第九章概率论及马氏链模型

合集下载

马氏链模型——精选推荐

马氏链模型——精选推荐

1 马氏链模型正则链 从任意的状态出发经过有限次的转移都能达到另外的任意状态,定义如下: 一个有K 个状态的马氏链如果存在正整数N ,使从任意状态i 经过N 次转移都以大于零的概率到达状态j (i ,j=1,2,...k )则称为正则链。

定理1 若马氏链的转移矩阵为P ,则它是正则链的充要条件是:存在正整数N 使p N >0(指p N 的每个元素大于零)定理 2 正则链存在唯一的极限状态概率w=()12k ωωω ,,,使得当n →∞时状态概率()a n w →,w 与初始状态概率无关,w 又称稳定概率,满足11k i i wP ww ===∑从状态i 出发经过n 次转移,第一次到状态j 的概率称为i 到j 的首次概率,记作()ij f n 于是()1i j i j n n f n μ∞==∑为状态i 第一次到达状态j 的平均转移次数,特别地,ij μ是状态i 首次返回的平均转移次数。

ij μ与稳定概率ω有密切地关系,即定理3 对于正则链ij =1/μω吸收链 1ii p =,于是系统一旦进入状态i 就不再离开它,可以把它看作“吸收”其它状态的一个状态,并且从其它的状态可以经过有限次的转移到达状态i 定义如下: 定义2 转移概率1ii p =的状态i 称为吸收状态。

如果马氏链至少包含一个吸收状态,并且从每个非吸收状态出发,能以正的概率经有限次的转移到达某个吸收状态,那么这个马氏链称为吸收链。

吸收链的转移矩阵可以写成简单的标准形式,若有r 个 吸收状态,k-r 个非吸收状态,则转移矩阵P 可表示为r r I O P R Q ⨯⎡⎤=⎢⎥⎣⎦其中k-r 阶子方阵Q 的特征值λ满足1λ<这要求子阵()k r r R -⨯中必含有非零元素,已满足从任意一非吸收状态出发经有限次转移可到达某个吸收状态的条件。

这样Q 就不是随机矩阵, 它至少存在一个小于1的行和,且如下定理成立定理4 对吸收链P 的标准形式,(I-Q )可逆,()10s s M I Q Q ∞-==-=∑记元素全为1的列向量()1,1,,1Te = 则y=Me的第i 个分量是从第i 个非吸收状态出发,被某个吸收状态吸收的平均转移次数。

马氏链预测模型

马氏链预测模型

马氏链预测模型:
马氏链分为正则链和吸收链
正则链即任意状态都可通过正概率到达其他状态,吸收链为存在一个状态,当到达此状态时,就不能再向其他状态转移,其他任意状态都可经过一个正概率向此状态转移,且经过足够长时间后,所有状态都将变为这个状态。

基本模型:
状态⎪⎪⎩⎪⎪⎨⎧=4
3
21n X ,分别表示四种水质,状态概率)()(i X P n a n i ==,
状态转移概率..2,1,0;,...,2,1,)),(|)((1=====+n k j i i X j X P P n n ij
经n 次转以后状态概率:
k i P n a n a k j ij j i ...,2,1,*)()1(1
==+∑=
当经过足够长时间达到稳态时,对于正则链,假设w 为稳态概率,则满足:
w P w =*
利用MATLAB 程序实现:
function Markov_Chain=f1(P,n,A0)
%P 为转移概率矩阵,n 为递推时间,A0为初始状态列向量
b=size(A0,1);%确定初始状态矩阵A0行数
A=zeros(b,n);
A(:,1)=A0;
p=P';%按照递推公式,需将转移概率矩阵P 转置
j=1;
while j<=n
A(:,j+1)= p*A(:,j)%第j 列代表递推j 次后的状态向量
j=j+1;
end
A_n=A(:,n) %得到递推n 次后的状态向量
根据数据可分别求出四个地区四种水质的转移概率:
P1=。

