高一数学集合练习题(经典)
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3 C .{1,1}- D .{}3,3- 3.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .4.若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B =( ) A .(]0,9 B .[)4,9 C .[]4,6 D .[]0,9 5.若集合302x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x <<B .{}3x x >C .{}2x x >-D .{}3x x >-6.已知集合{}1,0,1A =-,(){}20B x x x =-≤,那么A B =( )A .{}1-B .{}0,1C .{}0,1,2D .{}01x x ≤≤ 7.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3} B .{1,2,3,5} C .{1,2,5} D .{1,5}8.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()0,29.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2} C .{0,2} D .{0,1,2} 10.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<11.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)12.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .713.已知集合{}2320A x x x =-+>,{}1,B m =,若A B ⋂≠∅,则实数m 的取值范围是( )A .()1,2B .()(),12,-∞+∞C .[]1,2D .()2,+∞ 14.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2B .1-C .2-D .5- 15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3- 二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题: ①{} 2,3,5,6,8,9,A B =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数;③A 、B 两个集合元素个数相等;④n A ∀∈,22n n ≥.其中真命题序号是______.20.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______.21.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个22.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.25.设P 、Q 为两个非空实数集合,定义集合{},,b P Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ;(2)若A B A =,求实数a 的取值范围.28.如图所示阴影部分角的集合.29.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.30.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂.【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-,所以{|14}M N x x ⋂=-≤<.故选:A2.C【解析】【分析】根据B 是A 的子集列方程,由此求得m 的取值集合.【详解】由于B A ⊆,所以211m m =⇒=±,所以实数m 的取值集合为{1,1}-.故选:C3.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】解分式不等式确定集合A ,再由并集的定义计算.【详解】 解:依题意,{}30232x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C .6.B【解析】【分析】先化简集合B ,再求A B【详解】()20x x -≤02x ⇒≤≤,所以{}|02B x x =≤≤所以{}0,1A B =故选:B7.B【解析】【分析】依据并集的定义去求M N ⋃即可解决.【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B8.C【解析】【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案.【详解】{}22{|02}A x x x x x =<=<<, 故{|01}A B x x =<<,故选:C.9.C【解析】【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .10.B【解析】【分析】由集合的交运算求A B 即可.【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<,所以{}1,2,3,4A B ⋂=.故选:B11.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A12.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.13.B【解析】【分析】根据一元二次不等式的解法求出集合A ,结合交集的概念和运算与空集的概念即可得出结果.【详解】由题可知,{}()(){}{}232012012A x x x x x x x x x =-+>=-->=或. 因为A B ⋂≠∅,所以m A ∈,即1m <或2m >,所以实数m 的取值范围是()(),12,-∞+∞.故选:B14.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.15.C【解析】【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解.【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----,所以A B ={2,1,0,1,2}--.故选:C.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++= 所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.[)3,+∞【解析】【分析】根据A B ⊆列出不等式即可求解.【详解】 因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意.故答案为:[)3,+∞.18.()1,2-【解析】【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围;【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤,当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<; 当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<. 综上可得1a 2-<<,即()1,2a ∈-;故答案为:()1,2-19.①②③【解析】【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立.【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.20.5m ≥【解析】【分析】由交集和空集的定义解之即可.【详解】(),5P =-∞,[),Q m =+∞由P Q =∅可知,5m ≥故答案为:5m ≥21.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:722.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.{x |2<x <3}【解析】【分析】解二次不等式可得集合B ,再求交集即可.【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3},∴A ∩B ={x |2<x <3}.故答案为:{x |2<x <3}25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > , 当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦. 30.1,2⎡⎫-+∞⎪⎢⎣⎭ 【解析】【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >3.设集合{}14A x x =<<,集合{}2230B x x x =--≤,则A B ⋃=( )A .[1,4)-B .()1,4-C .(]1,3D .()1,34.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,45.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .56.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,7.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,28.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加参加径赛和田赛有3人,同时参加径赛和球类比赛有3人,没有人同时参加三项比赛.只参加球类比赛的人数为( ) A .6B .7C .8D .99.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,110.已知集合{20}M x x =-<,{N x y ==,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R11.已知集合{}21A x x =<,{}e 2xB x =<,则A B =( )A .()1,1-B .()1,ln 2-C .()0,ln 2D .()ln 2,112.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,113.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( ) A .6B .7C .8D .914.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,615.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,2二、填空题16.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________17.已知非空集合A ,B 满足:A B =R ,A B =∅,函数()3,,32,x x A f x x x B⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________.18.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________. 19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个. 21.已知全集U =R ,{}13A x x x =<->或,{}04B x x =<<,则() RA B ⋂=______.22.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.23.已知函数()f x A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.24.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______.25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知M 由0,2,4,6,8组成的集合,{|33}Z N x x =∈-≤. (1)用列举法表示集合N ,用描述法表示集合M (书写格式要规范)(2)若∃x ∈B 而x ∉ A ,则称B 不是A 的子集.结合集合M ,N 写出5个含M 中3个元素但不是M 的子集的集合.27.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围.28.已知函数()()4log 5f x x =-()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.已知{()}A xp x =∣,{()}B x q x =∣,其中():212p x a x a -≤≤+,():|2|3q x x -≤. (1)当2a =时,求A B ;(2)若()p x 是()q x 的充分不必要条件,求实数a 的取值范围.30.下列各组的3个集合中,哪2个集合之间具有包含关系? (1)S ={-2, -1, 1, 2}, A ={-1, 1}, B ={-2, 2}; (2)S =R, A ={x |x ≤0}, B ={x |x >0};(3)S ={x |x 为整数},A ={x |x 为奇数},B ={x |x 为偶数}【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的概念可得答案. 【详解】A B ={2,3}.故选:B 2.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可. 【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 3.A【解析】 【分析】利用集合的并集运算求解. 【详解】解:因为集合{}14A x x =<<,集合{}{}223013B x x x x x =--≤=-≤≤,所以A B ⋃=[1,4)-, 故选:A 4.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=, 故选:C5.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 6.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 7.B 【解析】 【分析】 化简集合A ,求出RA 后,再根据交集的概念运算可得解.【详解】{}220A x x x =->{|0x x =<或2}x >,R{|02}A x x =≤≤,所以()R {0,1}A B =. 故选:B 8.C 【解析】 【分析】 由容斥原理求解 【详解】设同时参加球类比赛和田赛的人数为x ,由于没有人同时参加三项比赛 故281581433x =++---,得3x = 故只参加球类比赛的人数为14338--= 故选:C 9.D 【解析】 【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<, 所以()0,1A B =, 故选:D. 10.B 【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 11.B 【解析】 【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可. 