数学建模 马氏链模型

合集下载

第六章 马氏链模型--华东理工大学数学建模课件

第六章 马氏链模型--华东理工大学数学建模课件

状态与状态转移
状态 X n 1, 第 n 年健康 2 , 第 n 年疾病
状态概率 a i ( n ) P ( X
n
i ),
i 1, 2 , n 0 ,1,
转移概率 p ij P ( X n 1 j X n i ), i , j 1, 2 , n 0 ,1,

模型求解
• 此时,方程⑵化为
d p x (t ) dt x p x ( t ) ( x 1) p x 1 ( t ), x 1
• 注意到当x=1时
d p1 ( t ) dt p1 ( t )
即 p1 ( t ) C 1 exp( t )
• 由此,可得递推关系式
j 1

• 为极限分布。
TH2.正 则 链 存 在 唯 一 极 限 分 布 1 , , k 使 a ( n ) , 且 与 初 始 状 态 概 率 a (0) 无 关 , 还 是 平 稳 分 布 。 记 Tij inf n: X (0) i , X ( n ) j , n 1 它 表 示 系 统 从 状 态 i出 发 首 次 进 入 状 态 j的 时 刻 ; 记 f ij ( n ) p (T ij n X (0) i ), n 1 它 表 示 系 统 从 状 态 i出 发 经 n 次 转 移 进 入 状 态 j的 概 率 ; 记 m ij
i

• Def4.设i∈I,若pii=1,称i是吸收态。如果马氏 链至少包含一个吸收态,并且从每个非吸收 态出发能以正的概率经有限次转移到达某个 吸收状态,那么这个马氏链称为吸收链。
转移矩阵
I rr p R

第六讲马氏链模型

第六讲马氏链模型

情形2 开始经营坏
n01 2 3
4
0 0.4 0.44 0.444 0.4444 ?
1 0.6 0.56 0.556 0.5556 ?
a1(n)
4 10
4 102
4 10n
4
1 (
1 10n1
)
4
10 1 1
9
5
10
a2 (n) 9
推测:
不管开始经营情况如何,经 过足够长时间后,商店销路不好 的概率大于好的概率,好坏的可 能是4/9和5/9
5
w1
a
b
b
(1/
2/5 2) (2
/
5)
4 9
w2
5 9
2 迷宫问题(1)
下面给出一个迷宫图。迷宫有两个分隔间,分 别记为1,2。每个分隔间粉刷成不同的颜色, 试验者把一只老鼠放在迷宫的某个分隔间内, 不同的颜色对老鼠的吸引作用不同,从第 i 个
分隔间转移到第 j 个分隔的概率为 pij
12 迷宫1
7/9 2/9
n01 2 3
4
a1n 0 0.7 0.77 0.777 0.7777 7/9
a2n 0 0.3 0.23 0.223 0.2223 2/9
问题的进一步考虑
人寿保险公司考虑到人的死亡情况,把死亡作为第三 种状态,用 X n 3 表示。
0.18
0.8 1
2 0.25
0.65
0.02
线性代数模型
Durer 魔方 植物基因的分布 常染色体的隐性疾病 马尔科夫链模型
四 马尔科夫链模型 Markov Chain Model
讨论材料1 商店的经营问题
某商店每月考察一次经营情况,其结果用 销路好或销路坏这两种状况之一表示。已知如 果本月销路好,下月仍保持这种状况的概率为 0.5;如果本月销路坏,下月转变为销路好的概 率为0.4。试分析假若开始时商店处于销路好的 状况,那么经过若干月后能保持销路好的概率 有多大?若开始时商店处于销路坏的状况呢?

数学建模——马尔科夫链模型

数学建模——马尔科夫链模型


1 an 1 an1 bn1 0 cn1 2 1 a n a n1 bn1 (4.2) 2
类似可推出
1 bn bn 1 c n 1 2
(4.3)
cn=0
(4.4)
将(4.2)、(4.3)、(4.4)式相加,得
an bn cn an1 bn1 cn1
x ( n) b n cn
当n=0时
表示植物基因型的 初始分布(即培育 开始时的分布)
x (0) b 0 c0
显然有 a0 b0 c0 1 (ii)第n代的分布与 第n-1代的分布之间的关系是通过表 5.2确定的。 (b)建模 根据假设(ii),先考虑第n代中的AA型。由于第n-1代的AA 型与AA型结合。后代全部是AA型;第n-1代的Aa型与AA 型结合,后代是AA型的可能性为 1/2,而 第n-1代的aa型与 AA型结合,后代不可能 是AA型。因此当n=1,2…时
(a)假设 父母的基因型 (i)常染色体遗传的正常基因记 为A,不 正常基因记 为a,并以 AA,Aa,aa 分别表示正常人,隐性患者,显性患 AA-AA AA-Aa 者的基因型 现在,我们考虑在控 (ii)设an,bn分别表示第n代中基因型为 制结合的情况下,如 AA 1 1/2 AA, Aa的人占总人数的百分比, 后 何确定后代中隐性患 记 x ( n ) an ,n=1,2,…(这里 者的概率。 代 b 不考 虑aa型是因 n 基 为这些人不可能成年并结婚) Aa 0 1/2 因 (iii)为使每个儿童至少有一个正常的父 型 亲或母亲,因此隐性患者必须与正常 人结合,其后代的基因型概率由 下表 给出:
由(4.5)式递推,得

数学建模教程——模型11马氏链模型共43页文档

数学建模教程——模型11马氏链模型共43页文档

56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全Байду номын сангаас程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
数学建模教程——模型11马 氏链模型
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。

《马氏链模型》课件

《马氏链模型》课件
以用于天气预测, 根据历史天气数据预测未来的天 气情况。
马氏链模型的求解
1
平稳分布
马氏链模型的平稳分布是指随着时间的推移,状态转移概率趋于稳定的情况。
2
极限行为
马氏链模型在假设条件下,其极限行为会收敛到一个稳定的状态。
马氏链模型的改进
1
非齐次马氏链模型
非齐次马氏链模型考虑了不同时间段的状态转移概率的变化。
2
马尔可夫决策过程
马尔可夫决策过程是马氏链模型的扩展,同时考虑了状态转移和决策的影响。
总结
马氏链模型的优点
马氏链模型能够描述状态转移的概率,并用于解决 实际问题。
马氏链模型的应用前景
马氏链模型在各个领域具有广泛的应用前景,可以 帮助解决实际问题。
《马氏链模型》PPT课件
马氏链模型是概率论中的重要工具,它描述了一个系统按照一定的概率从一 个状态转移到另一个状态的过程。
什么是马氏链模型?
马氏链模型是描述系统状态转移的数学模型,它具有马氏性质,即下一个状 态只依赖于当前状态,与之前的状态无关。
马氏链模型的特点
状态转移概率
马氏链模型中的每一个状态都有一定的概率转移到其他的状态。
马链的齐次性
马氏链模型的转移概率在时间上保持不变,不受时间影响。
时间齐次性
时间齐次性指的是马氏链模型的转移概率与时间的长度无关,只与当前状态有关。
马氏链模型的应用
随机游走问题
随机游走问题是马氏链模型的一 个重要应用领域,它可以描述在 随机环境下的随机漫步过程。
网站访问模型
马氏链模型可以用于描述网站访 问行为,帮助优化页面设计和内 容推荐。

