数学北师大初一§5.2 解方程(1)

合集下载

2022-2023学年北师大版七年级数学上册《5-2求解一元一次方程》解答题优生辅导训练(附答案)

2022-2023学年北师大版七年级数学上册《5-2求解一元一次方程》解答题优生辅导训练(附答案)

2022-2023学年北师大版七年级数学上册《5.2求解一元一次方程》解答题优生辅导训练(附答案)1.已知a,b为定值,关于x的方程=1﹣,无论k为何值,它的解总是1,求a+b的值.2.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣1.3.若a、b、c、d是正数,解方程=4.4.已知关于x的方程和有相同的解,求a与方程的解.5.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?6.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?7.王聪在解方程去分母时,方程左边的﹣1没有乘3,因而求得方程的解为x=2,你能正确求出原先这个方程的解吗?8.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y,运算“⊕”满足x⊕y=y⊕x,则称此运算具有交换律.x⊕y=(1)试求1⊕(﹣1)的值;(2)试判断该运算“⊕”是否具有交换律,说明你的理由;(3)若2⊕x=0,求x的值.9.小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.10.如果方程=的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a2﹣a 的值.11.阅读下列解方程的过程,并完成(1)、(2)、(3)小题的解答.解方程:|x﹣1|=2当x﹣1<0,即x<1时,原方程可化为:﹣(x﹣1)=2,解得x=﹣1;当x﹣1≥0,即x≥1时,原方程可化为:x﹣1=2,解得x=3;综上所述,方程|x﹣1|=2的解为x=﹣1或x=3.(1)解方程:|2x+3|=8.(2)解方程:|2x+3|﹣|x﹣1|=1.(3)解方程:|x﹣3|﹣3|x+2|=x﹣9.12.类比推理是一种推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:,我们将上述计算过程倒过来,得到,这一恒等变形过程在数学中叫做裂项,类似地对于可以用裂项的方法变形为:,类比上述方法解决以下问题.(1)=.(2)求解关于x的方程:=﹣2x.13.解方程(1)=1(2)2x+5=3(x﹣1)14.如果方程3(x﹣1)﹣2(x+1)=﹣3和﹣=1的解相同,求出a的值.15.解下列方程:(1)2(2x﹣1)=3x﹣1(2)=(3)﹣=1.5(4)﹣x=1﹣.16.解方程:(1)[x﹣(x﹣1)]=(x+2).(2)7+=.17.解方程:7x﹣2.5x=2.5×3+6.18.当x为何值时,式子﹣3比式子﹣+1的值小1?19.解方程:(1)6x﹣3(3﹣2x)=6﹣(x+2)(2)﹣=1(3)﹣1=2+.20.小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.参考答案1.解:把x=1代入方程=1﹣,得:=1﹣,2(k+a)=6﹣(2+bk),2k+2a=6﹣2﹣bk,2k+bk+2a﹣4=0,(2+b)k+2a﹣4=0,∵无论k为何值,它的解总是1,∴2+b=0,2a﹣4=0,解得:b=﹣2,a=2.则a+b=0.2.解:(1)去括号得,3x﹣7x+7=3﹣2x﹣6,移项得,3x﹣7x+2x=3﹣6﹣7,合并同类项得,﹣2x=﹣10,系数化为1得,x=5;(2)方程两边同时乘以6,得3﹣3x=8x﹣2﹣6,移项合并得:11x=11,解得:x=1.3.解:原方程即:﹣1+﹣1+﹣1+﹣1=0,∴+++=0,∴(x﹣a﹣b﹣c﹣d)(+++)=0,∵a,b,c,d是正数,∴+++≠0,∴x﹣a﹣b﹣c﹣d=0,∴x=a+b+c+d.4.解:由第一个方程得:(3分)由第二个方程得:(3分)所以,解得,(3分)所以(3分)5.解:(1)根据猜想的结论,则x1=11,x2=;(2)原方程可以变形为x﹣1+=11+,则x﹣1=11,x﹣1=.则x1=12,x2=.6.解:(1)错误去分母得:4x﹣2=3x+3a﹣1,把x=10代入得:a=3;(2)方程5m+3x=1+x,解得:x=,方程2x+m=5m,解得:x=2m,根据题意得:﹣2m=2,去分母得:1﹣5m﹣4m=4,解得:m=﹣.7.解:由题意可得:x+a﹣1=2x﹣1把x=2代入得出方程:2+a﹣1=2×2﹣1解得:a=2,再把a=2代入已知方程去分母可得:x+2﹣3=2x﹣1,解得x=0.8.解:(1)1⊕(﹣1)=2×1+3×(﹣1)﹣7=2﹣3﹣7=﹣8答:1⊕(﹣1)的值为﹣8.(2)该运算具有交换律理由:分三种情况当x>y时,x⊕y=2x+3y﹣7,y⊕x=3y+2x﹣7,此时x⊕y=y⊕x当x=y时,x⊕y=2x+3y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x当x<y时,x⊕y=3x+2y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x所以该运算“⊕”具有交换律(3)当x≤2时,2⊕x=0,2×2+3x﹣7=0解得x=1当x>2时,2⊕x=03×2+2x﹣7=0解得x=(舍去)答:x的值为1.9.解:(1)设x=0.,即x=0.1111…,将方程两边都×10,得10x=1.1111…,即10x=1+0.1111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=.故答案为:.(2分)(2)设x=,即x=0.1616…,将方程两边都×100,得100x=16.1616…,即100x=16+0.1616…,又因为x=0.1616…,所以100x=16+x,所以99x=16,即x=,所以=.(6分)10.解:解方程=得:x=﹣62,将x=﹣62代入4x﹣(3a+1)=6x+2a﹣1得:﹣248﹣3a﹣1=﹣372+2a﹣1,解得:a=,∴a2﹣a=()2﹣()=.11.解:(1)|2x+3|=8.当2x+3<0,即x<﹣时,原方程可化为:2x+3=﹣8,解得x=﹣;当2x+3≥0,即x≥﹣时,原方程可化为:2x+3=8,解得x=;综上所述,方程|2x+3|=8的解为x=﹣或x=.(2)|2x+3|﹣|x﹣1|=1.当x<﹣时,原方程可化为:﹣2x﹣3﹣(1﹣x)=1,解得x=﹣5;当﹣≤x<1时,原方程可化为:2x+3﹣(1﹣x)=1,解得x=﹣;当x≥1时,原方程可化为:x+4=1,解得x=﹣3,(不符合题意,舍);综上所述,方程:|2x+3|﹣|x﹣1|=1的解为x=﹣5或x=﹣.(3)|x﹣3|﹣3|x+2|=x﹣9.当x<﹣2时,原方程可化为:3﹣x﹣3(﹣x﹣2)=x﹣9,解得x=﹣18;当﹣2≤x<3时,原方程可化为:3﹣x﹣3(x+2)=x﹣9,解得x=;当x≥3时,原方程可化为:x﹣3﹣3(x+2)=x﹣9,解得x=0(不符合题意,舍);综上所述,方程|x﹣3|﹣3|x+2|=x﹣9的解为x=﹣18或x=.12.解:(1)原式=1﹣+﹣+﹣+﹣=1﹣=;故答案为:;(2)已知等式整理得:﹣(﹣+﹣+…+﹣)=﹣2x,即﹣=﹣2x,解得:x=.13.解:(1)=1,2(4x+2)﹣(5x﹣7)=10,8x+4﹣5x+7=10,8x﹣5x=10﹣4﹣7,3x=﹣1,x=﹣;(2)2x+5=3(x﹣1),2x+5=3x﹣3,2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8.14.解:方程3(x﹣1)﹣2(x+1)=﹣3,去括号得:3x﹣3﹣2x﹣2=﹣3,解得:x=2,把x=2代入方程﹣=1得:1﹣=1,解得:a=﹣2.15.解:(1)去括号得:4x﹣2=3x﹣1,4x﹣3x=2﹣1,∴x=1;(2)去分母得:3(3x+4)=2(2x+1)9x+12=4x+2,∴x=﹣2;(3)化简得:5x﹣15+10x=1.5,∴x=1.1;(4)去分母得:2(3x﹣1)﹣6x=6﹣(4x﹣1),6x﹣2﹣6x=6﹣4x+1,∴x=.16.解:(1)[x﹣(x﹣1)]=(x+2),x﹣(x﹣1)=x+,x﹣x+=x+,6x﹣3x+3=8x+16,∴x=﹣;(2)7+=.整理得:70+15x﹣10=30﹣100x,∴115x=﹣30,∴x=﹣.17.解:合并得:4.5x=13.5,解得:x=3.18.解:根据题意得:﹣3+1=﹣+1,去分母得:3x﹣12=﹣2x+6,移项合并得:5x=18,解得:x=3.6.19.解:(1)去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1;(2)去分母得:12x﹣4﹣6x﹣3=12,移项合并得:6x=19,解得:x=;(3)去分母得:2x+2﹣4=8+2﹣x,移项合并得:3x=12,解得:x=4.20.解:(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.。

