用牛顿环测量透镜的曲率半径

合集下载

牛顿环测透镜曲率半径实验的数据处理方法

牛顿环测透镜曲率半径实验的数据处理方法

牛顿环测透镜曲率半径实验的数据处理方法牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径。

本文将介绍牛顿环测量方法以及常用的数据处理方法,帮助读者了解该实验并正确进行数据处理。

一、牛顿环测量方法牛顿环测量方法是通过观察牛顿环的圆心与边缘的环形干涉图案来确定透镜的曲率半径。

具体步骤如下:1. 实验准备首先,我们需要准备一块光滑的透镜和一块玻璃基片。

将透镜和基片放在光源下方,保证光线垂直照射。

2. 形成干涉图案调整透镜和基片的间距,使得玻璃基片上形成一组明暗相间的圆环。

这个圆环就是我们所说的牛顿环。

3. 测量半径使用读数显微镜或目镜放大牛顿环图案。

从内环的直径开始,分别测量每个环的直径。

通常情况下,选取3-5个环作为测量点。

4. 记录数据将每个环的直径数据记录下来。

为了减小误差,需要重复多次测量。

二、数据处理方法牛顿环测量实验会得到一系列环的直径数据,我们需要对这些数据进行处理才能得到透镜的曲率半径。

下面介绍两种常用的数据处理方法。

1. 计算平均值首先,将每次测量得到的环直径求平均值。

这样可以减小由于实验误差导致的数据波动。

2. 曲线拟合通过拟合实验数据的曲线,我们可以得到更精确的透镜曲率半径。

常用的拟合方法有最小二乘法和直线拟合法。

最小二乘法是通过最小化实验数据与拟合曲线之间的距离来确定最优的拟合曲线。

直线拟合法则是将实验数据作为点,通过拟合直线的斜率来得到曲率半径。

三、实验注意事项在进行牛顿环测量实验时,需要注意以下几点。

1. 保持环境稳定实验环境应尽量保持稳定,避免外界震动和温度变化对实验结果的影响。

2. 测量精度使用高精度仪器进行测量,并尽量减小读数误差。

对于每个环的直径测量,应进行多次重复以提高精度。

3. 数据处理准确性在数据处理过程中,需要严格按照公式进行计算,并保留足够的有效数字。

避免舍入误差对最终结果的影响。

四、实验结果的分析与讨论根据实验得到的透镜曲率半径数据,可以进行结果的分析与讨论。

用牛顿环测定透镜的曲率半径

用牛顿环测定透镜的曲率半径

实验数据的处理方法
逐差法 图解法
数据记录表格
环数K
45
40
35
30
左 环位置

环直径DK
环直径平方D2K
环数L
25
20
15
10
左 环位置

环直径DL 环直径平方D2L 直径平方差D2K--D2L 直径平方差的平均值△D2
误差的主要来源与分析
1.条纹的定位精度(偶然误差) 定位误差的大小在条纹宽度的 1/5~1/10。 解决办法:取级次较高的环进行 测量。
13实验仪器实验仪器读数显微镜读数显微镜钠光灯钠光灯牛顿环牛顿环劈尖装置劈尖装置14实验原理实验原理?17世纪初物理学家牛顿在考察肥皂泡及其他薄膜干涉现象时把一个玻璃三棱镜压在一个曲率已知的透镜上偶然发现干涉圆环并对此进行了实验观测和研究
用牛顿环测定透镜的曲率半径
河北工业大学 物理实验中心
光的等厚干涉——牛顿环、劈尖
直径,而是干涉环的同一直线上的弦长,对实验是否有影响? 为什么? 2.透射光能否形成牛顿环?它和反射光形成的牛顿环有什么 区别? 3.用同样的方法能否测定凹透镜的曲率半径? 4.有时牛顿环中央会出现亮斑,这是为什么? 5.实验中,若平板玻璃上有微小的凸起,则凸起 处的干涉条纹发生变化。此时干涉条纹如何变化?
睛看到显微镜视场较亮。 4.用显微镜观察干涉条纹。调节目镜看清目镜筒中的叉丝,再调节物镜使
干涉条纹的像清晰且与叉丝像无视差。 5.转动测微鼓轮,使十字叉丝交点接近牛顿环中心。 6.转动测微鼓轮使叉丝超过第45环,然后倒回到45环开始读数.依次记录
从左45、40、35、30、……10,继续转动测微鼓轮至环的右10、……30、 35、40、45各环相对位置读数。 7.计算结果及其不确定度。

