复数练习题

合集下载

高中数学《复数》练习题(含答案解析)

高中数学《复数》练习题(含答案解析)

高中数学《复数》练习题(含答案解析)一、单选题1.已知()21i 32i z -=+,则z =( ) A .31i 2--B .31i 2-+C .3i 2-+D .3i 2--2.已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a =( ) A .1B .–1C .2D .–23.1545年,意大利数学家卡尔丹在其所著《重要的艺术》一书中提出“将实数10分成两部分,使其积为40”的问题,即“求方程()1040x x -=的根”,卡尔丹求得该方程的根分别为55后这两个根分别记为5和5.若()55z =,则复数z =( )A .1B .1C D 4.已知2i z =-,则()i z z +=( ) A .62i -B .42i -C .62i +D .42i +5.已知 i 为虚数单位, 复数12iiz +=, 则z =( ) A .2i -- B .2i -+C .2i +D .2i -6.复数113i-的虚部是( ) A .310-B .110-C .110D .3107.设(1i)1i x y +=+,其中i 为虚数单位,,x y 是实数,则x yi +=( ) A.1BC D .28.若()()1i 11i z --=+,则z 的虚部为( ) A .1-B .1C .i -D .i9.已知i 是虚数单位,复数z 的共轭复数为z ,下列说法正确的是( ) A .如果12z z +∈R ,则1z ,2z 互为共轭复数B .如果复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=C .如果2z z =,则1z =D .1212z z z z = 10.已知,a b 为实数,且2ii 1ib a +=++(i 为虚数单位),则i a b +=( ) A .34i + B .12i + C .32i --D .32i +二、填空题11.若z C ∈,且25i z =-,则()Re z =________. 12.i 的周期性:当n 是整数时,41i n +=______,42i n +=_______,43i n +=______,4i n =_______.13.复数34i2i+=+___________.14.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.三、解答题15.已知复数14i1im z +=-(,i m ∈R 是虚数单位). (1)若z 是纯虚数,求实数m 的值;(2)设z 是z 的共轭复数,复数z 在复平面上对应的点在第四象限,求m 的取值范围. 16.在复数范围内分解因式: (1)4269++x x ; (2)4228--x x .17.设虚数z 满足21510z +=. (1)求||z ;(2)若z aa z+是实数,求实数a 的值.18.(1)已知复数z 在复平面内对应的点在第二象限,2z =,且2z z +=-,求z ; (2)已知复数()()2212i 32i 1im z m =-+-+-为纯虚数,求实数m 的值.参考答案与解析:1.B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解. 【详解】()21i 2i 32i z z -=-=+, ()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅. 故选:B. 2.C【分析】根据复数为实数列式求解即可.【详解】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,, 故选:C【点睛】本题考查复数概念,考查基本分析求解能力,属基础题. 3.C【分析】利用复数除法运算求得z .【详解】由()55z =,得25z ==== 故选:C . 4.C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C. 5.D【分析】由复数的除法法则求解即可 【详解】()()()12i i 12i 2i i i i z +-+===-⨯-, 故选:D 6.D【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 7.B【分析】先利用复数相等求得x ,y ,再利用复数的模公式求解. 【详解】因为(1i)1i x y +=+,所以1x y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,所以i x y +== 故选:B. 8.B【分析】根据复数除法的运算法则,结合共轭复数的定义、复数虚部的定义进行求解即可.【详解】因为()()1i 11i z --=+,所以()()()21i 12i 11i 1i 1i 2z ++--===-+,所以1i z =-,所以1i z =+, 所以z 的虚部为1. 故选:B 9.D【分析】对于A ,举反例11i z =+,22i z =-可判断;对于B ,设111i z a b =-,222i z a b =+代入验证可判断;对于C ,举反例0z =可判断;对于D ,设1i z a b =+,2i z c d =+,代入可验证.【详解】对于A ,设11i z =+,22i z =-,123z z +=∈R ,但1z ,2z 不互为共轭复数,故A 错误; 对于B ,设111i z a b =-(1a ,1b ∈R ),222i z a b =+(2a ,2b ∈R ).由1212z z z z +=-,得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-,则12120a a b b +=,而()()()()()12112212121221121221i i i 2i z z a b a b a a bb a b a b a a a b a b ⋅=++=-++=++不一定等于0,故B 错误;对于C ,当0z =时,有2z z =,故C 错误;对于D ,设1i z a b =+,2i z c d =+,则1212z z z z ===,D 正确故选:D 10.A【分析】利用复数的乘除运算化简,再利用复数相等求得,a b ,进而得解. 【详解】()()2i 1i 2i 22i i 22i 1i 2222b b b b b b +-+-+++-===++ 由题意知222=12b a b +⎧=⎪⎪⎨-⎪⎪⎩,解得34a b =⎧⎨=⎩,所以i 34i a b +=+故选:A 11.5【分析】推导出()52z i -=,从而2552z i i=+=-,由此能求出()Re z . 【详解】解:∈z C ∈,且25i z =-, ∈()52z i -=, ∈2225552iz i i i=+=+=-, ∈()5Re z =. 故答案为:5.【点睛】本题考查复数的实部的求法,考查复数的运算法则等基础知识,考查运算求解能力,是基础题.关键是利用复数的运算求出z 的标准形式,并注意准确掌握实部的概念. 12. i 1- i - 1【分析】由2i 1=-及指数幂的运算性质依次对41i n +,42i n +,43i n +,4i n 变形即可得到答案. 【详解】由2i 1=-及指数幂的运算性质得:3i i =-,41i =414i i i ()i n n +==∴,4242()i 1i i n n +==-,4334()i i i i n n +==-,44i (i )1n n ==.故答案为:i ;1-;i -;1. 13.2i +##i+2【分析】依据复数除法规则进行计算即可解决.【详解】()()()()2234i 2i 34i 65i 4i 105i2i 2i 2i 2i 4i 5+-++-+====+++-- 故答案为:2i +14【分析】由已知可得12z z -,进而由()2121212z z z z z z -=--可得12212z z z z +=,从而有22212121221z z z z z z z z +=+++,故而可得答案.【详解】解:因为121z z -=,所以12z z -==又11z =,22z =,所以()212121211221221121222213z z z z z z z z z z z z z z z z z z z z -=--=+--=+--=, 所以12212z z z z +=,所以()2221212122121217z z z z z z z z z z z z +=++=+++=,所以12z z +=15.(1)14(2)1144m -<<【分析】(1)化简复数z ,根据纯虚数的概念可求出m ; (2)求出z ,根据复数的几何意义可求出结果. 【详解】(1)因为14i 1im z +=-(14i)(1i)(1i)(1i)m ++=-+14(14)i2m m -++=是纯虚数, 所以140140m m -=⎧⎨+≠⎩,得14m =.(2)由(1)知,1414i 22m mz -+=+,1414i 22m m z -+=-, 所以z 在复平面内对应的点为1414,22m m -+⎛⎫- ⎪⎝⎭,依题意可得14021402mm -⎧>⎪⎪⎨+⎪-<⎪⎩,解得1144m -<<.16.(1)22((x x(2)(2)(2)+-x x x x【分析】(1)(2)结合复数运算求得正确答案. (1)由于()()23x x x =+,所以()242222693((x x x x x ++=+=.(2)由于()()22x x x =+,所以()()42222824(2)(2)x x x x x x x x --=+-=+-.17.(1)(2)±【分析】(1)设(,,0)z x yi x y R y =+∈≠利用复数的模相等即得;(2)先化简z a a z+又因为是实数,故虚部为零,即得结果.【详解】设(,,0)z x yi x y R y =+∈≠ ,则z x yi =- 1010z x yi +=+- 则2152()15(215)2z x yi x yi +=++=++215z +=1010z x yi +=+-=21510z +=即:2275x y+=即||z == (2)222222()()()a a x yi ax ayi ax ayi x yi x yi x yi x y x y x y --===-++⋅-+++ 22222222()()ax ay ax ay i i x y x y x y z a x yi a x y x y i a z a x yi a a a y a x -=+-+++++==++++++若z aa z+是实数,则22220(01)ay a y x y x y y a a -=⇒-=++22100aa y x y≠∴-=+ 即22275a x y =+=即a =±18.(1)1z =-;(2)2-【分析】(1)根据模长公式以及复数的加法运算,结合对应的象限得出z ; (2)根据复数的四则运算以及纯虚数的定义得出m 的值.【详解】解:(1)设()i ,z a b a b R =+∈,由题意每224,22,a b a ⎧+=⎨=-⎩,解得1a =-,b =∈复数z 在复平面内对应的点在第二象限,∈b =∈1z =-.(2)()()()()()()()2221i 212i 32i 12i 32i 1i 1i 1i m m z m m +=-+-+=-+-+--+ ()()22623i m m m m =--+--,由题意得2260230m m m m ⎧--=⎨--≠⎩,解得2m =-。

