单因子杂交实验

合集下载

遗传学复习资料

遗传学复习资料

遗传学复习资料遗传学复习资料第⼀章绪论1、遗传:亲代与⼦代之间同⼀性状相似的现象。

2、变异:亲代与⼦代、⼦代与⼦代之间出现性状差异的现象。

3、遗传学模式⽣物——果蝇①只有野⽣型基因存在时,果蝇才长出红眼,该基因突变后,不再长出红眼。

②野⽣型发⽣突变后,出现黄体,则称该突变基因为黄体基因4、孟德尔的豌⾖杂交试验——选择豌⾖的原因:稳定的,可以区分的性状;⾃花(闭花)授粉,没有外界花粉的污染;⼈⼯授粉也能结实。

易栽培,⽣长周期短;种⼦多,便于收集数据;具有许多稳定易区分的性状。

豌⾖花冠各部分结构较⼤,便于操作,易于控制。

成熟后,豌⾖种⼦保留在⾖荚内不会脱落,每粒种⼦的性状不会丢失。

第⼆章、第三章1、减数分裂过程1)减数分裂:是在配⼦形成过程中进⾏的⼀种特殊的有丝分裂。

包括两次连续的核分裂⽽染⾊体只复制⼀次,每个⼦细胞核中只有单倍数的染⾊体的细胞分裂形式。

2)过程:①减数分裂Ⅰ(最复杂最长)A、前期Ⅰ:细线期——出现姐妹染⾊单体,但染⾊质浓缩为细长线状,看不出染⾊体的双重性,核仁依然存在。

在细线期和整个的前期中染⾊体持续地浓缩。

偶线期——同源染⾊体开始联会,出现联会复合体。

(联会复合体=四联体=⼆价体)。

粗线期——染⾊体完全联会,联会配对完毕,缩短变粗,但核仁仍存在。

⼀对配对的同源染⾊体称⼆价体或四联体。

⾮姐妹染⾊单体间可能发⽣交换。

双线期——染⾊体继续变短变粗,双价体中的两条同源染⾊体彼此分开。

在⾮姐妹染⾊单体间可见交叉结构,交叉结构的出现是发⽣过交换的有形结果。

交叉数⽬逐渐减少,在着丝粒两侧的交叉向两端移动,这种现象称为交叉端化。

终变期——染⾊体进⼀步收缩变粗变短,便于分裂移动,分裂进⼊中期。

B、中期Ⅰ:核仁、核膜消失,各个双价体排列在⾚道板上,着丝粒分居于⾚道板的两侧,附着在纺缍丝上,⽽有丝分裂的中期着丝粒位于⾚道板上。

中期I 着丝粒并不分裂。

C、后期Ⅰ:双价体中的同源染⾊体彼此分开,移向两极,但同源染⾊体的各个成员各⾃的着丝粒并不分开。

遗传学(第3版)第3章 孟德尔式遗传分析

遗传学(第3版)第3章 孟德尔式遗传分析

以上的测交中,一对基因的杂种,总是与其隐性亲本(rr)
进行杂交,这种杂交方式也叫做回交(backcross)。 4-15
2、自交验证(selfed/selfing) 通过自交后代的类型和数目来推论亲本的情况。
基本方法:以F2分别自交产生F3,然后根据F3的表型类型及 比例,验证所设想的F2基因型,从而推知F1在形成配子时,等位 基因是否分离。
黄416粒=315粒 黄圆+101粒 黄皱
绿140粒=108粒 绿圆+32粒 绿皱 所以 从颜色上看 黄色:绿色=416:140=2.97:1=3:1 再考察种子的形状: 圆:423粒=315粒黄圆+108粒绿圆 皱:133粒=101粒黄皱+32绿皱 所以 圆形:皱形=423:133=3.18:1≈3:1
经历了100多年的发展,当今的遗传学已成为生命科学的 核心。谈家桢先生曾生动而形象地将遗传学比喻为一棵根深叶 茂的大树,孟德尔定律便是具有顽强生命的种子,由摩尔根等 人建立起来的细胞遗传学则是这棵巨树的主干。 本章的主要内容:孟德尔遗传的基本规律及其扩展。
要点:孟德尔遗传分析的基本原理与方法,基因在动物、 植物乃至人类的繁衍过程中的表现及其传递规律。

皱豌豆

圆豌豆(吸水性强)4-10
3.1.2 分离定律 ( principle of segregation)
Mendel’s First law The two members of a gene pair (alleles) segregate (separate) from each other in the formation of gametes; half the gametes carry one allele, and the other half carry the o两对相对性状的豌豆杂交实验

酵母单杂交-实验步骤总结

酵母单杂交-实验步骤总结

1 pBait-AbAi载体的构建(酵母报道子的构建)注:酵母报道子(pBait-AbAi)包含目的顺式作用元件的一个或多个拷贝,且插入到pAbAi载体AbAi r报告基因的上游。

大量研究表明最有效的构建应包含目的DNA三个以上的首尾连接的拷贝。

首尾连接的拷贝产生方式很多,但对于长度小于20 bp的调控元件,人工合成寡核苷酸是最方便可靠的途径。

(1)设计并合成包含目的序列的两条反向平行的寡核苷酸序列,且两端加上与pAbAi载体酶切产物一致的粘性末端(建议合成一个目的序列的突变序列作为对照,以排除可能的假阳性)。

(2)用TE buffer溶解寡核苷酸至终浓度100 μmol/L。

(3)将正向链和反向链按照1:1的比例混合(退火后的双链寡核苷酸最大浓度为50 μmol/L)。

(4)95 ︒C保温30 s,去除二级结构。

(5)72 ︒C保温2 min,37 ︒C保温2 min,25 ︒C保温2min。

注:缓慢退火,有助于双链寡核苷酸的形成。

(6)冰上放置。

退火后的产物可贮存在-20 ︒C冰箱备用。

(7)酶切1 μL pAbAi载体,用凝胶回收纯化或柱纯化的方式纯化酶切产物。

注:回收前,可用琼脂糖凝胶检测是否酶切完全。

(8)将退火后的寡核苷酸稀释100倍至终浓度为0.5 μmol/L。

(9)在连接反应管中加入如下成分:pAbAi载体(50 ng/μL) 1.0 μLannealed oligonucleotide (0.5 μmol/L) 1.0 μL10×T4 DNA ligase buffer 1.5 μLBSA(10 mg/mL)0.5 μLNuclease-free H2O 10.5 μLT4 DNA ligase (400 U/μL)0.5 μL总体积15 μL注:如果有必要,可用1 μL nuclease-free H2O代替寡核苷酸作为阴性对照。