北师大版七年级数学上册第五章 一元一次方程 求解一元一次方程(第3课时)

北师大版七年级数学上册第五章 一元一次方程 求解一元一次方程(第3课时)
去分母,得2x-1+9-6x=12, 移项、合并同类项,得-4x=4, 解得x=-1, 故答案为-1.
课堂检测
基础巩固题
1. 方程3-5x2+7=-x+417去分母正确的是 ( C )
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
4x - 7x = 140– 56 -3x = 84 x = -28
巩固练习
解方程:
(1) 3−2 x=x+34;
(2)
1 3
(x+1)=
1 7
(2x-3);
(3)x+52=x4;
(4) 14(x+1)= 13(x-1).
巩固练习
(1)3−2 x=x+34; 解: (1)去分母(方程两边同乘6),得
拓广探索题
方程(3m-4)x2+3mx-4m=5x-2m是关于x的一元
一次方程,求m和x的值.
解: 因为原方程是关于x的一元一次方程, (3m-4)x2+3mx-4m-5x+2m=0 (3m-4)x2+(3m-5)x2m所=以0 3m-4=0,3m-5≠0,解得 m将=m43=43代入原方程,得 4x-136=5x-83 解得 x=-83.
D. 12-10x+14 = -(x+17)
2. 若代数式x−2 1与65的值互为倒数,则x=
8 3
.
课堂检测
基础巩固题
3.解方程:(1) x−4 1-2x3+5=-3
解:去分母(方程两边同乘12),得 3(x-1)-4(2x+5) =-3×12. 去括号,得3x-3-8x-20=-36. 移项,得3x-8x=-36+3+20. 合并同类项,得-5x=-13. 系数化为1,得x=153 .

