高中数学课后提升十六2.3离散型随机变量的均值与方差2.3.2新人教a版选修2

合集下载

高中数学人教A版选修2-3教案-2.3 离散型随机变量的均值与方差_教学设计_教案_1

高中数学人教A版选修2-3教案-2.3 离散型随机变量的均值与方差_教学设计_教案_1

教学准备
1. 教学目标
1.了解离散型随机变量的方差,以及标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2.了解方差公式“D(aξ+b )=a2Dξ”,以及“若ξ~B(n,p),则Dξ=npq(这里q=1-p)”。

并会应用上述公式计算有关随机变量的方差。

2. 教学重点/难点
教学重点、难点:离散型随机变量方差的概念的理解
3. 教学用具
4. 标签
教学过程
教学过程:
1.复旧引新
(1)离散型随机变量ξ的期望概念、意义、计算方法。

(2)一组数据x1,x2,…,xn 的方差的定义及其意义。

(3)用类比一组数据的方差引出离散型随机变量ξ的方差。

2.提出离散型随机变量ξ的方差、标准差及其计算方法
(1) 一般地,如果离散型随机变量ξ的分布列为
4.讲解例2(教科书中例5)、例3(教科书中例6)
5.讲解例4
例4 A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床B机床
6.课堂练习
做教科书第15页中的“练习”.
7.归纳总结
对随机变量的方差、标准差及其计算方法,以及它们的实际意义作一次总结。