(10)将反应体系室温放置连接3 h,转化E coli,采用常规方法检测阳性克隆。

实验6_果蝇的单因子杂交

实验6_果蝇的单因子杂交

实验6_果蝇的单因子杂交
果蝇的单因子杂交是一种研究生物多态性的有效实验方法。

它通过在不同性别之间提前杂交某一种基因特征,如色素、组织或表型,以实现一系列特定的目的。

这种实验使用的模式是果蝇(葡萄白蝇),它们的色素性状形成了一个长期的遗传实验,一直被学术界引用和研究。

果蝇单因子杂交的实验过程是:首先,介入者开始观察果蝇的特征,根据杂交形态,它们给出了多种颜色,其中有黑色、浅黄色、中灰色、深褐色和灰褐色。

然后,他们将不同的小窝两两放入,分别杂交交配,进行种群的初始检测。

接下来,他们将所有的果蝇小窝放入一个大箱子,监测其行为,帮助理解它们的进化机制。

在这种实验中,杂交的具体结果表现为黑褐色的果蝇优势在数量上进行繁殖,而灰褐色的果蝇数量则有所减少,表明颜色使果蝇存活率失去平衡。

果蝇单因子杂交实验可以解释多种不同优势型共存的原理,它不仅是进行更多研究或开发更多新品种的基础,还可以帮助观测和记录物种演变和遗传变异过程,具有重要的实验价值。

通过对果蝇的单因子杂交进行实验,研究者得出的结论是,在果蝇中,颜色是一种重要的遗传性状,它在果蝇群体中的优势程度取决于环境影响的强弱。

最终,这一实验帮助研究基因变异的规律以及有关生物多样性研究的至关重要的内容。

专题06 遗传的分子基础(解析版)2021-2024高考生物真题分项汇编(全国通用)

专题06 遗传的分子基础(解析版)2021-2024高考生物真题分项汇编(全国通用)

专题06 遗传的分子基础11.(2022·海南·统考高考真题)某团队从下表①~④实验组中选择两组,模拟T2噬菌体侵染大肠杆菌实验,验证DNA是遗传物质。

结果显示:第一组实验检测到放射性物质主要分布在沉淀物中,第二组实验检测到放射性物质主要分布在上清液中。

该团队选择的第一、二组实验分别是()A.①和④B.②和③C.②和④D.④和③【答案】C【解析】噬菌体侵染细菌时,只有DNA进入细菌,蛋白质外壳没有进入,为了区分DNA和蛋白质,可用32P 标记噬菌体的DNA,用35S标记噬菌体的蛋白质外壳,根据第一组实验检测到放射性物质主要分布在沉淀物中,说明亲代噬菌体的DNA被32P标记,根据第二组实验检测到放射性物质主要分布在上清液中,说明第二组噬菌体的蛋白质被35S标记,即C正确,ABD错误。

2.(2022·湖南·高考真题)T2噬菌体侵染大肠杆菌的过程中,下列哪一项不会发生()A.新的噬菌体DNA合成B.新的噬菌体蛋白质外壳合成C.噬菌体在自身RNA聚合酶作用下转录出RNAD.合成的噬菌体RNA与大肠杆菌的核糖体结合【答案】C【解析】T2噬菌体侵染大肠杆菌后,其DNA会在大肠杆菌体内复制,合成新的噬菌体DNA,A正确;T2噬菌体侵染大肠杆菌的过程中,只有DNA进入大肠杆菌,T2噬菌体会用自身的DNA和大肠杆菌的氨基酸等来合成新的噬菌体蛋白质外壳,B正确;噬菌体在大肠杆菌RNA聚合酶作用下转录出RNA,C错误;T2噬菌体的DNA进入细菌,以噬菌体的DNA为模板,利用大肠杆菌提供的原料合成噬菌体的DNA,然后通过转录,合成mRNA 与核糖体结合,通过翻译合成噬菌体的蛋白质外壳,因此侵染过程中会发生合成的噬菌体RNA与大肠杆菌的核糖体结合,D正确。

3.(2022·浙江·高考真题)下列关于“噬菌体侵染细菌的实验”的叙述,正确的是()A.需用同时含有32P和35S的噬菌体侵染大肠杆菌 B.搅拌是为了使大肠杆菌内的噬菌体释放出来C.离心是为了沉淀培养液中的大肠杆菌 D.该实验证明了大肠杆菌的遗传物质是DNA【答案】C【解析】实验过程中需单独用32P标记噬菌体的DNA和35S标记噬菌体的蛋白质,A错误;实验过程中搅拌的目的是使吸附在细菌上的噬菌体外壳与细菌分离,B错误;大肠杆菌的质量大于噬菌体,离心的目的是为了沉淀培养液中的大肠杆菌,C正确;该实验证明噬菌体的遗传物质是DNA,D错误。

(完整)酵母单杂交实验步骤总结,推荐文档

(完整)酵母单杂交实验步骤总结,推荐文档

1 pBait-AbAi载体的构建(酵母报道子的构建)注:酵母报道子(pBait-AbAi )包含目的顺式作用元件的一个或多个拷贝,且插入到pAbAi载体AbAi r报告基因的上游。

大量研究表明最有效的构建应包含目的DNA 三个以上的首尾连接的拷贝。

首尾连接的拷贝产生方式很多,但对于长度小于20 bp的调控元件,人工合成寡核苷酸是最方便可靠的途径。

(1)设计并合成包含目的序列的两条反向平行的寡核苷酸序列,且两端加上与pAbAi载体酶切产物一致的粘性末端(建议合成一个目的序列的突变序列作为对照,以排除可能的假阳性)。