北师大版七年级数学上册《求解一元一次方程(第1课时)》教学教案

北师大版七年级数学上册《求解一元一次方程(第1课时)》教学教案

《求解一元一次方程(第1课时)》教学教案教师引导学生思考:(1)与原方程相比,哪些项的位置发生了改变?哪些没变?(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是否发生了变化?与原方程相比常数项-2的位置发生了改变,一次项5x 和常数项8没变常数项-2的位置由等号的左边移动到了右边,符号由“-”变成了“+”,一次项5x 和常数项8的位置没变,符号也没变.师生总结出移项:移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。

做一做:例1下列计算,其中属于移项变形的是(C)A.由5+3x-2,得3x-2+5B.由-10x-5=-2x,得-10x-2x=5C.由5x+3=-4x+1,得5x+4x=1-3D.由5x=15,得x=3易错提醒:1.移项时必须是从等号的一边到另一边,并且不要忘记对移动的项变号,如从3+6x=7得到6x=7+3是不对的.鼓励学生积极思考,主动解决问题,小组交流,总结发言,教师及时纠正.培养了学生用符号语言表示等式的两个基本性质.加深学生对方程概念的理解,同时还可以锻炼学生思维的主动性.2.没移项时不要误认为移项,如从-2=x得到x=2,犯这样的错误,其原因在于对等式的基本性质(对称性)与移项的区别没有分清.3、出示课件做一做:教师引导学生利用移项求解一元一次方程例1解下列方程:(1)2x+6=1;(2)3x+3=2x+7;解:(1)移项,得2x=1-6.合并同类项,得2x=-5.方程两边同除以2,得x=-5 2 .(2)移项,得3x-2x=7-3.合并同类项,得x=4.例2解方程:14x=-12x+3.解:移项,得14x+12x=3.合并同类项,得34x=3.方程两边同除以34(或同乘以43),得x=4.师生共同总结:利用移项解方程的步骤:(1)移项;(2)合并同类项;(3)系数化为1.做一做:1.用移项法解方程:7-2x=3-4x;解:(1)移项,得4x-2x=3-7.合并同类项,得2x=-4.方程两边同除以2,得x=-2.2.x为何值时,代数式4x+3与15-2x的值相等?解:4x+3=15-2x 鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点,教师及时鼓励和纠错。

