数 (1)知识要点二:平方根 (1)知识要点四:算术平方根 (2)拓展:随机的n (3)知识要点五:立方根 (4)知识要点五:估算无理数的大小 (4)知识要点六:实数的概念 (5)知识要点七:实数的性质 (5)知识要点八:实数与数轴 (7)知识要点九:实数的比较大小 (8)知识要点10:实数的运算 (9)总练习题 (9)C 基础巩固 (9)B 能力提升 (10)A 拔尖训练 (11)第二课时:二次根式的性质、化简与运算 (13)知识要点一:二次根式的概念 (13)知识要点二:二次根式有意义的条件 (13)知识要点三:二次根式的性质与化简 (14)知识要点四:最简二次根式 (14)知识要点五:分母有理化 (15)知识要点六:二次根式的乘除法 (16)知识要点七:同类二次根式 (17)知识要点八:二次根式的加减法 (18)知识要点九:二次根式的混合运算 (18)知识要点十:二次根式的化简求值 (19)知识要点十一:二次根式的应用 (20)总练习题 (20)C 基础巩固 (20)B 能力提升 (21)A 拔尖训练 (22)第一课时:实数的认识知识要点一:认识无理数伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m 等于多少?是整数呢,还是分数?这个问题引起了学派成员希帕斯的兴趣,他花费了很多的时间去钻研,最终希帕斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数.希帕斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们残忍地将希帕斯扔进地中海.这样,无理数的发现人被谋杀了!定义1 无限不循环小数叫做无理数。

常见的无理数的类型:(1)有规律但不循环的小数;(2)有特定意义的符号,如π;(3)方开不尽的数(见知识要点二之开方的概念)。

第六章实数教案

第六章实数教案

人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。

3。

8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。

(二)知识归纳:1、板书:1。

1平方根2、李老师家装修厨房,铺地砖10。

8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。

8120=0。

09平方米。

由于0.32=0。

09,因此面积为0。

09平方米的正方形,它的边长为0.3米。

4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。

5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。

《实数》第二课时教案

《实数》第二课时教案

《实数》第二课时教案一、教学内容本节课的教学内容选自人教版九年级数学上册《实数》的第二课时,主要包括实数的分类、有理数和无理数的概念,以及实数与数轴的关系。

具体内容包括:1. 实数的定义和分类;2. 有理数的概念及其分类,包括整数、分数和小数;3. 无理数的概念及其特点;4. 实数与数轴的对应关系。

二、教学目标1. 理解实数的定义和分类,掌握有理数和无理数的概念及其特点;2. 能够正确识别各种实数,并在数轴上表示出相应的点;3. 培养学生的逻辑思维能力和数学语言表达能力。

三、教学难点与重点1. 教学难点:无理数的概念及其特点,实数与数轴的对应关系;2. 教学重点:实数的分类,有理数和无理数的概念及其特点。

四、教具与学具准备1. 教具:黑板、粉笔、数轴模型;2. 学具:笔记本、彩色笔、练习题。

五、教学过程1. 实践情景引入:让学生回忆生活中遇到的实数实例,如身高、体重、温度等,引出实数的概念;2. 讲解实数的分类,通过数轴展示有理数和无理数的位置,让学生直观地理解两者的区别;3. 通过例题讲解,让学生掌握有理数和无理数的运算方法;4. 随堂练习:让学生独立完成练习题,巩固所学知识;5. 板书设计:实数的分类及其特点;6. 作业设计:请列举生活中遇到的实数实例,并说明它们属于哪一类实数;7. 课后反思及拓展延伸:讨论实数在实际问题中的应用,探索实数与数轴的更多性质。

六、板书设计实数的分类及其特点:1. 有理数:整数、分数、小数2. 无理数:不能表示为两个整数比的数七、作业设计1. 请列举生活中遇到的实数实例,并说明它们属于哪一类实数;八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解了实数的概念和分类。

