塔吊计算

合集下载

塔吊计算书

塔吊计算书

QTZ80塔吊格构基础设计计算书基本参数1、塔吊基本参数塔吊型号:QTZ80;塔吊自重Gt:490kN;最大起重荷载Q:60kN;塔吊起升高度H:40.50m;塔身宽度B: 1.6m;2、格构柱基本参数格构柱计算长度lo:5.9m;格构柱缀件类型:缀板;格构柱缀件节间长度a1:0.6m;格构柱分肢材料类型:L160x14;格构柱基础缀件节间长度a2:0.6m;格构柱钢板缀件参数:宽420mm,厚10mm;格构柱截面宽度b1:0.50m;格构柱基础缀件材料类型:L160x14;3、基础参数桩中心距a:2.8m;桩直径d:0.9m;桩入土深度l:18.5m;桩型与工艺:泥浆护壁钻(冲)孔灌注桩;桩混凝土等级:C30;桩钢筋型号:HRB400;桩钢筋直径:25mm;承台宽度Bc:4.6m;承台厚度h:1.35m;承台混凝土等级为:C35;承台钢筋等级:HRB400;承台钢筋直径:25;承台保护层厚度:100mm;承台箍筋间距:200mm;4、塔吊计算状态参数地面粗糙类别:B类田野乡村;风荷载高度变化系数:2.09;主弦杆材料:角钢/方钢;主弦杆宽度c:140mm;非工作状态:所处城市:福建莆田市,基本风压ω0:0.70 kN/m2;额定起重力矩Me:800kN·m;基础所受水平力P:74kN;塔吊倾覆力矩M:1712kN·m;工作状态:所处城市:福建莆田市,基本风压ω0:0.7 kN/m2,额定起重力矩Me:800kN·m;基础所受水平力P:18.9kN;塔吊倾覆力矩M:1718kN·m;非工作状态下荷载计算一、塔吊受力计算1、塔吊竖向力计算承台自重:G c=25×Bc×Bc×h=25×4.60×4.60×1.35=714.15kN;作用在基础上的垂直力:F k=Gt+Gc=490.00+714.15=1204.15kN;2、塔吊倾覆力矩总的最大弯矩值M kmax=1712.00kN·m;3、塔吊水平力计算挡风系数计算:φ = (3B+2b+(4B2+b2)1/2)c/Bb挡风系数Φ=0.46;水平力:V k=ω×B×H×Φ+P=0.70×1.60×40.50×0.46+74.00=94.87kN;4、每根格构柱的受力计算作用于承台顶面的作用力:F k=1204.15kN;M kmax=1712.00kN·m;V k=94.87kN;图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。

塔吊计算书

塔吊计算书

附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。

计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×fa 大于无附着时的压力标准值Pkmax=95.717kPa,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。