复数练习题(有答案)

复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。

答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。

答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。

答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。

答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。

答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。

解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。

答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。

解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。

答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。

解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。

答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。

复数的练习题

复数的练习题

复数的练习题复数的练习题复数是英语中一个重要的语法概念,它在我们的日常交流中起着重要的作用。

掌握复数形式不仅能够帮助我们正确表达,还能提高我们的英语水平。

本文将通过一系列练习题来帮助读者巩固和加深对复数的理解。

练习题1:将下列名词变为复数形式。

1. book2. dog3. child4. tomato5. city答案:1. books2. dogs3. children4. tomatoes5. cities练习题2:将下列名词的复数形式变为单数形式。

1. cats2. boxes3. mice4. teeth5. women答案:1. cat2. box3. mouse4. tooth5. woman练习题3:填入适当的复数形式。

1. There are two __________ on the table.2. My parents have three __________.3. The __________ are playing in the park.4. She has five __________ in her hand.5. The __________ are singing a song.答案:1. There are two books on the table.2. My parents have three cars.3. The children are playing in the park.4. She has five apples in her hand.5. The birds are singing a song.练习题4:选择正确的复数形式填空。

1. The __________ (child/children) are playing in the garden.2. I have two __________ (cat/cats) as pets.3. The __________ (woman/women) are discussing the topic.4. He has five __________ (knife/knives) in his kitchen.5. The __________ (mouse/mice) ran away.答案:1. The children are playing in the garden.2. I have two cats as pets.3. The women are discussing the topic.4. He has five knives in his kitchen.5. The mice ran away.练习题5:将下列句子改为复数形式。

复数练习题(有答案)

复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。

A。

$\frac{1+i}{2}$ B。

$\frac{1-i}{2}$ C。

$\frac{-1+i}{2}$ D。

$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。

A。

$1$ B。

$-1$ C。

$i$ D。

$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。

A。

$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。

A。

$\frac{15}{29}$ B。

$\frac{3}{29}$ C。

$-\frac{3}{29}$ D。

$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。

A。

$1$ B。

$3$ C。

$2$ D。

$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。

A。

$5$ B。

$-5$ C。

$5i$ D。

$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。

A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。

A。

$-3+5i$ B。

$5-3i$ C。

$-5+3i$ D。

$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。

A。

$1+2i$ B。

$2i-1$ C。

$2+2i$ D。

$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。

复数练习题(有答案)

