2018年崇明区初三数学二模试卷及参考答案评分标准

合集下载

上海市崇明区2018届九年级上学期期末调研测试数学试题(解析版)

上海市崇明区2018届九年级上学期期末调研测试数学试题(解析版)

上海市崇明区2018届九年级上学期期末调研测试数学试题一、选择题:(本大题共6题,每题4分,满分24分)1. 在中,,,,那么的值是()A. B. C. D.【答案】A【解析】试题解析:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴tanA=.故选A.2. 抛物线的顶点坐标是()A. B. C. D.【答案】D【解析】试题解析:∵抛物线的解析式为:y=2(x+3)2-4,∴其顶点坐标为:(-3,-4).故选D.3. 如图,在中,点D,E分别在边AB,AC上,.已知,,那么EC的长是()A. 4.5B. 8C. 10.5D. 14【答案】B【解析】试题解析:∵DE∥BC.∴,而AE=6,,∴,∴EC=8,故选B.4. 如图,在平行四边形ABCD中,点E在边DC上,,联结AE交BD于点F,那么的面积与的面积之比为()A. B. C. D.【答案】B【解析】试题解析:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.5. 如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】D【解析】分析:根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.解答:解:∵两圆半径之差=8-5=3=圆心距8,∴两个圆的位置关系是内切,故选D.点评:本题考查了由两圆位置关系的知识点,利用了两圆内切时,圆心距等于两圆半径的差求解.6. 如图,在中,,,,和的平分线相交于点E,过点E作交于点F,那么EF的长为()A. B. C. D.【答案】C【解析】试题解析:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6-x、CG=CH=8-x,∵AC==10,∴6-x+8-x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴,即,解得:DF=,则EF=DF-DE=-2=,故选C.二、填空题:(本大题共12题,每题4分,满分48分)7. 已知,那么__________.【答案】【解析】试题解析:∵2x=3y,∴,∴.故答案为:.8. 计算:_________.【答案】【解析】试题解析:==.故答案为:.9. 如果一幅地图的比例尺为,那么实际距离是km的两地在地图上的图距是_________cm.【答案】6【解析】试题解析:根据题意得,∴图上距离=6cm.故答案是6.10. 如果抛物线有最高点,那么a的取值范围是________.【答案】【解析】试题解析:∵抛物线有最高点,∴a+1<0,即a<-1.故答案为a<-1.11. 抛物线向左平移2个单位长度,得到新抛物线的表达式为_________.【答案】【解析】试题解析:∵二次函数解析式为y=2x2+4,∴顶点坐标(0,4)向左平移2个单位得到的点是(-2,4),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+4,故答案为:y=2(x+2)2+4.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.............. ..........................【答案】>【解析】试题解析:由抛物线得,a=2>0,∴a=2>0,有最小值为5,∴抛物线开口向上,∵抛物线y=2(x-3)2+5对称轴为直线x=3,∵,∴y1>y2.故填>.13. 在中,,,垂足为点D,如果,,那么AD的长度为________.【答案】4.8【解析】试题解析:∵∠BAC=90°,AB=8,AC=6,∴BC==10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.14. 已知是等边三角形,边长为3,G是三角形的重心,那么G A的长度为___________.【答案】【解析】试题解析:∵△ABC是等边三角形,AB=,∴AD=,∵点G是△ABC的重心,∴AG=AD=.故答案为.15. 正八边形的中心角的度数为__________度.【答案】45【解析】试题解析:正八边形的中心角等于360°÷8=45°;故答案为:45°.16. 如图,一个斜坡长m,坡顶离水平地面的距离为m,那么这个斜坡的坡度为_________.【答案】1:2.4【解析】试题解析:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,∴AC==120m,∴tan∠BAC=.17. 如图,在正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是,点C的坐标是,那么这条圆弧所在圆的圆心坐标是___________.【答案】【解析】试题解析:如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,即圆心的坐标是(-1,1),18. 如图,在中,,点D, E分别在上,且,将沿DE折叠,点C 恰好落在AB边上的点F处,如果,,那么CD的长为__________.【答案】【解析】试题解析:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=.故答案为:.三、解答题:(本大题共7题,满分78分)19. 计算:【答案】【解析】试题分析:把各特殊角的三角函数值代入原式进行计算即可.试题解析:原式=20. 如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.【答案】(1);(2)【解析】试题分析:(1)由BE平分∠ABC交AC于点E,ED∥BC,可证得BD=DE,,从而可求出结论;(2)由,得.故又与同向,所以,由,得,因此试题解析:(1)∵平分,∴.∵,∴.∴.∴.∵,∴.又∵,,∴,∴,∴.(2)∵,∴.∴又∵与同向∴∵,∴∴21. 如图,CD为⊙O的直径,,垂足为点F,,垂足为点E,.(1)求AB的长;(2)求⊙O的半径.【答案】(1)4;(2)【解析】试题分析:(1)由,得,,结合可证.从而AF=CE,故可求得AB的长;(2)由垂径定理得BE=CE,故BE=AB,从而∠A=30°,在直角三角形AFO中即可求出AO的值.试题解析:(1)∵,∴在中∴∴∵,∴∵是的直径,∴∴.(2)∵是的半径,,∴,∵,∴.∵,∴.又∵∴∴即的半径是.22. 如图,港口B位于港口A的南偏东方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行km,到达E处,测得灯塔C在北偏东方向上.这时,E处距离港口A有多远?(参考数据:)【答案】【解析】试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH 中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.试题解析:如图,作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.23. 如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作,垂足为F,BF交边DC于点G.(1)求证:;(2)连接CF,求证:.【答案】见解析【解析】试题分析:(1)结合条件易证,得,由BC=AB可得结论;(2)连接,由(1)得又,故,所以,由=45°可得结论.试题解析:(1)∵四边形是正方形∴,∵∴∴∵∴∴∴∵∴(2)连接∵∴∴又∵∴∴∵四边形是正方形,BD是对角线∴∴24. 如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1);(2);(3)【解析】试题分析:(1)运用待定系数法求解即可;(2)设,得,再由点坐标公式得出方程,求解即可;(3)分两种情况进行讨论即可得解.(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)∵轴,∴设,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)∵,,∴,∴∵∴当与相似时,存在以下两种情况:1°∴解得∴2°∴,解得∴25. 如图,已知中,,,,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.(1)如图1,当时,求EF的长;(2)如图2,当点E在AC边上移动时,的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出....BF的长.【答案】(1);(2)不变;(3)或3或.【解析】试题分析:(1)由已知条件易求DE=3,DF=4,再由勾股定理EF=5;(2)过点作,,垂足分别为点、,由(1)可得DH=3,DG=4;再证,即可得出结论;(3)分三种情况讨论即可.(1)∵,∴∵∴∵是边的中点∴∵∴∴∴∴∵在中,∴∵∴又∵∴四边形是矩形∴∵在中,∴(2)不变过点作,,垂足分别为点、由(1)可得,∵,∴又∵,∴四边形是矩形∴∵∴即又∵∴∴∵∴(3)1°当时,易证,即又∵,D是AB的中点∴∴2°当时,易证∵在中,∴设,则,当时,易证,∴∵∴∴∴∵∴∴解得∴∴3°在BC边上截取BK=BD=5,由勾股定理得出当时,易证∴设,则,∴∵∴∴∴∵∴∴解得∴∴。