【详解】由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2xB x e=<,即集合{}ln 2B x x =<,因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<. 故选:B. 12.C 【解析】 【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C . 13.B 【解析】 【分析】解对数不等式化简A ,求出B 可得答案. 【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<, 所以N B A ={2,3,4,5,6,7,8}=,则B 中元素的个数为7. 故选:B 14.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 15.C 【解析】 【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答. 【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C二、填空题 16.28【解析】 【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数. 【详解】6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人; ∴只喜欢其中一项运动的人数为181028+=人.故答案为:28. 17.①③ 【解析】 【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠- 若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,A B =R时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数当{}2B =-,A B =R时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一 ③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为A B =R ,A B =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解 故答案为:①③ 【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理 ①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案18.()3,0-【解析】 【分析】先求出{}3A x x =>-,进而求出交集. 【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.20.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.{}03x x <≤##(]0,3 【解析】 【分析】先求集合A 的补集,再求A 的补集与集合B 的交集即可. 【详解】由{}13A x x x =<->或得{} R13A x x =-≤≤,又{}04B x x =<<,则(){} R 03A B x x ⋂=<≤故答案为:{}03x x <≤22.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤< 23.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】 【分析】根据()f x =. 【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =,{,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭.()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.24.2【解析】 【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案. 【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根, 所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍;当2m =时,{}{}224201B x x x =-+==,满足条件.故答案为:225.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1){}0,1,2,3,4,5,6N =;{2,4M x x k k ==≤且}N k ∈(答案不唯一);(2){}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,6(答案不唯一).【解析】【分析】(1)利用集合的列举法,描述法即得;(2)结合条件及子集的概念即得.(1) ∵{|33}Z N x x =∈-≤,∴{}0,1,2,3,4,5,6N =,∵M 由0,2,4,6,8组成的集合, ∴{2,4M x x k k ==≤且}N k ∈(答案不唯一);(2)由题可得含M 中3个元素但不是M 的子集的集合为:{}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,627.(1)[3,0]-(2)][(),62,∞∞--⋃+【解析】【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+≥⎧⎨=≤⎩,解得30a -≤≤,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x ∈-的值域为集合A ,()5g x ax a =+-,[1,3]x ∈-的值域为集合B .则对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立⇔A B ⊆. 因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x ∈-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-≤≤+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-≤≤+,因为A B ⊆,所以521523a a a a -≤-⎧⎨+≥+⎩,解得2a ≥;当0a <时,()g x 的值域为{|5252}B y a y a =+≤≤-,因为A B ⊆,所以521523a a a a +≤-⎧⎨-≥+⎩,解得6a ≤-.综上,实数a 的取值范围为][(),62,∞∞--⋃+28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 29.(1){15}xx -≤≤∣; (2)[0,)+∞.【解析】【分析】(1)由题可得{34}A xx =≤≤∣,{5}B x x =≤≤∣-1,利用并集的定义运算即求; (2)由题可得A B ,分类讨论即求.(1) 由题可知{()}{212}{34}A xp x x a x a x x ==-≤≤+=≤≤∣∣∣,{|2|3}{5}B x x x x =-≤=≤≤∣∣-1,∴A B ⋃={15}xx -≤≤∣; (2)∵()p x 是()q x 的充分不必要条件,∴A B ,当A =∅时,212a a ->+,即3a >当A ≠∅时,则21221125a a a a -≤+⎧⎪->-⎨⎪+≤⎩或21221125a a a a -≤+⎧⎪-≥-⎨⎪+<⎩, 解得03a ≤≤,a∈+∞.综上:[0,)30.(1)A⊂S, B⊂S(2)A⊂S, B⊂S(3)A⊂S, B⊂S【解析】【分析】利用集合包含关系的定义,依次分析即得解(1)由于集合,A B中的每个元素都包含在集合S中,故A⊂S, B⊂S (2)由于集合,A B中的每个元素都是实数,故A⊂S, B⊂S(3)由奇数、偶数都属于整数,故A⊂S, B⊂S。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃2.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,33.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-4.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,25.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}6.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤8.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR9.设集合{}{lg(3)},2,x M x N y x N yy x M =∈=-==∈∣∣,则( ) A .M N ⊆B .N M ⊆C .{0,1,2}M N ⋂=D .{0,1,2,4}MN =10.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-11.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,512.已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( ) A .[3,1)- B .[3,1]- C .{3,2,1,0,1}--- D .{2,1,0}--13.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,114.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,215.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.22.写出集合{1,1}-的所有子集______.23.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.24.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ;(3)13______Q ;(4)2π-______R .25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}21,3,A a =,()(){}|120B x x x a =---=,是否存在实数a ,使得A B A ⋃=若存在,求出a 的值;若不存在,说明理由.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.30.已知{}1,2,3,4,5,6,7,8U =,(){}1,8U A B ⋂=,(){}2,6U A B ⋂=,()(){}4,7UU A B ⋂=,求集合A ,B .【参考答案】一、单选题 1.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 2.D【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 3.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 4.B 【解析】 【分析】 化简集合A ,求出RA 后,再根据交集的概念运算可得解.【详解】{}220A x x x =->{|0x x =<或2}x >,R{|02}A x x =≤≤,所以()R {0,1}A B =. 故选:B 5.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =. 故选:A. 6.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 7.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 8.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 9.D 【解析】 【分析】先用列举法写出集合M 和集合N ,再判定他们之间的关系即可得出答案. 【详解】根据题意,{}{|3,}0,1,2M x x x N =<∈={}0,1,2M =时,{}1,2,4N =所以选项D 正确. 故选:D. 10.D【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 11.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 12.D 【解析】 【分析】根据解分式不等式的方法,结合集合交集的定义进行求解即可. 【详解】因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--,故选:D 13.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 14.C【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答. 【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2- 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2.18.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭.故答案为:5,66ππ⎛⎫⎪⎝⎭.20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:521.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}122.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-. .M N 【解析】 【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解. 【详解】因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆, 又因为0N ∈,0M ∉,所以M N .故答案为:M N .24. ∉, ∈, ∈ ∈【解析】【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.存在,2【解析】【分析】先得到B A ⊆,分别讨论1a =-和1a ≠-两种情况即可.【详解】由A B A ⋃=,得B A ⊆,当21a +=,即1a =-时,{1}B =,此时21a =不合题意,故1a ≠- 当1a ≠-时,{}1,2B a =+,因为B A ⊆,所以2a A +∈ 所以23a +=或22a a +=,解得1a =或2a =, 当1a =时,21a =不合题意;当2a =时,{}1,3,4A =,{}1,4B =,符合题意,综上所述,存在实数2a =,使得A B A ⋃=成立. 27.