复数练习题(有答案)

一、复数选择题1.复数11z i=-,则z 的共轭复数为( )A .1i -B .1i +C .1122i + D .1122i - 2.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或13.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5BC .D .5i4.复数312iz i=-的虚部是( ) A .65i - B .35iC .35D .65-5.))5511--+=( )A .1B .-1C .2D .-2 6.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3D .57.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( )A B .3C .5D .9.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限11.复数12iz i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=13.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .714.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .115.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-17.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =18.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+ B .11ii-+ C .11ii+- D .()21i -19.设复数z 满足1z i z+=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件23.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数 D .纯虚数z 的共轭复数是z -28.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .529.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为,所以其共轭复数为. 故选:D. 解析:D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C【分析】结合复数除法运算化简复数z,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mii--==--为纯虚数,所以20m mm⎧-=⎨≠⎩,解得1m=,故选:C.3.B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】(2)21z i i i=+=-,所以|z|=故选:B4.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z的虚部是.故选:C.解析:C【分析】由复数除法法则计算出z后可得其虚部.【详解】因为33(12)366312(12)(12)555i i i iii i i+-===-+--+,所以复数z的虚部是35.故选:C.5.D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】 ∵,, ∴,, ∴, , ∴, 故选:D.解析:D 【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.6.D 【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .7.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 8.A 【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A9.B【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限故选:B10.C 【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】 由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .11.A 【分析】对复数进行分母实数化,根据复数的几何意义可得结果. 【详解】 由,知在复平面内对应的点位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A 【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果. 【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限,故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.12.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则,模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 14.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.17.CD取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误;在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.24.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确; 2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+=⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C选项错误;22111122212222ω---====-⎛⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫--⎪⎪⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A错误,D正确;当时,复数为实数,故C正确;对于B:,则即,故B错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R=+∈当0a=且0b≠时复数为纯虚数,此时z bi z=-=-,故A错误,D正确;当0b=时,复数为实数,故C正确;对于B:32a bi i-=+,则32ab=⎧⎨-=⎩即32ab=⎧⎨=-⎩,故B错误;故错误的有AB;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.28.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.29.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

复数练习题(有答案)

复数练习题(有答案)

一、复数选择题1.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.已知复数1z i i =+-(i 为虚数单位),则z =( )A.1 B .i C i D i3.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( )A B .3 C .5 D .4.已知复数512z i =+,则z =( )A .1B C D .5 5.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D 6.设2i z i +=,则||z =( )A B C .2 D .57.已知2021(2)i z i -=,则复平面内与z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+9.( )A .i -B .iC .iD .i - 10.若复数z 满足213z z i -=+,则z =( )A .1i +B .1i -C .1i -+D .1i -- 11.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .812.已知复数z 满足()1+243i z i =+,则z 的虚部是( )A .-1B .1C .i -D .i13.若i 为虚数单位,,a b ∈R ,且2a i b i i+=+,则复数a bi -的模等于( )A B C D14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 18.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -19.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 20.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =21.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i -22.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z = 23.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 25.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =26.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =27.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限28.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 29.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】,所以复数对应的坐标为在第一象限,故选:A解析:A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A2.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 3.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则 ,所以,所以故选:A解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +【详解】()()()()()()2221222121122111i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a aa a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a +=故选:A4.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.5.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.6.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .7.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+,∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C . 8.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,9.B【分析】首先,再利用复数的除法运算,计算结果. 【详解】复数.故选:B解析:B【分析】首先3i i=-,再利用复数的除法运算,计算结果.【详解】3133i ii+====.故选:B10.A【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果.【详解】设,则,,,解得:,.故选:A.解析:A【分析】采用待定系数法,设(),z a bi a b R=+∈,由复数运算和复数相等可求得,a b,从而得到结果.【详解】设(),z a bi a b R=+∈,则z a bi=-,()()22313z z a bi a bi a bi i∴-=+--=+=+,133ab=⎧∴⎨=⎩,解得:11ab=⎧⎨=⎩,1z i∴=+.故选:A.11.D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D12.B【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.【详解】由,得,,则的虚部是1.故选:.解析:B【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.故选:B .13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B 解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z5z z ⋅=,故选:AD18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.22.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.23.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.26.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.27.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222122ω---====-⎛⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.28.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确;复数z 的实部为15- ,故C 错误;复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。