2018年崇明区初三数学二模试卷及参考答案评分标准

2018年崇明区初三数学二模试卷及参考答案评分标准

九年级数学共5页第1页2018年崇明区初三数学二模试卷(测试时间:100分钟,满分:150分)考生注意:1 •本试卷含三个大题,共 25题•答题时,考生务必按答题要求在答题纸规定的位置上作答,在 草稿纸、本试卷上答题一律无效.2 •除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算 的主要步骤.3 •考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分)1 . 8的相反数是 ............................................................. (▲)11(A);(B) 8 ;(C); (D) 8 .8 82 •下列计算正确的是 ......................................................... (▲)(A) .2.35 ;(B) a 2a 3a ;(C) (2a)3 2a 3;(D) a 6 a 3 a 2 .3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是 ................................. ( ▲)(A) 15,14 ;(B) 15,15 ;(C) 16,14 ;(D) 16,15 .4 •某美术社团为练习素描,他们第一次用 120元买了若干本相同的画册,第二次用 240元在同这次商家每本优惠 4元,结果比上次多买了 20 本. x 本画册,列方程正确的是 (5 •下列所述图形中,既是轴对称图形又是中心对称图形的是..................... (▲)(A)等边三角形;(B)平行四边形; (C)菱形; (D)正五边形.6 .已知△ ABC 中,D 、E 分别是AB 、AC 边上的点,DE II BC ,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ................................... (▲)“、EG FG(B)EG AE…、EG AG …、EG CF (A)(C)-(D)-GD AGGD ADGD GFGD BF、填空题 (本大题共 12题, 每题 4分,满分 48分)一家商店买与上一次相同的画册, 次买了多少本画册?设第一次买了 求第 (A)120 x240 x 20 240x 20但宀 x 20(D)型x 20 1204 ;x120 , 4•九年级数学共5页第2页27 .因式分解: x 9▲ .x 18.不等式组的解集是 ▲2x 3 x19 .函数y ——的定义域是▲x 2 ----------------10 .方程.x —1 3的解是 ▲.111.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为-,8那么袋子中共有 ▲ 个球.12 .如果关于x 的方程x 2 4x k 0有两个相等的实数根,那么实数k 的值是 ▲.13. 如果将抛物线 y x 2 2x 1向上平移,使它经过点 A (1,3),那么所得新抛物线的表达式是16.如图,正六边形 ABCDEF 的顶点B 、C 分别在正方形 AGHI 的边AG 、GH 上,如果AB 4 ,那么CH 的长为 ▲17 .在矩形 ABCD 中,AB 5 , BC 12,点E 是边AB 上一点(不与 A 、B 重合),以点A 为 圆心,AE为半径作O A ,如果O C 与O A 外切,那么O C 的半径r 的取值范围是▲.18.如图, △ ABC 中, BAC 90 , AB 6 , AC 8,点 D 是 BC 的中点,将 △ ABD 沿 AD翻折得到△ AED ,联结CE ,那么线段CE 的长等于、解答题(本大题共7题,满分78分)▲ .14. 某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作 品,按A, B,C,D 四个等级进行评分,然后 根据统计结果绘制了如下两幅不完整的统 计图,那么此次抽取的作品中等级为 B 的作品数为 ▲.13/ c \t \空L12---1■ iim -4C15.已知梯形 ABCD , AD II BC , BC(用a, b 表示).uuu r ULLT r umr2AD ,如果 AB a , AC b ,那么 DA(第14题图)HCGB(第18题图)19・(本题满分10分)i计算:27 (.3 2)292( 3.14)020.(本题满分10 分)已知圆O的直径AB 12,点C是圆上一点,且ABC 30,点P是弦BC上一动点,过点P作PD OP交圆O于点D .(1)如图1,当PD II AB时,求PD的长;(2)如图2,当BP平分OPD时,求PC的长.22. (本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:T)与摄氏度(单位:C),已知华氏度数y与摄氏度数x之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:摄氏度数x (C)035100华氏度数y (T)3295212(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56 ?23. (本题满分12分,第(1)、(2)小题满分各6 分)解方程组:2 小2x 9y2x 2xy21 .(本题满分10分,第(1)、(2)小题满分各5 分)(第21题图1)(第21题图2)九年级数学共5页第3页如图,AM是△ ABC的中线,点D是线段AM上一点(不与点A重合).DE II AB交BC 于点K , CE II AM,联结AE(1) 求证AB CM .EK CK '(2) 求证BD AE .24. (本题满分12分,第⑴、(2)、(3)小题满分各4分) 已知抛物线经过点A(0,3)、B(4,1)、C(3,0).(1)求抛物线的解析式;(2)联结AC、BC、AB,求BAC的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG点A的上方,且△APG与△ABC相似时,求点P的坐标. AP交y轴于点G,当点G在(第23题图)九年级数学共5页第4页25. (本题满分14分,第(1)小题4分,第⑵ 小题4分,第⑶ 小题6分) 如图,已知△ABC 中,AB 8, BC 10 , AC 12 ,D 是AC 边上一点,且AB2 AD AC , 联结BD,点E、F分别是BC、AC上两点(点E 不与B、C重合),AEF C , AE与BD相交于点G.(1) 求证:BD平分ABC ;(2) 设BE x, CF y,求y与x之间的函数关系式;(3) 联结FG,当A GEF是等腰三角形时,求BE的长度.A(第25题图)A(备用图)九年级数学共5页第5页九年级数学共5页第6页2018年崇明区初三数学二模 参考答案19. (本题满分10分)解:原式 3.3 7 4.3 3 1........................................................................ 8分9 .3............................................................................... 2 分20. (本题满分10分)解:由①得x 3y 0或x 3y 0 ........................................................................ 1分由②得x y 2或x y 2....................................................... 1分3 3解得原方程组的解为2 x2 2 x3 3x 4 3 Y 11 11y 41y 22221 .(本题满分10分,每小题5分)• / DPO / POB 180POB 90 ……1 分又••• / ABC 30 , OB 6OP OB0an3O 2、. 3 ............................................................. 1 分•••在 Rt △ POD 中,PO 2 PD 2 OD 2 ..................................... 1 分 • (2、一3)2 PD 262、选择(本大题共6题,每题4分,满分24分)1. D ;、填空题:2 . B ; 3. B ; 4. A ; 5. C ; (本大题共12题,每题4分,满分48分) 6. D. 7. (x 3)(x 3) ; 8.3v x v 1;11. 24 ; 12. 4 ;15. -a -b ;16・6 2 3;2 2三、解答题:(本大题共7题,满分78分)9. x 2; 13. y x 2x ;17. 8v r v 13;10. x 8 ; 14. 48;18.14 5•••原方程组可化为x 3y 0 x 3y 0x y 2 ' x y2x 3y 0 x 3y 0 x y 2 ' x y2(1)解:联结OD•••直径 AB12•/ PD 丄 OP • OB OD6 .............................................• / DPO 90•/ PD // AB• PD 2,6 ........................................................................(2)过点0作OH丄BC,垂足为H•/ OH 丄BC:丄 OHB / OHP 90•••/ ABC 30 , OB 6••• OH 1OB 3, BH OBgcoS30 3 3 ....................... 2 分2•••在O O 中,OH 丄BC•CH BH 3.3 ........................................................ 1 分1••• BP 平分/ OPD • / BPO / DPO 452•PH OHcpot45 3 .................................................. 1 分•PC CH PH 3 3 3 ........................................... 1 分22. (本题满分10分,每小题5分)(1)解:设y kx b(k 0) ........................................................ 1 分b 32把x 0 , y 32 ; x 35, y 95 代入,得.........1 分35k b 959k解得5 ........................................................................... 2分b 329• y关于x的函数解析式为y x 32 ........................................... 1分59(2)由题意得:9x 32 x 56 ...................................................... 4分5解得x 30 ............................................................ 1分•••在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大5623. (本题满分12分,每小题6分)(1)证明:••• DE // AB•/ ABC / EKC ...................................................................... 1 分•/ CE/ AM九年级数学共5页第7页•/ AMB / ECK ..................................................................... 1 分• △ ABM EKC九年级数学共5页第8页.AB BM"EK CK•/ AM是厶ABC的中线.BM CM ••….AB CMEK CK(2)证明:••• CE// AMDE CMEK CKAB CMEK CKDE AB又••• DE // AB.四边形ABDE是平行四边形BD AE24. (本题满分12分,每小题4分)16a 4b c 1,将A( 0,3)、B( 4,1)、C( 3,0 )代入,得9a 3b c 0, c 3.1 a25解得b - ....... 2分2c 3所以,这个二次函数的解犀析式为y1 2 5 ox x 322(2) ••• A ( 0,3)、 B ( 4 ,1 )、C(3,0) ••• AC 3,2,BC 2 , AB 2.5• AC2BC2AB2•••/ ACB 901分1分1分2分2分解:(1)设所求二次函数的解析式为2y ax bx c(a 0),九年级数学共5页第9页九年级数学共5页第10页BC •- tan / BAC -AC.2 3.2(3)过点P 作PH 丄y 轴, 垂足为设 P (x,-x 225x 3),则 H 2咼22x 3)••• A ( 0,3)• AH -x2252x ,PH x•/ / ACB / APG 90•••当厶APG 与厶ABC 相似时,存在以下两种可能:1° / PAG / CAB则 tan / PAG tan / CAB -3加PH1x1即—AH 31 2 5 3 x x2 2解得x -12° / PAG / ABC则tan / PAG tan / ABC 3PH AH解得x 1725.(满分14分,第(1)小题4: 分,第(2)小题4分,第(3)小题6分)(1)v AB8, AC 122又••• AB ADgAC1616 20• AD二 CD 12 .................................................• 1分33 3AD AB••• AB 2ADgACAB AC又••• / BAC 是公共角• △ ADB ^A ABC .................................1分•••/ ABD / C , BD 如BC AB•点P 的坐标为(11,36)•点P 的坐标为(字)3 91分九年级数学共5页第11页:丄 ABD / DBC ••• BD 平分/ ABC (2)过点A 作AH // BC 交BD 的延长线于点 H GE BE 2 x 21 ° GE GF 易证 EF CF 3 ,即 ,得到BE y 3 4 …...... 2分 2 °EG EF 易证 BE CF , 即x y , BE 5 105.... 2分 3 °FG FE 易证 GE BE 3 即--BE 3 89… ..... 2分EF CF 2, y 2:• BD 20 ~3 BD CD •••/ DBC / CAD DH AH 16~3 4 DC BD BC 20 5 320 BD CD - ,AH 8 ••• AD 3 AH // BC • AH HG BE BG / BEF /C /EFC 即 / BEA 16 DH — 3 • BH 12…… 1分 8 12 BG 12x • ...1 分x BG x 8:丄 BEA / EFC 又••• / DBC / C12x • BE BG x x 8"CF EC y 10 xx 2 2x 80y 12(3)当厶GEF 是等腰三角形时, 存在以卜三种情况: •/ AH // BC •••/ AEF / C / AEF / C / EFC 1分 • △ BEG sACFE。

2018年上海市崇明区中考数学二模试卷含答案

2018年上海市崇明区中考数学二模试卷含答案

专业整理2018年崇明区初三数学二模试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A)=;(B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.专业整理6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 二、填空题(本大题共12题,每题4分,满分48分)7.因式分解:29x -= ▲ .8.不等式组1023x x x -<⎧⎨+>⎩的解集是 ▲ .9.函数12y x =-的定义域是 ▲ . 103的解是 ▲ .11.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 ▲ 个球.12.如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 ▲ . 13.如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是▲ .14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,A B C D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为 ▲ .15.已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =,AC b =,那么DA = ▲ . (用,a b 表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A为(第14题图)专业整理圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ . 18.如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD翻折得到AED △,联结CE ,那么线段CE 的长等于 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分)12022)9( 3.14)π-+--20.(本题满分10分)解方程组:22229024x y x xy y ⎧-=⎪⎨-+=⎪⎩21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.(第16题图)H DCIFA GE (第18题图)DCBAE (第21题图1) ABOPCD(第21题图2)OABDPC专业整理22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y 关于x 的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CM EK CK=; (2)求证:BD AE =.(第23题图)ABK MCDE专业整理24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.专业整理25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.(第25题图)A BCDGEF(备用图)ABCD专业整理2018年崇明区初三数学二模参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 二、填空题:(本大题共12题,每题4分,满分48分)7.(3)(3)x x +-; 8.31x -<<; 9.2x ≠; 10.8x =;11.24; 12.4-; 13.22y x x =+; 14.48;15.1122a b -; 16.6-; 17.813r <<; 18.145. 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式731=--……………………………………………………8分9= …………………………………………………………………2分 20.(本题满分10分)解:由①得30x y +=或30x y -= ………………………………………………1分专业整理由②得2x y -=或2x y -=- ………………………………………………1分 ∴原方程组可化为302x y x y +=⎧⎨-=⎩,302x y x y +=⎧⎨-=-⎩,302x y x y -=⎧⎨-=⎩,302x y x y -=⎧⎨-=-⎩……4分 解得原方程组的解为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ ………4分21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒=………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分专业整理∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩ ……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分(2)由题意得:932565x x +=+ ………………………………………………4分解得30x = …………………………………………………1分∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大5623.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分专业整理∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,1)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,1)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分专业整理∴13BC tan BAC AC ===∠ ……………………………………………2分 (3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能:1° PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分 ∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39 ……………………………………………………1分 25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(1)∵8AB =,12AC = 又∵2AB AD AC =∴163AD = ∴16201233CD =-= ……………………………1分 ∵2AB AD AC = ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分专业整理 ∴ABD C =∠∠,BD AD BC AB= ∴203BD = ∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分(2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128x BG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分 ∴BE BG CF EC= ∴12810xx x y x +=- ∴228012x x y -++= …………………………………………………………1分 (3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证 23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =- …………2分 3° FG FE = 易证32GE BE EF CF == ,即32x y =3BE =-+ ………2分。