塔式起重机的起重高度计算方法

塔式起重机的起重高度计算方法

塔式起重机的起重高度计算方法塔式起重机是一种常见的起重设备,广泛应用于建筑工地、港口、码头等场所。

在使用塔式起重机进行起重作业时,准确计算起重高度是非常重要的。

本文将介绍塔式起重机的起重高度计算方法及相关注意事项。

一、计算塔式起重机的标准起重高度塔式起重机的标准起重高度是指起重臂水平放置时,吊钩最大工作距离与起重机基础之间的垂直距离。

以下是计算标准起重高度的步骤:1. 确定起重臂长度:起重臂是指起重机臂杆的长度,通常由制造商提供或通过测量得到。

2. 确定塔式起重机基础高度:塔式起重机基础高度是指起重机底座距离地面的高度,一般由施工方根据实际情况确定。

3. 计算标准起重高度:将起重臂水平放置时,吊钩最大工作距离与起重机基础之间的垂直距离相加,即可得到塔式起重机的标准起重高度。

二、考虑风速对起重高度的影响在实际应用中,风速是影响塔式起重机起重高度的重要因素之一。

一般情况下,起重高度会受到风速的限制,以确保起重机的安全运行。

以下是考虑风速的起重高度计算方法:1. 了解起重高度限制:根据塔式起重机的技术规格和制造商提供的资料,了解起重机在不同风速下的起重高度限制。

2. 测量实际风速:使用气象仪器或查询当地气象台的数据,测量或获取当前的实际风速。

3. 根据实际风速调整起重高度:根据实际风速和起重机的风速限制,决定是否需要调整起重高度。

如风速超过限制,则需要降低起重高度以确保起重机的安全运行。

三、其他注意事项1. 注意起重机的工作半径:工作半径是指起重臂的长度加上起重物品离起重机中心的水平距离。

在进行起重高度计算时,需考虑到起重机的工作半径,确保起重臂能够完全伸展,不受其他物体的限制。

2. 注意地面承重能力:塔式起重机需要放置在坚实的地基上,确保地面的承重能力足够承受起重机的重量和起重物品的重量。

3. 及时进行维护和检查:定期检查起重机的各个部件的状况,确保其正常运行。

做好起重机的维护工作,及时更换老化或损坏的部件,确保起重机的安全性和可靠性。

塔吊计算

塔吊计算

塔吊计算书扎西长征2号桥左幅9号空心墩处安装50塔吊一台。

根据施工需要该塔吊应该满足扎西长征2号桥8号空心墩和扎西长征2号桥10号空心墩施工要求。

塔吊为50塔吊,配重3吨。

配重臂长14米,动力臂最大距离为56米,根据塔吊施工参数表得知,塔吊最大承重位置为动力臂3米位置,可承重4吨,塔吊最大幅起重位置为56米,可承重0.8吨。

(见下表)根据施工现场需要,塔吊需往8号空心墩左幅吊运小型钢筋笼,进行现场安装;往10号空心墩吊运模板进行拼装、拆卸。

模板重量:空心墩模板为6mm厚钢模板,根据钢板参数表,每平方47.16Kg,槽钢为10*100槽钢,每米重10.007Kg,经计算模板重量为:47.16*2*3+(0.05*3*15+0.05*2*10)*47.16+10.007*12=556.314Kg10号右幅空心墩最远距离为:L=√43.4²+10.2²=44.58米8号空心墩左幅钢筋笼重量为钢筋笼按4.5米分节算(7231.76+4794.34+782.88+604.25+114.53+80.45+18.63+867.28)/40*4.5=1630.5885Kg钢筋笼按3米分节算(7231.76+4794.34+782.88+604.25+114.53+80.45+18.63+867.28)/40*3=1087.059Kg钢筋笼按3米分节算最大重量(58*3*6.31+114.53+80.45+18.63+867.28)/40*3=1179.007Kg套用塔吊吊重计算公式:动力*动力臂=阻力*阻力臂配重块的重力*配重块到中心点的距离=吊臂到中心点的距离*要吊物体的重力塔吊配重3吨配重距离14米得出:8号空心墩塔吊可承重3*14=42*x x=1 ;塔吊配重3吨配重距离14米得出:10号空心墩塔吊可承重3*14=44.58*x x=0.948号左幅空心墩位置塔吊承重为:1吨扎西长征2号桥右幅10号空心墩模板拼装只能一块块拼装,模板表面积不能大于6平方米。

塔吊起重计算公式

塔吊起重计算公式

塔吊起重计算公式在建筑工地中,塔吊是一种常见的起重设备,它具有起重高效、操作灵活等优点,因此被广泛应用于建筑工程中。

在使用塔吊进行起重作业时,需要对起重物的重量、塔吊的工作范围等因素进行计算,以确保作业安全和效率。

本文将介绍塔吊起重计算的相关公式和方法,希望能对相关人员有所帮助。

1. 塔吊起重能力计算公式。

塔吊的起重能力是指其能够承载的最大重量,通常以吨为单位。

塔吊的起重能力取决于其结构、臂长、起重高度等因素,一般可以通过以下公式进行计算:Q = (P × r) / (h × cosα)。

其中,Q为塔吊的起重能力(吨),P为塔吊的额定起重力矩(吨米),r为塔吊的工作半径(米),h为塔吊的起重高度(米),α为塔吊臂的倾角(°),cosα为α的余弦值。