(2)用TE buffer溶解寡核苷酸至终浓度100 mol/L。

(3)将正向链和反向链按照1:1的比例混合(退火后的双链寡核苷酸最大浓度为50 mol/L )。

(4)95 C保温30 s,去除二级结构。

(5)72 C 保温 2 min,37 C 保温 2 min,25 C 保温2min。

注:缓慢退火,有助于双链寡核苷酸的形成。

(6)冰上放置。

退火后的产物可贮存在-20 C冰箱备用。

(7)酶切1 L pAbAi载体,用凝胶回收纯化或柱纯化的方式纯化酶切产物。

注:回收前,可用琼脂糖凝胶检测是否酶切完全。

(8)将退火后的寡核苷酸稀释100倍至终浓度为0.5 mol/L。

(9) 在连接反应管中加入如下成分:pAbAi 载体(50 ng/ L) 1.0 Lannealed oligonucleotide ( 0.5 mol/L) 1.0 L10X T4 DNA ligase buffer 1.5 LBSA (10 mg/mL) 0.5 LNuclease-free H2O 10.5 LT4 DNA ligase (400 U/ L) 0.5 L总体积15 L注:如果有必要,可用1 L nuclease-free H2O代替寡核苷酸作为阴性对照。

(10)将反应体系室温放置连接3 h,转化E coli,采用常规方法检测阳性克隆。

果蝇综合大实验

果蝇综合大实验

生命科学学院遗传学实验报告组员:杨朝雄张晓旭赵慧佳杨明月徐聪吴燕张玮单因子、双因子杂交、伴性遗传和三点测交实验一、实验目的:1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律;2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点;3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解;4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法;二、实验器材:1、材料: 6号果蝇灰体白眼短翅卷刚毛和26号果蝇黑檀体红眼长翅直刚毛2、试剂:乙醇、乙醚、果蝇培养基等3、器具:麻醉瓶、酒精灯、白瓷板、毛笔、镊子、培养管、棉球等三、实验原理:果蝇具有生活史短、繁殖率高、饲养简便、染色体数目少2n=8和突变性状多等特点,是研究遗传学的好材料;本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定;1、双因子杂交:果蝇的灰体基因E与黑檀体基因e为一对相对性状,而长翅与短翅为另一对相对性状;这两对基因是没有连锁关系的,位于不同染色体上的非等位基因; 因此非同源染色体的这两对非等位基因可以很好的验证自由组合定律;自由组合规律:位于非同源染色体上的两对非等位基因,其杂合体在形成配子时,等位基因彼此分离,进入不同的配子中,非等位基因可自由组合进入同一配子,结果产生4种比例相等的配子;若显性完全, F1自交产生F2代表现出4种表型,比例为3:3:1:1;双因子杂交的遗传规律:双因子杂交正交6♀×26♂灰长黑短F1 灰长2、伴性遗传:位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传;果蝇的红眼与白眼是一对相对性状,由单基因控制,位于X染色体上,基因之间的关系为红眼对白眼完全显性;当白眼果蝇♀和红眼果蝇♂杂交,F1代中的雌果蝇为红眼,雄果蝇却为白眼;F2代中红眼果蝇∶白眼果蝇=1∶1,在雌果蝇或雄果蝇中红眼果蝇与白眼果蝇的比例均为1∶1;伴性遗传的遗传规律:X w X w X+Y♂白眼♀红眼F1: X+X w X w Y♀红眼♂白眼F2: X+X w X w X w X+ Y X w Y♀红眼♀白眼♂红眼♂白眼3、三点测交位于同一条染色体上的基因是连锁的,而同源染色体上的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型;重组型出现的多少反映出基因间发生交换的频率的高低;而根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系;基因图距就是通过基因间重组值的测定而得到的;如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正,来求出基因图距;通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换;如果两个基因间的单交换并不影响邻近两个基因的单交换,那么预期的双交换频率应当等于两个单交换频率的乘积,但实际上观察到的双交换值往往低于预期值,因为每一次发生单交换,它邻近也发生一次交换的机会就减少,这叫干涉; 三点测交6号♀wsnm/wsnm ⨯ 26号♂+++/Y白卷短 红直长统计F2代各类型及数目填入表格四、实验步骤: 1.准备工作:将麻醉瓶和器具白瓷板、毛笔等领取培养管6支,填写标签并贴在培养管上; 标签写法举例如右:选取6号处女蝇和26号雄蝇:实验前2-3天陆续按组合收集8小时内羽化的果蝇,分离♀♂2果蝇杂交:转移5-6对亲本,记录杂交日期和亲本组合名称; 4、去亲本:杂交后7-8天;F1: ♀+++/wsnm ♂wsnm/Y 红直长 白卷短⊗5、F1代性状观察及自交:去亲本后4-5天进行,连续检查2-3天;移5-6对进行自交无需处女蝇;6、再去亲本:自交后7-8天7、记录结果:去亲本后4-5天进行,连续统计7-8天五、实验记录:记录了11月12日到11月20日的数据;数据总数表一表二表三六、实验数据分析:1、单因子杂交的实验数据分析1预期F2的表型与比例灰体:黑檀体=3:1单因子杂交的χ2测验df=2-1=1;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:1的分离比;2、双因子杂交的实验数据分析1预期F2的表型与比例:灰长:灰短:黑长:黑短=3:3:1:1双因子杂交的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:3:1:1的分离比;3、伴性遗传的实验数据分析1预期F2的表型与比例:红眼雌:白眼雌:红眼雄:白眼雄=1:1:1:1伴性遗传的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值和预期值之间的差异不显著,实验结果符合1:1:1:1的分离比4、三点测交的实验数据分析:两端的基因间距离进行校正:%+2×%=%据本次实验结果算出的三个基因的相对顺序和距离w-sn-m三个基因的遗传学图单交换率分别为%和%;双交换率为%并发率=%/%×%=,干扰==;意味着13%的双交换被干涉掉了,说明染色体的一个区段的交换抑制了邻近区段的另一次交换;七、结果讨论:本次遗传学综合大实验历时一个多月,并分为单因子、双因子杂交、伴性遗传和三点测交四个部分;在实验过程中,需要小组成员之间的合作,并且分配好每个人的任务,在观察和统计的过程中要认真、细心;就实验结果来看,一个小组的实验数据是远远不够的,实验数据少导致了在验证伴性遗传、自由结合定律的时候与预期比例有偏差;但是总体来说,本次的实验还是成功的;。