复数练习题及解析

复数练习题及解析

复数练习题及解析一、名词的复数形式1. apple [əˈpl] -解析:复数形式为apples [ˈæp.lz]2. car [kɑːr] -解析:复数形式为cars [kɑːrz]3. child [tʃaɪld] -解析:复数形式为children [ˈtʃɪl.dɹən]4. book [bʊk] -解析:复数形式为books [bʊks]5. tomato [təˈmeɪ.toʊ] -解析:复数形式为tomatoes [təˈmeɪ.toʊz]二、不规则复数形式1. man [mæn] -解析:复数形式为men [men]2. woman [ˈwʊm.ən] -解析:复数形式为women [ˈwɪm.ɪn]3. mouse [maʊs] -解析:复数形式为mice [maɪs]4. tooth [tuːθ] -解析:复数形式为teeth [tiːθ]5. foot [fʊt] -解析:复数形式为feet [fiːt]6. goose [ɡuːs] -解析:复数形式为geese [ɡiːs]7. ox [ɑːks] -解析:复数形式为oxen [ˈɑːk.sən]三、名词复数形式的变化规则1. 以-s、-ss、-sh、-ch结尾的名词,复数形式直接加-es: class [klæs] - classes [ˈklæs.ɪz]glass [ɡlæs] - glasses [ˈɡlæs.ɪz]wish [wɪʃ] - wishes [ˈwɪʃ.ɪz]watch [wɑːtʃ] - watches [ˈwɑːtʃ.ɪz]2. 以辅音字母+y结尾的名词,将y变为i,再加-es:baby [ˈbeɪ.bi] - babies [ˈbeɪ.biːz]city [ˈsɪt.i] - cities [ˈsɪt.iːz]3. 以-f或-fe结尾的名词,大多数变-f为-ves,但部分变-fe为-ves:leaf [liːf] - leaves [liːvz]knife [naɪf] - knives [naɪvz]wolf [wʊlf] - wolves [wʊlvz]4. 以-o结尾的名词,大多数变-o为-es,但部分直接加-s:potato [pəˈteɪ.toʊ] - potatoes [pəˈteɪ.toʊz]radio [ˈreɪ.di.oʊ] - radios [ˈreɪ.di.oʊz]zoo [zuː] - zoos [zuːz]5. 以-us结尾的名词,变-us为-i:fungus [ˈfʌŋ.ɡəs] - fungi [ˈfʌŋ.ɡaɪ]6. 以-is结尾的名词,变-is为-es:basis [ˈbeɪ.sɪs] - bases [ˈbeɪ.siːz]analysis [əˈnæl.ə.sɪs] - analyses [əˈnæl.ə.siːz]四、名词的复数形式与意义名词的复数形式不仅仅是表示数量的变化,还可以表示其他含义。