马氏链模型

马氏链模型

完全 优势 基因 遗传
完全优势基因遗传
3种基因类型:dd~优种D, dr~混种H, rr~劣种R 父母基因类型决定后代各种基因类型的概率
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
该稳定值与初始状态无关。
a1 ( n + 1) p11 a ( n + 1) = p 1 2 12 p21 a1 ( n) p11 a ( n) = p p22 2 12
p21 a1 (0) p22 a2 (0)
n
马氏链模型理论
马氏链的基本方程
随机繁殖
假设
讨论基因类型的演变情况
设群体中雄性、雌性的比例相等,基因类 型的分布相同(记作D:H:R) 每一雄性个体以D:H:R的概率与一雌性个体交配, 其后代随机地继承它们的各一个基因 设初始一代基因类型比例D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势基因和 劣势基因比例 d:r=p:q (p+q=1)。
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
当父母均为DD时,子女为DD的概率为1,其他为零 当父母均为RR时,子女为RR的概率为1,其他为零
父母基因类型组合 后代各种 基因类型 的概率 R D H
5 2 2 5 y = Me = ( 4 , 6 , 5 , 4 ) 6 3 3 6

数学建模——马尔科夫链模型ppt课件

数学建模——马尔科夫链模型ppt课件
.
相应的转移矩阵 为:
0.4 0.4 0 0.2
M 0.1 0.3 0.6
0
0.7 0 0.2 0.1
0
0
0
1
且Sj+1=SjM
首先,任一转移矩阵的行向量均为概率向量,即有 (1)
(I , j=01,…P,ing )1
n
马氏链模型的性质完全由其转移矩 阵决定,故研究马氏链的数学工
(2) Pig 1 (i=1,…具,是n)线性代数中有关矩阵的理论。
1 1 0
1a0 2b0 1c0
.
即1ຫໍສະໝຸດ 11n 1
1
n1
x( n)
显然有 a0b0c01
(ii)第n代的分布与 第n-1代的分布之间的关系是通过表
5.2确定的。
(b)建模
根据假设(ii),先考虑第n代中的AA型。由于第n-1代的AA
型与AA型结合。后代全部是AA型;第n-1代的Aa型与AA型
结合,后代是AA型的可能性为 1/2,而 第n-1代的aa型与
AA型结合,后代不可能 是AA型。因此当n=1,2…时
j1
这样的矩阵被称为 随机矩阵。
.
常染色体遗传模型
在常染色体遗传中,后代从每个亲体的基因对中各继承一 个基因,形成自己的基因父时体,—基—因母对体也的称基为因基型因型。如果
我们所考虑的遗传特A征A是由AA两个AA基 因AaA和Aaa控制aa的,(A、
a为表示两类基因的符-号)-那么-就有三-种基-因对-,记为AA,
1 =1, 2 =1/2, 3 =0
.
因此 所以
1 0 0 1 1 1
D0 0
1
2 0
0,e10 0 0