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)(,3]a ∈-∞【解析】【分析】(1)先求出集合A 、B ,再求A B ,R ()B A ; (2)对C 是否为∅分类讨论,分别求出a 的范围.(1) 由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞28.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 29.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤30.A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.【解析】【分析】利用韦恩图,将各个集合进行表示,据图可以写出A ,B .【详解】由题可得如图韦恩图,可知A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅B .()2,8C .()3,8D .()8,+∞2.已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3},则 ()UA B ⋃=( )A .{4,5}B .{1,2}C .{2,3}D .{1,2,3,4}3.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-4.已知集合{}21A x x =<,{}02B x x =<<,则A B =( )A .1,2B .0,1C .()0,2D .1,25.设集合{}2|230A x x x =+-<,集合{|B y y ==,则A B =( )A .()1,1-B .()0,1C .[)0,1D .()1,+∞6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{20}M x x =-<,{N x y ==,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R8.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤9.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR10.已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=( )A .[]22-,B .(]2,1-C .[)2,3-D .∅11.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,412.如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .413.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<14.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( ) A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<15.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( ) A .1B .2C .3D .4二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.已知条件:212p k x -≤≤,:53q x -≤≤,p 是q 的充分条件,则实数k 的取值范围是_______.20.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.21.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 22.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________.25.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.三、解答题26.对于正整数a ,b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b ≤<.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{}1,2,3,,23A =⋅⋅⋅(1)存在q A ∈,使得()202291091q r r =+≤<,试求r 的值;(2)求证.不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)若B A ⊆,()12card B =(()card B 指集合B 中的元素的个数).且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.判断:当7m =时,集合A 中有12个元素并且含有m 的任意子集是否都为“和谐集”,并说明理由.27.已知集合{23}M xx =-<≤∣, {}N x x a =≤∣. (1)当1a =时,求M N ⋂,M N ⋃,()RM N ;(2)当M N ⋂=∅时,求a 的取值范围.28.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.29.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()UA B ⋂,A B ,()UA B30.设r 为正实数,若集合(){}22,4M x y xy =+≤,()()(){}222,11N x y x y r =-+-≤.当MN N =时,求r 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =, 故选:B . 2.A 【解析】 【分析】先求出A B ,再由补集运算得出答案.{}1,2,3A B =,则(){}4,5UA B ⋃=,故选:A . 3.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 4.B 【解析】 【分析】解一元二次不等号求集合A ,再由集合的交运算求A B . 【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<< 所以{|01}A B x x =<<. 故选:B 5.C 【解析】 【分析】化简集合A 、B ,然后利用交集的定义运算即得. 【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=, 所以[0,1)A B =. 故选:C . 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;7.B 【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 8.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 9.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 10.C 【解析】 【分析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算. 【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤, 所以{|23}[2,3)A B x x =-≤<=-. 故选:C . 11.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 12.B 【解析】 【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B. 13.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 14.B 【解析】 【分析】根据集合的并集计算即可. 【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤, 故选:B 15.B 【解析】 【分析】根据元素与集合的关系、集合与集合的关系即可判断. 【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个. 故选:B.二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}118.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.[2,)-+∞【解析】 【分析】设{}212A x k x =-≤≤,{}53B x x =-≤≤,则A B ⊆,再对A 分两种情况讨论得解. 【详解】记{}212A x k x =-≤≤,{}53B x x =-≤≤, 因为p 是q 的充分条件,所以A B ⊆. 当A =∅时,212k ->,即32k >,符合题意; 当A ≠∅时,32k ≤,由A B ⊆可得215k -≥-,所以2k ≥-,即322k -≤≤. 综上所述,实数的k 的取值范围是[2,)-+∞. 故答案为:[2,)-+∞.20. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1 【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4} 21.2 【解析】 【分析】先求P Q 后再计算即可. 【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:222.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1.23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}124.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 25.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:5三、解答题26.(1)20(2)证明见解析(3)是,理由见解析【解析】【分析】(1)由2022除以91求解;(2)利用反证法证明;(3)利用“和谐集”的求解.(1)解:因为2022912220=⨯+,且q A ∈,所以q =22,r =20;(2)假设存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠,设(){}(){}1,1,2,3,2,1,2,3f a a f b b =∈=∈,由已知a b , 由于312,321-=-=,所以()()()()31,32f f f f ≠≠,不妨设(){}3,1,2,3f c c =∈,且,c a c b ≠≠,同理()()4,4f b f c ≠≠,因为{}1,2,3只有三个元素,所以()4f a =,即()()14f f =, 但413-=,与已知矛盾,所以假设不成立,即不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)设{}1211,,...,,7B a a a =,若1,14,21中之一为集合B 的元素,显然为“和谐集”, 现考虑1,14,21都不属于集合B ,构造集合{}{}{}1232,4,8,16,3,6,12,5,10,20B B B ===,{}{}459,18,11,22B B ==,{}13,15,17,19,23B '=,12345,,,,B B B B B 每个集合中的元素都是倍数关系,考虑B B '⊆的情况,也即B '中5个元素全都是B 的元素,则B 中剩下的6个元素必须从12345,,,,B B B B B 这5个集合中选取6个元素,则至少有一个集合有两个元素被选,即集合B 中至少有两个元素存在倍数关系, 综上:当7m =时,集合A 中有12个元素并且含有m 的任意子集都为“和谐集”. 27.(1){}|21M N x x =-<≤,{}|3M N x x =≤,()(]1,3R M N ⋂=(2)(]2-∞-,【解析】【分析】(1)由集合的交集运算和并集运算、补集元素概念可得答案;(2)由集合间的关系可求得a 的取值范围.(1)当1a =时,{}|1N x x =≤,又{}|23M x x =-<≤,所以{}|21MN x x =-<≤,{}|3M N x x =≤; ()1,R N =+∞,则()(]1,3R M N ⋂=(2)当M N ⋂=∅时,则需2a ≤-,所以a 的取值范围(]2-∞-,. 28.(1){11A B xx =-≤≤∣或}45x ≤≤ (2)()0,1【解析】【分析】(1)借助数轴即可确定集合A 与集合B 的交集(2)由于A R B ,根据集合之间的包含关系即可求解(1)当3a =时,集合{}|22A x a x a =-≤≤+{}15xx =-≤≤∣, {|1B x x =≤或}4x ≥ ,{11A B x x ∴=-≤≤∣或}45x ≤≤(2)若0a >,且 “x A ∈”是“R x B ∈”充分不必要条件,{}{}22(0),14R A x a x a a B x x =-≤≤+>=<<∣∣因为A R B ,则21240a a a ->⎧⎪+<⎨⎪>⎩解得01a <<.故a 的取值范围是:()0,129.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x >30.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<4.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,55.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-6.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设R U =,1{|2}2xA x =<,{1}B x =,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤8.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)9.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-10.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1--C .{}2,1,1--D .{}2,1,1,2--12.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( ) A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)13.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,314.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.18.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.1881年英国数学家约翰·维恩发明了Venn 图,用来直观表示集合之间的关系.全集U =R ,集合{}2220M x x ax =-+<,{}2log 1N x x =≤的关系如图所示,其中区域Ⅰ,Ⅱ构成M ,区域Ⅱ,Ⅲ构成N .若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a 的取值范围是______.22.