《复数》练习题

《复数》练习题

《复数》练习题一、单选题1.在复平面内,复数(12)i i 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数131iz i+=-,i 为虚数单位,则z 为( )A B C D .3.已知复数z 满足2z z i -=,则z 的虚部是( )A .1-B .1C .i -D .i 4.若21xyi i=-+(,x y R ∈,i 为虚数单位),则x yi +=( )A B .5 C .D .205.设复数12,z z 在复平面内的对应点关于实轴对称,134,z i +=则12z z =( )A .25B .25-C .724i -D .724i -- 6.复数z 满足()3,z i i i i +=-+为虚数单位,则z 等于( )A .12i +B .12i -C .12i -+D .12i --7.已知复数312a ii -+在复平面内对应的点位于第二象限,则实数a 的取值范围为( ) A .3,2⎛⎫-∞- ⎪⎝⎭ B .(),6-∞ C .3,2⎛⎫-+∞ ⎪⎝⎭D .()6,+∞8.已知复数z 满足21z -=,则z 的最大值为( )A .1B .2C .3D .49.若在复平面内,复数23zi+所对应的点为()3,4-,则z 的共轭复数为( ) A .18i -- B .18i -+C .18i -D .18i +10.复数1ai i-在复平面上对应的点位于第一象限,则实数a 的取值范围是( ) A .(,1)-∞- B .(,0)-∞ C .(0,)+∞ D .(1,)+∞11.设(1+i )a =1+bi (i 是虚数单位),其中a ,b 是实数,则|a +bi |=( )A .1BCD .212.在复平面内,复数12,z z 对应的点的关于实轴对称,若12z i =+,则12z z ⋅=( )A .2i -B .5C D .313.若复数z 满足()345z i i +=,则z =( )A .15B .12 C .1 D .514.复数13i1i+-(i 是虛数单位)的模等于( )A .B .CD 15.若复数22iz i+=-,则z z ⋅=( )A .1B .2CD .5 16.若复数z 满足(2)(1)1z i z i ⋅+=⋅-+,则复数z 的实部为( )A .32- B .1- C .12- D .117.已知复数z 满足(2)13z i i -=-,则z =( )A .i -B .iC .1i -D .1i + 18.若复数z 满足23i +=-z z ,则||z =( )A .1BCD .219.已知1i1i z-=+(其中i 为虚数单位),则复数z =( ) A .i B .i -C .1D .220.已知12i z z +=(i 为虚数单位),则1z -=( )A .23BC .2D .21.复数12iz i -=+(i 为虚数单位)的虚部为( )A .15B .35C .-35D .35i22.如果复数2()bib i+∈R 的实部与虚部相等,那么b =( ) A .2-B .1C .2D .423.已知i 为虚数单位,复数()21a iz a R i-=∈-ai =( ).A B .4 C .3 D .224.若复数z 满足235z i --=,则复数z 的共轭复数不可能为( )A .57i -B .26i --C .52i +D .28i -25.已知1z =-4a +1+(2a 2+3a )i ,2z =2a +(a 2+a )i ,其中a R ∈,12z z >,则a 的值为( )A .0B .-1C .32-D .1626.已知复数z =a 2+(2a +3)i ()a R ∈的实部大于虚部,则实数a 的取值范围是( )A .-1或3B .{3a a >或}1a <- C .{3a a >-或}1a < D .{3a a >或}1a =- 27.若复数z 的共轭复数为z 且满足(2)(1)1z i z i ⋅+=⋅-+,则复数z 的实部为( )A .32- B .-1 C .12- D .1 28.设复数1z ,2z 在复平面内的对应点关于虚轴对称,且11z i =-(i 为虚数单位),则212z z +=( )AB C .10D .229.复数2341i i i i ++-=( )A . 1122i --B . 1122+i -C .1122i - D .1122+i30.已知复数z 满足|z |=2,则|z +3-4i |的最小值是( )A .5B .2C .7D .331.若复数z 满足()12i z -=,则22z z -=( )A .0B .1C D .232.如图,若向量OZ 对应的复数为z ,且5z =,则1z=( ) A .1255i + B .1255i -- C .1255i - D .1255i -+ 33.已知cos (1sin )()z i θθθ=++∈R ,则||z 的取值范围为( )A .[0,1]B .[0,2]C .[0,4]D .[2,4]34.已知复数cos sin z i θθ=+(i 为虚部单位),则1z -的最大值为( )A .1B .2C .2D .435.若复数21iz i-=+,复数z 在复平面对应的点为Z ,则向量OZ (O 为原点)的模OZ =( ) A .2B .2C .102D .5236.若202112z i i =-+,则||z =( )A .0B .1C .2D .237.满足条件134z i -=+的复数z 在复平面上对应点的轨迹是( )A .直线B .圆C .椭圆D .抛物线38.若复数z 满足112z i i -+=-,其中i 为虚数单位,则z 对应的点(),x y 满足方程( )A .()()22115x y -+-= B .()()22115x y -++=C .()()22115x y ++-= D .()()22115x y +++=39.若i 为虚数单位,复数z 满足33z i ++≤,则2z i -的最大值为( )A .2B .3C .23D .33二、多选题40.在复平面内,一个平行四边形的3个顶点对应的复数分别是12i +,2i -+,0,则第四个顶点对应的复数可以是( ) A .3i - B .13i -+ C .3i + D .3i --41.设()11,11n ni i f n n N i i +-⎛⎫⎛⎫=+∈ ⎪ ⎪-+⎝⎭⎝⎭,则集合{x |x =f (n )}的元素有( ) A .2 B .0 C .-2 D .142.已知a R ∈,i 是虚数单位,若3z a i =+,4z z ⋅=,则a 的值可以是( ) A .1- B .1 C .-3 D .343.在复平面内,复数a -2i 对应的点位于第四象限,则实数a 的可能取值为( )A .2B .1C .-1D .无法确定44.设123,,z z z 为复数,10z ≠.下列命题中正确的是( )A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则12z z =三、填空题45.已知i 为虚数单位,复数z 满足()20212z i i -=,则z =___________.46.若a ∈R ,i 为虚数单位,24ai+=,则a =______________________.47.若复数()()222483z m m m m i =+-+-+,()m R ∈的共轭复数z 对应的点在第一象限,则实数m的取值范围为___________.48.i 是虚数单位,则复数312ii-=+___________.49.i 是虚数单位,复数212ii-+的共轭复数为______.50.已知i 是虚数单位,复数1iz i-=,则z 的虚部为__________.51.设131iz i i-=++,则||z =___________________.52.若x 是实数,y 是纯虚数,且(2x -1)+2i =y ,则x ,y 的值为____________.53.若复数z 对应的点在直线y =2x 上,且|z |=z =____________54.