数学建模马氏链模型

数学建模马氏链模型

马氏链模型教学目的:通过教学,使学生掌握马尔可夫链的基本知识,掌握建立马氏链模型的基本方法,能用马氏链模型解决一些简单的实际问题。

教学重点和难点:建立马氏链模型的基本思想和基本步骤。

教学内容:马尔可夫预测法是应用概率论中马尔可夫链(Markov chain )的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术.这种技术已在市场预测分析和市场管理决策中得到广泛应用,近年来逐步被应用于卫生事业管理和卫生经济研究中.下面扼要介绍马尔可夫链的基本原理以及运用原理去进行市场预测的基本方法.(1)马尔可夫链的基本原理我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n 季度是畅销还是滞销,用一个随机变量X n 便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X 1,X 2,…,X n ,….称{ X t ,t ∈T ,T 是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n 看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率:N j i n p i X j X P j i n n ,,2,1,)()|(1 ====+若假定上式与n 无关,即 ====)()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N p p p p p p p p p P212222111211(1) 称为转移概率矩阵.例1 设某抗病毒药销售情况分为“畅销”和“滞销”两种,以“1”代表“畅销”,“2”代表“滞销”.以X n 表示第n 个季度的销售状态,则X n 可以取值1或2.若未来的抗病毒药销售状态,只与现在的市场状态有关,而与以前的市场状态无关,则抗病毒药的市场状态{ X n ,n ≥1}就构成一个马氏链.设5.011=p , 5.012=p ,6.021=p , 4.022=p则转移概率矩阵为⎪⎪⎭⎫ ⎝⎛=4.06.05.05.0P这里5.011=p 表示连续畅销的可能性,5.012=p 表示由畅销转入滞销的可能性,6.021=p 表示由滞销转入畅销的可能性,4.022=p 表示连续滞销的可能性.这种状态转移的情况也可以用状态转移图来表示.转移概率矩阵具有下述性质: (1)N j i p j i ,,2,1,,0 =≥.即每个元素非负.(2)N i p Nj j i ,,2,1,11==∑=.即矩阵每行的元素和等于1.如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率:N j i n p i X j X P k j i n k n ,,2,1,)()|()( ====+同样由平稳性,上式概率与n 无关,可写成)(k j i p .记⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(2) 称为k 步转移概率矩阵.其中)(k j i p 具有性质:N j i p k j i ,,2,1,,0)( =≥; N i p Nj k j i ,,2,1,11)( ==∑=.例2 求例1中抗病毒药的销售状态{X n }的二步转移矩阵P (2). 解 由例1知,其一步转移矩阵为:⎪⎪⎭⎫ ⎝⎛=4.06.05.05.0P若本季度抗病毒药的销售处于畅销(即处于状态“1” ),那么,经过两个季度以后,就经历了两次转移,可能转移到状态“2”,也可能保持状态“1”,这种转移的可能性的大小就是二步转移概率.)2(11p 表示抗病毒药的销售由畅销经两次转移后仍然是畅销的概率,由概率计算的全概率公式)1|1(13)2(11===X X P p)2|1()1|2()1|1()1|1(23122312====+=====X X P X X P X X P X X P 21121111p p p p +=55.06.05.05.05.0=⨯+⨯=同样可算得由畅销经两次转移到滞销的概率22121211)2(12p p p p p +=45.04.05.05.05.0=⨯+⨯=由滞销经两次转移到畅销和滞销的概率分别为54.06.04.05.06.021221121)2(21=⨯+⨯=+=p p p p p 46.04.04.05.06.022221221)2(22=⨯+⨯=+=p p p p p所以二步转移矩阵为⎪⎪⎭⎫⎝⎛=46.054.045.055.0)2(P由例2的计算过程知⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫ ⎝⎛=22221221212211212212121121121111)2(22)2(21)2(12)2(11)2(p p p p p p p p p p p p p p p p p p p p P22221121122211211P p p p p p p p p =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=一般地有,若P 为一步转移矩阵,则k 步转移矩阵kk N N k N k N k N k k k N k k k P p p p p p p p p p P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)()(2)(1)(2)(22)(21)(1)(12)(11)((3) (2)状态转移概率的估算在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例介绍如下.例3 记录了某抗病毒药的6年24个季度的销售情况,得到表1.试求其销售状态的转移概率矩阵.表1 某抗病毒药24个季度的销售情况季度 销售状态 季度 销售状态 季度 销售状态 季度 销售状态 1 1 (畅销) 7 1(畅销) 13 1(畅销) 19 2(滞销) 2 1(畅销) 8 1(畅销) 14 1(畅销) 20 1(畅销) 3 2(滞销) 9 1(畅销) 15 2(滞销) 21 2(滞销) 4 1(畅销) 10 2(滞销) 16 2(滞销) 22 1(畅销) 5 2(滞销) 11 1(畅销) 17 1(畅销) 23 1(畅销) 62(滞销)122(滞销)181(畅销)241(畅销)分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2.由此,可得到下面的市场状态转移情况表(表2).表2 市场状态转移情况表现计算转移概率.以频率代替概率,可得连续畅销的概率:1170.5151p ===-连续出现畅销的次数出现畅销的次数分母中的数为15减1是因为第24季度是畅销,无后续记录,需减1.同样得由畅销转入滞销的概率:1270.5151p ===-畅销转入滞销的次数出现畅销的次数滞销转入畅销的概率:2170.789p ===滞销转入畅销的次数出现滞销的次数连续滞销的概率:2220.229p ===连续滞销的次数出现滞销的次数综上,得销售状态转移概率矩阵为:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22.078.05.05.022211211p pp p P 从上面的计算过程知,所求转移概率矩阵P 的元素其实可以直接通过表2中的数字计算而得到,即将表中数分别除以该数所在行的数字和便可:77711+=p 77712+=p27721+=p77222+=p由此,推广到一般情况,我们得到估计转移概率的方法:假定系统有m 种状态S 1,S 2,…,S m ,根据系统的状态转移的历史记录,得到表3的统计表格,以j i pˆ表示系统从状态i 转移到状态j的转移概率估计值,则由表3的数据计算估计值的公式如下:表3 系统状态转移情况表例4 设某系统有3种状态S1,S2和S3,系统状态的转移情况见表4.试求系统的状态转移概率矩阵.表4 某系统状态转移情况表解由公式(4),得2.091566ˆ11=++=p,5.0915615ˆ12=++=p ,3.091569ˆ13=++=p2.021444ˆ21=++=p ,7.0214414ˆ22=++=p ,1.021442ˆ23=++=p3.04333ˆ31=++=p , 3.04333ˆ32=++=p ,4.04334ˆ33=++=p故系统的转移概率矩为⎪⎪⎪⎭⎫⎝⎛=4.03.03.01.07.02.03.05.02.0P(3)带利润的马氏链在马氏链模型中,随着时间的推移,系统的状态可能发生转移,这种转移常常会引起某种经济指标的变化.如抗病毒药的销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本.假定连续畅销时盈r 11元,连续滞销时亏本r 22元,由畅销转为滞销盈利r 12元,由滞销转为畅销盈利r 21元,这种随着系统的状态转移,赋予一定利润的马氏链,称为有利润的马氏链.对于一般的具有转移矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N p p p p p p p p p P212222111211的马氏链,当系统由i 转移到j 时,赋予利润r ij (i ,j =1,2,…,N ),则称⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N r r r r r r r r r R212222111211(5) 为系统的利润矩阵,r ij >0称为盈利,r ij <0称为亏本,r ij = 0称为不亏不盈.随着时间的变化,系统的状态不断地转移,从而可得到一系列利润,由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马氏链的转移概率决定.例如从抗病毒药的销售状态的转移矩阵,得到一步利润随机变量)1(1x 、)1(2x 的概率分布分别为:其中 p 11+ p 12 = 1 ,p 21+ p 22 = 1.如果药品处于畅销阶段,即销售状态为i =1,我们想知道,经过n 个季度以后,期望获得的利润是多少?为此,引入一些计算公式.首先,定义)(n i v 为抗病毒药现在处于)2,1(=i i ,经过n 步转移之后的总期望利润,则一步转移的期望利润为:∑==+==212211)1()1()(j j i j i i i i i i i p r p r p r x E v其中)()1(i x E 是随机变量)1(i x 的数学期望.二步转移的期望利润为:∑=+=+++==21)1(2)1(221)1(11)2()2(][][][)(j j i j j i i i i i i i p v r p v r p v r x E v其中随机变量)2(i x (称为二步利润随机变量)的分布为:2,1,)()1()2(==+=j p v r x P j i j j i i例如,若⎪⎪⎭⎫ ⎝⎛=6.04.05.05.0P , ⎪⎪⎭⎫⎝⎛-=7339R则抗病毒药销售的一步利润随机变量:抗病毒药畅销和滞销时的一步转移的期望利润分别为:65.035.09)(12121111)1(1)1(1=⨯+⨯=+==p r p r x E v 36.074.03)(22222121)1(2)1(2-=⨯-⨯=+==p r p r x E v二步利润随机变量为:抗病毒药畅销和滞销时的二步转移的期望利润分别为:12)1(21211)1(111)2(1)2(1][][)(p v r p v r x E v +++==5.75.0)33(5.0)69(=⨯-+⨯+=22)1(22221)1(121)2(2)2(2][][)(p v r p v r x E v +++==4.26.0)37(4.0)63(-=⨯--+⨯+=一般地定义k 步转移利润随机变量),2,1()(N i x k i =的分布为:N j p v r x P ji k j j i k i ,2,1)()1()(==+=-则系统处于状态i 经过k 步转移后所得的期望利润)(k i v 的递推计算式为:j i k j Nj j i k i k i p v r x E v )()()1(1)()(-=+==∑∑∑∑=-=-=+=+=Nj j i k j i Nj j i k j Nj j i j i p v v p v p r 1)1()1(1)1(1(6)当k =1时,规定边界条件0)0(=i v .称一步转移的期望利润为即时的期望利润,并记N i q v i i ,2,1,)1(==.