布置作业:
教科书习题1.2第7、8题
教学反馈
板书设计。

人教课标版高中数学选修2-3:《离散型随机变量的均值与方差(第2课时)》教案-新版

人教课标版高中数学选修2-3:《离散型随机变量的均值与方差(第2课时)》教案-新版

2.3 离散型随机变量的均值与方差(第2课时)一、教学目标 1.核心素养通过对离散型随机变量的方差的学习,更进一步提高了学生的数学建模能力和数学运算能力. 2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的方差的概念 (2)能计算简单离散型随机变量的方差 (3)并能够解决一些实际问题. 3.学习重点离散型随机变量的方差的概念、公式及其应用. 4.学习难点灵活利用公式求方差.. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P64-P67,思考:方差、标准差的定义是什么?它们各自反应了什么? 任务2若随机变量X 服从两点分布,则方差为多少?若服从二项分布呢? 任务3根据方差的计算过程,可得到它的什么性质? 2.预习自测(1)已知随机变量x 的分布列则()X D =__________.(2)若随机变量⎪⎭⎫⎝⎛3210~,B X ,则方差DX=________.(二)课堂设计 1.知识回顾(1)均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 n n p x p x p x E +++=...2211ξ为ξ的均值或数学期望,简称期望.(2)均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平. (3)均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量, 且有b aEX b aX E +=+)(①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身;②当1=a 时,b EX b X E +=+)(,即随机变量X 与常数之和的期望等于X 的期;③当0=b 时,aEX aX E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.(4)①若X 服从两点分布,则p X E =)(; ②若ξ~),,(p n B 则np X E =)(. 2.问题探究问题探究一 随机变量方差的定义要从两名同学中挑选出一名同学代表班级参加射击比赛,根据以往的成绩记录,第一名同学击中目标靶的环数的分布列为如果每班只能一人参加年级比赛,你觉得应该让甲乙谁代表班级参赛? 通过计算分析: E (X 1)=5, E (X 2)=5,所以从均值比较不出两名同学的水平高低.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.但显然两名同学的水平是不同的,要进一步去分析成绩的稳定性. 我们可以定义离散型随机变量的方差.(给出定义)方差:对于离散型随机变量X ,如果它所有可能取的值是n x x x ,....,,21,且取这些值的概率分别是n p p p ,....,,21,那么,n n p X E x p X E x p X E x X D ⋅-++⋅-+⋅-=2222121))((...))(())(()(称为随机变量X 的方差,式中的)(X E 是随机变量X 的均值.标准差:)(X D 的算术平方根)(X D 叫做随机变量X 的标准差,记作)(X σ.随机变量X 的方差、标准差都反映了随机变量取值的稳定与波动、集中与离散的程度;数值越大,说明随机变量取值波动越大,越不稳定;请分别计算探究中两名同学各自的射击成绩的方差.(进一步探究认识用随机变量方差来反映取值的稳定情况)第一名同学5.1)(,8)(==X D X E 第二名同学82.0)(,8)(==X D X E结论:第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.对“探究”的再思考(1)如果其他班级参赛选手的射击成绩都在9环左右,本班应该派哪一名选手参赛? (2)如果其他班级参赛选手的射击成绩都在8环左右,本班应该派哪一名选手参赛? 问题探究二 常见随机变量方差及随机变量方差的性质 ①若X 服从两点分布,则)1()(p p X D -= 若),(~p n B X ,则)1()(p np X D -=.②方差的性质:)()(2X D a b aX D =+;22))(()()(X E X E X D -=. 3.运用新知例1有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求)(X E ,)(X D .【知识点:期望、方差】解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以X ~B(200,1%).因为np X E =)(,)1()(p np X D -=,这里n =200,p =1%.所以)(X E =200×1%=2,)(X D =200×1%×99%=1.98. 例2已知随机变量X 的分布列为若E (X )=23. (1)求D (X )的值;(2)若Y =3X -2【知识点:离散型随机变量期望、方差及方差的性质】 解:由12+13+p =1,得p =16.又E (X )=0×12+1×13+16x =23, ∴x =2.(1)D (X )=(0-23)2×12+(1-23)2×13+(2-23)2×16=1527=59. (2)∵Y =3X -2,∴D (Y )=D (3X -2)=9D (X ).==练习1 设X ~B (n ,p ),且E (X )=12,D (X )=4,则n 与p 的值分别为( ) A .18,13 B .12,23C .18,23D .12,13 【知识点:离散型随机变量方差及方差的性质】答案:由X ~B (n ,p ),则4)(,12)(====npq X D np X E ,所以32,18==p n . 练习2 设p 为非负实数,随机变量X 的概率分布为:求E (X )与D (X )的最大值. 解:根据题意,得⎩⎪⎨⎪⎧0≤p <1,0≤12-p <1,解得0≤p ≤12.因为E (X )=-1×(12-p )+0×p +1×12=p , 所以当p =12时,E (X )取得最大值,为12.因为D (X )=(-1-p )2(12-p )+(0-p )2p +(1-p )2×12=-p 2-p +1=-(p +12)2+54,故当p =0时,D (X )取得最大值为1.【知识点:离散型随机变量期望、方差及二次函数的性质】 4.课堂总结 重点难点突破(1)求离散型随机变量均值与方差的方法步骤: ①理解X 的意义,写出X 可能取的全部值; ②求X 取每个值的概率; ③写出X 的分布列; ④由方差的定义求)(X D .(2)方差的性质:(1))()(2X D a b aX D =+;22))(()()(X E X E X D -=. (2)若X 服从两点分布,则()=(1)D X p p -; (3)若ξ~),,(p n B 则(1)D np p ξ=-;(4)方差DX 表示,DX 越大,表示,说明X 的取值越分散;DX 越小,表示,说明X 的取值越集中稳定.(5)方差公式的几种形式:22122))(()())(())(()(X E X E p X E x X E X E X D i ni i -=⋅-=-=∑=.方差的意义数学期望反映了随机变量取值的平均水平,但有时只知道数学期望还不能解决问题,还需要知道随机变量的取值在均值周围变化的情况,即方差.①随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.②随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;③标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 5.随堂检测1.若随机变量X 满足P (x =c )=1,其中c 为常数,则()X E =________,()X D _______.2.已知随机变量X 的分布列为则()X E 与()X D 的值为( )(A) 0.6和0.7 (B)1.7和0.3 (C) 0.3和0.7 (D)1.7和0.213.已知()5.0100~,B X 则()X E =___,()X D =____. ()12-X E =____,()12-X D =____.4.有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X ,则()X E =_____, ()X D =_______.5.已知甲、乙两名射手在同一条件下射击,所得环数x 1、x 2的分布列如下:试比较两名射手的射击水平.如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?(三)课后作业 基础型 自主突破1.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( )A .0.6和0.7B .1.7和0.09C .0.3和0.7D .1.7和0.21 2.已知X 的分布列为则D (X )等于( )A .0.7B .0.61C .-0.3D .0 3.D (ξ-D (ξ))的值为( )A .无法求B .0C .D (ξ) D .2D (ξ) 能力型 师生共研4.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定5.若ξ是离散型随机变量,P(ξ=X1)=23,P(ξ=X2)=13,且X1<X2,又已知E(ξ)=43,D(ξ)=29,则X1+X2的值为()A.53 B.73C.3 D.1136.设ξ~B(n,p),则有()A.E(2ξ-1)=2np B.D(2ξ+1)=4np(1-p)+1 C.E(2ξ+1)=4np+1D.D(2ξ-1)=4np(1-p)7.若随机变量X1~B(n,0.2),X2~B(6,p),X3~B(n,p),且E(X1)=2,D(X2)=32,则σ(X3)的值是()A.0.5 B. 1.5 C. 2.5 D.3.5自助餐1.已知离散型随机变量X的分布列如下表.E(X)=0,D(X)=1,则a=________,b=________.2.变量ξ的分布列如下:其中a,b,c成等差数列.若E(ξ)=13,则D(ξ)的值是________.3.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X);(2)若抛掷10次,求E(X)和D(X).4.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令ξ=x·y.求:(1)ξ所取各值的分布列;(2)随机变量ξ的数学期望与方差.(四)参考答案预习自测 1.1.2 2.920 随堂检测 1.c ,0 2. D3.50, 25, 99, 1004. 2,1.985. 解:92.0106.092.081=⨯+⨯+⨯=ξE ,94.0102.094.082=⨯+⨯+⨯=ξE∴甲、乙两射手的射击平均水平相同.又8.0,4.021==ξξD D∴甲射击水平更稳定.如果对手在8环左右,派甲;如果对手在9环左右,派乙. 课后作业 基础型 1.D 2.B 3.C 能力型 4.A 5.C 6.D 7.C 自助餐 1.512, 14 2.593.解:(1)X 服从两点分布,∴E (X )=p =12.D (X )=p (1-p )=12×(1-12)=14. (2)由题意知,X ~B (10,12). ∴E (X )=np =10×12=5, D (X )=npq =10×12×(1-12)=52.4.解:(1)随机变量ξ的可能取值有0,1,2,4,“ξ=0”是指两次取的卡片上至少有一次为0,其概率为 P (ξ=0)=1-23×23=59;“ξ=1”是指两次取的卡片上都标着1,其概率为 P (ξ=1)=13×13=19;“ξ=2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (ξ=2)=2×13×13=29; “ξ=4”是指两次取的卡片上都标着2,其概率为P (ξ=4)=13×13=19. 则ξ的分布列为(2)E (ξ)=0×59+1×19+2×29+4×19=1,D (ξ)=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.。