实验13 用牛顿环测透镜曲率半径

实验13 用牛顿环测透镜曲率半径

实验13 用牛顿环测透镜曲率半径当频率相同、振动方向相同、相位差恒定的两束简谐光波相遇时,在光波重叠的区域,某些点合成的光强大于分光强之和,某些点合成光强小于分光强之和,合成光波的光强在空间形成强弱相间的稳定分布,这种现象称为光的干涉。

实验中获得相干光的方法一般有两种:分波阵面法和分振幅法。

“牛顿环”属于分振幅法产生的等厚干涉现象,它在光学加工中有着广泛的应用,例如测量光学元件的曲率半径等。

这种方法适用于测量大的曲率半径。

本实验用牛顿环测量薄凸透镜的曲率半径。

【实验目的】1.观察牛顿环等厚干涉现象,加深对光的波动性的认识; 2.学会使用读数显微镜;3.学会使用牛顿环测透镜曲率半径的方法。

【实验原理】如图Ⅱ-13-1所示,把一块曲率半径很大的平凸透镜的凸面放在一块光学平板玻璃上,在透镜的凸面和平板玻璃间形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。

离接触点等距离的地方,厚度相同,等厚膜的轨迹是以接触点为中心的圆。

若一单色光近乎垂直地射到平凸透镜上,光线经空气薄层上下两个面反射后相遇于P 点,两相干光的光程差为:22λ+=∆k K d (Ⅱ-13-1)式(Ⅱ-13-1)中,2/λ为光在平面玻璃上反射时因有相位跃变而产生的附加光程差。

当光程差满足k图Ⅱ-13-1 产生牛顿环的光路示意图λλk d k k =+=∆22 k =1,2,3,… 时,为明条纹 2)12(22λλ+=+=∆k d k k k =0,1,2,3,… 时,为暗条纹可见,在厚度k d 相同的地方为同一级干涉条纹,干涉条纹是明暗相间的同心圆环,称为牛顿环。

透镜和平面玻璃的接触点处k d = 0,对应的是零级暗环。

根据牛顿环的暗条纹(暗环)条件,当空气厚度满足如下条件:λk d k =2 (Ⅱ-13-2)时得到暗条纹。

又由图Ⅱ-13-1的几何关系可得22222)(k kk k d Rdd R Rr -=--= (Ⅱ-13-3)因为R >>k d ,略去2k d ,再把式(Ⅱ-13-2)代入(Ⅱ-13-3),得出暗环半径为λkR r k =2(k =0,1,2,3,……) (Ⅱ-13-4)式(Ⅱ-13-4)表明,只要测出第k 级牛顿环的半径和已知入射光的波长λ,就可以计算出透镜的曲率半径R ;相反,当R 已知时,可以算出λ。

大学物理实验光学用牛顿环干涉测透镜曲率半径

大学物理实验光学用牛顿环干涉测透镜曲率半径

实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。

2、通过实验加深对等厚干涉原理的理解。

(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。

框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。

调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。

(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。

如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。

设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。

但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。

这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。

为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环,加深对光的波动性的认识。

2、掌握用牛顿环测量平凸透镜曲率半径的方法。

3、学会使用读数显微镜。

二、实验原理1、牛顿环的形成将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与玻璃之间形成一个从中心向四周逐渐增厚的空气薄层。

当一束单色平行光垂直照射到此装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。

由于空气薄层的厚度从中心到边缘逐渐增加,所以在与接触点等距离的圆周上,各点的空气层厚度相同,从而形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。

2、牛顿环半径与曲率半径的关系设透镜的曲率半径为$R$,形成的第$m$ 级暗环的半径为$r_m$,对应的空气薄层厚度为$d_m$。

由于暗环处光程差为半波长的奇数倍,即:\\begin{align}\Delta = 2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\end{align}\又因为$d_m = R \sqrt{R^2 r_m^2}$,且在$r_m \ll R$ 的情况下,可近似认为$d_m =\frac{r_m^2}{2R}$,所以:\\begin{align}\frac{r_m^2}{2R} &= m\lambda\\R &=\frac{r_m^2}{2m\lambda}\end{align}\三、实验仪器1、读数显微镜2、钠光灯3、牛顿环装置四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。