《求解一元一次方程》第1课时》示范公开课教学设计【北师大版七年级数学上册】

《求解一元一次方程》第1课时》示范公开课教学设计【北师大版七年级数学上册】

第五章一元一次方程5.2 求解一元一次方程第1课时教学设计一、教学目标1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.二、教学重点及难点重点:理解移项法则,会解简单的一元一次方程难点:用移项法则解方程,注意移项要变号.三、教学准备多媒体课件四、相关资源微课《利用“移项”解一元一次方程》,知识卡片《解一元一次方程(一)--移项》五、教学过程【复习回顾】复习回顾,引入新课1.利用等式的性质解下列方程(1)x-2=8;(2)3x=2x+1.解:(1)利用等式的性质1,两边都加上2得:x-2+2=8+2.即x=10.(2)利用等式的性质1,两边都减去2x得:3x-2x=2x+1-2x.即x=10.2.比较原方程3x=2x+1与变形后的方程3x-2x=1,你又发现了什么?解:通过变形,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式.设计意图:本节直接用复习上节所学重点知识的方式导入新课,一是可以反馈学生对知识点的落实情况,二是其中的等式基本性质1就是新课中移项法则的理论依据,有一举两得的功效.【新知讲解】合作交流,探求新知探究:移项的定义及法则活动1.阅读解方程的过程:解:(1)5x-2=8,方程两边都加上2,得5x-2+2=8+2,即5x=10,即x=2.(2)7x=6x-4,方程两边都减去6x,得7x-6x=6x-6x-4,即7x-6x=-4,即x=-4.活动2.观察归纳,解答问题问题(1):分别将变化前后的两组方程进行对比,方程中哪些项改变了原来的位置?怎样变的?(可以用下图进行演示)学生很容易找到:一是项的位置发生变化(从方程的一边移到了另一边);二是项的符号发生变化(移动前后符号相反).问题(2):归纳出规律,说出这个规律产生的依据和法则.(在学生回答的基础上,投影显示以下内容)移项定义:将方程中的一项改变符号后,从方程的一边移到另一边.变形依据:等式的基本性质1.法则:移项时必须要变号.注意:所移动的是方程中的项,并且是从方程的一边移到另一边,而不是从方程的一边交换两项的位置.设计意图:通过“探索练习——观察归纳”的逻辑顺序,让学生经历自主观察发现规律并进行描述的过程,从而提升抽象问题的能力.活动三3:解一元一次方程的步骤:设计意图:教师通过书写解方程的过程,可以提高学生解题的规范性.而采用框图表示解方程的过程,是为使解法中各步骤的先后顺序清晰,渗透算法程序的思想.教学中不要求学生也画框图.【典型例题】例1.解下列方程:(1)3x +3=2x +7;(2)2x +6=1.解:(1)移项,得3x -2x =7-3.合并同类项,得x =4.(2)移项,得2x =1-6.合并同类项,得2x =-5.方程两边同除以2,得x =-52. 例2.判断下列移项是否正确,正确的在题后的括号里打“√”,错误的打“×”.(1)从135x -=-得到135x -=; ( ×) (2)从173132x x -+=--得到131732x x -=--. ( √ )例3.下列方程的变形是移项的是( D ).(A )由240x +=得24x = (B )由21x x =+得21x x =+(C )由21x =-得12x =- (D )由321x x -=+得231x x -=+ 本题可以采用学生口述,教师板演的方法,因为这是解方程一节安排的第一组例题,教学时必须强调解题的规范步骤和格式,同时教师还应及时纠正学生可能出现的错误,适时组织学生交流改错.例4.解方程:14x =-12x +3. 解:移项,得14x +12x =3. 合并同类项,得34x =3. 方程两边同除以34(或同乘以43),得x =4. 本题建议首先放手让学生去做.学生可能采取多种方法解答,教学时不应拘泥于教材提供的解法,只要合理都应该给予鼓励.设计意图:进一步巩固利用移项、合并同类项解方程的方法.【随堂练习】1.把下列方程进行移项变换2x -5=12移项2x =12+7x =-x +2移项7x + =24x =-x +10移项4x + =108x -5=3x +1移项8x + =1+-x +3=-9x +7移项-x + =7+2.解方程:(1)3x +5=4x +1;(2)9-3y =5y +5.解: (1)移项,得:3x -4x =1-5.合并同类项,得:-x =-4.系数化为1,得:x =4.(2)移项,得:-3y -5y =5-9.合并同类项,得:-8y =-4.系数化为1,得:y =12. (3)6745x x -=-移项,得6475x x -=-合并同类项,得:22x =系数化为1,得:x=1.(4)移项,得13624x y -= 合并同类项,得:164x -= 系数化为1,得:24x =-.3.下列移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x +6=0得3x =6;(2)从2x =x -1得到2x -x =1;(3)从2+x -3=2x +1得到2-3-1=2x -x ;解:(1)不对,移项要变号;应该得:3x =-6;(2)不对,不移项的部分不用变号;应该得:2x -x =-1;(3)对.4.根据下列条件列出方程,然后求出某数:(1)某数的19等于32;(2)某数的2倍比某数的5倍小24.解:(1)设某数为x,则1329x .解得x=288.(2)设某数为x,则5x-2x=24.解得x=8.设计意图:通过练习,及时巩固新知识,加深对化归思想的理解.六、课堂小结1.谈谈你对解方程的认识.2.谈谈你本节课还有什么收获.设计意图:教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯.七、板书设计。

北师大版数学七年级上册5.2.1求解一元一次方程教学设计

北师大版数学七年级上册5.2.1求解一元一次方程教学设计
四、教学内容与过程
(一)导入新课
1.教学活动设计
在课堂开始时,教师通过一个与学生生活息息相关的问题情境引入新课:“小明的年龄比小红大3岁,三年后,小明的年龄将是小红的两倍。请问现在小明和小红各是多少岁?”这个问题能够激发学生的好奇心,引导学生用数学知识解决实际问题。
2.教学过程
(1)让学生独立思考,尝试解决这个问题。
4.设计不同难度的练习题,使学生在巩固基础知识的同时,逐步提高解题能力。
(三)情感态度与价值观
1.培养学生对待数学学科的积极态度,激发学生学习数学的兴趣和自信心。
2.通过一元一次方程的学习,让学生认识到数学在解决实际问题中的重要作用,增强学生的数学应用意识。
3.培养学生勇于挑战、克服困难的精神,使学生在面对问题时,能够主动寻找解决方案。
(2)运用探究式教学法,引导学生自主探究一元一次方程的解法,培养学生的自主学习能力和思维能力。
(3)利用数形结合法,借助图形帮助学生理解一元一次方程的解法,提高学生的几何直观。
(4)设计小组合作活动,让学生在合作交流中互相学习、互相启发,共同克服学习难点。
2.教学策略:
(1)注重分层教学,针对学生的认知水平和学习风格,设计不同难度的教学任务,使每位学生都能在课堂上获得成就感。
4.预习作业:
(6)预习下一节内容,提前了解一元一次不等式的概念和解法,为接下来的学习打下基础。
作业布置注意事项:
1.作业量适中,确保学生能够在课后合理安排时间,既巩固了所学知识,又不会过度负担。
2.鼓励学生独立完成作业,培养他们的自主学习能力和解决问题的能力。
3.教师应及时批改作业,给予学生反馈,帮助学生发现和纠正错误,提高学习效果。
(2)引导学生通过讨论,发现解决这个问题需要列出一个方程。