通过讲解和例题,学生掌握了有理数和无理数的运算方法,并能正确识别各种实数。

作业设计有助于巩固所学知识,让学生更好地理解实数在实际问题中的应用。

在课后拓展延伸环节,可以讨论实数与数轴的更多性质,如实数在数轴上的表示方法,以及实数与几何图形的关系等。

《实数》第二课时教案

《实数》第二课时教案

《实数》第二课时教案一、教学内容本节课选自教材《数学》八年级下册,第十章《实数》第二课时。

详细内容包括:1. 实数的定义与性质;2. 无理数的理解与表示;3. 实数的分类及运算规则;4. 实数在数轴上的表示。

二、教学目标1. 理解实数的定义,掌握实数的性质和分类;2. 能够理解无理数的概念,并能在数轴上正确表示;3. 掌握实数的运算规则,并能解决实际问题。

三、教学难点与重点1. 教学难点:无理数的理解与表示,实数的运算规则;2. 教学重点:实数的定义与性质,实数在数轴上的表示。

四、教具与学具准备1. 教具:黑板、粉笔、实数教学挂图;2. 学具:学生用直尺、圆规、计算器。

五、教学过程1. 导入:通过复习第一课时内容,引入实数的概念;2. 新课导入:讲解实数的定义与性质,让学生理解实数的概念;3. 实践情景引入:以数轴为例,让学生在数轴上表示无理数;4. 例题讲解:讲解无理数的表示方法,如π、√2等;5. 随堂练习:让学生在数轴上表示一些实数,并判断其分类;6. 讲解实数的运算规则,并用例题进行解释;7. 随堂练习:让学生进行实数运算练习;六、板书设计1. 实数的定义与性质;2. 无理数的表示方法;3. 实数的分类及运算规则;4. 实数在数轴上的表示。

七、作业设计1. 作业题目:(1)在数轴上表示下列实数:π、√3、2/3、5;(3)简述实数的定义、性质和分类。

答案:(1)见答案附图;(2)见答案附表;八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念和性质掌握程度,以及对无理数的理解和表示;2. 拓展延伸:探讨实数在实际生活中的应用,如测量、计算等,激发学生学习兴趣。

重点和难点解析:1. 实数的定义与性质;2. 无理数的理解与表示;3. 实数的运算规则;4. 实数在数轴上的表示;5. 作业设计中的题目设置和答案解析。

详细补充和说明:一、实数的定义与性质1. 闭合性:任意两个实数进行加、减、乘、除(除数不为零)运算,结果仍为实数;2. 有序性:任意两个实数可以进行比较,即大于、小于、等于;3. 确定性:每个实数在数轴上都有唯一的位置表示;4. 完备性:实数集是包含所有有理数和无理数的集合,不存在“遗漏”的数。

6.3 实数(第二课时)--(课件)

6.3 实数(第二课时)--(课件)
假设这个数字为a,
则|a|= 3
所以a=± 3
所以绝对值为 3的数为 3和- 3 。
第五步:巩固反馈



− − − (−) +

3
4
【环节1 :师友检测】
− + − + (−)
(−) −

+ −
+ − − − + − .
3
问题二:指出− 5,1 − 3分别是什么数的相反数。
解: − − 5 = 5
3
-( 1 − 3 )=
3
3
3 -1
所以,− 5和1 − 3的相反数分别为 5,
3
3 -1
第二步:互助探究
【环节2 :教师讲解】
当数从有理数扩充到实数以后,实数之间不仅可以进
行加、减、乘、除(除数不为0)、乘方运算,又增加了非
【详解】
3
3
−27 − 32 − (−1)2 + 8 = −3 − 3 − 1 + 2 = −5;
2 5−
5 − 2 + 5 − 3 + (−5)2 = 2 5 − 5 + 2 − 5 + 3 + 5 = 10.
3
(−3)2 − 8 + 1 − 2 = 2.
18 + 1 − 2 − 2−3 + − 1
负数的开平方运算,任意实数可以进行开立方运算.进行
实数运算时,有理数的运算法则及性质等同样适用。
实数的运算顺序
(1)先算乘方和开方;
(2)再算乘除,最后算加;
(3)如果遇到括号,则先进行括号里的运算.
第三步:分层提高

第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)

第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
1
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)