(4)市场占有率预测利用马尔可夫链,我们可以进行市场占有率的预测.例如,预测A 、B 、C 三个厂家生产的某种抗病毒药在未来的市场占有情况,其具体步骤如下:第一步 进行市场调查.主要调查以下两件事:(1)目前的市场占有情况.如在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A 、B 、C 三药厂的各有400家、300家、300家,那么A 、B 、C 三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布.(2)查清使用对象的流动情况.流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出.如从定货单得表5.表5 顾客订货情况表下季度订货情况 合计 来 自A B C A 160 120 120 400 B 180 90 30 300 C180 30 90 300 合计520240 2401000第二步 建立数学模型.假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A 、B 、C 三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表5,我们可以得模型的转移概率矩阵:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3.01.06.01.03.06.03.03.04.030090300303001803003030090300180400120400120400160333231232221131211p p p p p p p p p P 矩阵中的第一行(0.4,0.3,0.3)表示目前是A 厂的顾客下季度有40%仍买A 厂的药,转为买B 厂和C 厂的各有30%.同样,第二行、第三行分别表示目前是B 厂和C 厂的顾客下季度的流向.由P 我们可以计算任意的k 步转移矩阵,如三步转移矩阵:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==252.0244.0504.0244.0252.0504.0252.0252.0496.03.01.06.01.03.06.03.03.04.033)3(P P 从这个矩阵的各行可知三个季度以后各厂家顾客的流动情况.如从第二行(0.504,0.252,0.244)知,B 厂的顾客三个季度后有50.4%转向买A 厂的药,25.2%仍买B 厂的,24.4%转向买C 厂的药.第三步 进行预测. 设),,()(3)(2)(1)(k k k k p p p S =表示预测对象k 季度以后的市场占有率,初始分布则为),,()0(3)0(2)0(1)0(p p p S =,市场占有率的预测模型为P S P S S k k k ⋅=⋅=-)1()0()( (7)现在,由第一步,我们有)3.0,3.0,4.0()0(=S ,由此,我们可预测任意时期A 、B 、C 三厂家的市场占有率.例如,三个季度以后的预测值为:⎪⎪⎪⎭⎫⎝⎛=⋅==252.0244.0504.0244.0252.0504.0252.0252.0496.0)3.03.04.0(),,(3)0()3(3)3(2)3(1)3(P S p p p S )2496.02496.05008.0(=大致上,A 厂占有一半的市场,B 厂、C 厂各占四分之一.模型(7)可推广到N 个状态的情形:kN N N N N N Nkk k p p p p p p p p p pp p P SP SS⎪⎪⎪⎪⎪⎭⎫⎝⎛===-212222111211)0()0(2)0(1)0()1()(),,((8) 如果我们按公式(7)继续逐步求A 、B 、C 三家的市场占有率,会发现,当k 大到一定的程度,S (k )将不会有多少改变,即有稳定的市场占有率,设其稳定值为),,(321p p p S =,满足1321=++p p p .事实上,如果市场的顾客流动趋向长期稳定下去,则经过一段时期以后的市场占有率将会出现稳定的平衡状态,即顾客的流动,不会影响市场的占有率,而且这种占有率与初始分布无关.如何求出这种稳定的市场占有率呢?以A 、B 、C 三家的情况为例,当市场出现平衡状态时,从公式(7)可得方程S = S P ,即⎪⎪⎪⎭⎫⎝⎛=3.01.06.01.03.06.03.03.04.0),,(),,(321321p p p p p p 由此得⎪⎩⎪⎨⎧++=++=++=3213321232113.01.03.01.03.03.06.06.04.0pp p p p p p p p p p p 经整理,并加上条件1321=++p p p ,得⎪⎪⎩⎪⎪⎨⎧=++=-+=+-=++-1p p p 00.7p 0.1p 0.3p 00.1p 0.7p 0.3p 00.6p 0.6p 0.6p 321321321321 上方程组是三个变量四个方程的方程组,在前三个方程中只有二个是独立的,任意删去一个,从剩下的三个方程中,可求出唯一解:5.01=p , 25.02=p , 25.03=p这就是A 、B 、C 三家的最终市场占有率.一般N 个状态的稳定市场占有率(稳态概率)),,(21N p p p S =可通过解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎪⎪⎪⎪⎭⎫⎝⎛=∑=1),,(),,(12122221112112121Nk k N N N N N N NN p p p p p p p p p p pp p p p p(9) 求得,而(9)的前N 个方程中只有N -1个是独立的,可任意删去一个.(5)期望利润预测企业追逐市场占有率的真正目的是使利润增加,因此,竞争各方无论是为了夺回市场份额,还是为了保住或者提高市场份额,在制订对策时都必须对期望利润进行预测.预测主要分两步进行:①市场统计调查.首先调查销路的变化情况,即查清由畅销到滞销或由滞销到畅销,连续畅销或连续滞销的可能性是多少.其次统计出由于销路的变化,获得的利润和亏损情况.②建立数学模型,列出预测公式进行预测.例如,通过市场调查,我们得到如下的销路转移表(表6)和利润变化表(表7).由此,我们来建立数学模型.表6 销路转移表销路转移表说明连续畅销的可能性为50%,由畅销转入滞销的可能性也是50%,由滞销到畅销为40%,连续滞销的可能性为60%.利润表说明的是连续畅销获利900万元,由畅销到滞销或由滞销到畅销均获利300万元,连续滞销则亏损700万元.从而得到销售状态的转移矩阵P 和利润矩阵R 分别为:表7 利润变化表(单位:百万元)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=6.04.05.05.022211211p pp p P ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=733922211211r rr r R P 和R 便构成一个有利润的马氏链.由前面所述的基本原理及公式(6)得下面的预测公式:即时期利润:2,121)1(===∑=i p r v q j ji j i i ik步以后的期望利润:2,121)1(21)1(21)(=+=+=∑∑∑=-=-=i p v q p v p r v j ji k j i j j i k j j j i j i k i将调查数据代入上公式则可预测各时期的期望利润值.如:65.035.091=⨯+⨯=q 36.074.032-=⨯-⨯=q由此可知,当本季度处于畅销时,在下一季度可以期望获得利润600万元;当本季度处于滞销时,下一季度将期望亏损300万元.同样算得: 5.7)2(1=v , 4.2)2(2-=v55.8)3(1=v , 44.1)3(2-=v由此可预测本季度处于畅销时,两个季度后可期望获利750万元,三个季度后可期望获利855万元;当本季度处于滞销时,两个季度后将亏损240万元,三个季度后亏损144万元.(6)应用举例例5 Markov模型在流行病监测中的应用Markov模型是用于描述时间和状态都是离散的随机过程的数学模型.应用其理论和方法,可以对疾病发病情况随时间序列的变化规律进行分析和研究,预测疾病的发展变化趋势,为预防和控制疾病提供依据.统计了某市1980年至1995年肾综合征出血热(HFRS)的发病率分别为(单位:1/10万):2.95、6.28、10.28、7.01、7.36、13.78、33.93、35.87、33.40、28.38、30.50、33.79、39.70、30.39、39.70、33.59(引自:李洪杰等. 龙泉市肾综合征出血热发病趋势的预测. 浙江预防医学,1997,02:44).下面进行建模预测.首先根据资料将发病率划分为四个状态,统计各数据的状态归属及各状态出现的频率(初始概率),得表8和表9.表8 某市HFRS流行状况年份发病率(1/10万) 状态年份发病率(1/10万) 状态1980 2.95 1 1988 33.40 4 1981 6.28 1 1989 28.38 3 1982 10.28 2 1990 30.50 4 1983 7.01 1 1991 33.79 4 1984 7.36 1 1992 39.70 4 1985 13.78 2 1993 30.39 4 1986 33.93 4 1994 39.70 4 1987 35.87 4 1995 33.59 4表9 各状态取值范围及初始概率状态发病率取值范围初始概率1 X≤10 4/162 10<X≤20 2/163 20<X≤30 1/164 X>30 9/16由表8可得各状态的转移频率即状态转移概率的估计值,从而得模型的一步转移概率矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=875.0125.00010005.0005.0005.05.0)197)19(1001000210021004242P 可认为HFRS 下一年的发病率只与当年发病率有关,而与过去的发病率无关,且任意时期的一步转移概率矩阵不变,从而满足无后效性和平稳性的假设,因而可用初始分布为(4/16,2/16,1/16,9/16),转移概率矩阵为P 的马氏链模型来预测HFRS 发病率未来的情况.计算多步转移矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛==8906.01094.00000.00000.08750.01250.00000.00000.04375.00625.02500.02500.02500.00000.02500.05000.02)2(P P⎪⎪⎪⎪⎪⎭⎫⎝⎛==8887.01113.00000.00000.08906.01094.00000.00000.05703.00547.01250.02500.03438.00312.02500.03750.03)3(P P ⎪⎪⎪⎪⎪⎭⎫⎝⎛==8889.01111.00000.00000.08887.01113.00000.00000.06162.00713.01250.01875.04570.00430.01875.03125.04)4(P P 计算极限nn P ∞→lim 或解方程1,),,,(),,,(4143214321==∑=k kp P p p p p p p p p ,得模型的极限概率分布(稳态分布):(0,0,1/9,8/9).分析预测:由于95年处于状态4,比较P 的第4行的四个数字知,875.044=p 最大,所以预测96年仍处于状态4,即发病率大于30/10万.同样,从二、三、四步转移矩阵知,依然是状态4转入状态4的概率最大,所以预测1996年至1999年该市的HFRS 发病率将持续在大于30/10万(高发区)水平,这提醒我们应该对此高度重视,采取相应对策.如果转移概率矩阵始终不变,从极限分布看,最终HFRS 发病率将保持在高发区水平,当然,这应该是不会符合实际情况的,因为随着各方面因素的改变,转移概率矩阵一般也会发生变化.所以Markov模型主要适用于短期预测.在用Markov模型进行预测的过程中,无后效性和平稳性是最基本的要求,而模型是否合理有效,状态的划分和转移概率矩阵的估算是关键,不同的状态划分可能会得到不同的结果,通常我们根据有关预测对象的专业知识和数据的多少及范围来确定系统状态.在卫生管理事业中,用Markov模型还可预测医疗器械、药品的市场占有率,药品的期望利润收益等.习题在钢琴销售模型中,将存贮策略修改为:(1)当周末库存量为0或1时,订购,使下周初的库存量达到3架;否则,不订购。