《马氏链模型》课件

《马氏链模型》课件
以用于天气预测, 根据历史天气数据预测未来的天 气情况。
马氏链模型的求解
1
平稳分布
马氏链模型的平稳分布是指随着时间的推移,状态转移概率趋于稳定的情况。
2
极限行为
马氏链模型在假设条件下,其极限行为会收敛到一个稳定的状态。
马氏链模型的改进
1
非齐次马氏链模型
非齐次马氏链模型考虑了不同时间段的状态转移概率的变化。
2
马尔可夫决策过程
马尔可夫决策过程是马氏链模型的扩展,同时考虑了状态转移和决策的影响。
总结
马氏链模型的优点
马氏链模型能够描述状态转移的概率,并用于解决 实际问题。
马氏链模型的应用前景
马氏链模型在各个领域具有广泛的应用前景,可以 帮助解决实际问题。
《马氏链模型》PPT课件
马氏链模型是概率论中的重要工具,它描述了一个系统按照一定的概率从一 个状态转移到另一个状态的过程。
什么是马氏链模型?
马氏链模型是描述系统状态转移的数学模型,它具有马氏性质,即下一个状 态只依赖于当前状态,与之前的状态无关。
马氏链模型的特点
状态转移概率
马氏链模型中的每一个状态都有一定的概率转移到其他的状态。
马链的齐次性
马氏链模型的转移概率在时间上保持不变,不受时间影响。
时间齐次性
时间齐次性指的是马氏链模型的转移概率与时间的长度无关,只与当前状态有关。
马氏链模型的应用
随机游走问题
随机游走问题是马氏链模型的一 个重要应用领域,它可以描述在 随机环境下的随机漫步过程。
网站访问模型
马氏链模型可以用于描述网站访 问行为,帮助优化页面设计和内 容推荐。

马氏链模型

马氏链模型

完全 优势 基因 遗传
完全优势基因遗传
3种基因类型:dd~优种D, dr~混种H, rr~劣种R 父母基因类型决定后代各种基因类型的概率
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
该稳定值与初始状态无关。
a1 ( n + 1) p11 a ( n + 1) = p 1 2 12 p21 a1 ( n) p11 a ( n) = p p22 2 12
p21 a1 (0) p22 a2 (0)
n
马氏链模型理论
马氏链的基本方程
随机繁殖
假设
讨论基因类型的演变情况
设群体中雄性、雌性的比例相等,基因类 型的分布相同(记作D:H:R) 每一雄性个体以D:H:R的概率与一雌性个体交配, 其后代随机地继承它们的各一个基因 设初始一代基因类型比例D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势基因和 劣势基因比例 d:r=p:q (p+q=1)。
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
当父母均为DD时,子女为DD的概率为1,其他为零 当父母均为RR时,子女为RR的概率为1,其他为零
父母基因类型组合 后代各种 基因类型 的概率 R D H
5 2 2 5 y = Me = ( 4 , 6 , 5 , 4 ) 6 3 3 6

《马氏链及其应用》课件

《马氏链及其应用》课件

马氏链的性质
总结词
马氏链具有无记忆性、强马尔可夫性和转移概率性等性质。
详细描述
马氏链的一个重要性质是无记忆性,即下一个状态与过去状 态无关,只与当前状态有关。此外,马氏链还具有强马尔可 夫性和转移概率性等性质,这些性质使得马氏链在描述随机 现象时具有独特的优势。
马氏链的分类
要点一
总结词
马氏链可以分为离散时间和连续时间的马氏链,以及有向 和无向的马氏链。
机器学习算法
马氏链在强化学习中用于 估计策略值函数和近似最 优策略,提高机器学习的 效率和准确性。
图像处理
通过马氏链模拟图像的随 机过程,实现图像的降噪 、增强和修复等处理。
数据压缩
利用马氏链对数据进行编 码和压缩,降低存储和传 输成本,提高数据处理的 效率。
在其他领域的应用
物理学中的随机过程模拟
在生态领域的应用
种群动态模拟
01
马氏链用于模拟物种数量的变化过程,研究种群的增长规律和
生态平衡机制。
生态系统稳定性分析
02
通过马氏链分析生态系统中的反馈机制和稳定性条件,评估生
态系统受到干扰后的恢复能力。
生物多样性保护
03
利用马氏链预测物种的灭绝风险和保护策略,为生物多样性保
护提供科学依据。
在计算机科学领域的应用
马氏链面临的挑战和问题
理论体系的完善
马氏链理论体系仍需不 断完善和发展,以适应 不断涌现的新问题和挑 战。
应用领域的拓展
尽管马氏链在某些领域 已经取得广泛应用,但 仍需拓展更多应用领域 ,解决实际问题。
计算效率的提高
随着数据规模的增大, 如何提高马氏链的计算 效率成为亟待解决的问 题。
THANKS