人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版

人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版

2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。

数学人教A版选修2-3知识导航:2.3离散型随机变量的均

数学人教A版选修2-3知识导航:2.3离散型随机变量的均

2.3 离散型随机变量的均值与方差知识梳理1.离散型随机变量的均值则称_____________为随机变量X的均值或数学期望.(2)离散型随机变量X的均值或数学期望反映了离散型随机变量取值的_____________.(3)若Y=aX+b,其中a、b为常数,则EY=E(aX+b)=____________.(4)若随机变量X服从两点分布,则EX=____________.(5)若X—B(n,p),则EX=____________.2.离散型随机变量的方差则称DX=______________为随机变量X的方差(variance),其算术平方根DX为随机变量X 的______________,记作______________.(2)随机变量的方差和标准差反映了随机变量取值偏离于均值的______________,方差或标准差越小,则随机变量偏离于均值的______________.3.D(aX+b)= ______________.若X服从两点分布,则DX=______________.若X—B(n,p),则DX=______________.知识导学要学好离散型随机变量的均值与方差,首先要理解什么是随机变量,其次是能列出随机变量的分布列,这归根到底是要掌握概率的相应知识.这一节内容事实上是概率知识的引申,而随机变量的均值与方差是统计中两个最重要的量.对于离散型随机变量的均值,要理解随机变量的均值Eξ是一个数值,是随机变量ξ本身所固有的一个数字特征,它不具有随机性,反映的是随机变量取值的平均水平.对于离散型随机变量的方差,要了解掌握它的必要性.因为在实际问题中,有时仅凭均值还难以确切地反映随机变量的分布特征,还必须进一步考虑其偏离均值的离散程度,即方差大小.方差与均值相同,也是随机变量ξ本身所固有的一个数字特征,也不具有随机性,它反映随机变量取值的稳定与波动、集中与离散的程度.疑难突破1.求离散型随机变量的均值或方差剖析:求离散型随机变量的均值常分为两步:①列出随机变量的分布列;②计算随机变量的均值.求离散型随机变量的方差常分为以下三步:①列出随机变量的分布列;②求出随机变量的均值;③求出随机变量的方差.2.如何证明下列结论?(1)D(aX+b)=a2DX;(2)若X服从两点分布,则DX=p(1-p);(3)若X—B(n,p),则DX=np(1-p).剖析:证明:(1)D(aX+b)=∑=+-+ni i ip b aX E b ax12)]()[(=DX a p EX xap aEX ax ni i ini i i212212)()(=-=-∑∑==.(2)若X 服从两点分布,则EX=p ,所以 DX=(0-p)2(1-p)+(1-p)2p=p(1-p).(3)若X —B(n,p),则EX=np ,设q=1-p , DX=kn k k n nk kn k k nnk q p C p n npk k qp Cnp k -=-==+-=-∑∑022202)2()( =∑∑∑=--==-+-nk k n k k nkn knk k nnk kn k knq p Cpn qp kC np qp C k220022=22022p n np np q p C knk k n k k n +∙-∑=-=∑=--nk k n k k n p n q p C k0222=∑∑=-=-+-nk kn k k n nk kn k knq p kC qp Ck k 0)1(, 而np q p C k k qp C knk kn k k n nk kn k kn+-=∑∑=-=-22)1( =∑=------+-nk k n k k n np q p Cpn n 2)2()2(2222)1(=n(n-1)p 2+np,∴DX=n(n-1)p 2+np-n 2p 2=np(1-p) =np q p C k k qp kC qp Ck k kn k k n nk nk kn kk nnk kn k k n+-=+--==-=-∑∑∑2)1()1( =)2()2(22222)1(----=--∑-k n k nk k n q p Cpn n +np=n(n-1)p 2+np.∴DX=n(n-1)p 2+np-n 2p 2=np(1-p).。

高中数学 2.3.1 离散型随机变量的均值课件 新人教A版

高中数学 2.3.1 离散型随机变量的均值课件 新人教A版

新课标 ·数学 选修2-3
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
新课标 ·数学 选修2-3













1.理解离散型随机变量的均值的
学 方
意义和性质,会根据离散型随机
当 堂
案 设 计

课标 解读
变量的分布列求出均值. 2.掌握两点分布、二项分布的 均值.


案 散型随机变量的均值的定义,引导学生根据均值的定义推导 双



E(ax+b),接着计算两点分布和二项分布的均值,让学生在
达 标

前 自
推导过程中加深理解均值的含义.