(完整版)马氏链模型及matlab程序

(完整版)马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例五、前面国赛用到此算法的备注一下马氏链模型用来干什么马尔可夫预测法是应用概率论中马尔可夫链(Markov chain )的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。

什么时候用应用马尔可夫链的计算方法进行马尔可夫分析, 主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。

马尔可夫链的基本原理我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n 季度是畅销还是滞销,用一个随机变量X n 便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X 1,X 2,…,X n ,….称{ X t ,t ∈T ,T 是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n 看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率:N j i n p i X j X P j i n n ,,2,1,)()|(1若假定上式与n 无关,即 )()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记N N N N N N p p p p p p p p p P212222111211(1) 称为转移概率矩阵.转移概率矩阵具有下述性质:(1)N j i p j i ,,2,1,,0 .即每个元素非负.(2)N i p Nj j i ,,2,1,11.即矩阵每行的元素和等于1.如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率:N j i n p i X j X P k j i n k n ,,2,1,)()|()(同样由平稳性,上式概率与n 无关,可写成)(k j i p .记)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(2)称为k 步转移概率矩阵.其中)(k j i p 具有性质:N j i p k ji ,,2,1,,0)( ; N i p Nj k j i ,,2,1,11)( .一般地有,若P 为一步转移矩阵,则k 步转移矩阵)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(3) (2)状态转移概率的估算在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例介绍如下.例3 记录了某抗病毒药的6年24个季度的销售情况,得到表1.试求其销售状态的转移概率矩阵.表1 某抗病毒药24个季度的销售情况季度销售状态季度销售状态季度销售状态季度销售状态1 1 (畅销) 7 1(畅销) 13 1(畅销) 19 2(滞销)2 1(畅销) 8 1(畅销) 14 1(畅销) 20 1(畅销)3 2(滞销) 9 1(畅销) 15 2(滞销) 21 2(滞销)4 1(畅销) 10 2(滞销) 16 2(滞销) 22 1(畅销)5 2(滞销) 11 1(畅销) 17 1(畅销) 23 1(畅销) 62(滞销)122(滞销)181(畅销)241(畅销)分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2.由此,可得到下面的市场状态转移情况表(表2).表2 市场状态转移情况表现计算转移概率.以频率代替概率,可得连续畅销的概率:1170.5151p连续出现畅销的次数出现畅销的次数分母中的数为15减1是因为第24季度是畅销,无后续记录,需减1.同样得由畅销转入滞销的概率:1270.5151p畅销转入滞销的次数出现畅销的次数滞销转入畅销的概率:2170.789p滞销转入畅销的次数出现滞销的次数连续滞销的概率:2220.229p连续滞销的次数出现滞销的次数综上,得销售状态转移概率矩阵为:22.078.05.05.022211211p pp p P 从上面的计算过程知,所求转移概率矩阵P 的元素其实可以直接通过表2中的数字计算而得到,即将表中数分别除以该数所在行的数字和便可:77711p 77712p 27721p 77222p Matlab 程序:format rat clca=[ 1 1 2 1 2 2 1 1 1 2 1 2,1 1 2 2 1 1 2 1 2 1 1 1]; for i=1:2 for j=1:2f(i,j)=length(findstr([i j],a)); end end fni=(sum(f'))' for i=1:2p(i,:)=f(i,:)/ni(i); end p由此,推广到一般情况,我们得到估计转移概率的方法:假定系统有m 种状态S 1,S 2,…,S m ,根据系统的状态转移的历史记录,得到表3的统计表格,以j i pˆ表示系统从状态i 转移到状态j 的转移概率估计值,则由表3的数据计算估计值的公式如下:表3 系统状态转移情况表(3)带利润的马氏链在马氏链模型中,随着时间的推移,系统的状态可能发生转移,这种转移常常会引起某种经济指标的变化.如抗病毒药的销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本.假定连续畅销时盈r 11元,连续滞销时亏本r 22元,由畅销转为滞销盈利r 12元,由滞销转为畅销盈利r 21元,这种随着系统的状态转移,赋予一定利润的马氏链,称为有利润的马氏链.对于一般的具有转移矩阵N N N N N N p p p p p p p p p P212222111211的马氏链,当系统由i 转移到j 时,赋予利润r ij (i ,j =1,2,…,N ),则称N N N N N N r r r r r r r r r R212222111211 (5) 为系统的利润矩阵,r ij >0称为盈利,r ij <0称为亏本,r ij = 0称为不亏不盈.随着时间的变化,系统的状态不断地转移,从而可得到一系列利润,由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马氏链的转移概率决定.例如从抗病毒药的销售状态的转移矩阵,得到一步利润随机变量)1(1x 、)1(2x 的概率分布分别为:其中 p 11+ p 12 = 1 ,p 21+ p 22 = 1.如果药品处于畅销阶段,即销售状态为i =1,我们想知道,经过n 个季度以后,期望获得的利润是多少?为此,引入一些计算公式.首先,定义)(n i v 为抗病毒药现在处于)2,1( i i ,经过n 步转移之后的总期望利润,则一步转移的期望利润为:212211)1()1()(j j i j i i i i i i i p r p r p r x E v其中)()1(i x E 是随机变量)1(i x 的数学期望.二步转移的期望利润为:21)1(2)1(221)1(11)2()2(][][][)(j j i j j i i i i i i i p v r p v r p v r x E v其中随机变量)2(ix (称为二步利润随机变量)的分布为:2,1,)()1()2( j p v r x P j i j j i i例如,若6.04.05.05.0P ,7339R则抗病毒药销售的一步利润随机变量:抗病毒药畅销和滞销时的一步转移的期望利润分别为:65.035.09)(12121111)1(1)1(1 p r p r x E v 36.074.03)(22222121)1(2)1(2 p r p r x E v二步利润随机变量为:抗病毒药畅销和滞销时的二步转移的期望利润分别为:12)1(21211)1(111)2(1)2(1][][)(p v r p v r x E v5.75.0)33(5.0)69(22)1(22221)1(121)2(2)2(2][][)(p v r p v r x E v4.26.0)37(4.0)63(一般地定义k 步转移利润随机变量),2,1()(N i x k i的分布为:N j p v r x P ji k j j i k i ,2,1)()1()(则系统处于状态i 经过k 步转移后所得的期望利润)(k iv 的递推计算式为:j i k j Nj j i k i k i p v r x E v )()()1(1)()(Nj j i k j i Nj j i k j Nj j i j i p v v p v p r 1)1()1(1)1(1(6)当k =1时,规定边界条件0)0( iv .称一步转移的期望利润为即时的期望利润,并记N i q v i i ,2,1,)1( .可能的应用题型题型一、市场占有率预测例题1在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A 、B 、C 三药厂的各有400家、300家、300家,预测A 、B 、C 三个厂家生产的某种抗病毒药在未来的市场占有情况。

[学习笔记]马氏链模型

[学习笔记]马氏链模型

[学习笔记]马⽒链模型引例:(带有反射壁的随机徘徊)如果在原点右边距离原点⼀个单位及距原点 s(s > 1)个单位处各⽴⼀个弹性壁。

⼀个质点在数轴右半部从距原点两个单位处开始随机徘徊。

每次分别以概率 p(0 < p < 1) 和 q(q = 1− p) 向右和向左移动⼀个单位;若在+1 处,则以概率 p 反射到 2,以概率q 停在原处;在 s 处,则以概率 q 反射到 s −1,以概率 p 停在原处。

由该例⼦可以看出,我们所做的,是根据质点的移动⽅向和⽅向对应的概率,对质点的运动⽅向进⾏预测。

在这背景下,球移动的⽅向与概率只与当前的点有关,与它历史运动轨迹⽆关。

因此,这种现象可以⽤⼀句话来概括:某⼀系统在已知现在情况的条件下,系统未来时刻的情况只与现在有关,⽽与过去的历史⽆直接关系。

描述这类随机现象的数学模型称为马⽒模型。

概念以及定理:时齐性:它的含义是:系统由状态i 到状态j 的转移概率只依赖于时间间隔的长短,与起始的时刻⽆关。

在此马⽒链假定都是时齐的,因此省略“时齐”⼆字。

n可以理解成起点的位置n=1,2… m表⽰从n开始的时间间隔,i与j分别表⽰n点的状态与n+m点的状态。

由式⼦可以看出,概率与n⽆关,只与起点状态,终点状态,以及两点之间的距离有关。

转移概率矩阵: m 步转移概率 p (m) ij 为元素的矩阵 为马尔可夫链的m 步转移矩阵。

当m = 1时,记 P(1) = P 称为马尔可夫链的⼀步转移矩阵,或简称转移矩阵。

(下⾯是⼀个转移矩阵)并且由上⾯的图可以看出⼀些性质:(1)上次购买的A对应下次购买的A、B、C的概率,每⼀个都在范⽂[0,1],⽽且总和是1.(2)当步数为0时,若前后状态相同,概率为1。