[学习笔记]马氏链模型

[学习笔记]马氏链模型

[学习笔记]马⽒链模型引例:(带有反射壁的随机徘徊)如果在原点右边距离原点⼀个单位及距原点 s(s > 1)个单位处各⽴⼀个弹性壁。

⼀个质点在数轴右半部从距原点两个单位处开始随机徘徊。

每次分别以概率 p(0 < p < 1) 和 q(q = 1− p) 向右和向左移动⼀个单位;若在+1 处,则以概率 p 反射到 2,以概率q 停在原处;在 s 处,则以概率 q 反射到 s −1,以概率 p 停在原处。

由该例⼦可以看出,我们所做的,是根据质点的移动⽅向和⽅向对应的概率,对质点的运动⽅向进⾏预测。

在这背景下,球移动的⽅向与概率只与当前的点有关,与它历史运动轨迹⽆关。

因此,这种现象可以⽤⼀句话来概括:某⼀系统在已知现在情况的条件下,系统未来时刻的情况只与现在有关,⽽与过去的历史⽆直接关系。

描述这类随机现象的数学模型称为马⽒模型。

概念以及定理:时齐性:它的含义是:系统由状态i 到状态j 的转移概率只依赖于时间间隔的长短,与起始的时刻⽆关。

在此马⽒链假定都是时齐的,因此省略“时齐”⼆字。

n可以理解成起点的位置n=1,2… m表⽰从n开始的时间间隔,i与j分别表⽰n点的状态与n+m点的状态。

由式⼦可以看出,概率与n⽆关,只与起点状态,终点状态,以及两点之间的距离有关。

转移概率矩阵: m 步转移概率 p (m) ij 为元素的矩阵 为马尔可夫链的m 步转移矩阵。

当m = 1时,记 P(1) = P 称为马尔可夫链的⼀步转移矩阵,或简称转移矩阵。

(下⾯是⼀个转移矩阵)并且由上⾯的图可以看出⼀些性质:(1)上次购买的A对应下次购买的A、B、C的概率,每⼀个都在范⽂[0,1],⽽且总和是1.(2)当步数为0时,若前后状态相同,概率为1。

状态不同概率为0。

吸收链:如果马⽒链⾄少含有⼀个吸收状态,并且从每⼀个⾮吸收状态出发,都可以到达某个吸收状态,那么这个马⽒链被称为吸收链。

如图,当状态到4的时候就会停留到4,状态4也就被称为吸收状态。

马氏链模型基础共25页文档

马氏链模型基础共25页文档
马氏链模型基础
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
Thank you
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧同和过去最杰出的人谈话。——笛卡儿

马氏链模型

马氏链模型

收状态出发,被某个吸收状态吸收的平均转移次数。而fij 为从非吸收状态i出发终将被吸收
状态j吸收的概率。记F = {fij}(k−r)×r = M R.
下面我们通过一个具体的实例来分析马氏链在完全优势基因遗传理论中的应用。基因分
为优势基因和劣势基因两种,分别用d和r表示,每种外部表现特征都可以由体内的两个基因
还有另外一种情况,可以直接给出所对应的转移矩阵和初始的状态概率,其表达式为:




a1(n + 1) a2(n + 1)
=
a1(n) a2(n)
p11 p12
p21 p22
p31 p32
=
a1(n) a2(n)
0.5 0.4
0.3 0.2
0.2 0.4
(1.3)
a3(n + 1)
a3(n)
在马氏链模型中,有两类非常重要的类型,正则链和吸收链。下面我们通过一个具体的 实例来说明一下相关的概念:
某个商店每月考察一次经营情况,其结果用销售好和销售坏的两种状况中的一种表示。 已知如果本月销售好,下月仍保持这种状况的概率为0.5,如果本月销售坏,下月转变为销售 好的概率为0.4,试分析假若开始时商店处于销售好的状况,那么经过若干月后能保持销售 好的概率是多少?如果开始时商店处于销售坏的情况呢?对该问题进行分析,商店的经营状 况是随机的,每月会随机的转变。但是,也可以看出,下个月的销售和这个月的销售情况和 转变概率有关。在初始状态已知的情况下,我们希望通过一个递推公式,推出将来销售好和 坏的概率?
3
种RR,全是混种H H ,一优种一混种DH ,一优种一劣种DR,一混种一劣种H R,简单计算就可 以得到每种组其后代各种基因类型的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 不论初始状态如何,最终都要转到状态3 ;
• 一旦a1(k)= a2(k)=0, a3(k)=1, 则对于n>k, a1(n)=0, a2(n)=0, a3(n)=1, 即从状态3不会转移到其它状态。
马氏链的基本方程 状态X n 1,2, k (n 0,1, )
状态概率ai (n) P( X n i),
从长期看,失去销售机会的可能性大约 10%。
模型求解 2. 估计这种策略下每周的平均销售量
第n周平
均售量
3i
Rn [ jP(Dn j, Sn i) iP(Dn i, Sn i) ]
i1 j1
需求不超过存量,销售需求 需求超过存量,销售存量
3i
[ jP(Dn j Sn i) iP(Dn i Sn i)]P(Sn i) i1 j 1 n充分大时 P(Sn i) wi
有r个吸收状态的吸收链 的转移概率阵标准形式
P
I rr R
0 R有非 Q 零元素
M (I Q)1 Q s
y ( y1, y2 , ykr ) Me
s0
e (1,1, ,1)T
yi ~ 从第 i 个非吸收状态出发,被某个 吸收状态吸收前的平均转移次数。
9.2 钢琴销售的存贮策略
背景与问题
模型建立 状态概率 ai (n) P(Sn i), i 1,2,3 马氏链的基本方程 a(n 1) a(n)P
0.368 0 0.632 P 0.368 0.368 0.264
0.184 0.368 0.448
已知初始状态,可预测第 n周初库存量Sn=i 的概率
正则链 N, PN 0 P2 0 正则链
k
a i
(n)
1
i 1,2, , k, n 0,1, i1
k
转移概率pij P( X n1 j X n i) pij 0, pij 1, i 1,2, , k j 1
k
基本方程 ai (n 1) a j (n) p ji , i 1,2, , k j 1
a(n) (a1(n), a2 (n), , ak (n)) a(n 1) a(n)P
w满足 wP w
例1.
P
0.8 0.7
0.2 0.3
k
w满足 wi 1 i 1
0.8w1 0.7w2 w1 0.2w1 0.3w2 w2
0.2w1 0.7w2
w1 w2 1
w (7 / 9,2 / 9)
马氏链的两个重要类型
2. 吸收链 ~ 存在吸收状态(一旦到达就不会离
开的状态i, pii=1),且从任一非吸收状态出发经有 限次转移能以正概率到达吸收状态(如例2)。
稳态概率分布 w 满足 wP=w
w (w1, w2 , w3 ) (0.285,0.263,0.452 )
n, 状态概率 a(n) (0.285,0.263,0.452)
模型求解
1. 估计在这种策略下失去销售机会的可能性
第n周失去销售机会的概率
3
P(Dn Sn ) P(Dn i Sn i)P(Sn i) i 1
• 设初始一代基因类型比例D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势基因和 劣势基因比例 d:r=p:q (p+q=1)。
建模
状态Xn=1,2,3 ~ 第n代的一个体属于D, H, R
状态概率 ai(n) ~ 第n代的一个体属于状态 i(=1,2,3)的概率。
Dn 0
1
2
3
>3
P 0.368 0.368 0.184 0.061 0.019
Sn~第n周初库存量(状态变量 ) Sn {1,2,3} 状态转移阵
状态转 移规律
Sn1
Sn 3,
Dn ,
Dn Sn Dn Sn
p11 P(Sn1 1Sn 1) P(Dn 0) 0.368
p12 P(Sn1 2 Sn 1) 0
~ 状态概率向量
P
{
p ij
}kk
~
转移概率矩阵
a(n) a(0)Pn
(非负,行和为1)
马氏链的两个重要类型 a(n 1) a(n)P