[K12配套]上海市崇明区2018年中考数学二模试卷及答案

[K12配套]上海市崇明区2018年中考数学二模试卷及答案

配套学习资料K12页脚内容2018年崇明区初三数学二模试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A);(B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x-=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 二、填空题(本大题共12题,每题4分,满分48分)配套学习资料K12页脚内容7.因式分解:29x -= ▲ .8.不等式组1023x x x -<⎧⎨+>⎩的解集是 ▲ .9.函数12y x =-的定义域是 ▲ . 103=的解是 ▲ .11.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 ▲ 个球.12.如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 ▲ . 13.如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是▲ .14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,A B C D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为 ▲ .15.已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =,AC b =,那么DA = ▲ . (用,a b 表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ . 18.如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD翻折得到AED △,联结CE ,那么线段CE 的长等于 ▲ .三、解答题(本大题共7题,满分78分)(第14题图)(第16题图)H DCIFB AGE (第18题图)DCBAE19.(本题满分10分)12022)9( 3.14)π-+--20.(本题满分10分)解方程组:22229024x yx xy y⎧-=⎪⎨-+=⎪⎩21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O的直径12AB=,点C是圆上一点,且30ABC∠=︒,点P是弦BC上一动点,过点P作PD OP⊥交圆O于点D.(1)如图1,当PD AB∥时,求PD的长;(2)如图2,当BP平分OPD∠时,求PC的长.22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y与摄氏度数x之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?(第21题图1)A BOPCD(第21题图2)OA BDPC配套学习资料K12页脚内容配套学习资料K12页脚内容23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CM EK CK=; (2)求证:BD AE =.24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.(第23题图)ABK MCDE配套学习资料K12页脚内容25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.(第25题图)A BCDG EF (备用图)A BCD配套学习资料K12页脚内容2018年崇明区初三数学二模参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 二、填空题:(本大题共12题,每题4分,满分48分)7.(3)(3)x x +-; 8.31x -<<; 9.2x ≠; 10.8x =;11.24; 12.4-; 13.22y x x =+; 14.48;15.1122a b -; 16.6-; 17.813r <<; 18.145. 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式731=--……………………………………………………8分9= …………………………………………………………………2分 20.(本题满分10分)解:由①得30x y +=或30x y -= ………………………………………………1分由②得2x y -=或2x y -=- ………………………………………………1分∴原方程组可化为302x y x y +=⎧⎨-=⎩,302x y x y +=⎧⎨-=-⎩,302x y x y -=⎧⎨-=⎩,302x y x y -=⎧⎨-=-⎩……4分 解得原方程组的解为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ ………4分21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒=………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分配套学习资料K12页脚内容(2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩ ……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分(2)由题意得:932565x x +=+ ………………………………………………4分解得30x = …………………………………………………1分∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56 23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分配套学习资料K12页脚内容∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,1)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,1)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分配套学习资料K12页脚内容∴13BC tan BAC AC ===∠ ……………………………………………2分 (3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能: 1° P A GC A B =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分 ∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39……………………………………………………1分 25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) (1)∵8AB =,12AC = 又∵2AB AD AC = ∴163AD =∴16201233CD =-= ……………………………1分∵2AB AD AC = ∴AD ABAB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB=配套学习资料K12页脚内容∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分 ∴BE BG CF EC= ∴12810xxx y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =- …………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =- ………2分。

上海市崇明区2018-2019学年九年级第二学期质量调研中考二模数学试题 带详解

上海市崇明区2018-2019学年九年级第二学期质量调研中考二模数学试题 带详解
(1)联结OE,若 ,求证: ;
(2)若 且 ,求证: .
24.如图,抛物线 交x轴于点 和点B,交y轴于点 .
(1)求抛物线的解析式;
(2)在抛物线上找出点P,使 ,求点P的坐标;
(3)将直线AC沿x轴的正方向平移,平移后的直线交y轴于点M,交抛物线于点N.当四边形ACMN为等腰梯形时,求点M、N的坐标.
C.这组数据的平均数是5,中位数是6D.这组数据的平均数是5,中位数是7
4.直线 不经过()
A 第一象限B.第二象限C.第三象限D.第四象限
5.下列命题中,真命题是()
A.对角线相等 四边形是等腰梯形
B.两个相邻的内角相等的梯形是等腰梯形
C.一组对边平行,另一组对边相等的四边形是等腰梯形
D.平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形
分组(分)
40~50
50~60
60~70
70~80
80~90
90~100
频数
12
18
180
频率
0.16
0.04
根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是__________.
15.如图,在 中,D、E分别在边AB、AC上, , , , ,那么 用 、 表示为: ___.
16.如图,在 中,点C为弧AB的中点,OC交弦AB于D,如果 , ,那么OD的长为___.
(3)当 为等腰三角形时,直接写出线段BF的长.
崇明区2018学年第二学期教学质量调研测试卷九年级数学
一、选择题(本大题共6题,每题4分,满分24分)
1.下列计算中,正确的是()】
根据任何非零数的零次幂等于1,负整数指数幂等于正整数指数幂的倒数以及负分数指数幂的运算法则对各选项分析判断后利用排除法求解.

上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析

上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析

上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 图4DCB 图4DCBAH设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x ∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BEADB第21题图∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.(第21题图1)A BOP CD (第21题图2)OABDPC21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值;(2) 求BF CF的值.21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABCD EF(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643⨯=,AH=————————————(2分)则BC=8,所以△ABC面积=182⨯=——————————————(1分)(2)过D作BC的平行线交AH于点F,———————————————(1分)由AD∶DB=1∶2,得AD∶AB=1∶3,则31CE CH BH ABDE DF DF AD====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F.A DF(2)如果BE∶EC=2∶1,求∠CDF的余切值.21.解:(1)∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠DAF=∠AEB,……………………………………………………………………(1分)∵AE=BC,DF⊥AE,∴AD=AE,∠AFD=∠EBA=90°,………………………(2分)∴△ADF≌△EAB,∴AF=EB,………………………………………………………(2分)(2)设BE=2k,EC=k,则AD=BC=AE=3k,AF=BE=2k,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,DF∴cot∠CDF=cot∠DAF=AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区第21题图21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x=-+的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC = 90o,1 tan2ABC∠=(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点MC位于直线AB的同侧,使得ABCABMSS∆∆=2求点M的坐标.21.解:(1)令0y=,则240x-+=,解得:2x=,∴点A坐标是(2,0).令0x=,则4y=,∴点B坐标是(0,4).………………………(1分)∴AB==.………………………………(1分)∵90BAC∠=,1tan2ABC∠=,∴AC过C点作CD⊥x轴于点D,易得OBA DAC∆∆∽.…………………(1分)∴2AD=,1CD=,∴点C坐标是(4,1).………………………(1分)(2)11522ABCS AB AC∆=⋅=⨯=.………………………………(1分)∵2ABM ABCS S∆∆=,∴52ABMS∆=.……………………………………(1分)∵(1M,)m,∴点M在直线1x=上;令直线1x=与线段AB交于点E,2ME m=-;……………………(1分)分别过点A、B作直线1x=的垂线,垂足分别是点F、G,∴AF+BG = OA = 2;……………………………………………………(1分)(第21题图)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值.21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ···································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE .······························· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··························································· (2分) ∴3=DE . ····································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ············································· (1分)同理得5=BD . ····························································································· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ······················ (1分)ABCDE 图7∴53=CD . ····································································································· (1分)∴102cos ==∠AD CD CDA . ··········································································· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长;(2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ························································ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························································································ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ······················································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ··························································································· (1分) ∴43=x . ··································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ······················································· (1分)∵BD=2DE ,ED A图5∴2==ABD ADES BDSDE, ··············································································· (3分) ∴1015323=⨯=ADES. ·············································································· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6(第21题图)DA∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC =…………………2分 ∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用 尺规作图的方法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。