在实际应用中,可以根据工程需要和塔吊的技术参数,通过上述公式计算出塔吊的起重能力,以确定其是否能够满足工程要求。

2. 塔吊臂长计算公式。

塔吊的臂长是指起重臂的长度,也是影响其起重能力的重要因素之一。

一般情况下,可以通过以下公式计算塔吊的臂长:L = (H × tanβ) + h。

其中,L为塔吊的臂长(米),H为塔吊的最大起重高度(米),tanβ为β的正切值,β为塔吊臂的最大倾角(°),h为塔吊的最小起重高度(米)。

通过上述公式计算出的臂长,可以帮助工程师确定塔吊的工作范围,以便合理安排起重作业。

3. 塔吊起重力矩计算公式。

塔吊的起重力矩是指其在工作过程中产生的力矩,也是塔吊起重能力的重要参数之一。

一般情况下,可以通过以下公式计算塔吊的起重力矩:P = Q × r。

其中,P为塔吊的起重力矩(吨米),Q为塔吊的起重能力(吨),r为塔吊的工作半径(米)。

通过上述公式计算出的起重力矩,可以帮助工程师评估塔吊的起重能力,以确保其在起重作业中的安全性和稳定性。

4. 塔吊配重计算公式。

塔吊的配重是指其用于平衡起重物重量的重物,也是保证塔吊稳定运行的重要组成部分。

塔吊计算书

塔吊计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算矩形板式基础布置图基础及其上土的自重荷载标准值:G k=blhγc=6×6×1.5×25=1350kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1350=1620kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1-G3R G3-G4R G4+0.5F vk'H/1.2=37.4×22-19.8×6.3-89.4×11.8+0.5×54.42×43/1.2=618.16kN·mF vk''=F vk'/1.2=54.42/1.2=45.35kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1-G3R G3-G4R G4)+1.4×0.5F vk'H/1.2=1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×54.42×43/1.2=936.8kN·mF v''=F v'/1.2=76.19/1.2=63.49kN基础长宽比:l/b=6/6=1≤1.1,基础计算形式为方形基础。

W x=lb2/6=6×62/6=36m3W y=bl2/6=6×62/6=36m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=813.17×6/(62+62)0.5=575kN·mM ky=M k l/(b2+l2)0.5=813.17×6/(62+62)0.5=575kN·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(401.4+1350)/36-575/36-575/36=16.71kPa≥0偏心荷载合力作用点在核心区内。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