−=5
(× )
的绝对值是 −

×

(3) − 的相反数是


(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3



C.
(−)
B.2与(-2)2

(2)指出 5 , 1 3 3 分别是什么数的相反数;

(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,

巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2

D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律

巩固练习
5.计算(-

)-

(-
【解析】原式=

)+


(-

(-

2020春七彩课堂初中数学人教版七年级下册教学课件6.3实数

2020春七彩课堂初中数学人教版七年级下册教学课件6.3实数

D.数轴上任一点都对应一个有理数
6.3 实数/
课堂检测
基础巩固题
6.3 实数/
3.有一个数值转换器,原理如下,当输x=81时,输出
的y是( C )
输入x 取算术平 方根
是无理数 输出y
是有理数
A.9
B.3
C. 3
D.±3
课堂检测
6.3 实数/
基础巩固题
4.你能分辩下列各数是哪个家庭的成员吗?试试看?
毕达哥拉斯无法解释这种怪现象,又不敢承认它是一种新的 数,因为他的全部“宇宙”理论,都奠基在整数的基础上.他下 令封锁消息,不准希伯斯再谈论,并且警告说,不要忘记了入学 时立下的誓言.
导入新知
希伯斯很不服气.他想,不承 认这是数,岂不等于是说正方形的对 角线没有长度吗?为了坚持真理, 捍卫真理,希伯斯将自己的发现传扬 了开去.直到最近几百年,数学家们 才弄清楚,它确实不是整数,也不是 分数,而是一种新的数,那是什么呢?
3, 3 , 47 , 9 , 11 , 5 5 8 11 90 9
(2)请用计算器把 2 和 3 5 写成小数的形式,你有什么发
现?像这样的数我们把它叫什么数?你还能说出一些这样的数 吗?
探究新知
6.3 实数/
3
47
3 3.0, 0.6,
5.875,
5
8
9
••
0.81,
11

0.12,
(2) 5 的相反数是 5 ; 1 3 3 的相反数是 3 3-1 .
(3)3 64 的绝对值是4.
(4) 绝对值是 3 的数是 3 或- 3.
巩固练习
6.3 实数/
1.分别求下列各数的相反数和绝对值. (1)3 27 ; (2) 225 ; (3) 11.

6.3实数(第二课时)教学设计

6.3实数(第二课时)教学设计

实数教学设计教学目标:1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应。

2、学会比较两个实数的大小;能熟练地进行实数运算。

教学重点:实数与数轴上的点一一对应关系。

教学难点:对“实数与数轴上的点一一对应关系”的理解。

教学过程一、创设情景,导入新课复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加法交换律和结合律3、平方差公式、完全平方公式4、有理数的混合运算顺序二、合作交流,解读探究当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。

在进行实数的运算时,有理数的运算法则及运算性质等同样适用。

1、讨论 下列各式错在哪里?(1)、2133993393-⨯÷⨯=⨯÷= (2)1=(3)= (4)、当x =2202x x -=-2、例2计算下列各式的值:⑴解:⑴0===⑵+例3 计算:(结果精确到0.01)(1π () (2(在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.)三、练习:1、课本P 练习第3题2、计算2022223-⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 四、小结:1、实数的运算法则及运算律。