2019.4崇明数学答案

2019.4崇明数学答案

6 2 2 2 ⎩ ⎩崇明区 2018 学年第二学期教学质量调研测试卷九年级数学答案一、选择题(本大题共 6 题,每题 4 分,满分 24 分)1.A ;2.B ;3.C ;4.C ;5.D ;6.B ;二、填空题(本大题共 12 题,每题 4 分,满分 48 分)7.±2 8.4a 2; 9.-1,0,1;21 10. ; 4 11.x = 15; 1 12. ; 213.m < -1; 14.1620; 15. m + 3n ; 16. 3; 17. 3+1; 18. + .三、解答题(本大题共 7 题,满分 78 分)19.(本题满分 10 分)解:原式= 2(a +1) ⨯ 1 -a -1…………………………………………………(2 分) (a -1) a +1 (a -1)2= 2 - a -1 1 a -1 ……………………………………………………………(2 分) = 1 a -1. …………………………………………………………………(2 分) 把 a = 代入上式,原式= 1 2 -1……………………………………………………………………(2 分)= +1. ……………………………………………………………………(2 分)20.(本题满分 10 分)解:由②得: (x + 2 y )(x - y ) = 0…………………………………………………(2分)所以 x + 2 y = 0或x - y = 0…………………………………………………(2 分)⎧x + y = 4 ⎧x + y = 4 所以⎨x + 2 y = 0 或⎨x - y = 0 …………………………………………………(2 分)所以原方程组的解为⎧x 1 = 8, ⎧x 2 = 2 ……………………………………(4 分)⎨ y = - ⎨ = 2⎩ 1 4 ⎩y 2 313 3 2 3 2 + 3⎨⎨21.(本题满分 10 分,每小题满分各 5 分)解:(1)过 A 作 AH ⊥BC ,垂足为 H ………………………………………………… (1 分)∵AB=6, ∠B = 30︒ ,AH ⊥BC∴AH =3 ………………………………………………………………………(1 分) 3 ∵ t an ∠ACB =2∴CH =2…………………………………………………………………………(1 分)∴ AC == ……………………………………………………(2 分)1(2)由翻折得: BD =BD AB = 3,AE=BE ,∠BDE = 90︒ 2 3∵ c os B = ∴ BE= ∴ BE = 2 2 BE …………………………(1 分)∴ AE = 2 …………………………………………………………………(1 分)∴ EH = ………………………………………………………………… (1 分)∴BE= = 4 3 - 6 EC……………………………………………… (2 分)22.(本题满分 10 分,每小题满分各 5 分)解:(1)设乙队在 2≤x ≤6 的时段内 y 与 x 之间的函数关系式为:y =kx +b (k ≠0), …………………………………………………………… (1 分)由图 6 可知,函数图像过点(2,30)、(6,50),⎧2k + b = 30得: ⎩6k + b = 50 ⎧k = 5 ………………………………………………………… (1 分) 解得 ⎩b = 20………………………………………………………………(2 分)∴ y =5x +20. ………………………………………………………………(1 分)(2)由图 6 可知,甲队施工速度是:60÷6=10(米/时).…………………………(1 分)设甲队从开始到完工所铺设彩色道砖的长度为 z 米 …………………………(1 分) 由题意得: z - 60 = z - 50 . 1012………………………………………………………(2 分解得: z =110. …………………………………………………………(1 分)答:甲队从开始到完工所铺设彩色道砖的长度为 110 米.32 + 22 3 3 3= = ⎨ ⎩23.(本题满分 12 分,每小题满分各 6 分)证明(1)∵ ∠ABD = 90︒ , DE ⊥ BC∴ AB / / DE ………………………………………………………………(1 分)AO BO∴ = ………………………………………………………………(2 分) OF OD ∵ BE = AO EC OF AO BE ∴ ……… ………………………………………………………(2 分) OF EC∴ OE / /CD …………………………………………………………………(1 分) (2)∵ AD // BC , AB / / DE ,∴四边形 ABED 为平行四边形又∵ ∠ABD = 90︒∴四边形 ABED 为矩形 ……………………………………………………(1 分) ∴ AD = BE , ∠ADE = 90︒ 又∵ BD ⊥ CD∴ ∠BDC = ∠BDE + ∠CDE = 90︒∠ADE = ∠ADB + ∠BDE = 90︒∴ ∠CDE = ∠ADB AD = CD ∴ ∠DAC = ∠DCA…………………………………………………………(1 分)∴ ∆ADO ≅ ∆CDF (A .S .A )…………………………………………………(1 分) ∴ OD = DFAB // DEAF BE AD ∴ = = …………………………………………………………(1 分) AC BC BC ∵ A D // BC∴ AD = OD =BC BO DF …………………………………………………………(1 分) BO AF DF ∴ …………………………………………………………………(1 分) AC OB24.(本题满分 12 分,每小题满分各 4 分)解:(1)∵抛物线 y = x 2+ bx + c⎧0 = 1+ b + c过点 A (1,0)、C (0,3)∴ ⎩3 = c ⎧b = -4 解得 ⎨c = 3 ………………………………………………………………(2 分) ……………………………………………………………(1 分)10 ∴抛物线的解析式为 y = x 2- 4x + 3(2)过 P 作 PH ⊥ OC ,垂足为 H∵PO =OC , PH ⊥ OC 3 ………………………………………(1 分)∴CH =OH =………………………………………………………………(1 分)2∴ x 2- 4x + 3 = 3……………………………………………………………(1 分)2∴ x = 2 ±………………………………………………………………(1 分)2P (2 + 3 , )或P (2- 3, )………………………………………………(1 分)2 2 2 2(3)连接 NA 并延长交 OC 于 G∵四边形 ACMN 为等腰梯形,且 AC ∥MN∴∠ANM =∠CMN ,∠ANM =∠GAC ,∠GCA =∠CMN∴∠GAC =∠GCA ,∴GA =GC 设 GA =x ,则 GC =x ,OG =3-x 在 Rt △OGA 中,OA 2+OG 2=AG 2∴12+(3-x )2=x 2,解得 x = 53∴OG =3-x = 4 ,∴G (0,4)3 3易得直线 AG 的解析式为 y =- 4 x + 43 3令- 4 x + 4 =x 2-4x +3,解得 x 1=1(舍去),x 2= 53 3 3 ∴N ( 5 ,- 8)………………………………………………………………(2 分)3 9∴CM =AN = (1- 5 )2+( 8 )2 = 103 9 9 ∴OM =OC +CM =3+ 10 = 379 9∴M (0,37)…………………………………………………………………(2 分)9∴存在 M (0,37)、N ( 5 ,- 8)使四边形 ACMN 为等腰梯形9 3 910 10 yM C G OA BxN5 25.(本题满分 14 分,其中第(1)、(2)小题满分各 4 分,第(3)小题满分6 分)解:(1)∵梯形 ABCD 中,AD ∥BC ,AB =DC∴∠B =∠C∵∠EFC =∠B +∠BEF ==∠EFG +∠GFC ,∠EFG =∠B∴∠GFC =∠FEB ……………………………………………………………(1 分) ∴△EBF ∽△FCG ……………………………………………………………(1 分)∴ EB = BF ,∴ 2 =x………………………………………………(1 分) FC CG12 - x y∴ y = - 1x 2 + 6x ………………………………………………………………(1 分)2自变量 x 的取值范围为: 0 < x ≤ 6 - 2 5或6 + 2 ≤ x < 12 ……………(1 分)(2)当0 < x < 12时,无论点G 在线段CD 上,还是在CD 的延长线上,都有y = - 1x 2 + 6x2①当⊙B 与⊙C 外切时, BF +CG =BC∴ x - 1 x 2 + 6x = 12 ,解得 x =2 或 x =12(舍去) ………………………(2 分)2 ②当⊙B 与⊙C 内切时, CG -BF =BC∴ - 1x 2 + 6x - x = 12 ,解得 x =4 或 x =6 ……… …… ……………………(2 分)2 综上所述,当⊙B 与⊙C 相切时,线段 BF 的长为:2 或 4 或 6(3)当△FCG 为等腰三角形时,线段 BF 的长为: 5 或 2 或 12………………(6 分)3 5。

上海市崇明区2018届九年级上期末调研测试数学试题含答案

上海市崇明区2018届九年级上期末调研测试数学试题含答案

东 45 方向上.这时,E 处距离港口 A 有多远? (参考数据: sin 37 0.60, cos37 0.80, tan 37 0.75 )
A
北 东
37°
C
45°
E
D
B
(第 22 题图)
23.(本题满分 12 分,每小题各 6 分)
如图,点 E 是正方形 ABCD 的边 BC 延长线上一点,联结 DE,过顶点 B 作 BF DE ,垂足为
又∵ AD 5 , BD 4 ∴ AB 9
∴ 4 5 BC 9
∴ BC 36 ………………………………………2 分 5
(2)∵ ED∥BC
∴ DE AD = 5 BC AB 9
∴ BC 9 DE 5
…………………………………………………………1 分
uuur uuur 又∵ ED 与 CB 同向
∵∠A∠HC D 90
∴ CH∥BD ∴ AH AC …………2 分 DH BC
∵ C 点是 AB 边的中点 ∴ AC BC ∴ AH DH …………1 分
∴ 4 x x 5 解得 x 15 ………………………………………………1 分 3
∴ AE 4 x x 20 15 35km ………………………………………1 分 3
M 与点 A 不重合),过点 M 作垂直于 x 轴的直线与直线 AB 和抛物线分别交于点 P、N. (1)求直线 AB 的解析式和抛物线的解析式; (2)如果点 P 是 MN 的中点,那么求此时点 N 的坐标; (3)如果以 B,P,N 为顶点的三角形与 △APM 相似,求点 M 的坐标.
y
y
N
B
B
已知 AD 5 , BD 4 .