《求解一元一次方程》PPT课件 北师大版

《求解一元一次方程》PPT课件 北师大版
变变式式训训练练
解下列方程:
(1)2x-(x+10)=5x+2(x-1)
解:去括号,得 2x-x-10=5x+2x-2 移项,得 2x-x-5x-2x=-2+10 合并同类项,得 -6x=8 系数化为1,得 x=-43
巩固练习
变式训练
(2)3x-7(x-1)=3-2(x+3)
解:去括号,得
3x-7x+7=3-2x-6
(1)5+x=10移项得x= 10+5 ; 10-5 ×
(2)6x=2x+8移项得 6x+2x =8; 6x-2x ×
(3)5-2x=4-3x移项得3x-2x=4-5;

(4)-2x+7=1-8x移项得-2x+8x=1-7. √
探究新知
知识点 2 利用移项解一元一次方程
例1 解下列方程: (1)2x+6=1;
连接中考
已知九年级某班30位学生种树72棵,男生每人种3棵树,女生 每人种2棵树,设男生有x人,则( D )
A.2x+3(72-x)=30 C.2x+3(30-x)=72
B.3x+2(72-x)=30 D.3x+2(30-x)=72
课堂检测
基础巩固题
1.解方程3-(x+6)=-5(x-1)时,去括号正确的是( B )
x=1
方程中有带括号 的式子时,去括 号是常用的化简 步骤.
探究新知 素养考点 1 解含有括号的一元一次方程
例1 解方程: 4(x+0.5)+x=7.
解:去括号, 得4x + 2 + x = 7, 移项, 得4x + x=7-2,

北师大版数学七年级上册:5.2求解一元一次方程同步练习(附答案)

北师大版数学七年级上册:5.2求解一元一次方程同步练习(附答案)

1
4
解:移项,得x—§x = 2+g.
合并同类项,得羡x=¥.
2 方程两边同除以勺,得x = 5.
12.解:设李明上次所买书籍的原价是x元,由题意,得 0. 8x+20 = x-12. 解得x = 160. 答:李明上次所买书籍的原价是160元.
第2课时 解带括号的一元一次方程 1. B 2. 解方程:4(x-2)=2(x+3). 去括号,得4x—8 = 2x+6.
13
两边同除以
,得*=三.
-----------
5
5
8 .解下列方程:
⑵于 —9x+8
(1) —5x+1 = -2-
x+3
2x + l
x— 1
(3)—+l=x—1; (4) 3 =
5
V V—4 9 .对于方程5—丁 =1,某同学解法如下:
解:方程两边同乘6,得6x—X —4=1.①
合并同类项,得5x = 5.②
9
移项,得 4x—2x = 6+8. 合并同类项,得2x=14. 方程两边同除以2,得x = 7. 3. x = 2. 4. (l)-3(x+3)=24; 解法一:去括号,得一3x—9 = 24. 移项,得—3x —24+9. 合并同类项,得-3x = 33. 方程两边同除以一3,得x= 一H. 解法二:方程两边同除以一3,得 x+3 = —8. 移项,得x=—8 —3. 合并同类项,得x = 一H. (2)4x—3 = 2(x—1); 解:去括号,得4x —3 = 2x —2. 移项,得 4x — 2x=—2 + 3. 合并同类项,得2x=l. 方程两边同除以2,得x=;.

北师大版数学七年级上册5.2求解一元一次方程(1)

北师大版数学七年级上册5.2求解一元一次方程(1)
七年级数学组

习:
性质1、等式两边同时加上(或减去)同一个代数式,
所得结果仍是等式。
若 x=y,
那么x+a = y+a
性质2、等式两边同时乘以一个(或除以同一
个不为0的)数, 所得结果仍是等式。
若 x=y,
那么cx = cy
解方程:5x-2=8
5x-2+2=8+2 解:方程两边同时加上2,得: 也就是:5x=8+2
此时两种计费方式收费都为150元。 (3)怎样选择计费方式更省钱?
如果一个月内累计通话时间不足250分,那 么选择“神州行”收费少;如果一个月内累 计通话时间超过250分,那么选择“全球通” 收费少。
本节课我们学到了: 1.什么叫移项;
2.如何用移项的方法解方程。
注意:移项要变号。
化简, 得: 两边同时除以2,得: 2x = 4 x=2
归纳
通过以上解方程你能总结出它的解题步骤吗?
1.移项:把含未知数的项移到方程的一边, 把常数项移到方程的另一边。 2.合并同类项。
3.把未知数的系数化为1
例2:解方程
1 1 x x3 4 2
通过以上解方程你觉得移项应注意什么?
1.移项必须从方程的一边移到另一边,在 方程的一边交换两项的位置,不叫移项. 2.移项要变号.
通过与原方程比较可以发现,这个变形相当于:
5x
-2
=8
5x=8 +2
解方程:7x = 6x - 4
解:方程两边都减去 6x ,得:
7x – 6x = 6x – 4 – 6x 7x – 6x = – 4
通过与原方程比较可以发现,这个变形相当于:
7x = 6x - 4