课 堂 互 动 探 究
教 师 备 课 资 源
菜单


●教学流程




教 学 方 案 设 计
课 前 自 主 导 学





教 师 备 课 资 源
菜单
新课标 ·数学 选修2-3










求离散型随机变量的期望
辨 析

学 方
在甲、乙等 6 个单位参加的一次“唱读讲传”
当 堂


设 演出活动中,每个单位的节目集中安排在一起,若采用抽签 基
堂 双



课 前

最新人教版高中数学选修2-3《离散型随机变量的均值与方差》教材梳理

最新人教版高中数学选修2-3《离散型随机变量的均值与方差》教材梳理

庖丁巧解牛知识·巧学一、离散型随机变量的均值 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则称EX=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.随机变量的均值反映的是离散型随机变量的平均取值水平.由定义可知,离散型随机变量的均值与它本身有相同的单位.知识拓展 上述问题推广到一般有:假设随机试验进行了n次,根据X 的分布列,在n次试验中,有p 1n 次出现了x 1,p 2n 次出现了x 2,…,p n n 次出现了x n ,在n次试验中,X 出现的总次数为p 1nx 1+p 2nx 2+…+p n nx n .因此n次试验中,X 出现的平均值=nnx p nx p nx p nn i +++ 221=EX ,即EX=p 1x 1+p 2x 2+…+p n x n .辨析比较 随机变量的均值与样本的平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机抽样,随着样本容量的增加,样本平均值越来越接近于总体的均值. 二、随机变量函数的数学期望对随机变量X ,若Y=aX +b,其中a,b是常数,则Y 是随机变量,且有E(aX+b)=aEX+b.对上述公式,特别地:(1)当a=0时,E (b )=b ,即常数的数学期望就是这个常数本身;(2)当a=1时,E (X +b )=EX +b ,即随机变量X 与常数之和的期望等于X 的期望与这个常数的和; (3)当b=0时,E(aX)=aEX ,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.三、常见的离散型随机变量的均值1.两点分布:若X 服从两点分布,则EX=p.事实上,假设在一次试验中某事件发生的概率为p ,X 是一次试验中此事件发生的次数,令q=1-p ,则有P (X=0)=q ,P (X=1)=p ,可得: EX=0×q +1×p=p.2.二项分布:若随机变量X 服从二项分布,即X —B (n,p ),则EX=np.在一次试验中该事件平均发生p次,我们可以猜想,在n 次独立重复试验中,该事件平均发生np次,也就是若X —B(n,p),则Eξ=np.这就是X 的二项分布的期望的特点. 四、离散型随机变量的方差设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则(x i -EX )2描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度,而DX=∑=-ni iEX x12)(p i为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度.我们称DX 为随机变量X 的方差.其算术平方根DX 为随机变量X 的标准差,记作σX.随机变量X 的方差与标准差都反映了随机变量ξ取值的稳定与波动、集中与离散的程度.DX 越小,稳定性越高,波动越小.显然DX≥0,校准差与随机变量本身有相同单位. 辨析比较 随机变量的方差即为总体方差,它是一个常数,不随着抽样样本而客观存在;样本方差则是随机变量,它是随样本不同而变化的.对于简单随机样本,随着样本容易的增加,样本方差越来越接近于总体方差.联想发散 方差是随机变量另一个重要的数字特征,它表现了随机变量所取的值相对于它的均值的集中与离散的程度,因此二者的关系是十分密切的.由方差的定义DX=∑=-ni iEX x12)(p i 可知,计算方差DX 必须先求均值EX ,并且由此定义进一步可得到公式DX=EX 2-(EX)2. 随机变量函数的方差当a ,b 均为常数时,随机变量函数η=aξ+b 的方差D(η)=D(aξ+b)=a 2Dξ. 特别地:(1)当a=0时,D (b )=0,即常数的方差等于0;(2)当a=1时,D(ξ+b)=Dξ,即随机变量与常数之积的方差等于这个随机变量的方差本身; (3)当b=0时,D(aξ)=a 2Dξ,即随机变量与常数之积的方差,等于这常数的平方与这个随机变量方差的乘积.五、两点分布及二项分布的方差1.两点分布:若X 服从两点分布,则DX=p(1-p).证明:由于X 服从两点分布,即P(X=0)=1-p,P(X=1)=p , ∴EX=p,EX 2=0×(1-p)+1×p=p, ∴DX=EX 2-(EX)2=p-p 2=p(1-p).2.二项分布:若X —B(n,p),则DX=np(1-p).证明:由X —B(n,p),令q=1-p,则P(x=i)=i n X p i q n-i,∴EX 2=∑=-ni in i qp i22=∑∑∑==--=-=+-ni ni in iin ini i i qip qp i i 0)1()1(+EX=n(n-1)p2)2()2(2222-+--=--∑n n i ni i n qpC+EX=n(n-1)p2∑-=-22n j i n Cp j q (n-2)-j +EX=n(n-1)p 2(p+q)n-2+EX=n(n-1)p 2+EX=n(n-1)p 2+np. ∴DX=EX 2-(EX)2=n(n-1)p 2+np-np 2=np-np 2=np(1-p). 故DX=np(1-p). 问题·探究问题1 如果X —B(n,p),你能求出x 的均值吗?思路:如果X —B(n,p),则有P(x=k)=k n C p k(1-p)n-k ,由均值定义有EX=∑=nk k kn p kC0(1-p)n-k ,又由组合数性质有k k n C =n 11--k n C .EX=∑=--nk k n npC111(1-p)n-1-(k-1)=k n k nk k n p p Cnp--=--∑111)1(=np.探究:均值这一概率是建立在分布列的基础之上的,分布列中随机变量X 的一切可能值x i 与对应的概率P (ξ=x i )的乘积的和就是随机变量X 的均值.离散型随机变量的分布列和均值虽然都是从整体和全局上刻画随机变量的,但二者大有不同,分布列只给出了随机变量取所有可能值的概率,而均值却反映了随机变量取值的平均水平. 问题2 移动公司在某地区共有客户3 000人,若该地区的办事处准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问该办事处能否向每一位客户都发出领奖邀请?若能使每一位领奖人都得到礼品,办事处至少应准备多少份礼品?思路:可能来多少人,是一个随机变量,由于每人是否去领奖,相互间是独立的,因而随机变量服从二项分布,用数学期望来反映平均领奖人数,即能说明是否可行.探究:如问题2,我们可以设来领奖的人数为一个随机变量ξ=k(k=0,1,2,…,3 000),所以P(ξ=k )=kC 3000(0.04)k (1-0.04)3 000-k ,则可以得出ξ—(3 000,0.04),那么Eξ=3 000×0.04=120(人)>100(人).所以办事处不能向每一位客户都发出领奖邀请.若能使每一位领奖人都得到礼品,办事处至少应准备120份礼品. 典题·热题例1某份英语竞赛试题共有100道选择题,每题有4个选项,只有一个答案正确.选对得1分,否则得0分.学生甲会其中的20题,学生乙会其中的80题,不会的均随机选择.求甲、乙在这次竞赛中得分的期望.