综合实验论文:果蝇的培养、遗传性状的观察及单因子遗传分析

综合实验论文:果蝇的培养、遗传性状的观察及单因子遗传分析

生物学实验教学中心目录引言 (1)1 果蝇生活史 (2)2 果蝇雌雄的鉴别 (3)3 实验材料 (3)4 培养基的配制 (4)5 实验方法 (4)5.1 麻醉 (4)5.2 选果蝇 (5)5.3 果蝇交配 (7)5.4 观察 (7)6 数据分析与结果讨论 (7)总结 (9)参考文献 (10)果蝇的培养、遗传性状的观察及单因子遗传分析xx(指导老师:xx)(湖北师范学院生命科学学院生物科学1003班湖北黄石435002)摘要:由于果蝇饲养简单,生长繁殖快,生命周期短,突变种类多,相对性状突出,因此,是用来研究孟德尔遗传分离定律的良好材料。

利用黑腹果蝇常染色体上的单对等位基因,如黑腹果蝇的长翅(+)和残翅(vg)基因,我们可以验证孟得尔这个分离定律的正确性。

方法:残翅黑腹果蝇品系的处女蝇与野生型品系(长翅)的雄蝇杂交,获得F1,对F1进行统计分析。

关键词:果蝇;培养;遗传性状;分离定律;单因子杂交Cultivation of Drosophila、Observation on the genetic characters andSingle Factor Crossxx(Tutor:Yxxx)(College of Life Sciences department, xxxx)Abstract: Drosophila due to simply raising, growth and propagation of fast, short life cycle, variation of many types, relative character prominent, therefore, is used to study the Mendel genetic segregation law of the good material.We can use the drosophila melanogaster chromosome single allele, such as drosophila melanogaster long winged (+) and vestigial winged (vg) genes to verify the correctness of Mondor's law of segregation. Methods: the winged Drosophila melanogaster strains of virgin female and wild type strains (wings) male fly hybridization F1, and statistical analysis F1.Key words: fruit fly ; cultivation; the genetic characters; law of segregation ; Single Factor Cross果蝇的单因子杂交xx(指导老师:xx)(xxxx)引言近一个世纪以来,果蝇在生物学研究的舞台上占有举足轻重的地位,是一种理想的模式生物。

遗传学实验实验四果蝇的单因子试验

遗传学实验实验四果蝇的单因子试验
01
03 02
推断果蝇的基因型
根据实验数据,推断 出果蝇的基因型。
确定单因子对果蝇表 型的影响,以及其在 遗传中的作用。
利用遗传规律,分析 不同基因型果蝇之间 的组合关系。
验证单因子试验的可靠性
01
通过重复实验,验证单因子试验的可靠性。
02
比较不同实验结果的一致性和差异性,分析可能的 影响因素。
进行实验
按照实验方案进行单因子试验, 观察并记录果蝇在不同条件下的 生长和繁殖情况。
数据记录
详细记录每组果蝇的数量、生长 状况、繁殖情况等数据,以便后 续的数据分析和处理。
04
结果分析
分析实验数据
分析数据,确定表现型与 基因型之间的关系。
统计每个杂交组合中不同 表现型的果蝇数量。
观察并记录果蝇在不同杂 交组合下的表现型。
实验所需的果蝇品系
野生型果蝇
标记品系果蝇
作为实验对照,用于观察突变型果蝇 的表型差异。
用于追踪和鉴定特定基因型的果蝇。
突变型果蝇
具有特定遗传突变特征的果蝇,用于 单因子试验。
03
实验步骤
准备果蝇培养环境
01
02
03
准备果蝇培养瓶
选择适当大小的玻璃培养 瓶,清洗干净后晾干,加 入适量培养基。
控制培养环境
选择实验所需的果蝇品系
选择品系
根据实验目的,选择具有不同遗传背 景和特征的果蝇品系,以便更好地观 察和比较实验结果。
遗传标记
利用已知的遗传标记,确定果蝇品系 的基因型,以便在实验中对果蝇进行 准确的分类和鉴定。
进行单因子试验并记录数据
设计实验
根据实验目的和果蝇品系的特征, 设计单因子试验方案,确定实验 组和对照组。

阶段检测(一)(第1章~第3章)(解析版)

阶段检测(一)(第1章~第3章)(解析版)

阶段检测(一)(第1章~第3章)一、单项选择题:本题共20小题,每小题2分,共40分。

1.下列关于遗传学发展史上4个经典实验的叙述,正确的是( )。

A.孟德尔的单因子杂交实验证明了遗传因子位于染色体上B.摩尔根的果蝇伴性遗传实验证明了基因自由组合定律C.T2噬菌体侵染细菌实验证明了DNA是大肠杆菌的遗传物质D.肺炎链球菌离体转化实验证明了DNA是肺炎链球菌的遗传物质1.D 【解析】孟德尔的单因子杂交实验没有证明遗传因子位于染色体上,当时人们还不认识染色体,A错误;摩尔根的果蝇伴性遗传实验只研究了一对等位基因,不能证明基因自由组合定律,B错误;T2噬菌体侵染细菌实验证明了DNA是噬菌体的遗传物质,C错误;肺炎链球菌离体转化实验证明了DNA是“转化因子”,即DNA是肺炎链球菌的遗传物质,D正确。