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个 24.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( ) (3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213xg x x =<<的值域为N .求: (1)M ,N ; (2)M N ⋂,M N ⋃.28.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.29.已知集合{}211A x m x m =-<<+,{}24B x x =<.(1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 4.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 5.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B7.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 8.B【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 9.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 10.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 11.C 【解析】【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|{|1}A x y x x ===≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 13.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-. 18.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:819. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4} 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5. 21.39,24⎛⎤⎥⎝⎦【解析】 【分析】由122N xx ⎧⎫=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解不等式组即可. 【详解】由{}21log 122N x x x x ⎧⎫=≤=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解得3924a <≤故答案为:39,24⎛⎤⎥⎝⎦22.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1. 23.7 【解析】 【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可. 【详解】因为{}2320{1,2}A xx x =-+==∣, {06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素, 集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共7个. 故答案为:724.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞ 25. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.28.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 29.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<,(2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高一集合好题50道
高一数学必修1集合练习题一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个 B.2个D.4个C.3个【解析】①③中"美丽""接近零"的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有∶0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中"比较好",没有明确的界限,不满足元素的确定性,的不能构成集合.【答案】 A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.0,1}D.1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,23.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素∶点(1,2),N中表示两个元素分别为1,2.【答案】 B4.集合A中含有三个元素2,4,6,若a∈A,则6-aEA,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4EA,符合要求;若a=4,则6-a=6-4=2EA,符合要求;若a=6,则6-a=6-6=0#A,不符合要求..a=2或a=4. 【答案】 B5.(2013·曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.Xx≠0B.x≠=-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C 二、填空题6.用符号"∈"或"g"填空(1)22___R,22__{xlx<7);(2)3__{x|x=n2+1, n∈N+};(3)(1,1)___y|y=x2};(1,1)____(x,yly=x2}.【解析】(1)22ER,而22=8>7,.22e{xx<7. (2).n2+1=3, ..n=±20N+,..36{x|x=n2+1,neN+}.(3)(11)是一个有序实数对,在坐标平面上表示一个点,而例y=x2}表示二次函数函数值构成的集合,故(1,1)e{yly=x2}.集合【(x,y)ly=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,.(1,1)={x,yl|ly=x2}.【答案】(1)∈∈(2)4(3)∈7.已知集合C={63-xEZ,xEN},用列举法表示C=_____·【解析】由题意知3-x=±1,±2,±3,±6,x=0,-3,1,2,4,5,6,9.乙又们乙、..C={1,2,4,5,6,9].【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=____【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】 -2或3 三、解答题9.选择适当的方法表示下列集合∶(1)绝对值不大于3的整数组成的集合;(2)方程((3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,23,共有7个元素,用列举法表示为-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,yly=x+6}. 10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值. 【解】由-3EA,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,..a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件∶若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2EA,由题意可知,11-2=-1∈A;由-1EA可知,11-□-1口=12EA;由12EA可知,11-12=2EA.故集合A中共有3个元素,它们分别是-1,12,2.高一数学必修1集合知识点集合的含义∶"集合"这个词首先让我们想到的是上体育课或者开会时老师经常喊的"全体集合"。
高一数学集合练习题及答案(5篇)
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆B .M N ⊆C .M ND .M N ⋂=∅ 2.设集合{}230A x x x =->,则A =R ( )A .()0,3B .()(),03,-∞+∞C .[]0,3D .(][),03,-∞+∞ 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 5.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 8.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3] 9.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥ 10.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}11.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( ) A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则()U A B =( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,414.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( ) A .∅ B .[)1,-+∞ C .[)1,5- D .()5,+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.23.若{}231,13a a ∈--,则=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______. 25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求()R A B ⋃; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】利用集合的基本关系求解【详解】 解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z , 当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆.故选:A .2.C【解析】【分析】利用集合的补集运算求解.【详解】 因为{}230A x x x =->, 所以{}[]2300,3R A x x x =-≤=. 故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.4.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D5.C【解析】【分析】化简集合,A B 即得解.【详解】 解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .8.B【解析】【分析】先化简集合B ,再利用交集运算求解.【详解】解:因为集合{|1}A x x =≥-,41|28{|23}x B x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭, 所以{}|13A B x x ⋂=-≤<,故选:B9.C【解析】【分析】利用交集的定义即得.【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.10.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B11.D【解析】【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.12.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.13.A【解析】【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,所以{}0,2,4U A =,所以(){}{}{}0,2,40,10U A B ==.故选:A14.B【解析】【分析】求出定义域得到集合B ,从而求出补集和交集.【详解】 {}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,R A =-∞-⋃+∞,所以()[)1,R A B ∞⋂=+. 故选:B. 15.B【解析】【分析】先解一元二次不等式,在根据并集定义计算.【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+, ∴[)1,A B =-+∞.故选:B.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;18.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.23.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-.24.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<,因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1)因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤(2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A是B的真子集,故21231 mm+≤-⎧⎨+≥⎩即3 22m-≤≤-所以实数m的取值范围是3 2,2⎡⎤--⎢⎥⎣⎦.。
高一数学集合习题
高一数学集合习题
题目一:集合的基本概念
1.设集合A包含元素1、2、3,集合B包含元素2、3、4,请问A和B的交集是什么?
2.设集合C包含元素1、3、5、7,集合D包含元素2、4、6、8,请问C和D的并集是什么?
3.对于任意集合E和集合F,如果E是F的子集,那么E和F的关系是什么?
题目二:集合的运算
1.若集合G包含元素1、2、3,集合H包含元素3、4、5,请问G和H的差集是什么?
2.若集合I包含元素1、2、3,集合J包含元素2、3、4,请问I和J的对称差集是什么?
3.设集合K包含元素1、2、3,集合L包含元素3、
4、5,则K和L的笛卡尔积是什么?
题目三:集合的性质与定理
1.证明:空集是任意集合的子集。
2.证明:集合的并运算满足交换律。
3.证明:集合的交运算满足结合律。
题目四:应用题
1.小明参加了一个比赛,共有50人参与。
已知30人会打篮球,40人会踢足球,请问至少会打篮球或踢足球的人数有多少?
2.在一家餐厅,菜单上有30道菜品,其中15道是川菜,20道是湘菜,请问既不属于川菜也不属于湘菜的菜品有多少道?
3.设集合M表示所有在数学和物理两门课中都获得优秀成绩的学生,集合N表示所有在数学课中获得优秀成绩的学生,集合P表示所有在物理课中获得优秀成绩的学生。
已知集合N中有50名学生,集合P中有60名学生,而
集合M中有40名学生,请问至少有多少名学生既在数学课中获得优秀成绩,又在物理课中获得优秀成绩?