状态不同概率为0。

吸收链:如果马⽒链⾄少含有⼀个吸收状态,并且从每⼀个⾮吸收状态出发,都可以到达某个吸收状态,那么这个马⽒链被称为吸收链。

如图,当状态到4的时候就会停留到4,状态4也就被称为吸收状态。

第十七章 马氏链模型

第十七章 马氏链模型

-207-第十七章 马氏链模型§1 随机过程的概念一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。

在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。

这就要研究无限多个,即一族随机变量。

随机过程理论就是研究随机现象变化过程的概率规律性的。

定义1 设},{T t t ∈ξ是一族随机变量,T 是一个实数集合,若对任意实数t T t ξ,∈是一个随机变量,则称},{T t t ∈ξ为随机过程。

T 称为参数集合,参数t 可以看作时间。

t ξ的每一个可能取值称为随机过程的一个状态。

其全体可能取值所构成的集合称为状态空间,记作E 。

当参数集合T 为非负整数集时,随机过程又称随机序列。

本章要介绍的马尔可夫链就是一类特殊的随机序列。

例1 在一条自动生产线上检验产品质量,每次取一个,“废品”记为1,“合格品”记为0。

以n ξ表示第n 次检验结果,则n ξ是一个随机变量。

不断检验,得到一列随机变量 ,,21ξξ,记为},2,1,{ =n n ξ。

它是一个随机序列,其状态空间}1,0{=E 。

例2 在m 个商店联营出租照相机的业务中(顾客从其中一个商店租出,可以到m 个商店中的任意一个归还),规定一天为一个时间单位,“j t =ξ”表示“第t 天开始营业时照相机在第j 个商店”,m j ,,2,1 =。

则},2,1,{ =n n ξ是一个随机序列,其状态空间},,2,1{m E =。

例 3 统计某种商品在t 时刻的库存量,对于不同的t ,得到一族随机变量,)},0[,{+∞∈t t ξ是一个随机过程,状态空间],0[R E =,其中R 为最大库存量。

我们用一族分布函数来描述随机过程的统计规律。

一般地,一个随机过程},{T t t ∈ξ,对于任意正整数n 及T 中任意n 个元素n t t ,,1 相应的随机变量n t t ξξ,,1 的联合分布函数记为},,{),,(1111n t t n t t x x P x x F n n ≤≤=ξξ (1)由于n 及),,1(n i t i =的任意性,(1)式给出了一族分布函数。

数学模型4-1马氏模型

数学模型4-1马氏模型

马氏链的遍历极限(II)
若马氏链{ξn: n≥ 0}的状态空间S为有限 集(不妨设S={1,2,L, N}),且转移矩阵 矩阵的每个元素为正,则它存在唯一不 变概率分布π=(π1,π2,L, πN), 满足如下 (指数)遍历性
4
马氏链的遍历极限(III)
令Ti(ω)是(ξ1(ω),L,ξn(ω))首次出现状态 i 的时间.那么μi=E(Ti(ω) | ξ0(ω)=i)就是 一个平均返回(状态i)时间.有结论如下
也就是说随机过程下一时间的发展只和包括当 前时间在内的最近的k个时间的状态有关 而和 这k个时间之前的历史没有关系, (其中k=0, 1, 2, L) ,我们把这样的随机过程叫做k-阶马氏 链.
关于名称的一点说明
参考书中,看到马氏链(过程)的时候要根据上下 文进行判断.有的时候是指普遍的马氏链(包括 高阶,一阶,零阶),有时候特指一阶马氏链. 在大多数情况下,如不特别说明,通常是特指 一阶时齐的马氏链. 如果将一个 k-阶马氏链的相邻 k 个时间的状态 合为一个新的状态: yn=(xn,xn-1,L,xn-k+1) ,则 {yn} 是一个 1-阶马氏链.程
3
时齐马氏链性质 (I)
时齐马氏链由转移概率矩阵和初分布完 全确定,设转移概率矩阵为P=(pij),初 始分布: ,则
时齐马氏链性质 (II)
若记μi(n)=P(ξn=i), μ(n)=(μi(n): i∈ S),即 所谓绝对概率,则:
马氏链的不变分布
记之为pi,j(n,n+k) 矩阵P(n,n+k)=( pi,j(n,n+k) )称为从n出 发的k步转移概率矩阵
高阶马氏过程
若一个随机过程满足:
零(1)阶马氏过程

正则马氏链模型

正则马氏链模型

正则马氏链模型正则马氏链模型是一种常用的概率模型,它是一种离散时间、离散状态的随机过程。

该模型的基本假设是:在任意时刻,系统处于某一特定状态的概率只与其前一时刻所处的状态有关。

正则马氏链模型可以用来描述许多实际问题,比如天气预报、股票价格变化、人口迁移等。

一、基本概念1. 马氏性质马氏性质是指一个随机过程中,在任意时刻,系统处于某一特定状态的概率只与其前一时刻所处的状态有关。

这种性质也称为无后效性。

2. 状态转移矩阵状态转移矩阵是一个n×n 的矩阵,其中第 i 行第 j 列表示从状态 i 转移到状态 j 的概率。

对于正则马氏链模型而言,每个状态可以转移到任何其他状态,因此矩阵中所有元素都大于等于 0,并且每行元素之和为 1。

3. 平稳分布平稳分布是指当一个随机过程在长期运行后,其概率分布不再发生变化,并且该分布与起始分布无关。

对于正则马氏链模型而言,其平稳分布存在且唯一。

二、模型定义正则马氏链模型可以用一个四元组来表示,即(S, P, π, T)。

其中:1. S 表示状态集合,每个状态都有一个唯一的标识符。

2. P 表示状态转移矩阵,P(i,j) 表示从状态 i 转移到状态 j 的概率。

3. π 表示初始分布,π(i) 表示初始时系统处于状态 i 的概率。

4. T 表示时间步数,表示模型运行的时间长度。

三、模型计算1. 状态转移概率计算对于正则马氏链模型而言,任意时刻系统处于某一特定状态的概率只与其前一时刻所处的状态有关。

因此,在已知 t 时刻系统处于某一特定状态 i 的条件下,t+1 时刻系统处于某一特定状态 j 的概率可以用如下公式计算:P(i,j,t+1) = Σ P(i,k,t) × P(k,j)其中 k 是所有可能的中间状态。

2. 平稳分布计算平稳分布是指当一个随机过程在长期运行后,其概率分布不再发生变化,并且该分布与起始分布无关。

对于正则马氏链模型而言,其平稳分布可以通过不断迭代计算得到。

数学建模马氏链讲座课件

数学建模马氏链讲座课件
数学建模马氏链讲座
内容提要
?马氏链与马氏链预测方法 ?马氏链预测方法在各领域中的应用 ?实例分析: 年径流量预测
1.马氏链与马氏链预测方法
1.1 马氏链
马尔可夫过程是随机过程的一个分支,它的最基 本特征是“无后效性” , 也称为“马氏性”. 即在已 知随机过程现在状态的条件下,其将来的状态与过去 的状态无关。换句话讲,就是: 已知“现在”,“将 来”与“过去”无关。
实际应用中,常记(1.1)式的右端
P{X (m ? k) ? im? k | X (m) ? im} ? P{Xm?k ? j | Xm ? i} ? pij{m; k}, i, j ? E
一般考虑齐次马尔可夫链,即对任意的m, k ? T, 有
pij (m; k ) ? pij (k ), i, j ? E.
(1) 与“ADMCP 法”相同; ((32)) 对也“与(“2)A”所DM得C的P 结法果”进相行同统; 计,可得不同滞时(步长)的 马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程 的概率法则; (4) “马氏性” 检验(应用工作者使用该方法时,一般也 不做这一步,本文加上这一步同样意在完善“ SPMCP 法”);
其中
p ij
(m;
k
)
表示“系统时刻m时处在状态i,经k步状态转 移
到达状态j
的概率”,pij
(
k
)
表示“系统从状态i,经k 移
步状态转
到达状态j的概率”, pij . 由pij(k)组成的矩阵, 称为马尔可夫链的k步转移
概率矩阵,记为Pk.
另一种传统的马尔可夫链预测方法——叠加马尔可夫链预 测方法,尽管运用了各阶(各种步长)马尔可夫链的绝对分 布叠加来预测状态,但没有考虑各阶(各种步长)马尔可夫 链的绝对概率在叠加中所起的作用,即认为各阶(各种步长) 马尔可夫链的绝对概率所起的作用是相同的,这显然不科学。 事实上,一个满足马氏性的相依时间序列,其各阶自相关性 是不一样的。