转动调焦手轮,使镜筒由最低位置缓缓上升,直到能看清牛顿环。

移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。

2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次经过第$30$ 到第$10$ 暗环,并记录每经过一个暗环时的位置读数。

继续转动测微鼓轮,使十字叉丝越过中心向右移动,同样记录第$10$ 到第$30$ 暗环的位置读数。

3.2利用牛顿环测定透镜的曲率半径

3.2利用牛顿环测定透镜的曲率半径
知,则可由上式计算出透镜的曲率半径 R ,反之,如透镜的曲率半径 R 为已知,则可算出
人射光波的波长 。
实验仪器及其描述:
牛顿环是由一平凸透镜 L 和精磨的平玻璃板 P 叠合装在金属框架中构成的,如图三所 示,框架边上有三个螺钉 H 用以调节 L 和 P 之间接触点,以改变干涉圆环的形状和位置,
中的集合关系可得:
R 2 R d2 r 2 R 2 2Rd d 2 r 2
因 R>>d,故可略去 d2 而得
r2 2Rd 或 d r 2

2R
入射光
当光线垂直人射时,在平凹透镜的上下缘面
上反射光线的光程差为: 2n0d

R
式中 n0 为透镜折射率,由于光在平凹透镜上下缘面
n0r 2 m R
化简得
r 2 mR

n0
式中 r 为第 m 个亮圈的半径,同理可导出暗圈的半径为
r 2m 1R

n0
2
例如,选取第 m 个和第 n 个清楚的干涉亮环(或暗环),测量第 m 个第 n 个亮环(或暗环)
的半径,由这两个差值来计算 R 或 。由⑤式或⑥式可得:
上反射光线的光程差为:
2d
(2)
2
式中 是因为光在平面玻璃面上反射时有 2
半波损失,将(1)式代入(2)式就得到以 O
r
d
图二
为圆心,半径为 r 的圆周上各点处的光程差为:
r2
(3)
R2
当 m 时,对应亮环
当 2m 1 时,对应暗环
2 式中 m 为干涉级数, m 可为 0、1、2……
1.用分振幅的方法实现双光束干涉。 2.通过实验加深对等厚干涉原理的理解和现象的认识。 3.掌握用牛顿环测定透镜曲率半径的方法。 4.学会调节和使用读数显微镜。 5. 观察等厚干涉现象。

用牛顿环测定透镜的曲率半径课件

用牛顿环测定透镜的曲率半径课件
影响。
03
实验结果分析
数据处理与误差分析
数据处理
将实验中测得的数据进行整理,绘制 出牛顿环干涉图样,并标出各环的半 径。
误差分析
对实验中可能产生的误差来源进行分 析,如测量工具精度、环境温度和湿 度变化等。
曲率半径的计算
方法一
根据干涉图样,利用公式$r = frac{klambda}{2pi}sqrt{frac{D}{d}}$计算透镜的曲率半径, 其中$k$为干涉级数,$lambda$为光波长,$D$为干涉图样 的直径,$d$为两玻璃间的缝隙。
步骤四
使用测微器测量透镜 的直径,并记录数据 。
步骤五
根据干涉条纹间距公 式和已知的波长计算 透镜的曲率半径。
数据记录与处理
表格1
记录不同干涉条纹间距的数据 。
表格2
记录透镜直径的测量数据。
计算
根据干涉条纹间距公式和已知 波长计算曲率半径。
误差分析
分析实验过程中可能产生的误 差来源,如测量误差、环境因 素等,并评估其对实验结果的
实验操作复杂
实验操作过程较为复杂, 需要专业人员指导。
实际应用与展望
光学仪器制造
透镜曲率半径的精确测量 对于光学仪器制造具有重 要意义。
科学研究
在光学、物理学等领域, 透镜曲率半径的精确测量 有助于推动相关研究的发 展。
技术创新
随着科技的发展,新的测 量技术和方法将不断涌现 ,有望提高透镜曲率半径 的测量精度和效率。
方ቤተ መጻሕፍቲ ባይዱ二
利用公式$R = frac{nd}{t}$计算透镜的曲率半径,其中$R$为 透镜曲率半径,$n$为折射率,$d$为透镜中心厚度,$t$为 透镜外径。
结果的讨论与结论