七年级数学上第5章一元一次方程5.2求解一元一次方程第2课时用去括号法解一元一次方程北师大

七年级数学上第5章一元一次方程5.2求解一元一次方程第2课时用去括号法解一元一次方程北师大
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/202022/3/202022/3/203/20/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/202022/3/20March 20, 2022
8.解方程 4(x-1)-x=2x+12,步骤如下: ①去括号,得 4x-4-x=2x+1; ②移项,得 4x-x+2x=1+4; ③合并同类项,得 5x=5;④系数化为 1,得 x=1. 经检验知 x=1 不是原方程的解,说明解题的四个步骤中有 错,其中做.错.的一步是( B ) A.① B.② C.③ D.④
14.解方程:278(x-3)-463(6-2x)-888(7x-21)=0.
【点拨】方程左右两边都含有x-1,因此将方程左边括 号内的第一项x变为(x-1)+1后,把x-1视为一个整体进 行运算.
解:原方程可化为 278(x-3)+463×2(x-3)-888×7(x-3)=0. 逆用分配律,得(278+463×2-888×7)(x-3)=0. 因为278+463×2-888×7≠0, 所以x-3=0. 解得x=3.
4.解方程-2(x-1)-4(x-2)=4,去括号正确的是( D ) A.-2x+2-4x-8=4 B.-2x+1-4x+2=4 C.-2x-2-4x-8=4 D.-2x+2-4x+8=4
5.下列解方程过程中,变形正确的是( D ) A.由2x-1=3,得2x=3-1 B.由2x-3(x+4)=5,得2x-3x-4=5 C.由-75x=76,得 x=-7756 D.由2x-(x-1)=1,得2x-x=0

5.2一元一次方程的解法(去括号解一元一次方程))2024-2025学年北师大版七年级数学上

5.2一元一次方程的解法(去括号解一元一次方程))2024-2025学年北师大版七年级数学上
解:去括号,得x+4x+2=17
移项,得
4x+x=17-2
合并同类项,得 5x=15
方程两边同除以5,得 x=3
问题六:你能总结出解含有括号的一元一次方程的一般步骤吗?
说一说你的看法.
5.2 一元一次方程的解法
知识.归纳
去括号解方程的步骤:
①去括号;乘法对加法的分配律
去括号法则
②移项;移项要变号
等式的基本性质1
那么可列出方程:y-0.5+4y=20-3
5.2 一元一次方程的解法
尝试.思考
问题四:x+4(x+0.5)=20-3这个方程和之前解的方程有什么不同?
方程出现了括号
问题五:怎样解所列的方程?说一说你的看法.
方程有括号先去括号,利用乘法对加法的分配律
5.2 一元一次方程的解法
尝试.思考
解方程:x+4(x+0.5)=20-3
③合并同类项;
合并同类项法则
④系数化为1:方程两边同时除以未知数的系数. 等式的基本性质2
问题七:步骤中每一步的依据是什么?
5.2 一元一次方程的解法
知识.巩固
解方程:1+6x=2(3-x).
解:去括号,得
移项,得
1+6x=6-2x.
6x+2x-=6-1.
合并同类项,得 8x=5.
方程两边都除以8,得 x=
去括号解方程
的步骤
去括号解一
元一次方程
去括号注意
去括号→移项→合并同类项→系数化为1
括号外的因数是负数,那么去括号后原括号内
各项的符号都要改变;
当乘数与一个多项式相乘时,乘数应乘多项式

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计

北师大版数学七年级上册5.2《求解一元一次方程》(第1课时)教学设计一. 教材分析《求解一元一次方程》是北师大版数学七年级上册第五章第二节的内容。

本节内容是在学生已经掌握了代数式的运算和方程的定义的基础上进行学习的。

通过本节课的学习,使学生掌握一元一次方程的解法,会解实际问题中的一元一次方程。

二. 学情分析学生在小学阶段已经接触过方程,对方程有了一定的认识。

但初中阶段的一元一次方程与小学阶段的方程在解法和应用上有所不同。

此外,学生对于解方程的方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。

三. 教学目标1.知识与技能:理解一元一次方程的概念,掌握一元一次方程的解法,能解实际问题中的一元一次方程。

2.过程与方法:通过自主探究、合作交流,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力。

四. 教学重难点1.重点:一元一次方程的解法。

2.难点:将实际问题转化为方程,并运用方程解决问题。

五. 教学方法采用自主探究、合作交流、讲解演示的教学方法。

通过引导学生动手操作,培养学生的动手能力和解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的解法。

2.教学素材:准备一些实际问题,用于引导学生运用一元一次方程解决问题。

七. 教学过程1.导入(5分钟)利用复习导入的方法,回顾已知的一元一次方程的定义和特点。

引导学生思考:如何求解一元一次方程?2.呈现(10分钟)呈现一些实际问题,让学生尝试用一元一次方程来解决。

通过讲解演示,引导学生理解一元一次方程的解法。

3.操练(10分钟)学生分组进行讨论,每组选择一个实际问题,尝试用一元一次方程来解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成一些一元一次方程的练习题。