2、实数的相反数和绝对值的意义五、作业:课本P87习题14.3第4、5、6、7题;⑵(32=+=。

(最新)数学七年级下册《第6章第3节 实数》省优质课一等奖教案

(最新)数学七年级下册《第6章第3节 实数》省优质课一等奖教案

6.3 实数(第二课时)一、教学内容解析1.内容实数相反数、绝对值、加、减、乘、除、乘方与开方运算2.内容解析本节在实数第一课时的基础上,通过了解有理数相反数、绝对值、加、减、乘、除、乘方与开方运算对实数同样适用,这时之后代数运算的基础.学生在七年级上学期学习了有理数,学生学习中可以对运算中的无理数通过替换,回归到有理数运算辅助理解实数的运算,学生对实数的认识是逐步加深的.基于以上分析本节课的教学重点是:掌握实数求相反数、绝对值、加、减、乘、除、乘方与开方运算.二、目标和目标解析1.目标(1)掌握求实数相反数、绝对值运算;(2)掌握实数加、减、乘、除、乘方与开方运算.2.目标达成目标(1)的标志:给学生一些实数(包括代数式形式)可以求其相反数、绝对值运算;达成目标(2)的标志:给学生一些实数(包括代数式形式)算式可以求其加、减、乘、除、乘方与开方的混合运算;三、教学诊断分析学生表面上可以理解有理数的运算推广到实数,但遇到无理数参加运算时,总会出现“自创”运算的情况,与学生对无理数比较陌生,和不重视无理数的定义有关.基于以上分析,本节的教学难点是:对无理数的认识.四、教学过程设计1.复习引入有理数和无理数统称实数实数与数轴上的点一一对应预案:学生复习第一课时内容;师生活动:教师指示,学生完成学案复习.设计意图:让学生复习第一课时内容基础上进行本届内容学习.2.介绍新知,巩固练习有理数关于相反数和绝对值的意义同样适合于实数.思考的相反数是_______,π-的相反数是________,0的相反数(1是_________.(2=_______,π-=_______,0=_______.数a的相反数是a-,这里a表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a 表示一个实数,则,0;0,0;,0a a a a a a >⎧⎪==⎨⎪-<⎩当时当时当时.例1(1)分别写出 3.14π-的相反数;(2)指出-分别是什么数的相反数;(3(4.解:(1)因为(()3.14 3.14,ππ-=--=-所以, 3.14π-的相反π-.(2)因为)11-=-=所以-1的相反数.(34,==-4 4.=-=(4==或预案:教师介绍实数相反数、绝对值运算,学生学习运算定义,巩固练习.师生活动:教师介绍实数相反数与绝对值的运算,学生练习,教师尤其注意学生在描述无理数,及使用实数相反数与绝对值运算定义时,是否出现臆测的情形,纠正使之了解规范.设计意图:是学生了解并巩固求实数相反数与绝对值的运算.3.继续学习,巩固练习实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算, 而且正数及0可以进行开平方运算,任何一个实数可以进行开立方运算.在进行实数运算时,有理数的运算法则及运算性质等同样适用.例2 计算下列各式的值:(1)(2)解()10===()(232=+=在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数代替无理数,再进行计算.例3 计算(结果保留小数点后两位)(1π(2解:((1 2.236 3.142 5.38;2 1.732 1.414 2.45.π+≈+≈≈⨯≈预案:教师介绍实数加、减、乘、除、乘方、开方运算,学生学习运算定义,巩固练习.师生活动:教师介绍实数加、减、乘、除、乘方、开方运算,学生练习,教师尤其注意学生在描述无理数,及使用加、减、乘、除、乘方、开方运算法则时,是否出现臆测的情形,纠正使之了解规范. 设计意图:使学生了解并巩固加、减、乘、除、乘方、开方运算,介绍近似计算的方法.4.巩固强化练习1.求下列各数的相反数与绝对值:2.5,2,02π-2.求下列各式中的实数x :()21;3x = ()20;x = ()3x ()4.x π=3.计算()1 (2+预案:巩固练习实数相反数、绝对值运算,加、减、乘、除、乘方与开方运算.师生活动:学生练习巩固练习实数相反数、绝对值运算,加、减、乘、除、乘方与开方运算,教师尤其注意学生在描述无理数,及使用加、减、乘、除、乘方、开方运算法则时,是否出现臆测的情形,纠正使之了解规范.设计意图:学生了解并巩固练习实数相反数、绝对值运算,加、减、乘、除、乘方与开方运算.5.课堂测试测试1. 实数2的相反数是__________,绝对值是_________.2.计算(1(2()3+设计意图:课堂测试,检验学习漏洞,讲解提升.班级:40名同学,满分25人,部分正确13人,全部错误2人,错误集中在抄写错误,绝对值的运算两个部分,已经面向全体进行了反馈和讲解.6.小结、作业.有理数关于相反数、绝对值、加、减、乘、除、乘方、开方运算的规则对实数同样适用设计意图:小结内容,布置作业.7.反思为下次可准别的复习:计算()(12计算下列各式的值:()12;(2;设计意图:承上启下,衔接下一节的内容.五、时间安排本节时间安排如图所示.。