以上是关于高一数学集合的习题,包括集合的基本概念、集合的运算、集合的性质与定理以及一些应用题。
希望通过这些习题的练习,能够加深对集合概念的理解,并掌握集合的运算方法和性质。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x >3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( ) A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.已知全集为R ,集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,11B x x ⎧⎫=≥⎨⎬⎩⎭,则A B ⋂=R( ) A .{}0x x ≤ B .{}01x x <≤ C .{}1x x > D .∅5.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,56.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( )A .∅B .{}1,2,3C .{}2D .{}3 8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2}B .{1,2}x yC .(1,2)D .{(1,2)}9.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅D .U 11.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,512.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 13.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.20.若{}31,2a ∈,则实数=a ____________.21.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.22.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.对非空数集X ,Y ,定义X 与Y 的和集{},X Y x y x X y Y +=+∈∈.对任意有限集A ,记A 为集合A 中元素的个数.(1)若集合{}0,5,10X =,{}2,1,0,1,2Y =--,写出集合X X +与X Y +;(2)若集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且2X X X +<,求证:数列1x ,2x ,,n x 是等差数列;(3)设集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且()1,2,,i x i n ∈=Z ,集合{}B k Z m k m =∈-≤≤(2m ≥,N m ∈),求证:存在集合A 满足11n x x A B -≤+且X A B ⊆+.28.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x , ∴{}12A B x x ⋂=<<.故选:D .4.C【解析】【分析】根据题意解得集合{}|0A x x =>,{}|01B x x =<≤,由集合补集运算得到(](),01,B =-∞⋃+∞R ,再由集合交集运算得到最后结果.【详解】 集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,解得{}|0A x x =>, 11B x x ⎧⎫=≥⎨⎬⎩⎭,()101110010x x x x x x x ⎧-≥-≥⇔≥⇔⇒<≤⎨≠⎩{}|01B x x ∴=<≤,(](),01,B =-∞⋃+∞R由集合交集运算得到:A B ⋂=R {}1x x >. 故选:C.5.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C8.D【解析】【分析】联立方程求解即可.【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D.9.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C10.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B11.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.12.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A13.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.14.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.15.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 17.()3,0-【解析】【分析】 先求出{}3A x x =>-,进而求出交集.【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.[1,1]-【解析】【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合,所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<,综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,320.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 21.4【解析】【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数.【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2,所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M =故满足A M B ⊆⊆的集合M 的个数为4,故答案为:4.22.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b =+=+=,所以用列举法可表示为2,0,2. 故答案为:2,0,2..M N【解析】【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解.【详解】 因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭, 若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆,又因为0N ∈,0M ∉,所以M N .故答案为:M N .三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解;(2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时,则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)详见解析;(3)详见解析.【解析】【分析】(1)利用和集的定义即得;(2)由题可得21X X n +=-,进而可得X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++,结合条件可得112210n n n n x x x x x x ----=-==->,即证; (3)设{}i a ()()1121,N*i a x m i m i =++-+∈,令集合{}121,,,q A a a a +=,{}Z B k m k m =∈-≤≤,进而可得11n x x A B -≤+,{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,即得.(1) ∵集合{}0,5,10X =,{}2,1,0,1,2Y =--,∴{}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)∵111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+, ∴集合X X +中至少包含21n -个元素, 所以21X X n +≥-,又X n =, 由题可知2X X n +<,又X X +为整数, ∴21X X n +≤-, ∴21X X n +=-,∴X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++, 又1121222123,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且1121222123n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+, ∴()1212,3,,j j x x x x j n -+=+=,即()1212,3,,j j x x x x j n --=-=, ∴112210n n n n x x x x x x ----=-==->,∴数列1x ,2x ,,n x 是等差数列;(3) ∵集合{}Z B k m k m =∈-≤≤, ∴21B m =+,设()121n x x m q r -=++,其中,N,02q r r m ∈≤≤, 设{}i a 是首项为1x m +,公差为21m +的等差数列,即()()1121,N*i a x m i m i =++-+∈, 令集合{}121,,,q A a a a +=, 则111111121n n n x x r x x r x x A q m B B -----=+=+=+≤++, ∴(){}1111,1,2,,212A B x x x x m q m +=+++++, 即(){}11Z 212A B t x t x m q m +=∈≤≤+++,∵()()1121212n x x m q r x m q m =+++≤+++, ∴{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇, 所以X A B ⊆+,故存在集合A 满足11n x x A B-≤+且X A B ⊆+. 【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移. 28.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B = 所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞29.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-.因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
高一集合练习题(推荐8篇)
高一集合练习题(推荐8篇)高一集合练习题(1)(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
(二)子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B。
高一数学集合练习题一及答案3篇
高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。
高一数学集合练习题含答案
高一数学集合练习题含答案一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅3.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃4.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-5.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .86.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--8.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}9.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,210.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,611.已知集合{}{}|1|Z 3,0A x x B x x =∈-≤≤=≥,则A B =( ) A .[]1,2B .{}1,2,3C .[]0,3D .{}0,1,2,312.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2 B .{}2,3C .{}0,3D .{}313.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<14.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .14二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的;称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.28.已知M 由0,2,4,6,8组成的集合,{|33}Z N x x =∈-≤. (1)用列举法表示集合N ,用描述法表示集合M (书写格式要规范)(2)若∃x ∈B 而x ∉ A ,则称B 不是A 的子集.结合集合M ,N 写出5个含M 中3个元素但不是M 的子集的集合.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥.(1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 3.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 4.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 5.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】2222x x ≤⇒-≤,所以2,2A ⎡=-⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 7.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 8.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .9.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 10.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =,根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 11.D 【解析】 【分析】直接利用集合的交集运算求解. 【详解】∵集合{}{}{}Z 131,0,1,2|,0|3,A x x B x x =∈-≤≤-=≥=, 所以{}0,1,2,3A B =. 故选:D. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答.【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:8 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.21.()5,1-【解析】 【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解. 【详解】由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A ,即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-. 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-.25.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可;(2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个;所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.28.(1){}0,1,2,3,4,5,6N =;{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2){}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,6(答案不唯一). 【解析】 【分析】(1)利用集合的列举法,描述法即得; (2)结合条件及子集的概念即得. (1)∵{|33}Z N x x =∈-≤,∴{}0,1,2,3,4,5,6N =,∵M 由0,2,4,6,8组成的集合,∴{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2)由题可得含M 中3个元素但不是M 的子集的集合为:{}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,629.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ; (2)(0,1). 【解析】 【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ;(2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围. (1)2{|40}{|0B x x x x x =-=或4}x ,当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=, {|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,0a ∴>,R A B 是的真子集,{|04}RB x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1){}5A x x =>,{0B y y =<或}2y > (2)(){}R5A B x x ⋂=≤【解析】 【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()RA B ⋂.(1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R5A B x x ⋂=≤.。
完整版)高一数学集合练习题及答案-经典
完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。
2、集合{a,b,c }的真子集共有个()A。
7.B。
8.C。
9.D。
10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。
3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。
6.B。
7.C。
8.D。
9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。
4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。
{1,2,3}。
B。
{2}。
C。
{1,3,4}。
D。
{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。
5、方程组x y1的解集是(。
)A。
{x=0,y=1}。
B。
{0,1}。
C。
{(0,1)}。
D。
{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。
6、以下六个关系式:3Q,N。
a,b b,ax|x220,x Z是空集中,错误的个数是()A。
4.B。
3.C。
2.D。
1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。
第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。
8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。
(完整版)高一数学集合测试题及答案
高一数学集合测试题一、选择题(每小题 5分,共60分) 1 .下列八个关系式① {0}= ② =0③{ }④ 0⑦{0} ⑧{ }其中正确的个数()(A) 4 (B) 5(C) 6(D) 72 .集合{1 , 2, 3}的真子集共有()(A) 5 个(B) 6 个(C) 7 个(D)8 个3 .集合 A={x x 2k, k Z } B={ xx 2k 1, k Z } C={ a A,b B,则有()(A) (a+b)A (B) (a+b)B (C)(a+b)C (D) (a+b)4 .设A 、B 是全集U 的两个子集,且 A B,则下列式子成立的是( (C) A C U B= (D) C U A B=_ _ 2_ 一 一一 _2 0} B={ xx 4x3 0}则 A B =((A) R(C) { xx 1或x 2}(D) { xx 2或x 3}(E) U={0, 1, 2, 3, 4} , A={0, 1, 2, 3}, B={2, 3, 4},则(C U A)(A) {0} (B) {0,1}(A) C U A C U B (B) C U A C J B=U 6.设 f(n) = 2n + 1(nC N), P = {1 , 2, 3, 4, 5} , Q = {3 , 4, 5, 6, 7},记 P ={nC N|f(n)CP}, Q={n€ N|f(n)C Q},则(P n 5 Q)U(Q n 5 P )=() (A) {0 , 3} (B){1 , 2} (C) (3, 4, 5} (D){1 , 2, 6, 7} 7.已知 A={1, 2, a 2-3a-1},B={1,3},A B {3,1}则a 等于() (A) -4 或 1 (B) -1 或 4 (Q -1 (D) 4{ } ⑤{0}⑥xx 4k 1,k Z }又A 、B 、C 任一个 )5.已知集合A={ x x2(CUB)=()(C) {0,1, 4} (D) {0, 1, 2, 3, 4} 10.设 A={x Zx 2px 15 0},B={x一 2 一 一 ,一 …Zx 5x q 0},若 A B={2,3,5},A 、B 分别为()(A) {3, 5}、{2, 3}(C) {2, 5}、{3, 5}(B) {2, 3}、{3, 5} (D) {3, 5}、{2, 5}11 .设一元二次方程ax 2+bx+c=0(a<0)的根的判别式 一 2b 4ac 0 ,则不等式ax 2+bx+c 0的解集为()14.已知集合乂=6|口-1)(盅-#)>0},集合目二小||工+ 1| + |工-2 531,且(q02£・兄则实数a的取值范围是(A.S"[-1,2]「一 LA-F L 二 1则X O 的取值范围是((A) R (B)(C) { xxb2a }(D) { —}2a12 .已知 P={ m 4 0}, Q={m|mx 2 mx 1 0 ,对于一切x R 成立},则下列关系式中成立的是( (A) (B)(C) P=Q(D)Q 二13 .若 M={xn Z }, N={xnx 1…, …一——n Z},则M N 等于( (A) (B) { (Q {0}(D) ZB.C. D. 15.设 U={1 , 2, 3, 4, 5}, A, B 为 U 的子集, 若 A B={2} , (C U A) B={4} , (C U A) ( C U B)={1, (A) (C) 5},则下列结论正确的是(3 A,3 3 A,3(B) (D))A,3 A,316. 设集合A,r2,1 ,函数1,x A 四 2 ,右 X O x ,x BA,且 f f x 0 A ,A.10,- 4B.D- o,817. 在R 上定义运算 e : ae b ab 2a b ,则满足xe x 2 0的实数x 的取值范围为A. (0,2)B. (-1,2)C. 2 U 1,D. (-2,1).18.集合P={x|x 2=1} , Q={x|mx=1},若值P,则m等于( )A . 1B . -1C . 1 或-1 D , 0,1 或-119.设全集 U={(x,y) x, y R},集合 M={(x,y) -_2 1}, N={(x,y) I y x 4},x 2那么(QM) (CND等于( )(A) { (2,-2) } (B) { (-2, 2) }(C) (D) (C U N)20.不等式x2 5x 6 <x2-4的解集是( )(A) {x x 2,或x 2} (B) {x x 2}(C) { x x 3} (D) { x 2 x 3,且x 2}二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为2,若 A={1,4,x},B={1,x 2}且 A B=B,则 x=3.若人=仅x2 3x 10 0} B={x I |x 3 },全集 U=R 则 A (C U B)=4.如果集合T = {大卜=/ +上l+ I = 0}中只有一个元素,则 a的值是5.集合{a,b,c}的所有子集是真子集是;非空真子集是6.方程x2-5x+6=0的解集可表示为2x 3y 13方程组2x 3y的解集可表示为3x 2y 07.设集合A={x 3 x 2},B={x 2k 1 x 2k 1},且A B,则实数k的取值范围是__________________ o8.设全集 U={x x 为小于 20 的正奇数},若 A (C U B) ={3, 7, 15}, (CA) B={13, 17,19},又(GA) (QB)=,贝U A B=9.已知集合 A= {xC R | x2+2ax+2a2-4a+4 = 0},若5A,则实数a的取值是10.设全集为U,用集合A、日C的交、并、补集符号表图中的阴影部分。
高一数学集合练习题及答案-经典