2.基因型为AaBb的个体自交(两对基因独立遗传),下列对子代性状分离比情况的分析,错误..的是( )。

A.若子代出现4∶2∶2∶1的性状分离比,则基因型为AaBb的个体能存活B.若子代出现15∶1的性状分离比,则显性个体中纯合子占1/5C.若子代出现9∶3∶4的性状分离比,则测交后代的性状比为1∶1∶1∶1D.若子代出现9∶7的性状分离比,则存在杂合子能稳定遗传的现象2.C 【解析】若子代出现4∶2∶2∶1的性状分离比,则存在AA、BB纯合致死现象,基因型为AaBb的个体能存活,A正确;若子代出现15∶1的性状分离比,说明具有A或B基因的个体表现为显性性状,则显性个体中纯合子(AABB、aaBB、AAbb)占1/15+1/15+1/15=1/5,B正确;若子代出现9∶3∶4的性状分离比,说明某一隐性基因成对存在时表现为双隐性状,则测交后代的性状比为1∶1∶2,C错误;若子代出现9∶7的性状分离比,表明只有同时存在A基因和B基因时才会表现出显性性状,则存在杂合子(如Aabb)能稳定遗传的现象,D正确。

3.下图为选育低植酸抗病水稻品种的过程。

酵母单杂交实验原理

酵母单杂交实验原理

酵母单杂交实验原理是基于酵母细胞中的转录因子Gal4和对应的启动子GAL1/10,将目标DNA片段插入到GAL1/10启动子上游,在酵母细胞中表达成融合蛋白,与BD-融合蛋白结合形成一个复合物,从而实现对DNA靶点的筛选。

酵母单杂交实验的具体步骤如下:
1.构建两个重组质粒,其中一个含有待测核酸序列、
GAL1/10启动子和选择性标记;另一个质粒含有
BD-Gal4融合蛋白。

2.在酵母细胞中转化这两个质粒,使其在同一细胞中表达。

3.在选择性培养基上筛选转化后的酵母细胞,筛选出可生
长的克隆,这些克隆代表了BD-Gal4蛋白和目标DNA
片段的相互作用。

4.对筛选出来的克隆进行进一步验证,如确认目标DNA
片段是否真正结合到BD-Gal4蛋白上,以及进一步鉴
定筛选出来的DNA靶点。

酵母单杂交 实验步骤总结

酵母单杂交 实验步骤总结

1 pBait-AbAi载体的构建(酵母报道子的构建)注:酵母报道子(pBait-AbAi)包含目的顺式作用元件的一个或多个拷贝,且插入到pAbAi载体AbAi r报告基因的上游。

大量研究表明最有效的构建应包含目的DNA三个以上的首尾连接的拷贝。

首尾连接的拷贝产生方式很多,但对于长度小于20 bp的调控元件,人工合成寡核苷酸是最方便可靠的途径。

(1)设计并合成包含目的序列的两条反向平行的寡核苷酸序列,且两端加上与pAbAi载体酶切产物一致的粘性末端(建议合成一个目的序列的突变序列作为对照,以排除可能的假阳性)。

(2)用TE buffer溶解寡核苷酸至终浓度100 μmol/L。

(3)将正向链和反向链按照1:1的比例混合(退火后的双链寡核苷酸最大浓度为50 μmol/L)。

(4)95 ︒C保温30 s,去除二级结构。

(5)72 ︒C保温2 min,37 ︒C保温2 min,25 ︒C保温2min。

注:缓慢退火,有助于双链寡核苷酸的形成。

(6)冰上放置。

退火后的产物可贮存在-20 ︒C冰箱备用。

(7)酶切1 μL pAbAi载体,用凝胶回收纯化或柱纯化的方式纯化酶切产物。

注:回收前,可用琼脂糖凝胶检测是否酶切完全。

(8)将退火后的寡核苷酸稀释100倍至终浓度为0.5 μmol/L。

(9)在连接反应管中加入如下成分:pAbAi载体(50 ng/μL) 1.0 μLannealed oligonucleotide (0.5 μmol/L) 1.0 μL10×T4 DNA ligase buffer 1.5 μLBSA(10 mg/mL)0.5 μLNuclease-free H2O 10.5 μLT4 DNA ligase (400 U/μL)0.5 μL总体积15 μL注:如果有必要,可用1 μL nuclease-free H2O代替寡核苷酸作为阴性对照。

(10)将反应体系室温放置连接3 h,转化E coli,采用常规方法检测阳性克隆。

遗传学第二章-孟德尔遗传定律

遗传学第二章-孟德尔遗传定律
形态特征:豌豆的高和矮 生理特征:小麦的抗锈病和不抗锈病
相对性状:指同一性状的相对差异 • 34个豌豆品种,选出22种试验,最后选出7对相对性状
–Height: tall vs dwarf –Seed shape: round vs wrinkled –Seed color: yellow vs green –Flower position: axial vs terminal –Pod color: green vs yellow –Pod shape: inflated vs constricted
对独立有差别的相对性状,求杂交后代中出现
AABbCCDdeeffgg的个体的概率是多少?
六、自由组合规律的意义
1、理论上:
从一个角度揭示了生物多样性的原因所在。
2、实践上:
对育种工作有积极的指导意义:根据自由组合规律,预测杂种后 代各种类型出现的比例,确定育种的规模,适当安排群体的大小。
3、在遗传病的研究上:
例题
研究正常性状或遗传病的传递,并可预期一定婚配后其子女各
种类型出现的频率。
例题
• 水稻无芒抗病品种的选育。已知有芒A对无芒a为显性, 抗稻瘟病R对染病r为显性,现选用真实遗传有芒抗病 和无芒不抗病为亲本进行杂交,问要在F3中得到10株 无芒抗病的能真实遗传的植株,至少需要种植多少F2 植株?
• 父亲是并指患者,母亲正常,婚后生过一个先天性聋 哑患儿,现问以后所生子女的发病情况及父母的基因 型(并指是显性性状,用S表示,聋哑是隐性遗传病, 用d表示)。
3 green and round
yyR_ : yyRR yyRr
1 green and wrinkled yyrr

三、自由组合假说的验证

酵母单杂交的原理与应用实例

酵母单杂交的原理与应用实例

酵母单杂交的原理与应用实例一、本文概述酵母单杂交(Yeast One-Hybrid)是一种强大的分子生物学技术,它利用酵母细胞的转录调控机制来研究DNA与蛋白质之间的相互作用。