7种塔吊基础知识计算

7种塔吊基础知识计算

7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。

E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。

由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。

四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。

塔吊吊次分配及计算

塔吊吊次分配及计算

塔吊吊次分配及计算在建筑工地中,塔吊和钢筋工应该是最常见的两种工程机械。

塔吊主要用于高层建筑物的垂直起重,大大方便了建筑施工。

在使用塔吊的时候,需要考虑安全问题和工期问题,其中吊次分配和计算是非常重要的一部分。

接下来将简单介绍塔吊吊次的分配和计算方法。

吊次的概念吊次是指塔吊从未起吊到归位一次的过程,也就是吊一次货物的时间。

在工地上,由于各种原因,塔吊不能一直处于运行状态,必须分配吊次。

吊次分配可以根据工期、工作量、重要程度等要素进行安排。

计算吊次的方法根据物资重量计算吊次在进行吊货物操作时,物品的重量非常重要。

因此,可以根据货物的重量来计算吊次。

根据吊货物的重量选择合适的塔吊进行吊运。

重量越大的物资,所需要的塔吊也就越大。

根据吊运高度计算吊次在塔吊使用过程中,还需要根据吊运高度进行计算。

高度越高,所需要的塔吊也就越大,吊运次数也就越多。

因此,需要根据高度情况来计算吊次。

根据工期计算吊次吊次除了根据物资重量和吊运高度进行计算外,还可以根据工期的长短来进行估算。

工期短的话,可能需要同时使用多台塔吊,这样就可以提高工作效率。

吊次的分配确定吊次数量在施工过程中,需要根据计算的吊次数量来安排塔吊的工作。

吊次数量的多少直接影响到工程的进度。

因此,在施工前需要对项目的吊重、吊高、吊次数量等进行认真计算,以便安排塔吊的工作。

吊次的分配原则在安排塔吊的工作时,需要考虑各种因素。

具体的分配原则如下:•重要程度:对于重要程度高的物资,需要优先考虑。

•工期:需要根据工期来合理分配吊次。

•施工现场条件:需要考虑工地的状况,合理分配塔吊的数量和位置。

•安全性:在进行分配吊次的时候,需要进行安全评估,确保施工过程的安全性。

吊次分配的注意事项•在分配吊次的时候,需要注意时间的安排,以免延误工期。

•各个工序之间的配合应该协调好,避免在工作进行过程中出现问题。

•在使用塔吊的时候,需要学习塔吊操作的规范,确保操作的正确性和安全性。

吊次分配和计算是施工过程中非常重要的环节,在这一过程中需要充分考虑各种因素,保证塔吊的安全性和准确性。

塔吊基础计算

塔吊基础计算

塔吊基础计算QTZ63塔吊天然基础的计算书参数信息:塔吊型号为QTZ63,自重(包括压重)为F1=450.80kN,最大起重荷载为F2=60.00kN,塔吊倾覆力距为M=630.00kN.m,塔吊起重高度为70.00m,塔身宽度为B=1.50m,混凝土强度等级为C35,基础埋深为D=5.00m,基础最小厚度为h=1.35m,基础最小宽度为Bc=5.00m。

基础最小尺寸计算:基础的最小厚度为H=1.35m,基础的最小宽度为Bc=5.00m。

塔吊基础承载力计算:按照《建筑地基基础设计规范》(GB-2002)第5.2条承载力计算。

计算简图如下:当不考虑附着时的基础设计值计算公式为:当考虑附着时的基础设计值计算公式为:当考虑偏心距较大时的基础设计值计算公式为:其中,F为塔吊作用于基础的竖向力,包括塔吊自重、压重和最大起重荷载,F=1.2×510.8=612.96kN;G为基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc为基础底面的宽度,取Bc=5.00m;W为基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M为倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a为合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。

经过计算得到:无附着的最大压力设计值为Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa;无附着的最小压力设计值为Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa;有附着的压力设计值为P=(612.96+4012.50)/5.002=185.02kPa;偏心距较大时压力设计值为Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书10.1 D1100-63型塔吊基础设计计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息塔吊型号:D1100-63塔机自重标准值:Fk1=3213.90kN 起重荷载标准值:Fqk=630kN塔吊最大起重力矩:M=11000.00kN.m 塔吊计算高度:H=90.8m塔身宽度:B=4m 非工作状态下塔身弯矩:M=0kN.m承台混凝土等级:C40钢筋级别:HRB400地基承载力特征值:193kPa承台宽度:Bc=9.5m承台厚度:h=2m基础埋深:D=0m计算简图:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值Fk1=3213.9kN2) 基础以及覆土自重标准值Gk=9.5×9.5×2×25=4512.5kN承台受浮力:Flk=9.5×9.5×1.50×10=1353.75kN3) 起重荷载标准值Fqk=630kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2)=0.8×1.77×1.95×0.99×0.2=0.55kN/m2=1.2×0.55×0.35×4=0.92kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=0.92×90.8=83.40kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×83.40×90.8=3786.29kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.45kN/m2)=0.8×1.84×1.95×0.99×0.45=1.28kN/m2=1.2×1.28×0.35×4=2.15kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=2.15×90.8=195.07kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×195.07×90.8=8856.07kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=0+0.9×(11000+3786.29)=13307.66kN.m非工作状态下,标准组合的倾覆力矩标准值Mk=0+8856.07=8856.07kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。