马氏链模型及matlab程序

马氏链模型及matlab程序

一、用法,用来干什么,什么时候用ﻫ二、步骤,前因后果,算法得步骤,公式三、程序四、举例五、前面国赛用到此算法得备注一下马氏链模型用来干什么马尔可夫预测法就是应用概率论中马尔可夫链(Markov chain)得理论与方法来研究分析时间序列得变化规律,并由此预测其未来变化趋势得一种预测技术。

什么时候用ﻫ应用马尔可夫链得计算方法进行马尔可夫分析, 主要目得就是根据某些变量现在得情况及其变动趋向,来预测它在未来某特定区间可能产生得变动,作为提供某种决策得依ﻫ据。

马尔可夫链得基本原理我们知道,要描述某种特定时期得随机现象如某种药品在未来某时期得销售情况,比如说第n季度就是畅销还就是滞销,用一个随机变量Xn便可以了,但要描述未来所有时期得情况,则需要一系列得随机变量X1,X2,…,Xn,…、称{Xt,t∈T ,T就是参数集}为随机过程,{ X t}得取值集合称为状态空间、若随机过程{ X n}得参数为非负整数, X n为离散随机变量,且{ X n}具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链)。

所谓无后效性,直观地说,就就是如果把{Xn}得参数n瞧作时间得话,那么它在将来取什么值只与它现在得取值有关,而与过去取什么值无关、对具有N个状态得马氏链,描述它得概率性质,最重要得就是它在n时刻处于状态i下一时刻转移到状态j得一步转移概率:若假定上式与n无关,即,则可记为(此时,称过程就是平稳得),并记(1) 称为转移概率矩阵、转移概率矩阵具有下述性质:(1)、即每个元素非负。

(2).即矩阵每行得元素与等于1、如果我们考虑状态多次转移得情况,则有过程在n时刻处于状态i,n+k时刻转移到状态j得k步转移概率:同样由平稳性,上式概率与n无关,可写成。

记(2) 称为k步转移概率矩阵。

其中具有性质:; 、一般地有,若为一步转移矩阵,则k步转移矩阵(3) (2)状态转移概率得估算在马尔可夫预测方法中,系统状态得转移概率得估算非常重要.估算得方法通常有两种:一就是主观概率法,它就是根据人们长期积累得经验以及对预测事件得了解,对事件发生得可能性大小得一种主观估计,这种方法一般就是在缺乏历史统计资料或资料不全得情况下使用、二就是统计估算法,现通过实例介绍如下.例3 记录了某抗病毒药得6年24个季度得销售情况,得到表1、试求其销售状态得转移概率矩阵。

数学建模第11章 马氏链模型

数学建模第11章 马氏链模型

1
0.7
2
aa12((nn
1) 1)
a1 (n) a1 (n)
p11 p12
a2 (n) p21 a2 (n) p22
给定a(0), 预测 a(n), n=1,2…
n0
设投保 时健康
a1(n)
1
a2(n) 0
1
2
3 …∞
0.8 0.78 0.778 … 7/9
0.2 0.22 0.222 … 2/9
设投保 a1(n) 0 时疾病 a2(n) 1
0.7 0.77 0.777 … 7/9 0.3 0.33 0.333 … 2/9
n时状态概率趋于稳定值,稳定值与初始状态无关
健康与疾病
例2. 健康和疾病状态同上,Xn=1~ 健康, Xn=2~ 疾病
死亡为第3种状态,记Xn=3 0.8
0.18
0.25
(非负,行和为 1)
马氏链的两个重要类型 a(n 1) a(n)P
1. 正则链 ~ 从任一状态出发经有限次转移 能以正概率到达另外任一状态(如例1)。
正则链 N, PN 0
正则链 w, a(n) w(n ) w ~ 稳态概率
w满足 wP w
例1.
P
0.8 0.7
0.2 0.3
k
w满足 wi 1 i 1
(1 父为dd))
p
p12 P( X n1 2(后代为dr) X n (1 父为dd)) q
p13 P( X n1 3(后代为rr) X n (1 父为dd)) 0
p21 P( X n1 1(后代为dd) X n (2 父为dr)) 1/ 2 p p / 2
p22 P( X n1 2(后代为dr) X n (2 父为dr))