已知i 为虚数单位,x ∈R ,复数z 满足1i z =+,则|(5)|xz x i +-的最小值为________.55.已知复数z 满足||1z i -=,则|22|z i --的最小值为________ .56.已知复数z 满足条件1z =,那么z i +的最大值为______.57.已知复数1z ,2z 满足221z z =,121z z =,则对于任意的t ∈R ,12tz z +的最小值是________.58.设复数z ,满足11z =,22z =,12z z i +,则12z z -=____________.59.若复数1z ,2z 满足123z z ==,12z z +=122z z -的值是______.60.已知复数(2)z x yi =-+(x y ∈R 、)yx的最大值为_______.《复数》练习题]]参考答案1.B 【解析】因为(12)i i 2i =-+,所以2i -+对应的点为(2,1)-,它位于第二象限.故选:B 2.B 【解析】()()()()1312412112i i i z ii i ++-+===-+-+,z==.故选B3.A 设(),z a bi a b R =+∈,因为2z z i -=,可得()22z z a bi a bi bi i -=--+=-=,则22b -=,可得1b =-,所以复数z 的虚部是1-.故选A 4.C 【解析】21xyi i =-+,()()()12112x i x xi yi i i --∴==-+-,42x xi yi ∴-=-,4,2x y ∴==,42x yi i ∴+=+==故选C.5.A 【解析】复数12,z z 在复平面内的对应点关于实轴对称,134,z i +=则234z i -=,所以()()12343491625z z i i +-=+==.故选:A6.A 【解析】()3z i i i +=-+,()(3)i i z i i i ∴-+=--+,化为31z i i +=+,21z i ∴=+,故选:A .7.A 【解析】()()()()23122366231212555a i i a ai i i a a z i i i ----+---===++-,因为复数z 在复平面内对应的点位于第二象限,则6052305a a -⎧<⎪⎪⎨--⎪>⎪⎩,解得32a <-.故选:A.8.C 【解析】因为21z -=,所以复数z 在复平面内所对应的点Z 到点()2,0的距离为1,则点Z 的轨迹为以()2,0为圆心、以1为半径的圆,故z 的取值范围为[]1,3,z 的最大值为3,故选:C. 9.C 【解析】依题意,3423zi i=-+,则()()34236981218z i i i i i =-+=+-+=+,则18z i =-,故选:C . 10.C 【解析】()2111ai i ai a ia i i i ----===+-.因为对应的点位于第一象限,所以0a >,故选:C. 11.B 【解析】由(1+i )a =1+bi ,得a +ai =1+bi ,∴1a ab =⎧⎨=⎩,则a =b =1.∴|a +bi |=|1+i |故选:B.12.B 【解析】因为复数12,z z 对应的点的关于实轴对称,所以12,z z 互为共轭复数,所以222121||215z z z ⋅==+=,故选:B13.C 【解析】方法一:两边取模可得:551z z ⇒=.方法二:由题知()53454334255i i ii z i -+===+,1z =.故选:C14.C 【解析】()()13i 1i 13i 12i 1i 2+++==-+- C.15.A 【解析】22(2)342(2)(2)5i i iz i i i +++===--+,则3434155i i z z +-⋅=⋅=,故选A. 16.D 【解析】设z a bi =+(a b R ∈、),则()(2)()(1)1a bi i a bi i +⋅+=-⋅-+,化简得(2)(2)(1)()a b a b i a b a b i -++=-+-+,根据对应相等得:()212a b a b a b a b -=-+⎧⎨+=-+⎩,解得1a =,23b =-,故选D.17.C 【解析】∵(2)13z i i -=-,∴13(13)(2)5512(2)(2)5i i i iz i i i i --+-====---+,故选:C 18.B 【解析】设(,)z a bi a b R =+∈,则z a bi =-,所以2()3a bi a bi i ++-=-,即33a bi i -=-,所以1,1a b ==,1z i =+,所以||z =故选:B19.C 【解析】因为1i1iz-=+,所以11i z i ,故111i z i -===+.故选:C . 20.B 【解析】由12i z z+=可得12i z z +=⋅,令复数i z a b =+(,a b ∈R ),则()1222a bi a bi i b ai ++=-⋅=+∴12a b +=,2b a =,解得13a =,23b =,即复数12i 33z =+,∴221i 33z -=-+,∴13z -==故选:B. 21.C 【解析】()()222121221313225555i i i i i i i z i i i -----+-=====-+-,所以复数z 的虚部为35.故选:C. 22.A 【解析】2(2)2bi i b i b i i i+-==-,所以实部为b ,虚部为2-,所以2b =-.故选A . 23.C 【解析】由(2)(1)2(2)22a i i a a iz -+++-==为纯虚数,∴2020a a +=⎧⎨-≠⎩,解得:2a =-,则23i ==,故选:C .24.C 【解析】设复数z 的共轭复数为(),z a bi a b R =+∈,则z a bi =-,所以由235z i --=可得()()222325a b -++=.当5,2a b ==时,显然不满足上式,其它选项检验可知都符合.故选C .25.A 【解析】由12z z >,可知两个复数均为实数,即其虚部为零,故222300412a a a a a a ⎧+=⎪+=⎨⎪-+>⎩,即()()2301016a a a a a ⎧⎪+=⎪+=⎨⎪⎪<⎩,解得a =0.故选:A.26.B 由已知实部大于虚部,可得a 2>2a +3,即a 2-2a -3>0,即()()130a a +->,解得3a >或1a <-,故实数a 的取值范围是{3a a >或}1a <-.故选:B.27.D 【解析】设,,z a bi a R b R =+∈∈,则,,z a bi a R b R =-∈∈.(2)(1)1z i z i ⋅+=⋅-+,()(2)()(1)1a bi i a bi i ∴++=--+,整理得:222(2)()1a a b i bi a a b i bi ∴+++=-+++,即2(2)(1)()a a b i a a b i ++=+-+,212()a a a b a b =+⎧∴⎨+=-+⎩,解得:123a b =⎧⎪⎨=-⎪⎩,所以复数z 的实部为1,故选:D28.A 【解析】21z i =--,()()2212112113z z i i i i i +=-+--=---=--,所以21213z z i +=--==故选:A29.C 【解析】因为i 2=-1,i 3=-i ,i 4=1,所以234(1)1111222i i i i i i i i i ++--+===---.故选:C30.D 【解析】|z |=2表示复数z 在圆224x y +=上,而|z +3-4i |表示圆上的点到(-3,4)的距离,∴当且仅当复数z 所在的点在原点与(-3,4)构成的线段上,|z +3-4i |的最小.故|z +3-4i |的最小值为23d ==.故选D31.D 【解析】由题得22(1)2(1)11(1)(1)2i i z i i i i ++====+--+,所以222|(1)2(1)||222||2|2z z i i i i -=+-+=--=-=.