塔吊 基础 计算

塔吊 基础 计算

塔吊基础计算一、基础设计原则塔吊基础设计的目标是确保塔吊在使用过程中的稳定性和安全性。

基础设计应遵循以下原则:1. 承载能力:基础应具备足够的承载能力,能够承受塔吊的自重、荷载和风荷载等。

2. 抗倾覆能力:基础应能够提供足够的抗倾覆能力,以防止塔吊因倾覆而引发事故。

3. 稳定性:基础设计应确保塔吊在使用过程中的稳定性,避免因地基不稳造成的塔吊晃动和倾斜。

二、计算步骤塔吊基础计算通常包括以下步骤:1. 确定设计参数:根据塔吊的类型和规格,确定设计参数,如塔吊的高度、自重、荷载等。

2. 地基勘察:进行地质勘察,了解地基的承载能力、土层稳定性和地下水情况等。

3. 基础类型选择:根据地基勘察结果和设计参数,选择合适的基础类型,常见的基础类型包括钢筋混凝土桩基、扩底基础和浅基础等。

4. 基础尺寸计算:根据塔吊的荷载和地基的承载能力,计算基础的尺寸和承载能力。

5. 基础构造设计:根据基础尺寸计算结果,进行基础的构造设计,包括基础底板、基础柱等。

6. 基础施工:按照设计图纸和施工规范进行基础的施工,包括土方开挖、基础浇筑和基础固结等。

7. 基础验收:进行基础的质量验收,确保基础符合设计要求和施工规范。

三、注意事项在进行塔吊基础计算时,需要注意以下几点:1. 地基勘察的重要性:地基勘察是基础计算的前提,只有了解地基的性质和承载能力,才能进行准确的基础计算。

2. 基础设计的合理性:基础设计应符合塔吊的使用要求,确保塔吊在使用过程中的稳定性和安全性。

3. 施工质量的控制:基础施工过程中,应严格按照设计要求和施工规范进行施工,确保基础的质量和稳定性。

4. 定期检测和维护:塔吊基础在使用过程中应定期检测和维护,及时发现并处理基础的损坏和变形等问题。

总结:塔吊基础计算是确保塔吊安全使用的重要环节,基础设计应符合承载能力、抗倾覆能力和稳定性等原则。

计算步骤包括确定设计参数、地基勘察、基础尺寸计算、基础构造设计、基础施工和基础验收等。

塔吊基础计算

塔吊基础计算

塔吊基础的计算书(一)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.0 X 6.0 x 1.5m基础自重6X6X 1.5X25=1350 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1350) =2640kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1 •桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-2008的第5.1.1条)匕斗竺+竺1其中n ——单桩个数,n=4 (由于护坡桩一半裸露在基坑内,单桩承载力折减xi,yi单桩相对承台中心轴的XY方向距离(m)4.5/1.414=3.18 ;Ni ——单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大荷载:N=2640/4+(4404 X 3.18)/ (2X 3.182) =1352.45kN最小荷载N=2640/4-(4404 X 3.18)/ (2X 3.182) =-32.45kN(六)桩承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-2008)根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1352.45kN桩顶轴向压力设计值应满足下面的公式:其中” 一一建筑桩基重要性系数,取1-0 ;fc ——混凝土轴心抗压强度设计值,fc=16.70N/mm2;A ——桩的截面面积>A=0.157m2经过计算得到桩顶轴向压力设计值满足要求!(七)桩竖向极限承载力验算及桩长计算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第522-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值Ra= qpkx Ap+ u 艺 qsk X li桩侧第i 层土的极限侧阻力标准值,按下表取值;极限端阻力标准值,按下表取值;桩身的周长,u=2.5m;qskqpkAp 桩端面积,取Ap=0.5m2li ——第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下最大压力验算:Ra =0.5 x( 1800x 0.5+2.5 x 60x 25) =2325kN上式计算的R的值大于最大压力1352.45kN,所以满足要求!塔吊基础的计算书(二)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.4 X 6.4 x 1.5m基础自重6.4 X 6.4 X 1.5X25=1536 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1536) =2863.2kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

塔吊基础计算

塔吊基础计算
非工作状态下塔机对基础顶 4.2 面的作用
水平荷载标准值 竖向荷载标准值 *控制力矩取大值
Mk= 500.00 kN.m
Mk= Fvk= Fk1= Gk= Fqk= Fk=Fk1+Gk+Fqk=
718.82 kN.m 12.16 kN 333.20 kN 1188.32 kN 40.00 kN 1561.52 kN
Fvk'=qsk'*H= Msk=0.5*Fvk*H=
0.40 kN/m2
0.38 kN/m2 0.61 kN/m
24.31 kN 486.26 kN.m
3. 塔 机 的 倾 覆 力 矩
大臂自重产生的向前力矩标 3.1 准值
4. 综 合 分 析 计 算
工作状态下塔机对基础顶面 4.1 的作用
水平荷载标准值 竖向荷载标准值 基础自重 起重荷载
桩身承载力
满足要 求
Qk=Fk'/n= Ra=
2.40 MPa 380.38 kN 1884.96 kN
Qkmax=Fk'/n+(Mk'+Fv k'*h)/L=
626.59 kN
Qkmin=Fk'/n(Mk'+Fvk'*h)/L=
Hale Waihona Puke 134.17 kNfc=
14300 kN/m2
N= ######## kN
5.2 5.2.1
桩基承台计算
角桩轴线位于塔机塔身柱的 冲切破坏椎体以内,且承台 高度符合构造要求,故可不 进行承台受角桩冲切的承载 力验算
5.2.2
承台暗梁配筋计算 承台暗梁宽度 最大竖向力设计值 最小竖向力设计值 支座反力