高一数学集合练习题及答案-经典一、单选题1.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥2.设集合{|,log (1)}xa A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅3.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}4.设集合()(){}|230A x x x =+-<,{}|1B x x =>,则( ) A .A B =∅B .A B R =C .{}|13A B x x =<<D .{}|1A B x x =>5.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-6.设集合{}220A x x x =--≤,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-7.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞8.已知全集U =R ,集合{}2560A x x x =-+<,{}2440B y y y =-+>,则()U A B =( )A .(][),23,-∞⋃+∞B .()[),23,-∞⋃+∞C .()2,+∞D .()(),23,-∞⋃+∞9.已知集合{}21A x x =-≤,2024x B xx ⎧⎫+=≤⎨⎬-⎩⎭.则A B =( ) A .[6,2]- B .(,1][2,)-∞⋃+∞ C .[1,2] D .[1,2)10.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]11.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .1512.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( )A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--13.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( )A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3-14.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( ) A .1B .2C .3D .415.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________. 17.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个. 20.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.21.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.22.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________. 23.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____. 25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.设2n ≥且N n ∈,集合{1,2,3,4,,2}U n =,若对U 的任意k 元子集k V ,都存在,,k a b c V ∈,满足:a b c <<,a b c +>,且a b c ++为偶数,则称k V 为理想集,并将k 的最小值记为K .(1)当2n =时,是否存在理想集?若存在,求出相应的K ;若不存在,请说明理由;(2)当3n =时,是否存在理想集?若存在,直接写出对应的k V 以及满足条件的,,a b c ;若不存在,请说明理由; (3)证明:当4n =时,6K =.27.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ;(2)若B A ⊆,求实数a 的取值范围.28.已知集合{}24A x x =-<≤,{}0B x x m =-<. (1)若A B =∅,求实数m 的取值范围; (2)若A B A =,求实数m 的取值范围.29.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<. (1)若2a =-,求()R A B ⋃; (2)若A B A =,求a 的取值范围.30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 2.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy =∀≥≥,化简得y ≥()g x =()g x '20x >,可设()h x=,()h x '=0<,()h x ∴单调递减,又(0)0h =,所以,当0x >时,()0h x '<,()0h x <,()0g x ∴'<,()g x 单调递减,利用洛必达法则,0x →时,000x x x →→→===所以,()y g x =≥)B =+∞; 由于1(1,)A e=,)B =+∞,所以,D 正确 故选:D 3.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 4.C 【解析】 【分析】先化简集合A ,再逐一判断即可 【详解】()()02233x x x ⇒-+<<<-所以{}|13A B x x =<<,故A 错误,C 正确{}|2A B x x =>-,故B 错误,D 错误 故选:C 5.C 【解析】 【分析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 6.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>-即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B7.C 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得结果. 【详解】对于函数2x y =,0x ≥,则0221xy =≥=,故[)1,B =+∞,(){}{}()2log 220,2A x y x x x ∞==-=->=-,因此,[)1,2A B =.故选:C. 8.B 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()U A B ⋂. 【详解】因为{}{}256023A x x x x x =-+<=<<,{}(){}{}22440202B y y y y y y y =-+>=->=≠,则{2UA x x =≤或}3x ≥,因此,()()[),23,U AB =-∞+∞.故选:B. 9.D 【解析】 【分析】 解不等式后求交集 【详解】|2|1x -≤,解得13x ≤≤,故[1,3]A =, 2024x x +≤-,解得22x -≤<,故[2,2)B =-, [1,2)A B ⋂=故选:D 10.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 11.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B. 12.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=, 故选:B 13.A 【解析】 【分析】根据交集运算求A B 【详解】{|13}A x x =-<<,1,{}1,2B =-, {1,2}A B ∴=,故选:A 14.B 【解析】 【分析】根据元素与集合的关系、集合与集合的关系即可判断. 【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个. 故选:B. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题16.(,3][6,)-∞-⋃+∞【解析】 【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可. 【详解】因为()22()4321f x x x x =-+=--, 所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-. 由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数, 所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+ 由题意知,BA所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥.当0m <时,()52g x mx m =+-在[]1,4上是减函数, 所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-, 由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞. 故答案为: (,3][6,)-∞-⋃+∞ 【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.17.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.18.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1.19.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:420.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤. 21.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 22.3 【解析】 【分析】根据集合相等的概念得到方程组,解之即可求出结果. 【详解】 ∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解 所以3a =. 故答案为:3.23.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞24.4a >【解析】【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解.【详解】 解:{}(]216,4x A x ∞=≤=-, 因为A B ⊆,所以4a >.故答案为:4a >.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)不存在,理由见解析;(2)存在,6{1,2,3,4,5,6}V =,3,4,5或3,5,6;(3)证明见解析.【解析】【分析】(1)根据理想集的定义,分3元子集、4元子集分别说明判断作答.(2)根据理想集的定义,结合(1)中信息,说明判断5元子集,6元子集作答.(3)根据理想集的定义,结合(1)(2)中信息,判断U 的所有6元子集都符合理想集的定义作答.(1)依题意,k V 要为理想集,3k ≥,当2n =时,{1,2,3,4}U =,显然{2,3,4}U ⊆,有234,234<<+>,而234++不是偶数,即存在3元子集不符合理想集定义,而{1,2,3,4}U ⊆,在{1,2,3,4}中任取3个数,有4种结果,1,2,3;1,2,4;1,3,4;2,3,4,它们都不符合理想集定义,所以,当2n =时,不存在理想集.(2)当3n =时,{1,2,3,4,5,6}U =,由(1)知,存在3元子集{2,3,4}、4元子集{1,2,3,4}均不符合理想集定义,5元子集{1,2,3,4,6},在此集合中任取3个数,满足较小的两数和大于另一个数的只有2,3,4与3,4,6两种,但这3数和不为偶数,即存在5元子集{1,2,3,4,6}不符合理想集定义,而U 的6元子集是{1,2,3,4,5,6},345,345,345<<+>++是偶数,356,356,356<<+>++是偶数,即U 的6元子集{1,2,3,4,5,6}符合理想集定义,{1,2,3,4,5,6}是理想集,所以,当3n =时,存在理想子集6{1,2,3,4,5,6}V =,满足条件的,,a b c 可分别为3,4,5或3,5,6.(3)当4n =时,{1,2,3,4,5,6,7,8}U =,由(1),(2)知,存在U 的3元子集、4元子集、5元子集不满足理想集定义,k V 要为理想集,6k ≥,显然{1,2,3,4,5,6}符合理想集的定义,满足条件的,,a b c 分别为3,4,5或3,5,6,U 的6元子集中含有3,5,6的共有25C 10=个,这10个集合都符合理想集的定义,U 的6元子集中含有3,5不含6的有5个,其中含有4的有4个,这4个集合都符合理想集的定义,不含4的为{1,2,3,5,7,8},显然有578,578,578<<+>++为偶数,即U 的6元子集中含有3,5不含6的5个都符合理想集的定义,U 的6元子集中含有36,不含5的有5个,它们是{1,2,3,4,6,7},{1,2,3,4,6,8},{1,2,3,6,7,8},{1,3,4,6,7,8},{2,3,4,6,7,8},它们对应的,,a b c 可依次为:3,6,7;4,6,8;3,6,7;3,6,7;3,6,7,即U 的6元子集中含有36,不含5的5个都符合理想集的定义, U 的6元子集中含有5,6不含3的有5个,它们是{1,2,4,5,6,7},{1,2,4,5,6,8},{1,2,5,6,7,8},{1,4,5,6,7,8},{2,4,5,6,7,8},它们对应的,,a b c 可依次为:5,6,7;4,6,8;5,6,7;5,6,7;5,6,7,即U 的6元子集中含有5,6不含3的5个都符合理想集的定义,U 的6元子集中含有3,5,6之一的有3个,它们是{1,2,3,4,7,8},{1,2,4,5,7,8},{1,2,4,6,7,8},对应的,,a b c 可依次为:3,7,8;5,7,8;4,6,8,即U 的6元子集中含有3,5,6之一的3个都符合理想集的定义,因此,U 的所有68C 28=个6元子集都符合理想集的定义,6V 是理想集,U 的7元子集有78C 8=个,其中含有3,5,6的有5个,这5个集合都符合理想集的定义,不全含3,5,6的有3个,它们是{1,2,3,4,5,7,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},对应的,,a b c 可依次为:3,7,8;3,7,8;4,6,8,即U 的所有8个7元子集都符合理想集的定义,7V 是理想集,U 的8元子集是{1,2,3,4,5,6,7,8},对应的,,a b c 可以为:3,7,8,因此,8V 是理想集, 因此,U 的6元子集,7元子集,8元子集都是理想集,6K =,所以当4n =时,6K =.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){0411---,, (2)}{a a a ≤-=11或.【解析】【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =--x =1-{11B =--;∴{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则 ()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.28.(1)2m ≤-(2)4m >【解析】【分析】(1)根据集合的交集是空集建立不等式即可得解;(2)由题意转化为包含关系得出不等关系即可得解.(1){}24A x x =-<≤,{}B x x m =<且A B =∅2m ∴≤- (2)A B A =,A B ∴⊆4m ∴>29.(1)()R A B ⋃{|2x x =≤-或1}x ≥(2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1) 解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。