思路分析: 数学期望反映了随机变量取值的平均水平,要求数学期望首先要得到分布列,由题意可知,本题为二项分布问题.解:设甲和乙不会的题的得分分别为随机变量X 和Y ,由题意知X —B(80,0.25),Y —B(20,0.25),∴EX=80×0.25=20,EY=20×0.25=5.故甲、乙在这次竞赛中得分的期望分别为40分和85分. 拓展延伸设15 000件产品中有1 000件次品,从中抽取150件进行检查,则查得次品数的数学期望为( )A.15B.10C.20D.5 思路分析:次品率为P=151150001000 ,且该题服从二项分布,由公式,得EX=nP=150×151=10.故选B. 答案:B方法归纳 通常情况下,在n次独立重复试验中事件发生的次数X 服从二项分布,直接代入公式即可求得期望.例2(2005湖南高考)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ的分布及数学期望;(2)记“函数f(x)=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. 思路分析: (1)写出ξ的可能取值,利用相互独立事件的概率公式求出P (ξ=k )(k=1,3),写出ξ的分布列,求出Eξ.(2)利用二次函数的单调性求解. 解:(1)分别记“客人游览甲景点”“客人游览乙景点”“客人游览丙景点”.为事件A 1,A 2,A 3.由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6. 客人游览的景点数的可能取值为0,1,2,3.相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+P (321A A A ∙∙)=P (A 1)P (A 2)P (A 3)+P (1A )P (2A )P (3A )=2×0.4×0.5×0.6=0.24, P (ξ=1)=1-0.24=0.76. 所以ξ的分布列为Ξ 1 3 P0.76 0.24Eξ=1×0.76+3×0.24=1.48. (2)解法一:因为f(x)=(x-23ξ)2+1-49ξ2, 所以函数f(x)=x 2-3ξx+1在区间[23ξ,+∞)上单调递增,要使f(x)在[2,+∞)上单调递增,当且仅当23ξ≤2,即ξ≤34.从而P(A)=P(ξ≤34)=P(ξ=1)=0.76.解法二:ξ的可能取值为1,3.当ξ=1时,函数f(x)=x 2-3x+1在区间[2,+∞)上单调递增, 当ξ=3时,函数f(x)=x 2-9x+1在区间[2,+∞)上不单调递增. 所以P(A)=P(ξ=1)=0.76.深化升华 本题主要考查离散型随机变量分布列、数学期望和事件的概率等问题.一般解法是先由题意求出分布列,再由随机变量的数学期望公式代入求解即可.这一知识点应是未来高考中的一个热点.例3(2005全国高考)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)思路分析: 首先要求出单个坑不需要补种的概率,然后三个坑认为是三次独立重复试验,然后利用公式求解.解:因为甲坑内的3粒种子都不发芽的概率为(1-0.5)3=81, 所以甲坑不需要补种的概率为1-8781=. 3个坑都不需要补种的概率3003)87()81(⨯⨯C =0.670;恰有1个坑需要补种的概率为213)87(81⨯⨯C =0.287;恰有2个坑需要补种的概率为87)81(223⨯⨯C 8=0.041;3个坑都需要补种的概率为0333)87()81(⨯⨯C =0.002.补种费用ξ的分布列为Ξ 0 10 20 30 P 0.670 0.287 0.041 0.002ξ的数学期望为Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.方法归纳 本题主要考查计算随机事件发生概率的能力,包括互斥事件有一个发生的概率的计算方法,考查随机变量、数学期望等知识以及利用概率知识解决实际问题的能力.本题解决的关键有两点:一是单坑是否需要补种的概率;二是独立重复试验.首先,一个坑内的3粒种子是否发芽是独立重复试验,据此可得到单坑需要补种的概率;然后,3个坑是否需要补种也是独立重复试验,据此可得需要补种的坑的数目的分布列.例4交5元钱,可以参加一次摸奖,一袋中有完全相同的球10个,其中有8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和.求抽奖人获利的数学期望.思路分析: 抽到的2个球上的钱数之和ξ是个随机变量,其中每一个ξ取值时所代表的随机事件的概率值是容易获得的,本题的目标是求参加摸奖的人获利η的数学期望.由ξ与η的关系η=ξ-5,利用公式Eη=Eξ-5可得.解:设ξ为抽到的2个球上的钱数之和,则ξ的取值如下: ξ=2(抽到2个1元),ξ=6(抽到1个1元,1个5元),ξ=10(抽到2个5元).所以,由题意:P(ξ=2)=452821028=C C ,P(ξ=6)=45162101218=C C C , P(ξ=10)=45121022=C C ,Eξ=2×4516245110451664528=⨯+⨯+,又设η为抽奖者获利可能值,则η=ξ-5. 所以抽奖者获利的期望为:Eη=Eξ-5=57545162-=-=-1.4. 误区警示 要分清是谁获利,不能忽视了条件是先交5元钱才能参加这一抽奖.因此,不能只计算Eξ,最终Eη的结果出现负值,说明摸奖者若重复这种抽奖,平均每摸一次要亏1.4元.例5甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ξ,η,ξ和η的分布列如下:Ξ 0 1 2P106101 103η 012P105 103 102 试对这两名工人的技术水平进行比较.思路分析:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差的大小.解:工人甲生产出次品数ξ的期望和方差分别为: Eξ=0×106+1×101+2×103=0.7,Dξ=(0-0.7)2×106+(1-0.7)2×101+(2-0.7)2×103=0.81; 工人乙生产出次品数ξ的期望和方差分别为:Eξ=0×105+1×103+2×102=0.7; Dξ=(0-0.7)2×105+(1-0.7)2×103+(2-0.7)2×102=0.61.由Eξ=Eη知,两人出次品的平均数相同,技术水平相当,但Dξ>Dη,可见乙的技术比较稳定.深化升华 均值仅体现了随机变量取值的平均大小,但有时仅知道均值的大小还不够.如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,即计算方差.方差大说明随机变量取值较分散,方差小说明取值比较集中与稳定.即不要误认为均值相等时,水平就一样好,还要看一下相对于均值的偏离程度,也就是看哪一个相对稳定.例6设一次试验的成功率为p,进行100次独立重复试验,求当p为何值时,成功次数的标准差的值最大,并求最大值.思路分析: 解决本题的关键就是根据题目所给出的条件,找出几个变量之间的关系. 解:设成功次数为随机变量ξ,由题意可知ξ—B(100,p). 那么σξ=)1(100p p D -=ξ, 即Dξ=100p(1-p)=100p-100p 2.把上式看作一个以p为自变量的一元二次函数,易知当p=21时,Dξ有最大值为25.所以最大ξD 值为5. 故当21时,成功次数的标准差的最大值为5. 方法归纳 对求离散型随机变量的均值与方差的综合问题,首先应仔细地分析题意,当概率分布是一些熟知的类型(如两点分布、二项分布等)时,应全面地分析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,再由此求出各随机变量相应的概率.本例中正是利用二项分布快速地得到方差,从而建立了关于p的目标函数,进而求其最值. 此级HS5的大图若接排前加,若另面则不加。