人教版数学七年级下册第六章《实数》《用计算器求立方根、用有理数估计一个数立方根的大小》说课稿

人教版数学七年级下册第六章《实数》《用计算器求立方根、用有理数估计一个数立方根的大小》说课稿

立方根(2)----用计算器求立方根、用有理数估计一个数立方根的大小说课稿各位评委:大家上午好!今天我说课的题目是《§6.2立方根(2)》。

我将从“教材分析、学情分析、教法分析、学法指导、教学过程的设计与实施”五方面进行本节课的说课。

一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。

本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。

通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。

在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。

通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。

2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。

(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。

过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。

情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。

4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。

(2)难点:探索立方根的变化规律及应用。

二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。

三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固
1、计算:
(1) 3 2 (2 2 4 2 ) (2) 3( 2 3 ) 4 2 (3)
3
3 3
3
范例
例2、计算: (1) (2)
2 3 2 2
2 ( 2 2) ( 2 1)
注意: (1)先去括号、绝对值; (2)再合并。
巩固
2、计算: (1) 2 2 2 2
2
合并
5 5 ( 5 ) 5 5 算术平方根性质 3 5 4 5 (3 4) ( 5 ) 乘法交换律 结合律 12 5 60
2
范例
例1、计算下列各式的值:
(1) ( 3 2 ) 2
(2) 3 3 2 3
3 3
注意: (1)计算题解题格式;
(2)根指数、被开方数都分别相 同的无理数要合并。
无理数的特征:
1.圆周率 及一些含有 的数 2.开不尽方的数 3.有一定的规律,但 不循环的无限小数 注意:带根号 的数不一定是 无理数
实 数
有理数
整数
分数
有限小数或无 限循环小数
无理数 无限不循环小数 实 数 正实数 0 负实数
正有理数
正无理数 负有理数
负无理数
实数与数轴上的点是一一对应的. 同样的,平面直角坐标系中的点 与有序实数对是一一对应的.
)
12 的整数部分是(
),小数部分是(
)
2、比较大小
3
4
3
50
P84例1
(1)分别写出的相反数;
6
,
3.14
(2)指出 5,1 3各是什么数的相反数 (3)求 3 64的绝对值 (4)已知一个数的绝对值是 3 .求下列各数的相反数和绝值:
2.5, 7,

2
, 3 2, 0
引入:
3 5 4 5 (3 4) 5 7 5 3 5 4 5 (3 4) 5 5
3
6 1.817
2、(结果保留3个有效数字)
(1)、5 (2)、( 3 2 2) 2
(3)、 9 2 5 2 2 解:(3)原式= 2 (9 2 5 4) = 2 (5 2 5)
=


10 4 5
=18.94≈18.9
2
1 (2) ( x 3) 3 4 0 2
(3) ( x 1) 5 0
2
例5.求 31 的整数部分和小数部分 。
解:31的整数部分是5
31的小数部分是 31 5
小数部分=原数-整数部分
思考: 7的整数部分与小数部分 7 。
练习:
1.
3
3
5 的整数部分是(
),小数部分是(
注意:计算过程中要多保留一位!
范例 例4、解方程: (1) ( x 3) 2 16 1 3 (2) 2(2 x 3) 0 4 2 (3) (2 x 1) 3 0
注意: (1)将括号看作一个整体; (2)开平方有两个值,开立方只 有一个值。
巩固 5、解方程:
(1) (2 x 1) 4 0
(2)
3 (1 3 ) 2 2
探究
例3、计算: (1)
(2)
5 (精确到0.01) 3 2 (结果保留3个有效数字)
注意: (1)无理数近似值多取1位; (2)结果按要求取近似值。
巩固
3、计算: (1)
(2)
3
5 3 0.145 (精确到0.01)
6 2 (保留3个有效数字)
相关文档
最新文档