塔吊基础计算

塔吊基础计算

桩底)
单桩承力设计值
抗拔力设计值 N拔
R
单桩轴向承力安全值
Up∑qsili 桩侧总极限摩擦阻力
qpAp
桩端点极限承载力
Rk实际
取桩长度后实际承载力
Rk实际=fpAp+Up∑fsli
Qk
取桩长度后实际抗拔力
Qk=λRk 桩配筋计算
根据桩径按内插法计算工程桩桩 身配筋率(0.20%~0.65%)
As
截面钢筋面积
单位
KN KN M 节 KN KN KN KN.m KN.m KN m
取 m m
m
KN
KN
KN KN KN KN KN
取 m2 mm 根
m ㎡ m4 m4 M
i单柱 λ合 λ单柱
σ合 σ单柱
τ d h
σ N lw t
规格 V1 V2 V fv
d A σ τ
单柱回转半径 四根立柱组合长细比 单柱长细比
符号
G m b N F1 F2 F3 Mn M F4
ξ1 d D
l
Ni
意义
公式 钻孔灌注桩计算
桩上部钢支架总重 标准节重 标准节边长 标准节数量 塔吊自重(包括平衡重) 最大起吊重量 标准节总重 基础承受扭矩 倾覆力矩 水平荷载 钻孔灌注桩桩顶标高
F3=m×N
桩安全系数
桩直径
桩间距
D=2d
取桩有效长度(最大开挖深度至
N/mm2 N/mm2
kN/m2 m m
N/mm2 N mm mm
mm2 KN KN KN N/mm2
颗 mm m㎡ N/mm2 N/mm2
12
42535.38462
153.9904
42689.37502
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.塔吊基础设计计算方案 一、设计依据 1.《建筑桩基础技术规范》JGJ84—94 2.《混凝土结构设计规范》GB50040—2002 3.《建筑地基基础设计规范》GB50007—2002 4.《建筑地基基础设计规范》DB33/1001—2003 5. 《建筑机械使用安全规程》JGJ33—2001 6.《建筑结构荷载规范》GB50009—2002 7.本工程《岩石工程勘察报告》 8.施工图纸 9.简明施工计算手册 10.塔吊使用说明书 二、塔吊选型 根据本工程特点、布局,拟选用4台浙江凯达电梯制造有限公司制造的QTZ63型液压自升塔式起重机(简称塔吊),其相关技术参数适用于本工程垂直运输需要。 三、塔吊位置的确定 为最大限度的满足施工需要,拟将塔吊位置作如下确定: 塔吊基础:5#塔吊设置在5#楼E—F轴/24—25轴,7#塔吊设置在7#楼E—F轴/8—6轴,8#塔吊设置在8#楼Q轴/8—9轴,9#塔吊设置在9#楼B1轴/13轴,具体详见塔吊平面布置图。 四、塔吊基础的确定 1.地质参数以本工程《岩石工程勘察报告》中有关资料为计算依据(以Z50孔为依据),其主要设计参数(见土层设计计算参数表)。 土层序号 土层名称 土层层厚(m) 单桩桩侧阻力特征值qsia(kpa) 单桩桩端阻力特征值qpa(kpa) 2-1 粉质粘土 1.2 18 2-2 粘质粉土 4.6 15 3-1 淤泥质粘土 5.58 7 3-2 淤泥质粉质粘土 10.2 8 4-1 粉土夹粉砂 9.7 13 4-2 粉砂 4.1 23 5-1 粉质粘土 4.1 15 5-2 粉质粘土夹粉土 3.2 16 6-1 砾砂 1.5 26 6-2 圆砾 4.4 40 2500 2.塔吊基础受力情况(说明书提供) 荷载工况 基础荷载 P(kN) M(kN.m) F Fh M MZ 工作状态 511.2 18.3 1335 269.3 非工作状态 464.1 73.9 1552 0 3.所定的塔吊位根据建筑结构条件、地质条件以及塔吊各项技术参数确定:塔吊基础桩采用机械钻孔混凝土灌注桩,桩径800,桩长38M(有效桩长),桩身混凝土C25,钢筋笼全长配筋16A20,A8@100/200(螺旋箍),附加箍筋A14@2000,桩顶3000内A8@100,钢筋伸入承台800,桩数4根。桩顶标高为-7.10(-7.25)m,桩位布置及基础承台平面尺寸详见附图。 