故选:D32.D 【解析】由题意,设1(0)z bi b =-+>,则z ==2b =,即12z i =-+,所以1112121212(12)(12)555i i i i i i z -+-+====-+-----+.故选D .33.B 【解析】由题意22cos (1sin )22sin z θθθ=++=+,∵1sin 1θ-≤≤,所以02z ≤≤.故选B .34.C 【解析】由题意知:221|cos 1sin |(cos 1)sin 22cos z i θθθθθ-=-+=-+=-,∴当cos 1θ=-时,1z -的最大值为2.故选:C35.C 【解析】由题意,复数()()()()211311122i i i z i i i i --2-===-++-,又由22131310||||()()22222OZ z i ==-=+-=.故选C . 36.C 【解析】由复数的运算性质,可得202120201222111z i i i i i i i i =-=⋅+=++-=--,则221(1)2z =+-=.故选:C.37.B 【解析】设(),z x yi x y R =+∈,由134z i -=+可得:()2215x y -+=,两边平方得:()22125x y -+=,∴复数z 在复平面上对应点的轨迹是圆.故选B38.B 【解析】设(,)z x yi x y R =+∈,代入112z i i -+=-得:()()22115x y -++=. 故选:B. 39.D 【解析】因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部,又2z i-表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max 20321333z i MN R -=+=--+--+=,故选:D.40.BCD 【解析】第四个点对应复数为z ,则1220z i i ++=-++或2120z i i -+=++或0122z i i +=+-+,所以3z i =--或3i z =+或13z i =-+.故选:BCD .41.ABC 【解析】f (n )=i n +(-i )n ,当n =4k (k ∈N )时,f (n )=2;当n =4k +1(k ∈N )时,f (n )=0;当n =4k+2(k ∈N )时,f (n )=-2;当n =4k +3(k ∈N )时,f (n )=0.所以集合中共有-2,0,2这3个元素.故选:ABC42.AB 【解析】z a =+,则z a =,所以,()()2434z z a a a ⋅==+=+=,解得1a =±.故选:AB.43.AB 【解析】在复平面内,复数a -2i 对应的点的坐标为(a ,-2),因为复数对应的点位于第四象限,所以0a > 所以满足条件的有选项A , B ,故选:A B44.BC 【解析】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,因为10z ≠,所以230z z -=,即23z z =,B 正确;因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确;取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选:BC45.1255i -+【解析】由()20212z i i -=,得()450512z i i i ⨯+==-,所以22(2)212122(2)(2)4555i i i i i i z i i i i i ++-+=====-+--+-46.±222|2|4a aiai i i+=+=-=a =±.47.31,2⎛⎫⎪⎝⎭【解析】因为z 对应的点在第一象限,所以z 的对应点在第四象限,所以22204830m m m m ⎧+->⎨-+<⎩,解得312m <<,即31,2m ⎛⎫∈ ⎪⎝⎭, 48.1755i -【解析】()()()()3123171212125i i i i i i i ----==++-1755i =- 49.i 【解析】()()()()212251212125i i i i i i i i ----===-++-,因此,复数212i i-+的共轭复数为i . 50.1-【解析】因为1i =,所以11iz i i-==-,故z 的虚部为1-.51.2【解析】22112333211--+=+=+=-+=+-i i i z i i i i i i i,所以||2z = 52.1,22x y i ==【解析】依题意x 是实数,y 是纯虚数且()212x i y -+=,得2102x i y-=⎧⎨=⎩∴12x =,2y i =.53.1+2i 或-1-2i 【解析】依题意可设复数z =a +2ai (a ∈R ),由|z |=5,得224a a +=5,解得a =±1,故z =1+2i 或z =-1-2i . 54.5【解析】因为1i z =+,x ∈R ,所以()()(5)1(5)25xz x i x i x i x x i +-=++-=+-()2225x x =++()25255x =++≥当2x =-时取等号,55.51-【解析】设(,)z x yi x y R =+∈,由|1|z i -=得(1)1x y i +-=,所以()2211x y +-=,即点(),x y 是圆心为()0,1,半径为1的圆上的动点,()()22|2 2 |22z i x y --=-+-,表示的是点(),x y 与点()2,2的距离,所以其最小值为点()2,2到圆心()0,1的距离减去半径,即()22221151+--=-,56.4【解析】因为1z =,所以复数z 对应的点在单位圆上,22z i ++表示复数z 对应的点与复数22i --对应的点()221M --,之间的距离,而813OM =+=.所以22z i ++的最大值为14OM r OM +=+=.57.32【解析】设2z a bi =+,则2z a bi =-,又()()22221z z a bi a bi a b =+⋅-=+=,2221z a b ∴=+=,1213i z z =+,()1213z i z ∴=+⋅,12tz z ∴+()2213t i z z =+⋅+ ()2131t i z =++⋅ ()131t i =++()()2213t t =++2421t t =++ 213444t ⎛⎫=⨯++ ⎪⎝⎭t R ∈,∴当14t =-时,1min22113444324tz z ⎛⎫=⨯-++ ⎪⎭=⎝+. 58.6【解析】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +=-,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯,又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-,所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=,所以216Z Z =,又12216z z Z Z -==,59.35【解析】设复数所对应的向量分别为a ,b ,因为复数1z ,2z 满足123z z ==,1232z z +=,所以3a =,3b =,32a b +=,所以222218a a b b a b+⋅+=+=,即0a b ⋅=,所以a b ⊥,所以22244524b ba a ab -=⋅-+=,解得352a b -=,所以122z z -的值是35.故答案为:35 60.3【解析】因为|2|3x yi -+=,所以22(2)3x y -+=,故()x y ,在以0(2)C ,为圆心,3为半径的圆上,y x表示圆上的点(,)x y 与原点所在直线:l y kx =的斜率,如图,由平面几何知识,易知当直线:l y kx =与圆相切时取得最值,在OAC 中,2,3OC AC ==,所以1OA =,此时tan 3AC k OAα===.。