实验十 用牛顿环测透镜的曲率半径

实验十   用牛顿环测透镜的曲率半径

实验十用牛顿环测透镜的曲率半径利用透明薄膜上下表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几部分。

若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同。

这就是所谓的等厚干涉。

牛顿为了研究薄膜颜色,曾经用凸透镜放在平面玻璃上的方法做实验。

他仔细观察了白光在空气薄层上干涉时所产生的彩色条纹,从而首次认识了颜色和空气层厚度之间的关系。

1675年,他在给皇家学会的论文里记述了这个被后人称为牛顿环的实验,但是牛顿在用光是微粒流的理论解释牛顿环时却遇到困难。

19世纪初,托马斯.杨用光的干涉原理解释了牛顿环。

一、实验目的1、观察牛顿环产生的等厚干涉现象,加深对等厚干涉原理的理解。

2、掌握用牛顿环测量透镜曲率半径的方法。

二、实验仪器牛顿环,钠光灯,测微目镜。

三、实验原理1、牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。

直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学平板玻璃(平晶)上构成的,如图10.1所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图10.3所示),称为牛顿环。

3.2利用牛顿环测定透镜的曲率半径

3.2利用牛顿环测定透镜的曲率半径

(a)
(b)
设透镜 L 的曲率半径为 R,离接触点 O 任一距离 r 处的薄膜厚度为 d,则由图二中的几 何关系可知:
R2 (R d)2 r2 R2 2Rd d2 r2
因 R>>d,故可略去 d2 而得
入射光
r2 2Rd 或 d r2
(1)
R
2R
当光线垂直人射时,在空气层的上下缘面
3.2 利用牛顿环测定透镜的曲率半径
光的干涉是光的波动性的一种表现。若将同一点光源发出的光分成两束,让它们各经不 同路径后再相会在一起,当光程差小于光源 的相干长度,一般就会产生干涉现象。干涉现 象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和 角度,检验试件表面的光洁 度,研究机械零件内应力的分布以及在半导体技术中测量硅片 上氧化层的厚度等。牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的 干涉现象,也 是典型的等厚干涉条纹。 一、实验目的要求
(4)式即为反射光相消条件,比较(3)、(4)两式得:
r2 2m 1 源自(4)R22
化简得
r2 mR
(5)
式中 r 为第 m 个暗圈的半径,同理可导出亮圈的半径为:
r (2m 1) R
(6)
2
由(5)(6)两式可知,测出暗圈或亮圈的半径后,当 已知时,即可算出透镜的曲率半径 R 。 当 R 为已知时,即可算出入射光波的波长 ,但由于两镜面接触时,将发生弹性形变,以
上反射光线的光程差为:
2d
(2)
2
式中 是因为光在平面玻璃面上反射时有 2
半波损失,将(1)式代入(2)式就得到以 O
r

牛顿环测透镜曲率半径实验报告数据

牛顿环测透镜曲率半径实验报告数据

牛顿环测透镜曲率半径实验报告数据实验目的:测量透镜的曲率半径。

实验原理:牛顿环是由透镜与平行玻璃片之间产生的干涉圆环,在平行玻璃片的上表面与透镜之间产生了反射光和透射光,当这两束光相遇时发生干涉现象。

当两束光发生相消干涉时,形成暗环;而当两束光发生相长干涉时,形成亮环。

通过测量牛顿环的直径,可以计算出透镜的曲率半径。

实验器材:1.透镜2.平行玻璃片3.光源4.三脚架5.尺子实验步骤:1.在实验室的黑暗环境中,通过三脚架将光源固定。

2.将透镜放置在平行玻璃片上,并放置在光源上方,使得透镜与光源之间产生牛顿环。

3.使用尺子测量牛顿环的直径。

实验数据:在实验过程中,我们测量了不同直径的牛顿环,得到了以下数据:牛顿环直径(mm)透镜曲率半径(m)1 0.022 0.043 0.064 0.085 0.10实验结果分析:通过测量不同直径的牛顿环,我们可以得到透镜的曲率半径。