4.采用钢筋混凝土承台,尺寸为4000×4000×1000mm,内配钢筋双层双向A20@200,承台混凝土强度C30,承台顶标高-6.15(6.30)m,基础下100厚C15混凝土垫层。在塔吊承台位置地下室底板预留洞4000×4000,四周设一道止水板,与基础连接处用100厚泡沫板相隔并做防水处理。塔吊基础处后浇带处理方法同地下室后浇带。塔身穿楼板处,楼板预留洞四周比塔身外围大500mm(2600×2600),该处梁板后浇带处理方法同地下室顶板后浇带。 五、塔吊基础施工 塔吊基础混凝土机械钻孔桩,将由在现场施工工程桩的施工队伍施工,并按其专项施工方案进行操作。 考虑到今后塔吊安装方便,施工中有关预埋件需同步进行埋设,并要确保其位置准确性。 塔吊基坑土方开挖时间随同本工程地下室,并预先施工。 由于塔吊基础在地下室顶板以下,故在塔吊基础施工前,要对基础处挖基坑,基坑支护围护做法如下: 鉴于现场自然地坪标高为-1.6900M,塔吊基坑底标高为-6.55M,实际挖深-4.95M,属深基坑挖设。场地土质查地质勘察报告为淤泥质土层,难以支护,经比较,选定上层2M大放坡开挖,下层3.4M用钢板桩支护,此支护方法为温州市淤泥质土比较成熟方法。钢板桩材料选用国标16#槽钢,长度9M,从-4.00M平台处打入土中,外露20cm,四边角加料撑部分用单排槽钢并排打入,中间3M用正反扣连接方式打入,钢板桩内侧加两道水平梁支撑,水平梁用双槽钢扣成方管焊接而成,接头处450拼角,四角斜撑与水平梁接触处除焊接外,另加焊槽钢,以防水平梁受力时斜撑焊缝破坏,造成梁突然破坏,水平梁布置两道,第一道距钢板桩上口500处布置,第二道距第一道1500布置,保证钢板受力均匀,不发生变形。 开挖时注意事项: 1.对作业人员做好安全、技术交底、每个人员分工明确。 2.基坑开挖时由施工人员指挥人、机作业、安全员现场协调安全工作。 3.划定作业范围、存土、转土地点、挖机行走路线,作业半径内严禁人员行走。 4.在土方边坡顶,钢板桩顶设置沉降观测点,开挖中与开挖后定时观测,发现异常,立即采取措施。 5.基坑设置专用扶梯,以供人员上下,工人在基坑内作业时,设专人在上面指挥,以免上面物体落入坑内,同时一且发现支护异常,立即通知人员撤出。 6.基坑周边设立警戒线,围护设置,防止与基坑施工无关人员误伤,同时保护基坑内作业人员安全。 7.制定应急措施: 1挖掘机随时待命,一旦沉降异常难以控制,即用挖机将支护周围土方挖低御载。 2准备工字钢、松木(6M)、钢板桩发生鼓肚变形时,进行水平加固。 2.第一部分:QTZ63C(5709)型塔吊桩基础计算书 一.参数信息 塔吊型号: QTZ63C(5709)主要部件重量如下表: 序号 名称 重量(kg) 序号 名称 重量 1 塔顶 2300 9 回转总成 3200 2 平衡臂总成 4500 10 塔身 830×(60÷2。8)=17430 3 司机室 500 4 起重臂总成 6250 5 平衡重 11700 6 载重小车 238 7 爬升架 3300 8 固定基节 1020 自重(包括压重)F1=50438×9.80665÷1000=496.63kN,最大起重荷载 F2=6×9.80665=58.84kN 塔吊倾覆力距M=1552.00kN.m,塔吊起重高度H=58.8m,塔身宽度B=1.60m 混凝土强度:C30,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=4.00m 桩直径d=0.80m,桩间距a=2.40m,承台厚度Hc=1.00m 基础埋深D=1.00m,承台箍筋间距S=200mm,保护层厚度:50mm 二.塔吊基础承台顶面的竖向力与弯矩计算 1.塔吊自重(包括压重)F1=496.63kN 2.塔吊最大起重荷载F2=58.84kN 作用于桩基承台顶面的竖向力 F=(F1+F2)×1.2=665.56Kn 塔吊的倾覆力矩 M=1.4×1552=2172.80kN.m 三. 