教师选取部分题目进行讲解,总结解题规律。

5.拓展(10分钟)引导学生思考:一元一次方程在实际生活中有哪些应用?让学生举例说明,进一步巩固所学知识。

北师大版七年级数学上册 第五章2 用移项法解一元一次方程

北师大版七年级数学上册  第五章2 用移项法解一元一次方程

2.思考:移项时需要注意什么? ①将含有未知数的项移到方程左边,常数项移到方程右边;② 从方程一边移到另一边才叫作移项;③移项时要注意符号的Байду номын сангаас 变
判断下面的移项是否正确。 (1)10+x=10,移项,得x=10+10;(× ) (2)3x=x-5,移项,得3x+x=-5; (× ) (3)3x=6-2x,移项,得3x+2x=-6; (× ) (4)1-2x=-3x,移项,得3x-2x=-1; ( √ ) (5)2x+8=12-6x,移项,得2x+6x=12-8; √( ) (6)13-x=-5,移项,得13-5=x; ( × ) (7)-7x+3=13x-2,移项,得13x+7x=-3-2; (× ) (8)2x+3=3x+4,移项,得2x-3x=4-3。 ( √ )
小组展示
教师倾听学生的回答并适时给出点拨。 解方程:(1)10x-3=9;(2)5x-2=7x+8; (3)x=32x+16;(4)1-23x=3x+52。 (1)移项,得10x=9+3。合并同类项,得10x=12。方程的两边 都除以10,得x=1.2。 (2)移项,得5x-7x=8+2。合并同类项,得-2x=10。方程两 边都除以-2,得x=-5。
(3)移项,得 x-32x=16。合并同类项,得-21x=16。方程两边同乘 -2,得 x=-32。 (4)移项,得-32x-3x=52-1,合并同类项,得-29x=32。方程两边 同乘-92,得 x=-31
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点:移项解一元一次方程(重难点) 1.定义:把方程中的某项改变符号后,从方程的一边移到另一边,
①移项:把含有未知数的各项都移到等号的左边,把不含未知数的 各项都移到等号的右边; ②合并同类项:把同类项合并成一项,使方程简化为ax=b的形式; ③系数化为1:方程两边都除以未知数的系数或乘未知数的系数的 倒数,得到x=m的形式。

北师大版数学七年级上册求解一元一次方程课件

北师大版数学七年级上册求解一元一次方程课件
x 1 2x 3
( 2)

3
7
3
2
3 x 1 x 1
4
3
x 1
1
4
x 2 1
2
3
(1)解一元一次方程,一般要通过
去分母、去括号、移项、合并同类项、
未知系数化为1等步骤,
(2)把这个一元一次方程“转化”成
x=a的情势。
5x 7x 8 ;2
3x 20 4x 25移项,得
3
5
1 x 3x
2
2
移项,得
3x 4x ;25 20
3
5
- x 3x 1
2
;2
例:解方程
2x 3 3x 2
解:移项,得 2x 3x 2 3
x 1
合并同类项,得
第五章 一元一次方程
5.2.1 求解一元一次方程
温故知新
1.等式的基本性质:
(1)等式的两边同时加上(或减去)同一个代数
式,所得结果仍是等式;
(2)等式两边同时乘以(或除以同一个不为0)的
数,所得结果仍是等式.
2.利用等式的性质解下列方程:
5x-2=8
学习目标
1.理解移项法则,准确进行移项
(重点)
2x+5x-3x=5-6-3.
合并同类项,得
4x=-4.
方程两边同时除以4,得x=-1
思考:利用去括号解方程要注意什么?
去括号必须注意的事项
(1)如果括号外的因数是负数时,去括号
后,原括号内各项的符号要改变;
(2)乘数与括号内多项式相乘时,乘数应乘
括号内的每一项,不要漏乘.
练一练:

北师大版七年级上册数学教案:5.2求解一元一次方程1

北师大版七年级上册数学教案:5.2求解一元一次方程1
北师大版七年级上册数学教案:5.2求解一元一次方程1
一、教学内容
北师大版七年级上册数学教案:5.2求解一元一次方程1
本节课我们将围绕以下内容展开教学:
1.理解一元一次方程的概念,掌握其一般形式:ax+b=0(a≠0)。
2.学习运用等式性质解一元一次方程,包括:
-同加同减法
-同乘同除法(注意除数不为0)
-难点五:解法的灵活运用。不同的一元一次方程可能需要不同的解法步骤,学生需要学会根据方程的特点选择最合适的解法。
在教学中,针对以上难点和重体实例来说明一元一次方程的概念和性质,通过可视化手段帮助学生形象化理解。
-通过反复练习和讲解,强化学生对等式性质的理解和运用。
3.掌握解一元一次方程的基本步骤,并通过实例进行操作练习。
4.解决一些简单的实际问题,运用一元一次方程进行求解。
二、核心素养目标
1.培养学生的逻辑思维能力,使其能够理解一元一次方程的本质,形成对数学概念准确把握的能力。
2.提高学生的运算能力,通过等式性质的运用,掌握一元一次方程的解法,并能熟练进行运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-掌握解一元一次方程的基本方法,包括同加同减法和同乘同除法。例如,解方程3x-5=7时,学生需要学会如何通过加5和除以3来求解x。
-能够将实际问题抽象为一元一次方程,并进行求解。例如,从实际问题中提取信息,构建方程模型,解决诸如年龄、速度、费用等问题。