高一数学集合练习题及答案经典
高一数学集合练习题及答案经典一、单选题1.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--2.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-3.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<4.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞5.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( ) A .16B .15C .8D .76.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞7.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,28.已知集合{20}M x x =-<,{N x y ==,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R9.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}10.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,211.已知全集U =R ,集合{}2560A x x x =-+<,{}2440B y y y =-+>,则()U A B =( )A .(][),23,-∞⋃+∞B .()[),23,-∞⋃+∞C .()2,+∞D .()(),23,-∞⋃+∞12.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,515.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 22.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..23.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______.三、解答题26.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ;(2)若B A ⊆,求实数a 的取值范围.27.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+<(1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.28.已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<. (1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.29.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 2.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 3.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 4.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C5.C 【解析】 【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可. 【详解】因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =, 因此集合M 的子集个数为328=, 故选:C 6.C 【解析】 【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a 综上,实数a 的取值范围为{}[)12,+∞.故选:C. 7.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C 8.B 【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 9.A【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .10.B 【解析】 【分析】先求出集合A ,再根据交集运算求出A B 即可. 【详解】由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1. 故选:B. 11.B 【解析】 【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()U A B ⋂. 【详解】因为{}{}256023A x x x x x =-+<=<<,{}(){}{}22440202B y y y y y y y =-+>=->=≠,则{2UA x x =≤或}3x ≥,因此,()()[),23,U AB =-∞+∞.故选:B. 12.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 15.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.±1 【解析】 【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可. 【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集,所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意;当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1. 故答案为:±1.18.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.3或-1##-1或3【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.20.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃21.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:722.1⎡⎣【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域, 作出()2212x y x y ++=+将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅, 将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =,当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅, 故答案为:16,310⎡⎤⎣⎦. 23.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-24.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩,解得132a -<-. a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<.故答案为:{}12x x -<<.三、解答题26.(1){0411---,, (2)}{a a a ≤-=11或.【解析】【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =--x =1-{11B =--;∴{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则 ()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.27.(1)(]3,2-(2)()3,0.-【解析】【分析】 (1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-28.(1)4,3t ⎛⎫∈+∞ ⎪⎝⎭(2)(1,)t ∈-+∞【解析】【分析】(1)首先求出集合B ,再对A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可; (2)依题意可得集合A B ,分A =∅与A ≠∅两种情况讨论,分别到不等式,解得即可;(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤-若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时, 若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为4,3t ⎛⎫∈+∞ ⎪⎝⎭. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,(1,)t ∈-+∞即为所求.29.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-. 30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合练习题
1、设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ∩N=∅,则k 的取值范围是( )
A .]2,(-∞
B .),1[+∞-
C .),1(+∞-
D .[-1,2]
2、 定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( ).
A .9 B. 14 C.18 D.21
3.若集合
、、,满足,,则与之间的关系为 ( ) A . B . C .
D .
4.设}20092008|{≤≤=x x A ,,若,则实数的取值范围是( ) A .2008>a B .2009>a C .2008≥a
D .2009≥a 5.定义集合运算:{}
,,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 ( )
A .0
B .2
C .3
D .6 7.集合U 、M 、N 、P 如图所示,则图中阴影部分所表示的集合是 ( )
A M ∩(N ∪P )
B M ∩
C U (N ∩P )
C M ∪C U (N ∩P )
D M ∩C U (N ∪P )
8.已知集合M={x │
01
x x ≥-} N={y │y=3x 2+1,x ∈R },则M ∩N= 9.已知集合}*,52008|{Z a N a
a M ∈∈-=,则等于 . 10.设P 是一个数集,且至少含有两个数,若对任意a 、
b ∈P ,都有a+b 、a-b 、ab 、a b ∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题:
①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集。
其中正确的命题的序号是 (把你认为正确的命题的序号都填上).
11.已知A={a 2,a+1,-3},B={a-3,2a-1,a 2+1},若A ∩B={-3},求a 的值.
12.(12分)已知集合
,,且,求实数的取值范围.
13.设集合{}⎭⎬⎫⎩⎨⎧<+-=<-=1212|
,2|||x x x B a x x A ,若B A ⊆,求实数a 取值范围.
14.已知集合
,,若
,求实数的取值范围.
集合答案
1. B
2 .B
3.C ; 提示:B A ⊂⇒,C B ⊂⇒,所以C A ⊂。
但不能说C ;
4.B ;提示:可借助数轴来表示,注意}|{a x x a <∉,所以若
需要2009>a ;
5.D 提示:因*{0,2,4}A B =; 6.C ;提示:根据阴影部分所对应的区域即可,是集合M 、N 的内部区域,在集合P 之外;
7. D
8.(1,+∞).
9.}2003,999,497.246,3,1,3,4{-----;提示:由于2008的正因数只有1,2,4,8,251,502,1004,2008共8个,分别代入即可;
10.①④;提示:按照信息给予的条件进行分析,a -a=0、1=a a 、Z ∉2
1、 .....................232→+=→+=→a a a a a a a ;
三、解答题
11.解:a 2+1≠-3;若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},不满足条件.
若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},满足条件.故a=-1
12.解:
,…………2分 当
时,,…………4分 当时,
, ,
或
…………11分 从而,实数的取值范围为…………12分
13.10≤≤a
14.解:方法1 , 中至少含有一个负数,即方程至少有一个负根。
………1分 当方程有两个负根时,,,…………4分 当方程有一个负根与一个正根时,…………7分 当方程有一个负根与一个零根时, 或或…………10分 从而实数的取值范围为
…………12分 方法2: ,中至少含有一个负数 取全集
,…………4分
当A中的元素全是非负数时,
,
所以当时的实数a的取值范围为…………10分
从而当时的实数a的取值范围为…………12分。