根据牛顿环的直径和透镜的折射率,可以利用公式计算出透镜的曲率半径。

这个结果可以用来判断透镜的性能和质量。

实验结论:通过本次实验,我们成功测量了透镜的曲率半径。

通过这个实验,我们了解了牛顿环测量曲率半径的原理和方法,掌握了实际操作的技能,并且加深了对透镜性能的认识。

透镜的曲率半径是透镜的一个重要参数,对于光学仪器的设计和制造具有重要的意义。

通过这个实验,我们对透镜的性能和曲率半径有了更深入的了解。

在今后的学习和工作中,我们将更加注重实验操作的细节和实验数据的分析,不断提高自己的实验技能和科研能力,为科学研究和产业发展贡献自己的力量。

用牛顿环测透镜曲率半径实验报告

用牛顿环测透镜曲率半径实验报告

用牛顿环测透镜曲率半径实验报告用牛顿环测透镜曲率半径实验报告引言:透镜是光学实验中常用的元件之一,其曲率半径是描述透镜形状的重要参数。

本实验旨在通过牛顿环实验方法,测量透镜的曲率半径,并探究透镜的光学性质。

实验装置和原理:实验所需装置包括:白光源、凸透镜、平凸透镜、半透反射镜、目镜、显微镜、平行光筒等。

实验原理基于牛顿环的干涉现象,通过观察干涉环的直径变化,可以推导出透镜的曲率半径。

实验步骤:1. 将凸透镜放置在平凸透镜上,调整透镜使其与平凸透镜接触。

2. 将白光源照射到半透反射镜上,使光线通过透镜。

3. 在透镜的一侧放置目镜,调整目镜的位置使其与透镜的球心重合。

4. 通过显微镜观察透镜表面上的牛顿环,记录下不同环的直径。

5. 重复实验多次,取平均值。

实验结果与分析:根据实验数据,我们可以计算出透镜的曲率半径。

首先,根据牛顿环的直径d和透镜与目镜的距离D,可以得到透镜的半径R。

然后,利用透镜公式1/f =(n-1)(1/R1 - 1/R2)计算出透镜的焦距f。

最后,通过透镜公式f = R/2计算出透镜的曲率半径R。

在实验中,我们发现牛顿环的直径随着环数的增加而减小,这与理论预期相符。

根据牛顿环的干涉条件,可以推导出直径与环数的关系式d^2 = (2Rλ)/(m+1/2),其中d为直径,R为透镜的曲率半径,λ为波长,m为环数。

通过拟合实验数据,我们可以得到透镜的曲率半径。

实验误差分析:在实验中,由于光线的折射、反射等因素,会引入一定的误差。

此外,实验过程中的仪器误差、人为误差也会对结果产生影响。

为减小误差,我们在实验中进行了多次测量,并取平均值。

同时,注意调整实验装置,使光线尽可能垂直透镜表面,减小误差。

结论:通过牛顿环测量法,我们成功测量了透镜的曲率半径,并得到了较为准确的结果。

实验结果与理论预期相符,验证了牛顿环实验方法的可靠性。

本实验不仅加深了对透镜光学性质的理解,还培养了实验操作和数据处理的能力。

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径

等厚干涉应用
科学研究和工程技术上广泛应用等厚干涉现象。 如,测量光的波长,微小长度变化,检验工件表面光 洁度等。
本实验应用牛顿环干涉测量平凸透镜的曲率半径。
实验目的
1.观察光的等厚干涉现象,加深对 光的干涉原理的理解; 2.学习利用干涉现象测量某些物理 量的方法。
实验仪器 移测显微镜 牛顿环仪 钠光灯 劈尖
3)调节目镜,使十字叉丝清晰并竖直;
4)调节焦距旋钮,使牛顿环纹清晰。
3、测量
1)移动刻度轮,使主尺上的刻度指在25mm处。 2)移动牛顿环,使十字叉丝处于牛顿环中心处。 3)移动刻度轮,使十字叉丝从牛顿环中心向左移到第22级暗环 中心处,然后反向转动,使十字叉丝与第20级暗环中心相切时,记 下显微镜上的读数,以后分别记下19、18、17、16级暗纹中心相应 处的读数。继续向右移动,再分别记录第10、9、8、7、6级暗纹中 心处的显微镜读数。继续右移,经过牛顿环中心后,依次测记右侧 第6、7、8、9、10和16、17、18、19、20级暗纹中心的读数。
由几何关系知:
r
2
R