2018上海市崇明区初三数学二模数学试卷(含答案)

2018上海市崇明区初三数学二模数学试卷(含答案)

2018上海市崇明区初三二模数学试卷2018.04一. 选择题1. 8的相反数是( )A. 18B. 8C. 18- D. 8-2. 下列计算正确的是( )A.B. 23a a a +=C. 33(2)2a a =D. 632a a a ÷=3. 今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是( )A. 15、14B. 15、15C. 16、14D. 16、154. 某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是( ) A. 120240420x x -=+ B. 240120420x x -=+ C.120240420x x -=- D. 240120420x x-=- 5. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 菱形D. 正五边形 6. 已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是( ) A. EG FG GD AG = B. EG AE GD AD = C. EG AG GD GF = D. EG CFGD BF=二. 填空题7. 因式分解:29x -=8. 不等式组1023x x x -<⎧⎨+>⎩的解集是9. 函数12y x =-的定义域是10. 3=的解是11. 已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 个球 12. 如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 13. 如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是14. 某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A 、B 、C 、D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为15. 已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =,AC b =,那么DA = (用a 、b 表示)16. 如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为17. 在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 18. 如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD 翻折得到AED △,联结CE ,那么线段CE 的长等于三. 解答题19.12022)9( 3.14)π+--.20. 解方程组:22229024x y x xy y ⎧-=⎪⎨-+=⎪⎩.第16题H DCIFBA GE 第18题DCBAE。

★试卷3套精选★上海市崇明县2018年中考数学第二次阶段模拟试题

★试卷3套精选★上海市崇明县2018年中考数学第二次阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF 等于()A.12.5°B.15°C.20°D.22.5°【答案】B【解析】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=12∠BOF=15°故选:B2.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°【答案】B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.3.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B【解析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.5.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058【答案】D【解析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n 为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律6.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x【答案】B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣2 【答案】D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D .考点:分式有意义的条件.881 ) A .9 B .±9 C .±3 D .3【答案】D【解析】根据算术平方根的定义求解. 【详解】∵81,又∵(±1)2=9, ∴9的平方根是±1, ∴9的算术平方根是1. 811. 故选:D . 【点睛】考核知识点:算术平方根.理解定义是关键.9.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ) A .平均数 B .中位数C .众数D .方差【答案】B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩, 即中位数. 故选B.10.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330 D .(1+10%)x =330【答案】D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D . 二、填空题(本题包括8个小题)11.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 【答案】2【解析】根据定义即可求出答案. 【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.12.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.【答案】18 1【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1.故答案为:18;1.【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.13.计算:﹣1﹣2=_____.【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.【答案】1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.【答案】a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.16.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.【答案】215【解析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=22OC OH15-=,∴CD=2CH=215.故答案为215.【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可17.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.【答案】1 4【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.18.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念. 三、解答题(本题包括8个小题)19.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A 市投资“改水工程”的年平均增长率;从2008年到2010年,A 市三年共投资“改水工程”多少万元? 【答案】 (1) 40%;(2) 2616.【解析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可. 【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元). A 市三年共投资“改水工程”2616万元.20.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的直线y=x+b 交x 轴于点B .求k 和b 的值;求△OAB 的面积.【答案】(1)k=10,b=3;(2)15 2.【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3 ∴当y=0时,x=-3,∴OB=3 ∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.21.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.22.. 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【答案】(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.23.如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.【答案】证明见解析.【解析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【详解】解:∵AF=DC,∴AF+FC =FC+CD ,∴AC =FD ,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 24.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.【答案】(1)14(2)316 【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P (两次取得小球的标号相同)=41164=; (2)P (两次取得小球的标号的和等于4)=316. 考点:概率的计算.25.计算:()101524532π-⎛⎫-+︒--+ ⎪⎝⎭. 【答案】1【解析】根据特殊角的三角函数值,零次幂的性质,负整指数幂的性质、绝对值的性质,进行实数的混合运算即可.【详解】()10152cos4532π-⎛⎫-︒--+ ⎪⎝⎭ =1+1-3+2=126.先化简代数式:222111a a a a a +⎛⎫-÷⎪---⎝⎭,再代入一个你喜欢的数求值. 【答案】13【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算. 【详解】解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦ 2(1)21(1)(1)a a a a a a+---=⋅+- 11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5【答案】B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.2.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【答案】D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.3.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.4.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;5.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.6.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40°B.60°C.80°D.100°【答案】D【解析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°【答案】B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.8.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.9.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.10.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1【答案】D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限,∴x 2<x 3<x 1.故选:D .【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.二、填空题(本题包括8个小题)11.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)【答案】3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n 个图案中共有“”为:4+3(n ﹣1)=3n+1故答案为:3n+1.【点睛】 本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.12.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+.考点:规律题.13.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【解析】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .【答案】(7+63)【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m ,∴DC=EF=2m ,EC=DF=6m ,∵α=30°,∴BE=63tan30EC =︒(m ), ∵背水坡的坡比为1.2:1,∴ 1.2 1.21DF AF AF ==, 解得:AF=5(m ),则3(3m ,故答案为(3m .【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.15.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.【答案】1【解析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,OD=22OB BD-=1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.16.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.【答案】【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴CD=k=22229376()2AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.【答案】1.738×1【解析】解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.【点睛】本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.18.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.【答案】15°【解析】分析:根据等腰三角形的性质得出∠ABC 的度数,根据中垂线的性质得出∠ABD 的度数,最后求出∠DBC 的度数.详解:∵AB=AC ,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,∵MN 为AB 的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4三、解答题(本题包括8个小题)19.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (1,1),B (4,0),C (4,4).按下列要求作图:①将△ABC 向左平移4个单位,得到△A 1B 1C 1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 1B 1C 1.求点C 1在旋转过程中所经过的路径长.【答案】(1)①见解析;②见解析;(1)1π.【解析】(1)①利用点平移的坐标规律,分别画出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点可得△A 1B 1C 1;②利用网格特点和旋转的性质,分别画出点A 1、B 1、C 1的对应点A 1、B 1、C 1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A 1B 1C 1为所作;②如图,△A 1B 1C 1为所作;(1)点C 1在旋转过程中所经过的路径长=9042180ππ⨯= 【点睛】 本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.20.关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k 的取值范围.【答案】(2)见解析;(2)k<2.【解析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根; (2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2,∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x 1=2,x 2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k 的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.21.小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 【答案】证明见解析 【解析】解:∵42a c b +=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.22.计算:2344(1)11x x x x x ++-+÷++. 【答案】22x x -+ 【解析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭=()()()2 x22112x xx x+-+⨯++=22x x-+.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.23.A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?【答案】(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C 市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.24.画出二次函数y=(x﹣1)2的图象.【答案】见解析【解析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.25.如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?。