这种技术基于酵母细胞的转录因子与DNA结合的特性,通过将感兴趣的蛋白质(如转录因子)与报告基因(如抗性基因或荧光蛋白基因)连接,可以在酵母细胞内筛选出与目标DNA结合的蛋白质。

酵母单杂交不仅具有高灵敏度和高通量筛选的优势,还可以用于研究基因表达调控、蛋白质与DNA相互作用机制、以及新药物和新材料的发现等领域。

本文将详细介绍酵母单杂交的原理、实验操作及应用实例,以期为相关领域的研究人员提供有益的参考。

二、酵母单杂交技术的原理酵母单杂交技术是一种基于酵母转录因子和DNA相互作用的遗传学方法,用于研究蛋白质与DNA之间的相互作用,以及筛选和鉴定与特定DNA序列结合的蛋白质。

其基本原理是将待研究的DNA序列(如启动子、增强子等)与报告基因(如荧光素酶、抗性基因等)融合,构建成报告质粒。

然后,将报告质粒与表达特定转录因子的表达质粒共转化到酵母细胞中。

如果转录因子能够与报告质粒中的DNA序列结合,就会激活报告基因的表达,从而通过检测报告基因的表达情况来判断转录因子与DNA序列的相互作用。

酵母单杂交技术的关键在于利用了酵母细胞内的转录调控机制。

在酵母细胞中,转录因子的作用是通过与DNA序列结合,调控基因的转录水平。

当转录因子与DNA序列结合时,它会与RNA聚合酶II等转录相关蛋白形成转录起始复合物,从而启动基因的转录。

因此,通过构建包含特定DNA序列的报告质粒,并在酵母细胞中共表达转录因子,就可以观察到转录因子对报告基因表达的调控作用。

酵母单杂交技术具有灵敏度高、操作简便、高通量等优点,因此在基因表达调控、蛋白质与DNA相互作用研究等领域得到了广泛应用。

通过酵母单杂交技术,可以筛选出与特定DNA序列结合的转录因子,研究其调控机制,也可以用于基因功能注释、基因表达调控网络构建等方面。

单因子杂交实验报告

单因子杂交实验报告

实验目的:1. 验证孟德尔的分离定律。

2. 掌握果蝇单因子杂交的方法和杂交结果的统计处理方法。

3. 理解等位基因的分离和组合规律。

实验原理:孟德尔的分离定律指出,在杂合子(如Aa)的个体中,两个等位基因在减数分裂过程中会分离,独立地进入不同的配子中。

因此,杂交后代的表现型比例应为3:1(显性:隐性)。

实验材料:1. 野生型黑腹果蝇(显性基因A)。

2. 黑体果蝇(隐性基因a)。

3. 酒精、甘油、棉签、培养皿、显微镜等。

实验步骤:1. 将野生型黑腹果蝇和黑体果蝇分别饲养在培养皿中,保证其生长环境适宜。

2. 待果蝇成熟后,挑选健康的雄性和雌性果蝇进行杂交。

3. 将杂交后的果蝇放置在培养皿中,提供足够的食物和水分。

4. 观察并记录F1代果蝇的表现型,统计野生型和黑体果蝇的数量。

5. 将F1代果蝇进行自交,收集F2代果蝇。

6. 观察并记录F2代果蝇的表现型,统计野生型、黑体和杂合子(Aa)的数量。

实验结果:1. F1代果蝇中,野生型和黑体果蝇的比例约为3:1。

2. F2代果蝇中,野生型、黑体和杂合子(Aa)的比例约为9:3:4。

结果分析:根据实验结果,我们可以得出以下结论:1. 在F1代中,野生型和黑体果蝇的比例符合孟德尔的分离定律,即3:1的比例。

2. 在F2代中,野生型、黑体和杂合子(Aa)的比例符合孟德尔的自由组合定律,即9:3:4的比例。

3. 这表明,在果蝇的单因子杂交实验中,等位基因的分离和组合规律是成立的。

讨论:1. 本实验验证了孟德尔的分离定律,说明等位基因在减数分裂过程中确实会分离,独立地进入不同的配子中。

2. 实验过程中,我们需要注意以下几点:- 确保果蝇的生长环境适宜,避免因环境因素导致实验结果偏差。

- 在统计结果时,要尽量减少人为误差。

- 对于实验数据,要进行合理的分析和讨论。

结论:通过本实验,我们验证了孟德尔的分离定律,并掌握了果蝇单因子杂交的方法和杂交结果的统计处理方法。

这为我们进一步研究遗传规律奠定了基础。

单因子杂交实验报告

单因子杂交实验报告

单因子杂交实验报告单因子杂交实验报告引言:杂交是生物学中一种重要的研究方法,通过将两个不同的个体进行交配,观察其后代的表现,可以揭示遗传规律和基因的传递方式。

本实验旨在通过单因子杂交实验,探究遗传因子对性状表现的影响,并验证孟德尔的遗传定律。

实验材料与方法:1. 实验材料:本实验使用豌豆为实验材料,选取具有明显性状差异的两个纯合系(纯合系A 和纯合系B),分别为绿色豌豆和黄色豌豆。

2. 实验方法:(1)杂交:将纯合系A的花粉授粉到纯合系B的雌蕊上,得到F1代。

(2)自交:将F1代的花粉授粉到F1代的雌蕊上,得到F2代。

结果与讨论:1. F1代的表现:经过杂交后,观察到F1代的豌豆全部呈现出绿色。

这与孟德尔的第一定律(也称为分离定律)相符,即杂交后代的表现由一方的性状主导,另一方的性状被隐性遮蔽。

2. F2代的表现:观察到F2代的豌豆出现了绿色和黄色两种颜色。

根据观察数据,绿色豌豆的数量约为黄色豌豆的3倍。

这一结果符合孟德尔的第二定律(也称为分离定律),即在自交后代中,显性性状和隐性性状以3:1的比例出现。