2
( R h )
h
h
2
0
h
r
带入暗纹条件:
h k
2
2
R
r
r d
2
2R
kR
r
h
透镜曲率半径:
R

k

4k
有逐差法可知,当测得的第m级和第k级的暗环直径dm和dk时,得到曲 率半径的测量公式为:
R d
4、计算 用逐差法测透镜曲率半径,计算平均值。
干涉圆环直径的测量方法
Dm 左xm 右xm
m 级

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为22e λ∆=+式中e 为第k 级条纹对应的空气膜的厚度,2λ为半波损失。

由干涉条件可知,当(21)(0,1,2,3,)2k k λ∆=+=⋯时,干涉条纹为暗条纹。

即 解得 2e k λ= (2) 设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为e ,由图4所示几何关系可得()2222222R R e r R Re e r =-+=-++由于R e >>,则2e 可以略去。

则 22r e R = (3) 由式(2)和式(3)可得第k 级暗环的半径为22k r Re kR λ== (4)由式(4)可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径k r ,即可算出平凸透镜的曲率半径R ;反之,如果R 已知,测出k r 后,就可计算出入射单色光波的波长λ。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附加了一项。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。

2、学习用牛顿环测量透镜的曲率半径。

3、掌握读数显微镜的使用方法。

二、实验原理将一块曲率半径较大的平凸透镜放在一块平板玻璃上,在透镜的凸面和平板玻璃之间就会形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

当一束单色光垂直照射到牛顿环装置上时,在空气薄膜上下表面反射的两束光会发生干涉。

由于空气薄膜的厚度不同,在不同的位置会出现明暗相间的同心圆环,即牛顿环。

设透镜的曲率半径为 R,在距中心 r 处的空气薄膜厚度为 e。

由于通常情况下 R>>e,所以可以近似认为 e = r²/(2R)。

对于暗环,光程差为半波长的奇数倍,即:\\begin{align}2e +\frac{\lambda}{2} &=(2k + 1)\frac{\lambda}{2}\\2e &= k\lambda\\e &=\frac{k\lambda}{2}\\\frac{r^2}{2R} &=\frac{k\lambda}{2}\\R &=\frac{r^2}{k\lambda}\end{align}\其中,k 为暗环的级数,λ 为入射光的波长。

通过测量暗环的半径 r 和对应的级数 k,就可以计算出透镜的曲率半径 R。

三、实验仪器读数显微镜、牛顿环装置、钠光灯。

四、实验步骤1、调节读数显微镜目镜调焦:使十字叉丝清晰。

物镜调焦:将平面反射镜置于物镜下方,缓慢旋转调焦手轮,使镜筒由下而上移动,直至看到清晰的反射像。

调整十字叉丝与牛顿环的位置:使十字叉丝的交点与牛顿环的中心大致重合。

2、测量牛顿环的直径转动测微鼓轮,使十字叉丝向左移动,直至十字叉丝竖线与第 k 级暗环的外侧相切,记下此时的读数 xk 左。

继续沿同一方向移动十字叉丝,使竖线与第 k + m 级暗环的外侧相切,记下读数 x(k+m)左。

沿相反方向转动测微鼓轮,使十字叉丝竖线与第 k 级暗环的内侧相切,记下读数 xk 右。

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径牛顿环实验是一种常用的实验方法,用于测量光学元件的曲率半径。