数学模型5-1马氏模型

数学模型5-1马氏模型

关于名称的一点说明
• 参考书中,看到马氏链(过程)的时候要根据上下 文进行判断。有的时候是指普遍的马氏链(包括 高阶、一阶、零阶),有时候特指一阶马氏链。 • 在大多数情况下,如不特别说明,通常是特指 一阶时齐的马氏链。 • 如果将一个 k-阶马氏链的相邻 k 个时间的状态 合为一个新的状态: yn=(xn,xn-1, ,xn-k+1) ,则 {yn} 是一个 1-阶马氏链。
Simplified Page Rank Calculation
• Change pr(d) will change the page ranks of other pages, which in turn change pr(d); • In other words, the definition of page rank is recursive,
• 常返性:马氏链{ξn(ω): n≥ 0},状态y称为常返 的,如果概率为一地发生如下事件:从y出发的状 态,有限时间内离开状态y,此后又必到达y, , 如此无限重复。
马氏链的遍历极限(I)
若马氏链ξ={ξn: n≥ 0}的状态空间S为有 限集(不妨设S={1,2, , N}),且ξ(转移矩 阵为P)是一个互通常返马氏链,则它存在 唯一的不变概率分布π=(π1,π2, , πN), 并 使得
离散时间随机过程
• 对于一个固定的ω, ξ(ω)={ξ0(ω), ξ1(ω), , ξn(ω), } 就是一个状态的序列, 称为该随 机过程的一条轨道,我们把 ξt(ω) 的取值 叫做该条轨道在时间 t 的状态。 • 的联合分布称为 ξ 的一个有限维分布, 我们用 ξ 的全部有 限维分布刻画它的统计特性.
Simplified Page Rank Calculation
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0.368 0.368
0.632 0.264 0.448
p 3 3 P ( S n 1 3 S n 3 ) P (D n 0 ) P (D n 3 ) 0 .448
模型建立 状态概率 a i(n ) P (S n i)i, 1 ,2 ,3 马氏链的基本方程 a(n1)a(n)P
0.368 0 0.632 P 0.368 0.368 0.264
状态转 移规律
Sn1 3S,n Dn,
Dn Sn Dn Sn
Pn 0 ) 0 .368
p11 p21 p31
p12 p22 p32
p13
p23
p33
p p …1 12 3 …P P ((S S n n 1 1 2 3S Sn n 1 1) ) 0 P (D n 1 ) 0 .632 000...133866488
在稳态情况下计算失去销售机会的概率和每周的 平均销售量, 作为该存贮策略的评价指标.
模型建立 Dn~第n周需求量,均值为1的泊松分布
P ( D n k ) e 1 /k !( k 0 ,1 ,2 ,L )
Dn 0
1
2
3
>3
P 0.368 0.368 0.184 0.061 0.019
Sn~第n周初库存量(状态变量 ) Sn{1,2,3} 状态转移阵
均售量
i 1j 1
需求不超过存量,需求被售 需求超过存量,存量被售
3i
[ jP (D n jS n i) i( P D n iS n i)]P (S n i) i 1j 1
0.6320.2850.8960.263 n充分大时
0.9770.4520.857
P(Sn i)wi
从长期看,每周的平均销售量为 0.857(架)
敏感性分析 当平均需求在每周1 (架) 附近波
设Dn服从均值
的泊松分布
状态转移阵
动时,最终结果有多大变化。
P ( D n k ) k e /k ! ,( k 0 ,1 ,2 ,L )
e 0
1e
P
e
e
1(1)e
2e/2 e 1(2/2)e
第n周(n充分大)失去销售机会的概率 PP(DnSn)
例1. 人的健康状况分为健康和疾病两种状态,设对特 定年龄段的人,今年健康、明年保持健康状态的概率 为0.8, 而今年患病、明年转为健康状态的概率为0.7.
若某人投保时健康, 问10年后他仍处于健康状态的概率.
状态与状态转移
状态Xn
1,
2,
第n年健康 状态ai概 (n)率 P(Xni),
第n年疾病
第十二章 马氏链模型
12.1 健康与疾病 12.2 钢琴销售的存贮策略 12.3 基因遗传 12.4 等级结构 12.5 资金流通
马氏链模型
描述一类重要的随机动态系统(过程)的模型. • 系统在每个时期所处的状态是随机的. • 从一时期到下时期的状态按一定概率转移. • 下时期状态只取决于本时期状态和转移概率.
已知现在,将来与过去无关(无后效性)
马氏链 (Markov Chain) ——时间、状态均为离散的随机转移过程
12.1 健康与疾病
通过有实际背景的例子介绍马氏链的基本概念和性质. 人的健康状态随着时间的推移会随机地发生转变.
保险公司要对投保人未来的健康状态作出估计, 以制 订保险金和理赔金的数额 .
假设
• 设群体中雄性、雌性的比例相等, 基因类型的分布相同 (记作D:H:R).
• 每一雄性个体以D:H:R的概率与一雌性个体 交配,其后代随机地继承它们的各一个基因.
• 设初始一代基因类型比例 D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势 基因和劣势基因比例 d:r=p:q (p+q=1).
D0 1
2 3 >3 w(0.28 ,0.2 56 ,0.435 )
P 0.368 0.368 0.184 0.061 0.019
从长期看,失去销售机会的可能性大约 10%.
模型求解 存贮策略的评价指标
2. 估计每周的平均销售量 每周平均需求量1架
3i
第n周平 R n[ jP (D nj,S n i)i P (D ni,Sni)]
• 估计在这种策略下失去销售机会的可能性有多大? 以及每周的平均销售量是多少?
问题分析
顾客的到来相互独立,需求量近似服从泊松分布,其 参数由需求均值为每周1架确定,由此计算需求概率.
存贮策略是周末库存量为零时订购3架 周末的库存 量可能是0, 1, 2, 3,周初的库存量可能是1, 2, 3.
用马氏链描述不同需求导致的周初库存状态的变化.
i1,2,n0,1,
转 p i j 移 P ( X n 1 j X n 概 i )i ,, j 1 , 2 率 ,n 0 , 1 ,
p110.8 p121p110.2 0.8
0.2
0.3
p210.7 p221p210.3
1
2
0.7
Xn+1只取决于Xn和pij, 与Xn-1, …无关
状态转移具 a 1 ( n 1 ) a 1 ( n )p 1 1 a 2 ( n )p 21 有无后效性 a 2 (n 1 ) a 1 (n )p 1 2 a 2 (n )p 22
状态与状态转移
0.8
0.2
0.3
1
2
0.7
a a1 2((n n 1 1)) a a1 1((n n))p p1 11 2 a a2 2((n n))p p2 21 2
给定a(0), 预测 a(n), n=1,2,…
n0
设投保 时健康
a1(n)
1
a2(n) 0
1
2
3 …∞
0.8 0.78 0.778 … 7/9
动态过程中每周销售量不同,失去销售机会(需求超 过库存)的概率不同. 可按稳态情况(时间充分长以后)计算失去销售机会 的概率和每周的平均销售量.
模型假设
钢琴每周需求量服从泊松分布,平均每周1架. 存贮策略:当周末库存量为零时,订购3架,周初 到货;否则,不订购. 以每周初的库存量作为状态变量,状态转移具有 无后效性.
有r个吸收状态的吸收链 的转移概率阵标准形式
P
Irr R
0 R有非 Q 零元素
M(IQ)1 Qs
y (y 1 ,y 2 , ,y k r) Me
s0
e(1 ,1 ,,1 )T
yi ~ 从第 i 个非吸收状态出发,被某个吸收状态 吸收前的平均转移次数.
12.2 钢琴销售的存贮策略
背景与问题
钢琴销售量很小,商店的库存量不大以免积压资金. 一家商店根据经验估计,平均每周的钢琴需求为1架. 存贮策略:每周末检查库存量,仅当库存量为零时, 才订购3架供下周销售;否则,不订购.
p 1 2P (X n 1 2 (后d 代 )X r n ( 1为 d 父 ) )d q为
p 1 3P (X n 1 3 (后r代 )X rn ( 1为 d 父 ) )d 0为
p 2 1 P ( X n 1 1 ( 后 d ) X 代 n d ( 2 d 为 ) ) 父 r 1 /2 p p 为 /2
建模
状态Xn=1,2,3 ~ 第n代的一个体属于D, H, R
状态概率 ai(n) ~ 第n代的一个体属于状态 i(=1,2,3)的概率.
随机繁殖 状态转移概率 基因比例 d:r=p:q
pijP (Xn 1j(后代基 )Xn 因 i(父 类 基 型 )因 )
p 1 1P (X n 1 1 (后d 代 )X d n ( 1 为 d 父 ) )d p为
0.8
0.9
1.0
1.1
1.2
P 0.073 0.089 0.105 0.122 0.139
当平均需求(=1.0)增长(或减少)10%时,
失去销售机会的概率P将增长(或减少)约15% .
背景
完全 优势 基因 遗传
12.3 基因遗传
• 生物的外部表征由内部相应的基因决定. • 基因分优势基因d 和劣势基因r 两种. • 每种外部表征由两个基因决定, 每个基因 可以是d, r 中的任一个. 形成3种基因类型: dd ~ 优种D, dr ~ 混种H, rr ~ 劣种R. • 基因类型为优种和混种, 外部表征呈优势;
状态与状态转移
设投保时处于健康状态,预测 a(n), n=1,2,…
n
01 2
3 50 ∞
a1(n) 1 0.8 0.757 0.7285 0.1293 0 a2(n) 0 0.18 0.189 0.1835 0.0326 0 a3(n) 0 0.02 0.054 0.0880 0.8381 1
w满足 wPw
例1.
P00..78
0.2 0.3
k
w满足wi 1 i1
0.8w10.7w2 w1 0.2w10.3w2 w2
0.2w10.7w2
w1w2 1 w(7/9,2/9)
马氏链的两个重要类型
2. 吸收链 ~ 存在吸收状态(一旦到达就不会离开
的状态i, pii=1),且从任一非吸收状态出发经有 限次转移能以正概率到达吸收状态 (如例2).
k
ai (n) 1
i1,2,k,n0,1, i1
转移 p ij 概 P (X n 1 率 jX ni),pij0, k pij1,i1,2,,k j1
k
基本方程 ai(n1 ) aj(n)pji,i1 ,2,,k j 1
a(n)(a1(n),a2(n) , ,ak(n)) a(n1)a(n)P
~状态概率向量
DR HH
HR
后代各种 D
1
0
相关文档
最新文档