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。

人教A版高中数学选修2-3课件2.3《离散型随机变量的方差》(新)

人教A版高中数学选修2-3课件2.3《离散型随机变量的方差》(新)
离散型随机变量的方差

一、复习
1、离散型随机变量的均值的定义 一般地,若离散型随机变量X的概率分布为 X P x1 p1 x2 p2 … … xn pn
则称 E(X)=x1p1+x2p2+…+xnpn为X的均值或数学 期望,记为E(X)或μ. 其中pi≥0,i=1,2,…,n;p1+p2+…+pn=1 2、两个分布的数学期望 nM 若X~H(n,M,N) 则E(X)= N

甲、乙两个工人生产同一产品,在相同的条件下,他 们生产100件产品所出的不合格品数分别用X1,X2表示, X1,X2的概率分布下: X1 pk 0 0.6 1 0.2 2 0.1 3 0.1
X2 pk
比较甲、乙两个工人的技术? V(X1)=0.6×(0-0.7)2+0.2×(1-0.7)2+0.1×(2-0.7)2 +0.1×(3-0.7)2=1.01 V(X2)=0.5×(0-0.7)2+0.3×(1-0.7)2+0.2×(2-0.7)2 +0×(3-0.7)2=0.61 乙的技术稳定性较好 •
2 2 2 x p ( x ) p ( x p 2 x p p ) i i V(X) i i i i i i i 2 2 i 1 i 1
n
n

V(X)=
n( n 1)( 2n 1) 1 n 1 2 n2 1 ( ) 6 n 2 12
• 若X~B(n,p)
则E(X)=np
练习: 1、已知随机变量 的分布列为

P
0
1
2
3
4
5
0.1
0.2
0.3
0.2
0.1
0.1
2.3 求E( ) 2、抛掷一枚硬币,规定正面向上得1分,反面向

2.3离散型随机变量的均值和方差(高中数学人教A版选修2-3)

2.3离散型随机变量的均值和方差(高中数学人教A版选修2-3)

E(aX+b)=aE(X)+b说明随机变量X的线性函数Y=aX+b 的均值(或数学期望)等于随机变量X的均值(或数学期望)的线 性函数,此式可有以下几种特殊形式:
①当 b = 0 时, E(aX) = aE(X) ,此式表明常量与随机变量 乘积的均值,等于常量与随机变量均值的乘积. ②当 a = 1 时, E(X + b) = E(X) + b ,此式表明随机变量与 常量和的均值,等于随机变量的均值与这个常量的和. ③当a=0时,E(b)=b,此式表明常量的均值等于这个常 量.
方差定义
定义
离散型随机变量取值的方差和标准差:
一般地,若离散型随机变量的概率分布列为:

P
x1
p1
p2
2
x2
· · · · · ·
pi
xi
· · · xn · · · pn
( xn E )2 pn
2 D ( x E ) p1 则称 1 n
D ( xi E ) pi 为随机变量的方差. 称
X P 18
3 6
24
2 6
36
1 6
1 1 1 X 18 24 36 23(元 / kg) 2 3 6
例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其
中有且仅有一个选项正确,每题选对得5分,不选或选错不得分,满 分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每 题都从4个选项中随机地选择一个.求学生甲和学生乙在这次测验 中的成绩的均值.
X 4 a 9 10
P
0.3
0.1
b
0.2
k· 4-k,k= 7.若随机变量X的分布列是P(x=k)= Ck · 0.1 0.9 4 0,1,2,3,4.则EX=________. 0.4