其中牛顿环是一种在透镜和平板玻璃之间形成的干涉花纹,其间隔与表面曲率密切相关。

实验原理当一束平行光垂直地入射在镜面上时,光线经过反射后形成一系列同心圆环,这些圆环间距相等。

这些环就是牛顿环,在光程差相同的地方形成了峰值和谷值的干涉条纹。

其中,光程差是光从透镜表面反射或折射回来时在空气中走过的距离其差值。

当透镜置于平板玻璃上时,在透镜与玻璃之间形成了一层空气薄膜,由此产生了一系列的明暗圆环。

这里的光程差为2td,其中t是薄膜厚度,d是折射率。

在物距远时,牛顿环的半径r与透镜的曲率半径R之间的关系为:(r + R)^2 = (r - R)^2 + 4Rt由此可以得到,透镜的曲率半径可以通过测量牛顿环的半径r和薄膜厚度t对R的关系求得。

实验步骤1.将凸透镜平放在平板玻璃上,滴入透明水滴使其均匀分散在透镜表面上。

在镜片中央的光阑处放置一个光源(如准平行光),调整光源位置,使其垂直于透镜表面。

2.查找牛顿环并调整望远镜。

将目镜对准某个明暗对比较强的牛顿环,调节焦距使其环的图象清晰,根据调节望远镜面的分及分圆盘的读数可以得到该环的半径r的值,注意读数要精确到0.1mm左右。

3.不动透镜和水滴的位置,用调整螺丝加上起雷龙膜或者冷凝膜,探头按压在透明薄膜的环外边缘,注意要避免捏碎水滴,并调整探头使其重心下降垂直,随之再调整显微镜目镜,使其能观察到调焦后的探头上下移动过程中牛顿环与标尺的重合,再调整分圆盘做恰当的记录读数,此时测得的为薄膜厚度t。

4.测量不同半径下的牛顿环半径值r,记录各自的图象及其读数,并计算相关数据,根据上述公式计算透镜的曲率半径。

实验注意点1.注意调节光源位置,将光线尽量垂直于透镜表面,以得到清晰的牛顿环形。

2.要确保透明水滴均匀薄散在透镜表面上,不要有过多的液滴在透镜表面上。

3.切忌捏碎水滴以免影响测量结果。

牛顿环测透镜曲率半径

牛顿环测透镜曲率半径

牛顿环测透镜曲率半径引言牛顿环测量透镜的曲率半径是一种常见的实验方法,用于确定透镜的曲率半径和或者曲率半径的变化。

牛顿环测量法是通过观察透镜与平面玻璃片之间形成的干涉图案来确定透镜的曲率。

本文将介绍牛顿环测量透镜曲率半径的原理、实验装置和步骤,并讨论测量结果的分析和可能的误差来源。

一、牛顿环测量原理牛顿环测量透镜曲率半径的原理基于干涉现象。

当将透镜放置在一个平面玻璃片上时,透过透镜的光会与玻璃片反射的光相干叠加,形成一系列环状的亮暗交替的圆环。

这些圆环就是牛顿环。

干涉图案的特点是中心亮、向外逐渐暗。

根据牛顿环的公式,可以推导出透镜的曲率半径公式:r = (m * λ * r^2) / (2 * t)其中,r是透镜曲率半径,m是环数,λ是波长,t是平面玻璃片的厚度。