矩形承台弯矩及单桩桩顶竖向力的计算 计算简图: 图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。 (一)单桩允许承载力特征值计算 1.单桩竖向承载力特征值计算 1)按地基土物理力学指标与承载力参数计算 AP=πr2=0.5024m2 Ra=qpaAp+up∑qsiali(DB33/1001—2003)(9.2.3-1) qpaAP=0 up∑qsiali=1.88×(5.58×7.00×1.02+10.2×8.00×1.02+9.7×13.00×1.02+4.1×23.00×1.02+4.1×15.00×1.02+3.2×16.000×1.02)=1282.414KN 即Ra=1282.41KN 2)桩身截面强度计算 0.7×11.9×5.03×105=4189.99KN 其中,——工作条件系数,取0.7 fc ——混凝土轴心抗压强度设计值,fc =11.90N/mm2; Ap ——桩的截面面积,A=5.03×105mm2。 2.单桩抗拔力特征值计算 Ra’=up∑6iqsiali+GPK (DB33/1001—2003)(9.2.7—1) =1282.414+429.552=1711.966KN up∑6iqsiali=1.88×(5.88×7.00×1.02+10.2×8.00×1.02+9.7×13.00×1.02+4.1×23.00×1.02+4.1×15.00×1.02+3.2×16.00×1.02+1.5×26.00×1.02+4.4×40.00×1.02)=1282.41KN 0.9Gpk=0.9×π×0.42×38×25=429.552KN (二)单桩桩顶作用力的计算和承载力验算 1.轴心竖向力作用下: Qk=(FK+GK)/n (DB33/1001—2003)(9.2.1-1) =(666.56+480)/4=286.64KN 2.偏心竖向力作用下: 按照Mx=Mk=2172.8+73.9×1.0=2246.7KN·m (DB33/1001—2003)(9.2.1-2) = (666.56+750)/4±2246.7×1.7×/ =354.14±476.25 = 3.水平作用下: =73.9/4=18.48KN 其中 n——单桩个数,n=4; F——作用于桩基承台顶面的竖向力设计值,F=666.56kN; G——桩基承台的自重 G=1.2×(25×Bc×Bc×Hc+20×Bc×Bc×D) =1.2×(25×4.00×4.00×1.00+20×4.00×4.00×0.00) =480.00k N; Mx,My——承台底面的弯矩设计值(kN.m);取2172.80KN.m; xi,yi——单桩相对承台中心轴的XY方向距离a/2=1.70m; Ni——单桩桩顶竖向力设计值(kN)。 (三)矩形承台弯矩的计算 (依据《建筑桩技术规范》JGJ94-94的第5.6.1条) 其中 Mx1,My1——计算截面处XY方向的弯矩设计值(kN.m); xi,yi——单桩相对承台中心轴的XY方向距离 取a/2—B/2=0.90(m); Ni1——扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n=486.17KN/m2; 经过计算得到弯矩设计值: Mx1=My1=2×486.17×0.90=875.11KN.m。 四、矩形承台截面主筋的计算 依据《混凝土结构设计规范》(GB50010-2102)第7.2条受弯构件承载力计算。 式中,α1 ——系数,当混凝土强度不超过C50时,α1 取为1.0,当混凝土强度等级为C80时,α1 取为0.94,期间按线性内插法得1.00; fc——混凝土抗压强度设计值查表得16.70N/mm2; h0——承台的计算高度Hc-50.00=950.00mm; fy——钢筋受拉强度设计值,fy=300.00N/mm2; 经过计算得: 875.11×106/(1.0
相关文档
最新文档