3. 遗传比例的解释:根据孟德尔的遗传定律,我们可以推断F1代的绿色豌豆是由纯合系A的显性基因与纯合系B的隐性基因组合而成。

而在F2代的自交过程中,绿色豌豆可能有两种基因型(AA和Aa),而黄色豌豆只有一种基因型(aa)。

因此,绿色豌豆的出现频率是黄色豌豆的3倍。

4. 遗传规律的解释:通过本实验的结果,我们可以解释遗传规律中的“分离”和“组合”现象。

在杂交过程中,两个纯合系的基因组合,使得F1代的表现只有一种性状。

而在F2代的自交过程中,基因重新组合,导致显性和隐性性状以一定比例出现。

结论:通过单因子杂交实验,我们验证了孟德尔的遗传定律,并揭示了遗传因子对性状表现的影响。

实验结果表明,遗传因子的传递方式符合孟德尔的第一和第二定律,即性状的表现受到显性和隐性基因的控制。

本实验为遗传学的研究提供了基础,也为农业育种和人类遗传疾病的研究提供了参考。

实验一__果蝇的单因子实验

实验一__果蝇的单因子实验

实验一 果蝇的单因子实验一:目的1. 理解分离定律的原理;2. 掌握果蝇的杂交技术;3记录交配结果和掌握统计处理的方法。

二. 原理1)、黑腹果蝇 (Drosophila melanogaster) 是被人类研究得最彻底的生物之一。

是一种原产于热带或亚热带的蝇种。

它和人类一样分布于全世界各地,并且在人类的居室内过冬。

在遗传,发育,生理, 和行为等的研究方面,果蝇是最常见的研究对象之一。

原因是它易于培养, 繁殖快,使用经济: 它在室温条件下, 十天就可以繁殖一代; 且只有四对染色体, 易于遗传操作; 还有它有很多突变体可以利用。

中文学名: 黑腹果蝇 拉丁学名: Drosophila melanogaster 别称: fruit fly 二名法: Drosophila melanogaster 界: 动物界 门: 节肢动物门Arthropoda 纲: 昆虫纲 Insecta 亚纲: 有翅亚纲目: 双翅目 Diptera 亚目: 长角亚目、短角亚目 科: 果蝇科Drosophilidae 属: 果蝇属Drosophila 亚属: Sophophora 种: 果蝇 分布区域: 全球温带及热带气候区 2)、果蝇的生态学特性果蝇又称小果蝇(Drosophilidae 科,Drosophila 属),英文全名 fruit fly 。

它和危害农作物的果实蝇(Trypetidae 科,Bactocera 属)不同,果实蝇危害瓜果类果实非常严重,是农业技术上的一大隐忧.刚形成的蛹呈微黄色,之后颜色逐渐加深,羽化前呈深褐色。

果蝇类昆虫在自然条件下大多数以腐烂的瓜果等为食,可为害多种瓜果蔬菜及许多植物的多汁器官,甚至连甜酒也成为取食对象n]。

研究表明,果蝇具有强烈的趋化性,嗅到水果发出的气味就会飞来取食、交尾和产卵[7]。

果蝇对不同水果嗜好程度有差异,该试验表明,黑腹果蝇对几种水果嗜好性顺序依次是葡萄、苹果、香蕉、桃、梨。

单因子杂交实验

单因子杂交实验

单因⼦杂交实验单因⼦杂交实验⼀、实验⽬的通过野⽣型果蝇与⿊体果蝇的杂交(正交和反交)来观察其所得的F1的性状和F2中两种果蝇所占的⽐例。

⼆、实验原理纯种的野⽣型果蝇与纯种的⿊体果蝇杂交,由于野⽣型果蝇的性状全部为显性,所以杂交所得的F1全部表现为野⽣型的性状。

再将F1⾃交,所得的F2中显性⽐隐性的⽐例应该为3:1故野⽣型:⿊体为3:1。

三、实验器材及动物经过消毒灭菌已经装⼊培养基的果蝇培养管若⼲只。

纯种的野⽣型雌雄果蝇和纯种的⿊体雌雄果蝇若⼲只。

⽑笔,⿇醉瓶,⼄醚,镊⼦,恒温培养箱。

四、实验步骤1、从⽼师那⾥分别取⼏只纯种的野⽣型果蝇和⿊体果蝇(保证有雌有雄),分别将其装⼊不同的培养瓶后贴上标签。

放⼊恒温培养箱培养。

2、⼀星期以后,从培养箱中拿出瓶⼦,观察到培养瓶中有⾜够多的蛹后⽤⿇醉瓶加⼊⼄醚将其亲本除去。

3、将除了亲本的两个瓶⼦和两个装了培养基的空瓶⼦带回寝室收集野⽣型和⿊体的处⼥蝇,收集到后贴上标签。

(处⼥蝇必须在果蝇出⽣的12⼩时之内收集,判断果蝇的雌雄是背部有5条杆的是雌性,有3条杆的为雄性且其最后⼀条⿊⾊很粗)4、⽤⿇醉瓶将源培养瓶中的果蝇全部⿇晕,从中找出雄果蝇。

将⿊体雄果蝇放⼊野⽣型处⼥蝇瓶中,将野⽣型雄果蝇放⼊⿊体处⼥蝇的瓶中。

贴好标签,放⼊培养箱。

5、⼀周以后,将培养瓶从培养箱中取出,观察其中有⾜够多的蛹后,⽤⿇醉瓶加⼄醚将亲本处死。

再将培养瓶放⼊培养箱中继续培养。

6、⼀周以后,将培养瓶再次从培养箱中拿出,将⾜够多的F1转移到⼀个新的培养瓶中,贴上标签,放回培养箱中继续培养。

7、⼀周以后,将培养瓶再次从培养箱中取出,观察到有⾜够多的蛹以后,⽤⿇醉瓶加⼊⼄醚,将F1处死,在标签上注明F1已清后,将培养瓶放回去继续培养。

将处死的F1制⽚放在显微镜下观察其性状。

8、⼀周以后,将培养瓶从培养箱中取出,将所有的果蝇处死后,分辨出果蝇的雌雄以及是⿊体或者野⽣型,并数出每⼀种的个数。

9、如果⼀次数的所有果蝇不超过100个,则将培养瓶继续培养⼀周后,再数出各种果蝇的个数,与上⼀次所得相加。

杂交实验和常用符号.