由于λ和t都是已知量,所以通过测量环数m,就可以计算出透镜的曲率半径r。

二、实验装置进行牛顿环测量透镜曲率半径实验所需的装置包括:1. 光源:需要稳定、单色和平行的光源,常用的有汞灯、钠灯等。

2. 凸透镜:透镜的曲率半径需要测量的透镜。

3. 平面玻璃片:透镜放置在平面玻璃片上。

4. 显微镜:用于观察干涉图案。

5. 支架和调节装置:用于固定透镜和平面玻璃片,使其位置可以调整。

三、实验步骤以下是进行牛顿环测量透镜曲率半径的一般步骤:1. 将透镜放置在平面玻璃片上,确保两者贴合得非常密切。

2. 将光源对准透镜的中心,并调整光源的位置,使得透过透镜的光束是平行的。

3. 在透镜的一侧放置显微镜,调节显微镜的焦距,使得透镜形成清晰的牛顿环干涉图案。

4. 使用显微镜观察干涉图案,记录环数m的值。

此时,可以将显微镜的目镜固定在一个位置上,然后移动物镜,观察环的变化,直到找到相对清晰的环。

5. 重复实验多次,得到多组数据。

6. 根据实验测得的环数m,代入牛顿环公式,计算透镜的曲率半径r。

四、测量结果与误差分析根据测量结果,可以计算出透镜的曲率半径。

然而,实际测量中可能会存在一些误差,导致测量结果的偏差。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿合前轻轻转动测微鼓轮读数有变化,而游标并没有移动。
消除方法:测量时只沿同一方向转动测微鼓轮。
实验方案
23 20 11 中心 11 20 左侧 右侧
左取内切点
右取外切点
D=右外切点-左内切点
测量方案
干涉条纹数 10 11 12 13 14 15 16 17 18 19 20
左方条纹
第 读数
一 次 测
用牛顿环测透镜的曲率半径
上海师范大学天华学院
实验背景
白光下的肥皂膜
白光入射的牛顿环照片
白光下的水膜
牛顿环装置
单色光的牛顿环照片
实验背景
“牛顿环”是一种分振幅、等厚干涉现象,是光 的波动性的一种表现。 应用极广:测量光波波长、测量微小角度或薄膜 厚度、观测微小长度变化、检测光学表面加工质 量等。利用牛顿环还可以测量液体折射率。 本实验通过牛顿环研究光的干涉现象,测定透镜 的曲率半径,学习读数显微镜的使用等。
就可以测量其折射率n
n dm2 dk2
4(m k)R
实验内容
测量牛顿环直径,计算平凸透镜 曲率半径R。
计算公式:
R
2
Dm
2
Dn
4(m n)
实验装置 读数显微镜
读数标尺
目镜
显微镜筒 调焦旋钮
钠光灯
测微鼓轮
牛顿环
读数显微镜的空程误差
空程误差属系统误差,由螺母与螺杆间的间隙造成;
螺杆
测微鼓轮
(m n) 4(m n)
难点解说
实验中,如果用弦长取代牛顿环直径是否可以?
Dk2m Dk2 4(rk2m rk2 )
4(
l k2 m 4
h2 )
( lk2 4
h2
)
l k2 m
l
2 k结论:可以!rk Nhomakorabeah
lk
rk+m
lk+m
R Dm2 Dn2
4(m n)
牛顿环干涉条纹的特点
分振幅、等厚干涉;
牛顿环产生原因
光程差:
o
2d
2
k
明环
(2k 1)
暗环


R
2
牛顿环 等厚干涉
第k级暗条纹:
d
2d (2k 1)
2
2
d 1 k
2
牛顿环测透镜曲率半径的原理
r2 R2 (R d)2 2Rd d 2
∵ R d
∴ r 2 2Rd
第k级暗条纹的半径为:
d 1 k
2
明暗相间的同心圆环;
k
级次中心低、边缘高;
间隔内疏外密;
同级干涉,波长越短,条纹越靠近中心。
牛顿环的应用
牛顿环等厚干涉条纹的形状反映了两个光学 表面间距的变化情况。利用牛顿环可以检测 光学球面(或平面)的加工质量。
根据本实验原理,已知曲率半径的牛顿环可 测定单色光的波长。
在牛顿环仪的镜面充满透明的液体光学介质,
右方条纹 读数
量 圆条纹直

测量顺序
起始读数点
左方条纹
第 读数
二 次 测
右方条纹 读数
量 圆条纹直

各干涉条纹直 径平均值
实验步骤
将牛顿环装置放在读数显微镜的工作台上,转动反光镜使钠 光灯充满整个显微镜视场。 旋转测微鼓轮,使读数显微镜的游标移至标尺的中间位置。 自下而上调节调焦旋钮直到看清牛顿环。 调整牛顿环装置的位置,使显微镜的十字叉丝对准牛顿环的 中心暗环,调节目镜使十字叉丝水平。 进行第一次测量,顺序 23, 20,10 ,中。心, 11, 20 旋转牛顿环约60°,进行第二次测量。
rk2 kR
589.3nm
d rk
牛顿环测透镜曲率半径的原理
为什么不用: k 级暗环 rk
k R R rk 2 ?? k
①透镜凸面与平板玻璃表面间
并非理想的点接触,难以准
确判断环的中心和干涉级次k;
②消除灰尘或压力引起的附加
Dn
光程差带来的系统误差。
Dm
采用: R rm2 rn2 Dm2 Dn2
相关文档
最新文档