人教版A版高中数学选修2-3:2.3离散型随机变量的均值与方差

人教版A版高中数学选修2-3:2.3离散型随机变量的均值与方差

反),(反正),(反反),所以试验一次成功的概率为 1-
1 2
2
= 3.
4
所以在 2 次试验中成功次数 X 的取值为 0,1,2,
其中 P(X=0)=
1 4
2 = 116,
P(X=1)=C21
×
3 4
×
1 4
=
38,
P(X=2)=34
×
3 4
=
196,
所以在 2 次试验中成功次数 X 的均值是 E(X)=0× 116+1×
他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变 量ξ的分布列和均值E(ξ).
思考怎样求离散型随机变量X的均值与方差?
解 (1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为 事件C,“志愿者甲、乙、丙三人中至少有一名考核为优秀”为事件E,
请同学们阅读课本,通过自学完成以下问题:
• 1.下列结论正确的打“√”,错误的打“×”.
• (1)均值是算术平均数概念的推广,与概率无关.( ) • (2)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回 事.( ) • (3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度, 方差或标准差越小,则偏离均值的平均程度越小.( ) • (4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ 是正态分布的标准差.( )
(2)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培 训时间不少于90小时的人数.试求X的分布列、均值E(X)和方差D(X).

高二数学人教A版数学选修2-3导学案:2.3离散型随机变量的均值与方差

高二数学人教A版数学选修2-3导学案:2.3离散型随机变量的均值与方差

是 P,那么在 n 次独立重复试验中这个事件恰好发生 k 次的概率是
________________,( k= 0,1,2, …, n, q 1 p ).
于是得到随机变量 ξ 的概率分布如下:
ξ0
1
…k
…n
P
C
0 n
p
0q
n
C
1 n
p 1q n
1

C
k n
pkq n
k…Leabharlann Cn np
n
q
0
称这样的随机变量 ξ 服从 ________________,记作 ξ ~B( n,p) ,其中 n,p 为参数,并记




则称 ____________为 的数学期望或均值 , 数学期望又简称为 ____________ 合作探究二:你能用文字语言描述期望公式吗?
E = · + · +…+ · +… 即: ________________________
即学即练 : 练习 1:离散型随机变量
1
100
的概率分布
项是正确答案,每题选择正确答案得 5 分,不作出选择或选错不得分,满分 100 分 学生甲
选对任一题的概率为 0.9,学生乙则在测验中对每题都从 4 个选择中随机地选择一个, 求学生
甲和乙在这次英语单元测验中的成绩的期望
解析: 甲乙两生答对的题目数这个随机变量是 20 次实验中“答对”这个事件发生的次数 k,
P
0.01 0.99
求 的期望。
练习 2:随机抛掷一个骰子,求所得骰子的点数 的期望。
练习 3. 篮球运动员在比赛中每次罚球命中得 1 分,罚不中得 0 分,已知他命中的概率为 0.7, 求他罚球一次得分 的期望

高中数学2.3离散型随机变量的均值与方差2.3.2离散型随机变量的方差课件新人教A版选修2_3

高中数学2.3离散型随机变量的均值与方差2.3.2离散型随机变量的方差课件新人教A版选修2_3

ξ 服从超几何分布,分布列为
ξ
0
P
C06C34 C310

1 C16C24 C310
2 C26C14 C310
3 C36C04 C310
ξ
0 1 23
P
1 3 11 30 10 2 6
∴E(ξ)=0×310+1×130+2×12+3×16=0.3+1+0.5=1.8,
D(ξ)=(0-1.8)2×310+(1-1.8)2×130+(2-1.8)2×12+(3-1.8)2×16=0.56.
2.3.2 离散型随机变量的方差
课前自主预习
知识点 方差、标准差的定义及方差的性质
(1)设离散型随机变量X的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn
□ 则称D(X)=
01 ∑n i=1
xi-EX2pi
DX为随机变量X的 □02 标准差 .
为随机变量X的方差,其算术平方根
解析
探究 3 方差的实际应用 例 3 有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各 自的分数在 80 分,90 分,100 分的概率分布大致如下表所示:
试分析甲、乙两名同学谁的成绩好一些.
[解] 在解答同一份数学试卷时,甲、乙两人成绩的均值分别为 E(X 甲)=80×0.2+90×0.6+100×0.2=90, E(X 乙) =80×0.4+90×0.2+100×0.4=90. 方差分别为 D(X 甲)= (80 -90)2×0.2+(90 -90)2×0.6+(100-90)2×0.2 =40, D(X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100 -90)2×0.4=80. 由上面数据,可知 E(X 甲)=E(X 乙), D(X 甲)<D(X 乙). 这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同, 甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.

高中数学2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值课件新人教A版选修2_3

高中数学2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值课件新人教A版选修2_3

[跟踪训练1] 盒中装有 5 节同牌号的五号电池,其中混有两节废电池.现 在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数 X 的分 布列及均值.
解 X 可取的值为 1,2,3, 则 P(X=1)=35,P(X=2)=25×34=130, P(X=3)=25×14×1=110.
答案
抽取次数 X 的分布列为
1 3
m
若 η=aξ+3,E(η)=73,则 a=________.
答案 2
答案
解析 由分布列的性质,得12+13+m=1,即 m=16, 所以 E(ξ)=(-1)×12+0×13+1×16=-13. 则 E(η)=E(aξ+3)=aE(ξ)+3=73, 即-13a+3=73,得 a=2.
解析
探究 3 离散型随机变量均值的实际应用 例 3 某商场为刺激消费,拟按以下方案进行促销:顾客消费每满 500 元便得到抽奖券 1 张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾 客现金 100 元.某顾客现购买价格为 2300 元的台式电脑一台,得到奖券 4 张.每次抽奖互不影响. (1)设该顾客抽奖后中奖的抽奖券张数为 ξ,求 ξ 的分布列; (2)设该顾客购买台式电脑的实际支出为 η(单位:元),用 ξ 表示 η,并 求 η 的数学期望.
要掌握离散型随机变量均值的几个常用结论: (1)E(C)=C(C 为常数); (2)E(aX1+bX2)=aE(X1)+bE(X2); (3)如果 X1,X2 相互独立,则 E(X1·X2)=E(X1)·E(X2).
1.判一判(正确的打“√”,错误的打“×”) (1)随机变量 X 的数学期望 E(X)是个变量,其随 X 的变化而变化.( × ) (2)随机变量的均值与样本的平均值相同.( × ) (3)若随机变量 ξ 的数学期望 E(ξ)=3,则 E(4ξ-5)=7.( √ )