上海市崇明县中考数学二模试卷含答案解析

上海市崇明县中考数学二模试卷含答案解析

上海市崇明县中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.B.8C.D.﹣82.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a23.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14375那么这20名同龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,154.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A.B.C.D.5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.正五边形6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)因式分解:x2﹣9=.8.(4分)不等式组的解集是.9.(4分)函数y=的定义域是.10.(4分)方程的根是x=.11.(4分)已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为,那么袋子中共有个球.12.(4分)如果关于x的方程x2+4x﹣k=0有两个相等的实数根,那么实数k的值是.13.(4分)如果将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),那么所得新抛物线的表达式是.14.(4分)某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为.15.(4分)已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=(用表示).16.(4分)如图,正六边形ABCDEF 的顶点B、C 分别在正方形AGHI 的边AG、GH 上,如果AB=4,那么CH的长为.17.(4分)在矩形ABCD中,AB=5,BC=12,点E是边AB上一点(不与A、B重合),以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,那么⊙C的半径r 的取值范围是.18.(4分)如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,将△ABD,将△ABD沿AD翻折得到△AED,联结CE,那么线段CE的长等于.三、解答题(本大题共7题,满分78分)19.(10分)计算: +(﹣2)2+9﹣(π﹣3.14)020.(10分)解方程组:21.(10分)已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.(1)如图1,当PD∥AB 时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.22.(10分)温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:摄氏度数x (℃)…0…35…100…华氏度数y (℉)…32…95…212…(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?23.(12分)如图,AM 是△ABC的中线,点D是线段AM上一点(不与点A 重合).DE∥AB交BC 于点K,CE∥AM,联结AE.(1)求证:;(2)求证:BD=AE.24.(12分)已知抛物线经过点A(0,3)、B(4,1)、C(3,0).(1)求抛物线的解析式;(2)联结AC、BC、AB,求∠BAC的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥AP交y轴于点G,当点G在点A 的上方,且△APG与△ABC相似时,求点P的坐标.25.(14分)如图,已知△ABC 中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求证:BD平分∠ABC;(2)设BE=x,CF=y,求y与x 之间的函数关系式;(3)联结FG,当△GEF 是等腰三角形时,求BE的长度.上海市崇明县中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.B.8 C.D.﹣8【解答】解:8的相反数是﹣8,故选:D.2.(4分)下列计算正确的是()A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.(4分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14375那么这20名同龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【解答】解:由于15岁出现次数最多,所以众数为15岁,中位数为第10、11个数据的平均数,所以中位数为=15(岁),4.(4分)某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A.B.C.D.【解答】解:设第一次买了x本画册,根据题意可得:,故选:A.5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.正五边形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形是中心对称图形,不是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.6.(4分)已知△ABC中,D、E分别是AB、AC边上的点,DE∥BC,点F是BC 边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()A.B.C.D.【解答】解:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF,∴=,∴,二、填空题(本大题共12题,每题4分,满分48分)7.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).8.(4分)不等式组的解集是﹣3<x<1.【解答】解:,解不等式①得:x<1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x<1.故答案为:﹣3<x<1.9.(4分)函数y=的定义域是x≠2.【解答】解:根据题意得:x﹣2≠0解得:x≠2,故答案为:x≠2.10.(4分)方程的根是x=8.【解答】解:方程两边平方得:x+1=9,解得:x=8,经检验:x=8是方程的解.故答案是:8.11.(4分)已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为,那么袋子中共有24个球.【解答】解:设袋子中共有x个球,∵红球有3个,从中随机摸得1个红球的概率为,∴=,解得:x=24(个).故答案为:24.12.(4分)如果关于x的方程x2+4x﹣k=0有两个相等的实数根,那么实数k的值是﹣4.【解答】解:∵关于x的方程x2+4x﹣k=0有两个相等的实数根,∴△=0,即42﹣4(﹣k)=0,解得k=﹣4,故答案为:﹣4.13.(4分)如果将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),那么所得新抛物线的表达式是y=x2+2x.【解答】解:∵将抛物线y=x2+2x﹣1 向上平移,使它经过点A(1,3),∴平移后的解析式为:y=x2+2x﹣1+h,则3=1+2﹣1+h,解得:h=1,故所得新抛物线的表达式是:y=x2+2x.故答案为:y=x2+2x.14.(4分)某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D 四个等级进行评分,然后根据统计结果绘制了如图两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为48.【解答】解:∵30÷25%=120(份),∴一共抽取了120份作品,∴此次抽取的作品中等级为B的作品数120﹣36﹣30﹣6=48份,故答案为:48.15.(4分)已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=﹣(用表示).【解答】解:∵=,=,∴=﹣=﹣,∵AD∥BC,BC=2AD,∴==(﹣)=﹣.故答案为:﹣.16.(4分)如图,正六边形ABCDEF 的顶点B、C 分别在正方形AGHI 的边AG、GH 上,如果AB=4,那么CH的长为.【解答】解:正六边形的内角的度数==120°,则∠CBG=180°﹣120°=60°,∴∠BCG=30°,∴BG=BC=2,CG=BC=2,∴AG=AB+BG=6,∵四边形AGHI是正方形,∴GH=AG=6,∴CH=HG﹣CG=6﹣2,故答案为:6﹣2.17.(4分)在矩形ABCD中,AB=5,BC=12,点E是边AB上一点(不与A、B重合),以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,那么⊙C的半径r 的取值范围是8<r<13.【解答】解:∵四边形ABCD为矩形,∴∠B=90°,AD=BC=12,在Rt△ABC中,AC==13,∵以点A为圆心,AE为半径作⊙A,如果⊙C与⊙A外切,可得:⊙C的半径r的取值范围是8<r<13.故答案为:8<r<1318.(4分)如图,△ABC 中,∠BAC=90°,AB=6,AC=8,点D是BC的中点,将△ABD,将△ABD沿AD翻折得到△AED,联结CE,那么线段CE的长等于.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=8,AB=6,∴BC==10,∵CD=DB,∴AD=DC=DB=5,∵BC•AH=AB•AC,∴AH=,∵AE=AB,∴点A在BE的垂直平分线上.∵DE=DB=DC,∴点D在BE使得垂直平分线上,△BCE是直角三角形,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故答案为三、解答题(本大题共7题,满分78分)19.(10分)计算: +(﹣2)2+9﹣(π﹣3.14)0【解答】解:原式=3+7﹣4+3﹣1=9﹣.20.(10分)解方程组:【解答】解:由①得:x+3y=0或x﹣3y=0③,由②得:x﹣y=2或x﹣y=﹣2④,由③和④组成方程组,,,,解得:,,,,所以原方程组的解为:,,,.21.(10分)已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.(1)如图1,当PD∥AB 时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.【解答】解:如图1,联结OD∵直径AB=12∴OB=OD=6∵PD⊥OP∴∠DPO=90°∵PD∥AB∴∠DPO+∠POB=180°∴∠POB=90°又∵∠ABC=30°,OB=6∴∵在Rt△POD 中,PO2+PD2=OD2∴∴(2)如图2,过点O 作OH⊥BC,垂足为H ∵OH⊥BC∴∠OHB=∠OHP=90°∵∠ABC=30°,OB=6∴,∵在⊙O 中,OH⊥BC∴∵BP 平分∠OPD∴∴PH=OH•co t45°=3∴.22.(10分)温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:摄氏度数x (℃)…0…35…100…华氏度数y (℉)…32…95…212…(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?【解答】(1)解:设y=kx+b(k≠0)把x=0,y=32;x=35,y=95 代入y=kx+b,得,解得∴y 关于x 的函数解析式为(2)由题意得:解得x=30∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56.23.(12分)如图,AM 是△ABC的中线,点D是线段AM上一点(不与点A 重合).DE∥AB交BC 于点K,CE∥AM,联结AE.(1)求证:;(2)求证:BD=AE.【解答】证明:(1)∵DE∥AB,∴∠ABC=∠EKC.∵CE∥AM,∴∠AMB=∠ECK,∴△ABM∽△EKC,∴=.∵AM是△ABC的中线,∴BM=CM,∴.(2)证明:∵CE∥AM,∴△KDM∽△KEC,∴=,∴,又∵,∴DE=AB.又∵DE∥AB,∴四边形ABDE是平行四边形,∴BD=AE.24.(12分)已知抛物线经过点A(0,3)、B(4,1)、C(3,0).(1)求抛物线的解析式;(2)联结AC、BC、AB,求∠BAC的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作PG⊥AP交y轴于点G,当点G在点A 的上方,且△APG与△ABC相似时,求点P的坐标.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c(a≠0),将A(0,3)、B(4,1),C(3,0)代入,得:,解得:,所以,这个二次函数的解析式为:;(2)∵A(0,3、B(4,1)、C(3,0 )∴AC=3,BC=,AB=2,∴AC2+BC2=AB2∴∠ACB=90°,∴;(3)过点P作PH⊥y轴,垂足为H设P则H∵A(0,3)∴,PH=x,∵∠ACB=∠APG=90°∴当△APG与△ABC相似时,存在以下两种可能:①∠PAG=∠CAB则tan∠PAG=tan∠CAB=,即∴,解得:x=11,∴点P 的坐标为(11,36);②∠PAG=∠ABC则tan∠PAG=tan∠ABC=3即∴解得:x=,∴点P 的坐标为,综上所述:点P 的坐标为或(11,36).25.(14分)如图,已知△ABC 中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求证:BD平分∠ABC;(2)设BE=x,CF=y,求y与x 之间的函数关系式;(3)联结FG,当△GEF 是等腰三角形时,求BE的长度.【解答】解:(1)∵AB=8,AC=12,又∵AB2=AD•AC,∴,∴,∵AB2=AD•AC,∴,又∵∠BAC是公共角,∴△ADB∽△ABC,∴∠ABD=∠C,,∴,∴BD=CD,∴∠DBC=∠C,∴∠ABD=∠DBC,∴BD平分∠ABC;(2)如图,过点A作AH∥BC,交BD的延长线于点H,∵AH∥BC,∴,∵,AH=8,∴,∴BH=12,∵AH∥BC,∴,∴,∴,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴,∴,∴;(3)当△GEF是等腰三角形时,存在以下三种情况:1°若GE=GF,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴,即,又∵,∴x=BE=4;2°若EG=EF,则△BEG与△CFE全等,∴BE=CF,即x=y,又∵,∴x=;3°若FG=FE,则同理可得==,由△BEG∽△CFE,可得,即,又∵,∴x=.。

2024年崇明区初三数学二模试卷及参考答案评分标准

2024年崇明区初三数学二模试卷及参考答案评分标准

一、【题型】
1.一元二次方程:
(1)求解一元二次方程ax2+bx+c=0的根;
(2)判断一元二次方程ax2+bx+c=0的根的性质;
2.不等式:
(1)解不等式ax2+bx+c>d,a>0的解集;
(2)解不等式ax2+bx+c<d,a>0的解集;
3.函数:
(1)求解函数f(x)=1-2x-3x2在区间(3,5)上的最大值;
(2)求函数f(x)=1-2x-3x2的单调性;
4.直线:
(1)求直线y=2x+3和y=2x+1的交点;
(2)已知直线y=2x+1与y=-x-1平行,求x的值;
5.平面向量:
(1)求两个平面向量a(2,1)和b(-1,3)的内积;
(2)求两个平面向量a(2,1)和b(-1,3)的外积。

6.三角函数:
(1)已知sinθ=-1/2,求cosθ的值;
(2)已知cosθ=-√3/2,求tanθ的值。

7.统计:
(1)求实验数据的平均数;
(2)求实验数据的方差。

8.几何:
(1)求等腰三角形的外接圆的半径;
(2)求矩形ABCD的周长。

9.概率:
(1)已知抛掷两个骰子,求和大于8的概率;
(2)已知抛掷两个骰子,求和为偶数的概率。

10.数列:
(1)已知数列{an}的通项公式,求第5项;。

2018年崇明区初三数学二模试卷评分标准

2018年崇明区初三数学二模试卷评分标准

2018年崇明区初三数学二模试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A);(B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 二、填空题(本大题共12题,每题4分,满分48分)7.因式分解:29x -= ▲ .8.不等式组1023x x x -<⎧⎨+>⎩的解集是 ▲ .9.函数12y x =-的定义域是 ▲ . 10.方程13x +=的解是 ▲ .11.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 ▲ 个球.12.如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 ▲ . 13.如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是▲ .14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,A B C D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为 ▲ .15.已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =u u u r r ,AC b =u u u r r ,那么DA =u u u r▲ .(用,a b r r表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ . 18.如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD翻折得到AED △,联结CE ,那么线段CE 的长等于 ▲ .三、解答题(本大题共7题,满分78分)(第14题图)(第16题图)H DCIFB A GE (第18题图)DCBAE19.(本题满分10分)12022)9( 3.14)π-+--20.(本题满分10分)解方程组:22229024x yx xy y⎧-=⎪⎨-+=⎪⎩21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O的直径12AB=,点C是圆上一点,且30ABC∠=︒,点P是弦BC上一动点,过点P作PD OP⊥交圆O于点D.(1)如图1,当PD AB∥时,求PD的长;(2)如图2,当BP平分OPD∠时,求PC的长.22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y与摄氏度数x之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?23.(本题满分12分,第(1)、(2)小题满分各6分)(第21题图1)A BOPCD(第21题图2)OA BDPC如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CM EK CK=; (2)求证:BD AE =.24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.(第23题图)ABK MCDE25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.(第25题图)A BCDG EF (备用图)A BCD2018年崇明区初三数学二模参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 二、填空题:(本大题共12题,每题4分,满分48分)7.(3)(3)x x +-; 8.31x -<<; 9.2x ≠; 10.8x =;11.24; 12.4-; 13.22y x x =+; 14.48;15.1122a b -r r ; 16.6-; 17.813r <<; 18.145.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式731=--……………………………………………………8分9= …………………………………………………………………2分 20.(本题满分10分)解:由①得30x y +=或30x y -= ………………………………………………1分由②得2x y -=或2x y -=- ………………………………………………1分 ∴原方程组可化为302x y x y +=⎧⎨-=⎩,302x y x y +=⎧⎨-=-⎩,302x y x y -=⎧⎨-=⎩,302x y x y -=⎧⎨-=-⎩……4分 解得原方程组的解为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ ………4分21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒=g………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分(2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒=g ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠∴453PH OH cot =︒=g ……………………………………………1分∴3PC CH PH =-= ………………………………………1分22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩ ……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分(2)由题意得:932565x x +=+ ………………………………………………4分解得30x = …………………………………………………1分∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56 23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,1)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,1)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分∴13BC tan BAC AC ===∠ ……………………………………………2分 (3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能: 1° PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分 ∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39……………………………………………………1分 25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) (1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分∵2AB AD AC =g ∴AD ABAB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB=∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分 ∴BE BG CF EC= ∴12810xxx y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =- …………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =- ………2分。