1. 正则链 ~ 从任一状态出发经有限次转移 能以正概率到达另外任一状态(如例1)。
正则链 N, PN 0
正则链 w, a(n) w(n ) w ~ 稳态概率
自然界中通常p=q=1/2 稳态分布D:H:R=1/4:1/2:1/4
解释“豆科植物的茎,绿色:黄色=3:1”
基因类型为D和H, 优势表征——绿色, (D+H):R=3:1 基因类型为R, 劣势表征——黄色。
近亲 在一对父母的大量后代中, 雄雌随机配对繁殖, 繁殖 讨论一系列后代的基因类型的演变过程。
0.6320.285 0.8960.263 0.9770.452 0.857
从长期看,每周的平均销售量为 0.857(架)
思考:为什么这个数值略小于每周平均需求量1(架) ?
敏感性分析 当平均需求在每周1 (架) 附近波
动时,最终结果有多大变化。
设Dn服从均值为
的波松分布
状态转移阵
P(Dn k) ke / k!, (k 0,1,2 )
p13 P(Sn1 3 Sn 1) P(Dn 1) 0.632
……
p11 p12 p13
P
p21
p22
p23
p31 p32 p33
0.368 0 0.632 0.368 0.368 0.264
0.184 0.368 0.448
p33 P(Sn1 3Sn 3) P(Dn 0) P(Dn 3) 0.448
0.2
0.3
p21 0.7 p22 1 p21 0.3
1
Xn+1只取决于Xn和pij, 与Xn-1, …无关
0.7
2
状态转移具 a1(n 1) a1(n) p11 a2 (n) p21
有无后效性 a2 (n 1) a1(n) p12 a2 (n) p22
健康与疾病
例2. 健康和疾病状态同上,Xn=1~ 健康, Xn=2~ 疾病
第九章 马氏链模型
9.1 健康与疾病 9.2 钢琴销售的存贮策略 9.3 基因遗传 9.4 等级结构
马氏链模型
描述一类重要的随机动态系统(过程)的模型
• 系统在每个时期所处的状态是随机的 • 从一时期到下时期的状态按一定概率转移 • 下时期状态只取决于本时期状态和转移概率
已知现在,将来与过去无关(无后效性)
p21 P(X n1 1(后代为dd) X n (2 父为dr)) 1/ 2 p p / 2
p22 P( X n1 2(后代为dr)
转移概率矩阵
X n (2 父为dr)) 1/ 2 p 1/ 2q 1/ 2
p q 0
P
p
/
2
1/ 2
q / 2
0
p q
随机繁殖 马氏链模型 a(n 1) a(n)P, n 0,1,
模型假设
钢琴每周需求量服从波松分布,均值为每周1架 存贮策略:当周末库存量为零时,订购3架,周 初到货;否则,不订购。 以每周初的库存量作为状态变量,状态转移具有 无后效性。
在稳态情况下计算该存贮策略失去销售机会的概 率,和每周的平均销售量。
模型建立 Dn~第n周需求量,均值为1的波松分布
P(Dn k) e1 / k! (k 0,1,2 )
a(0) (a,2b, c)
a(1) a(0)P ( p2 ,2 pq, q2 ) a(2) a(1)P ( p2 ,2 pq, q2 )
p q 0
P
p
/
2
1/ 2
q / 2
0
p q
p a b, q b c
a 2b c 1
a(0)任意,稳态分布w wP ( p2,2 pq, q2 )
若某人投保时健康, 问10年后他仍处于健康状态的概率
状态与状态转移
状态X n
1, 2,
第n年健康 第n年疾病
状态概率ai (n) P(X n i), i 1,2, n 0,1,
转移概率pij P(Xn1 j Xn i), i, j 1,2, n 0,1,
p11 0.8 p12 1 p11 0.2 0.8
钢琴销售量很小,商店的库存量不大以免积压资金 一家商店根据经验估计,平均每周的钢琴需求为1架 存贮策略:每周末检查库存量,仅当库存量为零时, 才订购3架供下周销售;否则,不订购。
估计在这种策略下失去销售机会的可能性有多大, 以及每周的平均销售量是多少。
问题分析
顾客的到来相互独立,需求量近似服从波松分布,其 参数由需求均值为每周1架确定,由此计算需求概率
死亡为第3种状态,记Xn=3 0.8
0.18
0.25
p11=0.8, p12=0.18, p13=0.02
0.65
1
2
p21=0.65, p22=0.25, p23=0.1
0.02 3 0.1
p31=0, p32=0, p33=1
1
a1(n 1) a1(n) p11 a2 (n) p21 a3 (n) p31 a2 (n 1) a1(n) p12 a2 (n) p22 a3 (n) p32 a3 (n 1) a1(n) p13 a2 (n) p23 a3 (n) p33
存贮策略是周末库存量为零时订购3架 周末的库存 量可能是0, 1, 2, 3,周初的库存量可能是1, 2, 3。
用马氏链描述不同需求导致的周初库存状态的变化。
动态过程中每周销售量不同,失去销售机会(需求 超过库存)的概率不同。
可按稳态情况(时间充分长以后)计算失去销售机 会的概率和每周的平均销售量。
相关文档
最新文档