北师大版七年级上册数学 5.2 第1课时 利用移项与合并同类项解一元一次方程 试题

北师大版七年级上册数学 5.2 第1课时  利用移项与合并同类项解一元一次方程 试题

5.2 求解一元一次方程
第1课时移项、合并同类项解方程基础检测
1.当x=_______时,式子4x+8与3x-10相等.
2.某个体户到农贸市场进一批黄瓜,•卖掉1
3
后还剩48kg,••则该个体户卖掉______kg黄
瓜.
3.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()
A.30岁 B.20岁 C.15岁 D.10岁
4.若干本书分给某班同学,每人6本则余18本,每人7本则少24本.•设该班有学生x 人,或设共有图书y本,分别得方程()
A.6x+18=7x-24与
2418 77 y y
--
=
B.7x-24=6x+18与
2418 76 y y
+-
=
C.
2418
76
y y
+-
=与7x+24=6x+18 D.以上都不对
5.(教材变式题)解下列方程:(用移项,合并法)
(1)0.3x+1.2-2x=1.2-27x
(2)40×10%·x-5=100×20%+12x
6.一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的距离.
7.煤油连桶重8千克,从桶中倒出一半煤油后,连桶重4,5千克,•求煤油和桶各多少千克?
拓展提高
8. 2008年10月24日我国“嫦娥一号”发射成功,中国人实现千年的飞天梦想,卫星在绕地球飞行过程中进行了三次变轨,如图.已知第一次变轨后的飞行周期比第二次变轨后飞行周期少8小时,•而第三次飞行周期又比第二次飞行周期扩大1倍.已知三次飞行周期和为88小时,求第一、二、•三次轨道飞行的周期各是多少小时?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、选做题P173习题5.3问题解决1、
板书
§5.2解方程(1)
1、移项
2、步骤:移项 合并同类项 两边同时除以未知数的系数(化系数为1)
教学反思
正确掌握移项的方法求方程的解
教学难点
采用移项方法解一元一次方程的步骤
教学准备
课本、练习册
教学时间
2010年12月日
学情分析
学生在上一节已经尝试着用等式的基本性质解一元一次方程,掌握情况较好,继续通过观察、归纳,发现用等式的基本性质一解一元一次方程的移项法则,就不难得出.
问题聚集
1、等式的两个基本性质是什么?
六、小结:
1、解一元一次方程移项的理论依据是什么?应注意哪些问题?有哪些基本步骤?
2、能根据题目特征,优化解题过程。
解后,由学生分组讨论,比较优劣,渗透等式的对称性:如果a=b,那么b=a,培养学生分析,问题归纳问题,灵活解决问题的能力,优化学生的思维结构。
布置作业
1、P173/习题5.3知识技能1、2
教学内容
§5.2解方程(1)(1课时)
执教者:
课本:第172页
教学目标
1.知识目标
熟悉利用等式的基本性质解一元一次方程的基本过程;
明确移项法则的依据
2.能力目标
通过具体的例子归纳移项法则.使学生逐渐体会移项法则的优越性.
3.情感目标
在用移项法则解一元一次方程中,引导学生反思,从而自觉改正错误.
教学重点
2、根据等式的两个基本性质可以解方程,还有其他方法吗?
3、解方程的最终目的是要将方程变形成什么样的?
教学过程
备注
一、复习旧知
利用等式性质解下列方程:
(1)3 =2 +7(2)5 -2=8
请学生观察:
3 -2 =2 +7-2 5 -2 + 2=8 + 2
3 -2 =75 =8+2
思考:上述演变过程中,你发现了什么?(分组讨论)若学生思考一阵后,还不会作答,可作如下提示:从原方程3 =2 +7演变为3 -2 =7,等号两边的项有否发生变化?若有变化,是如何变化的?方程(2)也有类似的结论吗?请将你发现的结论说出来与大家交流。
(1)8 =9 -3 (2) = +3
解:(1)移项得3=9 -8
合并同类项得3=
∴ =3
(2)两边都乘以4,得 =-2 +12
移项,得 +2 =12
合并同类项,得3 =12
两边都除以3,得 =4.
五、知识纵横(供选做)
1、 是同类项,请求出m,n的值。
2、已知 = 是关于 的方程 的解,
求关于 的方程, 的解。
(3)从8+ =-2 -1得到 +2 =-1-8
上述例子告诉我们,“移项”要注意什么?
(移项时,移动的项要变号,不移动的项不要变号)
三、应用新知
【例1】用移项的方法解下列方程:
(1)2 +6=1(2)3 +3=2 +7
学生口述,老师板书完成再由学生口算检验。
指出:1.移项时注意移动项符号的变化;
2.通常把含有未知数的项移到等号的左边,把常数项移到右边。
二、感受新知
1、根据学生回答,老师指出:像这样把方程Байду номын сангаас的项改变符号后从方程的一边移到另一边的变形过程,被称之为“移项”.板书如下:
3 =2 +75 -2=8
3 -2 =75 =8+2
【练一练】
下面的移项对不对?如果不对,应如何改正?
(1)从 +5=7,得到 =7+5
(2)从5 =2 -4,得到5 -2 =4
【例2】解下列方程:
(1) = - + 3
[随堂练习]第1题
可由同学上台板演,教师巡视指导、订正。再次叮嘱学生注意符号。
[议一议]从刚才的例题和练习中,请学生讨论解一元一次方程有哪些基本程序呢?
移项 合并同类项 两边同时除以未知数的系数
(化系数为1)
四、拓宽新知
比比看,谁的解法更简捷,更有创意?
解下列方程:
相关文档
最新文档