上海市2018年中考二模数学试题含答案

上海市2018年中考二模数学试题含答案

图22018学年九年级数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.下列二次根式中,与a 是同类二次根式的是( )(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( ) (A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是( )(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是( ) (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位. 5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为( ) (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( ) (A )相离; (B )相切; (C )相交; (D )不确定.二、填空题(本大题共12题,每题4分,满分48分)图17.计算:=-aa 211 . 8.如果822=-b a ,且4=+b a ,那么b a -的值是 .9.方程242=-x 的根是 . 10.已知反比例函数)0(≠=k xky ,在其图像所在的每个象限内,y 的值随x 的值增大而减 小,那么它的图像所在的象限是第 象限.11.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是 .12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有 本.13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是 .14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休 日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的 (填百分数) .15.如图4,在梯形ABCD 中,AD //BC ,BC=2AD ,E 、F 分别是边AD 、BC 的中点,设=, =,那么EF 等于 (结果用、的线性组合表示). 16.如果一个矩形的面积是40,两条对角线夹角的正切值是34,那么它的一条对角线长是 .17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A与圆C 外切,那么圆C 的半径长r 的取值范围是 .18.如图5,将△ABC 的边AB 绕着点A 顺时针旋转)900(︒<<︒αα得到AB ’,边AC 绕 着点A 逆时针旋转)900(︒<<︒ββ得到AC ’,联结B ′C ′.当︒=+90βα时,我们称△A B ′C ′ 是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a ,那么它的“双旋三角形”的面 积是 (用含a 的代数式表示).图4A B DFE C图3BC图5AB ′C ′三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:1212)33(8231)12(--+++-.20.(本题满分10分) 解方程组:⎩⎨⎧=++=+.12,2222y xy x y x21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.24.(本题满分12分,每小题满分各4分)图6AB CD E FACD E图7B已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴 为直线l ,过点C 作直线l 的垂线,垂足为点E ,联结DC 、(1)当点C (0,3)时,① 求这条抛物线的表达式和顶点坐标; ② 求证:∠DCE=∠BCE ;(2)当CB 平分∠DCO 时,求m 的值.25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD . (1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图8图9A BCD O E备用图ABO备用图AB O答案: 一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ; 二、填空题:7、12a ; 8、2; 9、4; 10、一三; 11、22(1)2y x =-+; 12、28; 13、38; 14、28%; 15、12a b +; 16、10; 171r << 18、214a三、解答题:19、3 20、1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩;21、(1)56; (2)58; 22、(1)0.27100(0)y x x =+>; (2)乙; 23、(1)略;(2)略;24、(1)①223y x x =-++;顶点D 为(1,4); ②提示:tan tan 1DCE BCE ∠=∠=;(225、(1)35; (2)提示:证OBE ∆∽EBC ∆; (3)2或2;。

2018年上海崇明区初三二模试卷(含答案)

2018年上海崇明区初三二模试卷(含答案)