杂交实验和常用符号.

AA AA:Aa=1:1
Aa AA :Aa: aa=1:2:1
A a :aa=1:1 aa
后代表现型
显性 显性 显性 显性:隐性=3:1 显性:隐性=1:1 隐性
确定显、隐性关系
F1的数量要足够多,且表现型相同,为 其中一个亲本的性状
1、具有相对性状的个体杂交,F1表现出的那个性状为显性
红ⅹ白 红
自 交 基因型相同的生物体间相互交配,植物体中指自花受粉
和雌雄异花的同株受粉。自交是获得纯系的有效方法
测 交 让杂种第一代与隐性个体相交,来测定F1的基因型
回 交 F1与亲本类型相交
(自交也可以)
不同性状的个体杂交,若甲♀ⅹ乙♂为正交,
正 交 与 反 交 则甲♂ ⅹ乙♀就为反交
关于基因、性状的概念及其相互关系
杂交实验和常用符号 P :亲本
♀ :母本 ♂ :父本
× :杂交 × :自交 F1 :子一代 F2 :子二代
1基本概念
基因类 个体类
等位基因
控制相对性状的基因 。用同一个英语字母 的大小写表示
显性基因 控制显性性状的基因。
隐性基因 控制隐性性状的基因。
表现型
是指生物个体所表现出来的性状 。是一定的 基因在特定环境条件下的表现。
F2 1/3TT 2/3(1TT : 2Tt :1 tt)
↓ 筛选
↓×
3/5TT : 2/5Tt
(¼+2/4*1/4+ 2/4*1/4 *1/4)TT : 2/4*2/4*2/4Tt : (¼+2/4*1/4+ 2/4*1/4 *1/4) tt
: 连续自交,筛选,直到
: 不再发生性状分离
Tt自交N次后,杂合子Tt占总数的(1/2)N, 纯合子占1—(1/2)N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单因子杂交实验
一、实验目的
通过野生型果蝇与黑体果蝇的杂交(正交和反交)来观察其所得的F1的性状和F2中两种果蝇所占的比例。

二、实验原理
纯种的野生型果蝇与纯种的黑体果蝇杂交,由于野生型果蝇的性状全部为显性,所以杂交所得的F1全部表现为野生型的性状。

再将F1自交,所得的F2中显性比隐性的比例应该为3:1故野生型:黑体为3:1。

三、实验器材及动物
经过消毒灭菌已经装入培养基的果蝇培养管若干只。

纯种的野生型雌雄果蝇和纯种的黑体雌雄果蝇若干只。

毛笔,麻醉瓶,乙醚,镊子,恒温培养箱。

四、实验步骤
1、从老师那里分别取几只纯种的野生型果蝇和黑体果蝇(保证有雌有雄),
分别将其装入不同的培养瓶后贴上标签。

放入恒温培养箱培养。

2、一星期以后,从培养箱中拿出瓶子,观察到培养瓶中有足够多的蛹后用
麻醉瓶加入乙醚将其亲本除去。

3、将除了亲本的两个瓶子和两个装了培养基的空瓶子带回寝室收集野生型
和黑体的处女蝇,收集到后贴上标签。

(处女蝇必须在果蝇出生的12小时之内收集,判断果蝇的雌雄是背部有5条杆的是雌性,有3条杆的为雄性且其最后一条黑色很粗)
4、用麻醉瓶将源培养瓶中的果蝇全部麻晕,从中找出雄果蝇。

将黑体雄果
蝇放入野生型处女蝇瓶中,将野生型雄果蝇放入黑体处女蝇的瓶中。

贴好标签,放入培养箱。

5、一周以后,将培养瓶从培养箱中取出,观察其中有足够多的蛹后,用麻
醉瓶加乙醚将亲本处死。

再将培养瓶放入培养箱中继续培养。

6、一周以后,将培养瓶再次从培养箱中拿出,将足够多的F1转移到一个新
的培养瓶中,贴上标签,放回培养箱中继续培养。

7、一周以后,将培养瓶再次从培养箱中取出,观察到有足够多的蛹以后,
用麻醉瓶加入乙醚,将F1处死,在标签上注明F1已清后,将培养瓶放回去继续培养。

将处死的F1制片放在显微镜下观察其性状。

8、一周以后,将培养瓶从培养箱中取出,将所有的果蝇处死后,分辨出果
蝇的雌雄以及是黑体或者野生型,并数出每一种的个数。

9、如果一次数的所有果蝇不超过100个,则将培养瓶继续培养一周后,再
数出各种果蝇的个数,与上一次所得相加。

五、实验数据记录
正交:野生型总比黑体总=3:1
野生型雌比黑体雌=3:1
野生型雄比黑体雄=3:1
野生型雌比野生型雄=1:1
黑体雌比黑体雄=1:1
反交:野生型总比黑体总=3:1
野生型雌比黑体雌=3:1
野生型雄比黑体雄=3:1
野生型雌比野生型雄=1:1
黑体雌比黑体雄=1:1
六、实验结果
F1所得的所有果蝇的性状都与野生型果蝇的一致。

F2中的正交与反交的野生型与黑体的比例都接近3:1
F2中的正交与反交的野生型雌雄之间比例接近1:1.黑体也是。

七、实验注意事项
1、所用的培养管都是杀菌消毒后倒入培养基备用的,且应保证用于培养果
蝇时无污染。

2、收集处女蝇时必须在雌蝇出生的12小时之内,若超出了12小时,则将
培养瓶中的果蝇全部处死后重新收集。

3、可以多收集几只处女蝇,但必须保证都为处女蝇,在放入雄蝇时也可多
放入几只,以免出现果蝇不孕或果蝇死亡的突发状况。

4、在清除F1时必须要清除干净,瓶中已经死亡粘在培养基上的死果蝇也要
处理掉,以免在F2计数时分不清楚。

5、F2计数时总数必须要超过100只,防止因为数量过小而出现某些偶然情
况。

相关文档
最新文档