新人教A版选修(2-3)2.3《离散型随机变量的均值与方差》ppt课件3

新人教A版选修(2-3)2.3《离散型随机变量的均值与方差》ppt课件3
离散型随机变量的方差
一、复习
1、离散型随机变量的均值的定义
一般地,若离散型随机变量X的概率分布为
X
x1
x2

xn
P
p1
p2

pn
则称 E(X)=x1p1+x2p2+…+xnpn为X的均值或数学 期望,记为E(X)或μ.
其中pi≥0,i=1,2,…,n;p1+p2+…+pn=1
2、两个分布的数学期望
S2 1 n
(x1 x ) 2
(x2 x )2
+…+ (xn x )2 ]
叫做这组数据的方差
二、离散型随机变量的方差与标准差
对于离散型随机变量X的概率分布如下表,
X
x1
x2

xn
P
p1
p2

pn
设μ=E(X),则(xi-μ)2描述了xi(i=1,2,...,n)相对于均 值μ的偏离程度,故
4.证明:因为ξ所有可能取的值为 0,1 且 P(ξ
=0)=1-p,P(ξ=1)=p,
所以,Eξ=0×(1-p)+1×p=p 新疆 王新敞 奎屯
则 D ξ = ( 0-p ) 2×(1-p)+(1-p) 2×p=p(1-p)pFra bibliotek(1
p)
2
1
2 4
2
4n k 1
12
n
n
n
V(X) ( xi )2 pi ( xi 2 pi 2xi pi 2 pi ) xi2 pi 2
i 1
i 1
i 1

V(X)=
n(n 1)(2n 1) 1 ( n 1)2
6
n2
n2 1 12
考察0-1分布

人教版数学高二A版选修2-32.3离散型随机变量的均值与方差(第2课时)

人教版数学高二A版选修2-32.3离散型随机变量的均值与方差(第2课时)

预习导航
1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为
则(x l -E (X ))2
描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1
n
(x i -
E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度,我们称D (X )为随机变量X X 的标准差.
(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
(3)离散型随机变量的方差的性质: 设a ,b 为常数,则D (aX +b )=a 2D (X ).
思考1 随机变量的方差与样本的方差有何联系与区别?
提示:随机变量的方差即为总体方差,它是一个常数,不随抽样样本的变化而客观变化;样本方差则是随机变量,它是随样本的不同而变化的,对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.
2.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).
思考2 两名射手每次射击中靶的概率分别为0.8和0.7,则每射击3次中,两名射手的方差分别为( )
A .0.8,0.7
B .2.4,2.1
C .0.48,0.63
D .0.16,0.21
提示:射手独立射击3次中靶次数X都服从二项分布,即X~B(3,0.8),Y~B(3,0.7),所以D(X)=np(1-p)=3×0.8×0.2=0.48,D(Y)=nq(1-q)=3×0.7×0.3=0.63.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后提升训练十六离散型随机变量的方差
(45分钟70分)
一、选择题(每小题5分,共40分)
1.随机变量X的分布列为
若E(X)=1,则D(X)= ( )
A. B.1 C. D.【解析】选C.由题意得+a+b=1,①
0×+1×a+2b=1,②
由①②两式解得:a=b=.
所以D(X)=(0-1)2×+(1-1)2×+(2-1)2×=+=.
2.已知X的分布列为
则D(X)的值为( )
A. B. C. D.
【解析】选C.E(X)=1×+2×+3×+4×=,
D(X)=×+×+×+×=.
3.设X的分布列为P(X=k)=(k=0,1,2,3,4,5),则D(3X)= ( )
A.10
B.30
C.15
D.5
【解析】选A.由X的分布列知X~B,
所以D(X)=5××=,
所以D(3X)=9D(X)=10.
4.(2017·宝鸡高二检测)同时抛两枚均匀硬币10次,设两枚硬币同时出现反面的次数为X,则D(X)等于( )
A. B. C. D.5
【解析】选A.由题意知X~B,
所以D(X)=10××=.
5.(2017·青岛高二检测)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别
为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )
A.,s2+1002
B.+100,s2+1002
C.,s2
D.+100,s2
【解析】选D.设下月起每位员工的月工资增加100元后的均值和方差分别为,s'2,则
==+100.
方差s'2=×[(x1+100--100)2+(x2+100--100)2+…+(x10+100--100)2]=s2.
6.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的件数,则D(X)等于( )
A. B. C. D.
【解析】选D.X的所有可能取值是0,1,2.
而P(X=0)==,
P(X=1)==,
P(X=2)==.
所以X的分布列为
于是E(X)=0×+1×+2×=,
所以D(X)=×+×+×=.
7.甲、乙两台自动车床各生产同种标准产品1000件,ξ表示甲车床生产1000件产品中的次品数,η表示乙车床生产1000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别如表一、表二所示.
表一。

相关文档
最新文档