2018年上海崇明区初三二模试卷(含答案)2018年上海崇明区初三二模试卷(满分150分,考试时间100分钟)考生注意:1.本卷共27题。

2.请将所有答案做在答题纸的指定位置上,做在试卷上一律不计分。

一、文言诗文(39分)(一)默写(15分)1.水何澹澹,。

(《观沧海》)2.XXX,,可远观而不可亵玩焉。

(《爱莲说》)3.了却XXX下事,。

(《破阵子·为陈同甫赋壮词以寄》)4.,烟波江上使人愁。

(《黄鹤楼》5.,人约黄昏后。

(《生查子·元夕》)(二)阅读下面的诗,完成6-7题(4分)诉衷情当年万里觅封侯,匹马戍梁州。

XXX断何处?尘暗旧貂裘。

XXX,XXX,泪空流。

此生谁料,心在天山,身老沧州。

6.词中“”一字表达了作者悲愤、不甘的情感。

(2分)7.下列诗句中与《诉衷情》所表达的感情最相似的一句是(2分)XXX.可怜青丝生。

B.持节云中,何日遣XXX?C.欲说还秋,却XXX好个秋。

D.衣带渐宽终不悔,为伊消得人憔悴。

(三)阅读下文,完成8-10题(8分)黔之驴黔无驴,有好事者船载以入。

至则无可用,放之山下。

虎见之,庞然大物也,以为神,蔽林间窥之。

稍出近之,慭慭然,莫相知。

.异日,驴一鸣,XXX,远遁;觉得且噬己也,甚恐。

然来往视之,觉无异能者;益其声,又近出前后,终不敢搏。

稍近,益狎,荡倚冲冒。

驴不堪怒,蹄之。

XXX,计之曰:“技止此..耳!”因跳踉大㘎,断其喉,尽其肉,乃去。

XXX.本文的作者是,我们还学过另一篇反应他被贬后内心苦闷的课文《》。

(2分)9.用现代汉语解释下面句子(3分)以为神,蔽林间窥之。

10.下列对内容了解有误的一项是(3分)..XXX.驴的外形、声音是虎一开始感到害怕的原因。

B.驴“蹄之”的行为才让老虎察觉了它的无能。

C.文中加点的“近”字,体现出虎的小心谨慎。

D.文末“乃”字生动地表现出了虎的志得意满。

(四)浏览下文,完成11-13题(12分)XXX定关中,自以久在外,不自安。

上海市崇明区2018届九年级上期末调研测试数学试题含答案

上海市崇明区2018届九年级上期末调研测试数学试题含答案

崇明区2017-2018学年第一学期教学质量调研测试卷九年级数学(完卷时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34; (B)43; (C)35; (D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5;(B) 8;(C) 10.5;(D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ ) (A)3:4;(B)9:16;(C)9:1;(D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52; (B)83; (C)103; (D)154.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23x y =(0)y ≠,那么x yy+= ▲ . 8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3km 的两地在地图上的图距是▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ .11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将C D E △沿DE折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒20.(本题满分10分,每小题各5分)如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D , 已知5AD =,4BD =. (1)求BC 的长度;(2)如果AD a =,AE b =,那么请用a 、b 表示向量CB .21.(本题满分10分,每小题各5分)如图,CD 为⊙O 的直径,CD AB ⊥,垂足为点F ,AO BC ⊥,垂足为点E ,2CE =. (1)求AB 的长; (2)求⊙O 的半径.ABCDE (第20题图)(第21题图)ABCO F ED22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第22题图) ADBCE 37°45°北东(第23题图)ABDECGF24.(本题满分12分,每小题各4分)如图,抛物线243y x bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点M与点A 不重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N . (1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与APM △相似,求点M 的坐标.(第24题图) AMPNBOxyBOxy(备用图)A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.崇明区2017学年第一学期教学质量调研测试卷(第25题图1) ABCD FE BD FECA(第25题图2)BDFECA(第25题图3)九年级数学参考答案(201801)一、选择题(本大题共6题,每题4分,满分24分)1、A2、D3、B4、B5、D6、C二、填空题(本大题共12题,每题4分,满分48分)7、528、 a b -+ 9、 6 10、 1a <- 11、 22(2)4y x =++ 12、> 13、4.8 14、 315、45 16、 1:2.4 17、 (1,1)-- 18、258三、解答题:(本大题共7题,满分78分)19、解:原式=132322232-⨯+⨯- …………………………………………5分 332322=+-+ ………………………………………………3分 12232=-………………………………………………………2分 20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE ADBC AB=……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC =………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB =∴95BC DE = …………………………………………………………1分又∵ED 与CB 同向 ∴95CB ED = ………………………………1分∵AD a =,AE b = ∴ED a b =- ……………………………1分 ∴9955CB a b =- …………………………………………………………2分 21、(1)∵CD AB ⊥,AO BC ⊥∴90AFO CEO ==︒∠∠ ………………………………………1分 在AOF COE △和△中AFO CEO AOF COE AO CO =⎧⎪=⎨⎪=⎩∠∠∠∠∴AOF COE △≌△ ……………………………………………1分 ∴CE AF = ………………………………………………………1分 ∵2CE = ∴2AF =∵CD 是O 的直径,CD AB ⊥∴12AF BF AB ==……………………………………………1分 ∴4AB = …………………………………………………………1分(2) ∵AO 是O 的半径,AO BC ⊥∴2CE BE == ………………………………………………1分 ∵4AB = ∴12BE AB =∵90AEB =︒∠ ∴30A =︒∠ ……………………2分 又∵90AFO =︒∠ ∴232AF CosA AO AO === …………1分 ∴433AO =即O 的半径是433 ………………………1分 22、解:由题意可得37A =︒∠,45AEC =︒∠,90D =︒∠,5DE km = 过点C 作CH AD ⊥,垂足为点H 则90AHC EHC ==︒∠∠ ∴34CH tanA AH == ………………………………………………………1分 1CHtan HEC EH==∠ ………………………………………………………1分 设CH x =则43AH x =,EH x = …………………………………………2分 ∴5DH x =+ ………………………………………………………1分∵90AHC D ==︒∠∠ ∴CH BD ∥ ∴AH ACDH BC= …………2分 ∵C 点是AB 边的中点 ∴AC BC = ∴AH DH = …………1分 ∴453x x =+ 解得15x = ………………………………………………1分 ∴42015353AE x x km =+=+= ………………………………………1分 23、(1)∵四边形ABCD 是正方形∴90BCD ADC ==︒∠∠,AB BC = …………………………1分 ∵BF DE ⊥ ∴90GFD =︒∠ ∴BCD GFD =∠∠∵BGC FGD =∠∠∴BGC DGF △∽△ ………………………………………………2分 ∴BG BCDG DF= ………………………………………………………1分 ∴DG BC DF BG ⋅=⋅ ……………………………………………1分∵AB BC =∴DG AB DF BG ⋅=⋅ ……………………………………………1分 (2)联结BD ∵BGC DGF △∽△ ∴BG CGDG FG = ………………………………………………………1分 ∴BG DGCG FG= 又∵BGD CGF =∠∠∴BGD CGF △∽△ ………………………………………………2分 ∴BDG CFG =∠∠ ………………………………………………1分 ∵四边形ABCD 是正方形,BD 是对角线∴1452BDG ADC ==︒∠∠ ……………………………………1分 ∴45CFG =︒∠ ……………………………………………………1分24、(1)解:设直线AB 的解析式为y kx b =+(0k ≠) ∵(3,0)A ,(0,2)B∴302k b b +=⎧⎨=⎩ 解得232k b ⎧=-⎪⎨⎪=⎩ ……………………………………1分∴直线AB 的解析式为223y x =-+ ………………………………1分 ∵抛物线243y x bx c =-++经过点(3,0)A ,(0,2)B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ …………………………1分∴2410233y x x =-++ ……………………………………………1分 (2)∵MN x ⊥轴, (,0)M m ∴设2410(,2)33N m m m -++,2(,2)3P m m -+ ∴2443NP m m =-+, 223P M m =-+ ……………………1分 ∵P 点是MN 的中点 ∴NP PM = ∴2424233m m m -+=-+ ………………………………………1分 解得112m =,23m =(不合题意,舍去) ………………………1分 ∴110(,)23N ……………………………………………………1分 (3)∵(3,0)A ,(0,2)B , 2(,2)3P m m -+ ∴13AB =,133BP m =∴13133AP m =- ∵BPN APM =∠∠∴当BPN △与APM △相似时,存在以下两种情况:1° BP PM PN PA= ∴213223341341333m m m m m -+=-+- 解得118m = ……………………1分 ∴11(,0)8M …………………………………………………………1分 2°BP PA PN PM= ∴213131333424233m m m m m -=-+-+ 解得52m = ……………………1分 ∴5(,0)2M ……………………………………………………………1分 25、(1)∵90ACB =︒∠,45cosA =∴45AC AB = ∵8AC = ∴10AB = ……………………………1分 ∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥ ∴90DEA DEC ==︒∠∠ ∴45AE cosA AD == ∴4AE = ∴844CE =-= ∵在Rt AED △中,222AE DE AD += ∴3DE = ……………………1分∵DF DE ⊥ ∴90FDE =︒∠又∵90ACB =︒∠ ∴四边形DECF 是矩形∴4DF EC == ………………………………………………………………1分 ∵在Rt EDF △中,222DF DE EF += ∴5EF = …………………1分(2)不变 ……………………………………………………………………………1分过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ==︒∠∠又∵90ACB =︒∠ ∴四边形DHCG 是矩形∴90HDG =︒∠∵90FDE =︒∠∴HDG HDF EDF HDF -=-∠∠∠∠ 即EDH FDG =∠∠ ……1分 又∵90DHE DGF ==︒∠∠∴EDH FDG △∽△ ……………………………………………………1分 ∴34DE DH DF DG == …………………………………………………………1分 ∵90FDE =︒∠ ∴34DE tan DFE DF ==∠ ……………………1分 (3)1° 当QF QC =时,易证90DFE QFC +=︒∠∠,即90DFC =︒∠ 又∵90ACB =︒∠,D 是AB 的中点∴152CD BD AB === ∴132BF CF BC === …………………………………………………1分 2° 当FQ FC =时,易证FQC DEQ DCB △∽△∽△∵在Rt EDF △中,34DE tan DFE DF ==∠ ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB △∽△ ∴56DE DC EQ BC == ∴185EQ k = ∴75FQ FC k == ∵FQC DCB △∽△ ∴56FQ DC CQ BC ==∴755536k k =- 解得125117k = ∴71251755117117FC =⨯= ∴1755276117117BF =-= ……………………………………………………2分 3° 在BC 边上截取BK=BD=5,由勾股定理得出25DK =当CF CQ =时,易证CFQ EDQ BDK △∽△∽△∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k =∵EDQ BDK △∽△ ∴525DE BD DQ DK == ∴655DQ k = ∴6555CQ FC k ==- ∵CQF BDK △∽△ ∴525CQ BD FQ DK == ∴65555225k k -= 解得5511k = ∴2511FC = ∴254161111BF =-= ………………………………………………………2分Q。

2018届崇明区高考数学二模答案

2018届崇明区高考数学二模答案
DE 2 BD2 BE 2 2BD BE cos B 3002 1002 2 300 100 1 70000 , 2
……2 分
∴ DE 100 7 .
……5 分
所以甲乙两人之间的距离为 100 7 m. ……6 分 (2)由题意得 EF 2DE 2 y , BDE CEF , 在直角三角形 CEF 中, CE EF cos CEF 2 y cos , ……1 分 BE DE 200 2 y cos y 在△ BDE 中,由正弦定理得 ,即 , sin BDE sin DBE sin sin 60 100 3 50 3 π ∴ y ,0 , ……5 分 π 2 3 cos sin sin( ) 3 π 所以当 时, y 有最小值 50 3 . ……7 分 6 所以甲乙之间的最小距离为 50 3 m . ……8 分 20. 解: (1)证明:任取 x1 , x2 R ,设 x1 x2 ,
……5 分
……2 分
……5 分 ……7 分
1 x 2 9 2 4 21. 解: (1)由题意得: 81 1 16 2 2 x 81 81 所以 ……3 分 x 32 8 S1 , n 1 1 2 (2)由数列 an 的前 n 项和 Sn n 3n n N ,得 an 4 Sn Sn1 , n 2 1, n 1 1 1 ……3 分 1 n n N . 1 2 n , n 2 2 2 2
所以直线 l 的方程为: (2)设 P( x, y) , 则 PB1 ( x, y b) , PB2 ( x, y b)
2 2 2
2 2
所以 PB1 PB2 x y b 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学 共5页 第1页2018年崇明区初三数学二模试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A);(B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 二、填空题(本大题共12题,每题4分,满分48分)九年级数学 共5页 第2页7.因式分解:29x -= ▲ .8.不等式组1023x x x -<⎧⎨+>⎩的解集是 ▲ .9.函数12y x =-的定义域是 ▲ . 10.方程13x +=的解是 ▲ .11.已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为18,那么袋子中共有 ▲ 个球.12.如果关于x 的方程240x x k +-=有两个相等的实数根,那么实数k 的值是 ▲ . 13.如果将抛物线221y x x =+-向上平移,使它经过点(1,3)A ,那么所得新抛物线的表达式是▲ .14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,A B C D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为 ▲ .15.已知梯形ABCD ,AD BC ∥,2BC AD =,如果AB a =,AC b =,那么DA = ▲ . (用,a b 表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为 ▲ .17.在矩形ABCD 中,5AB =,12BC =,点E 是边AB 上一点(不与A 、B 重合),以点A 为圆心,AE 为半径作A ⊙,如果C ⊙与A ⊙外切,那么C ⊙的半径r 的取值范围是 ▲ . 18.如图,ABC △中,90BAC ∠=︒,6AB =,8AC =,点D 是BC 的中点,将ABD △沿AD翻折得到AED △,联结CE ,那么线段CE 的长等于 ▲ .三、解答题(本大题共7题,满分78分)(第14题图)(第16题图)H DCIFBAGE (第18题图)DCBAE19.(本题满分10分)12022)9( 3.14)π-+--20.(本题满分10分)解方程组:22229024x yx xy y⎧-=⎪⎨-+=⎪⎩21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O的直径12AB=,点C是圆上一点,且30ABC∠=︒,点P是弦BC上一动点,过点P作PD OP⊥交圆O于点D.(1)如图1,当PD AB∥时,求PD的长;(2)如图2,当BP平分OPD∠时,求PC的长.22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y与摄氏度数x之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?23.(本题满分12分,第(1)、(2)小题满分各6分)(第21题图1)A BOPCD(第21题图2)OA BDPC九年级数学共5页第3页九年级数学 共5页 第4页如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CM EK CK=; (2)求证:BD AE =.24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.(第23题图)ABK MCDE九年级数学 共5页 第5页25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G .(1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.(第25题图)A BCDG EF (备用图)A BCD九年级数学 共5页 第6页2018年崇明区初三数学二模参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 二、填空题:(本大题共12题,每题4分,满分48分)7.(3)(3)x x +-; 8.31x -<<; 9.2x ≠; 10.8x =;11.24; 12.4-; 13.22y x x =+; 14.48;15.1122a b -; 16.6-; 17.813r <<; 18.145. 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式731=--……………………………………………………8分9= …………………………………………………………………2分 20.(本题满分10分)解:由①得30x y +=或30x y -= ………………………………………………1分由②得2x y -=或2x y -=- ………………………………………………1分∴原方程组可化为302x y x y +=⎧⎨-=⎩,302x y x y +=⎧⎨-=-⎩,302x y x y -=⎧⎨-=⎩,302x y x y -=⎧⎨-=-⎩……4分 解得原方程组的解为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ ………4分21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒=………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分九年级数学 共5页 第7页(2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩ ……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分(2)由题意得:932565x x +=+ ………………………………………………4分解得30x = …………………………………………………1分∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56 23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分九年级数学 共5页 第8页∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,1)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,1)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分九年级数学 共5页 第9页∴13BC tan BAC AC ===∠ ……………………………………………2分 (3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能: 1° PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分 ∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39……………………………………………………1分 25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) (1)∵8AB =,12AC = 又∵2AB AD AC = ∴163AD =∴16201233CD =-= ……………………………1分∵2AB AD AC = ∴AD ABAB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB=九年级数学 共5页 第10页∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分 ∴BE BG CF EC= ∴12810xxx y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =- …………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =- ………2分。

相关文档
最新文档