(完整版)复数练习题

(完整版)复数练习题

(完整版)复数练习题一、单选题1.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+C .2i -D .2i +2.复数(2i 的虚部为( )A .2B .C .2-D .03.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-1 4.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+ D .()cos isin a ππ-- 5.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160° 6.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.复数z 满足()12i z =,i 为虚数单位,则复数z 的虚部为( )A .BC .D 8.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设复数z 满足i 4i 0z ++=,则||z =( )A .17B .4C .7D .511.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+13.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-15.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3- B .2- C .2 D .3 16.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限17.已知z 1,z 2∈C ,|z 1+z 2|=22,|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .22 18.若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i19.已知复数324i 1iz +=-,则z =( )A .5B .10C .23D .2520.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --二、填空题21.若复数(1i)+(2+3i)z =-(i 为虚数单位),则z =__________. 22.设复数1z ,2z 是共轭复数,且12229i,-=-+z z ,则1z =___________.23.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.24.已知复数z 满足211iz -=+,则z 的最小值为___________; 25.已知i34i z =+,求|z |=___________26.已知复数ππsin i cos 33z =+,则z =________.27.若复数()2(2)9i()z m m m R =++-∈是正实数,则实数m 的值为________.28.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示).30.设i 是虚数单位,且12w =-,则21w w ++=______. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.33.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.34.若2z =,arg 3z π=,则复数z =________.35.已知复数12,z z ,满足121z z ==,且12z z +=,则12z z =________.36.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 37.若a ∈R ,且i2ia ++是纯虚数,则a =____. 38.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.39.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 40.若()1i 1i z +=-,则z =_______ 三、解答题41.把下列复数表示成代数形式:(1)554cos33isin ππ⎛⎫+ ⎪⎝⎭;(2)77cos 44isin ππ⎫+⎪⎭42.在复平面内,复数()2(1)2i z m m m =-+--表示的点Z ,求出满足下列条件的复数z .(1)若点Z 在虚轴上,求复数z 的共轭复数z ; (2)若点Z 在直线2y x =上,求复数z 的模z .43.(1)已知a 、b ∈R 且满足(a -i)2-3b i=(1+i)(2-2a i),又z 1=3-a i ,z 2=-3b +2i ,求2212z z z +的模与共轭虚数.(2)i 的正整数指数幂满足41i n +=i ,42i n +=-143i n +,=-i 4i n ,=1(nN ∈).如i=i ,i 2=-1,i 3=-i ,i 4=1.请分析并写出i 的正整数指数幂和、差规律,以此规律计算i+ i 2+ i 3+….+i 2022 ①或i-i 2+ i 3-i 4 +….-i 2022 ②(注:要求只计算①与②之一) 44.已知复平面内正方形的三个顶点所对应的复数分别是12i +,2i -+,12i --,求第四个顶点所对应的复数.45.根据复数的几何意义证明:121212z z z z z z -≤+≤+.【参考答案】一、单选题 1.B 2.C 3.C 4.C 5.B 6.C 7.D 8.D 9.A 10.A 11.C 12.D13.B 14.C 15.B 16.D 17.D 18.D 19.B 20.D 二、填空题212223241##1-25.15##0.2 26.1 27.328 29.13i +##3i+1 30.0 3132.1##1+33.[)2,+∞34.11+35.12- 36.2 37.12-##0.5- 38.3 39.2i -+ 40.i 三、解答题41.(1)2-【解析】 【分析】根据复数的运算及三角函数诱导公式求解即可. (1) 因为51coscos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭,5sinsin 2sin 333ππππ⎛⎫=-=-= ⎪⎝⎭所以5514cos 42332isin ππ⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭(2)因为7coscos 2cos 444ππππ⎛⎫=-= ⎪⎝⎭,7sinsin 2sin 444ππππ⎛⎫=-=-= ⎪⎝⎭所以77cos 4422isinππ⎫⎫+=-=⎪⎪⎪⎭⎭42.(1)2i ;【解析】 【分析】(1)求出m 的值即得解;(2)根据点Z 在直线2y x =上,求出m 的值即得解. (1)解:因为点Z 在虚轴上,所以10,1m m -=∴=. 所以2i z =-,所以复数z 的共轭复数2i z =. (2)解:因为点Z 在直线2y x =上,所以222(1)m m m --=-, 解之得0m =或3m =. 所以12i z =--或24z i =+, 所以复数z的模z43.(1)当21,3a b =-=-时,2122+z z z =2122+z z z 的共轭复数为53i 2-.当23,3a b ==-时,2122+z z z 2122+z z z 的共轭复数为12i 2-. (2)①232022i+i i i +++i 1=-;②2342022i i i i i -+-+-=i 1+.【解析】 【分析】(1)化简后根据两复数相等,列出方程组,即可解出a b 、的值,即可计算出答案.(2)根据41424344i i i i 0n n n n +++++++=;41424344i i +i i 0n n n n ++++--=计算即可. 【详解】(1)∵2(i)3i (1i)(22i)a b a --=+-化简得:21(23)i 2222)i a a b a a --+=+--( 21122223223a a a b a b a =-⎧⎧-=+⎪⇒⇒⎨⎨=-+=-⎩⎪⎩或323a b =⎧⎪⎨=-⎪⎩①当21,3a b =-=-时,123i,22i,z z =+=+22122+3+i+22i 5=3+i 22i 2z z z +=+().2122+z z z =2122+z z z 的共轭复数为53i 2-.②当23,3a b ==-时,1233i,22i,z z =-=+22122+33i+22i 1=2+i 22i 2z z z -+=+().2122+z z z ==2122+z z z 的共轭复数为12i 2-.(2)由题意知41424344i i i i 0n n n n +++++++=;41424344i i +i i 0n n n n ++++--=; 所以①232022234201720182019202020212022i+i i i (i+i i i )(i +i i i )+i +i +++=++++++0505i 1i 1=⨯+-=-;②2342022234201720182019202020212022i i i i i (i i i i )(i i i i )+i i -+-+-=-+-++-+--0505i 1i 1=⨯++=+.【点睛】本题考查复数的运算,属于基础题. 44.2i - 【解析】 【分析】根据复数的几何意义以及正方形的性质进行求解即可. 【详解】设复数12i +,2i -+,12i --对应的点分别为,,A B C则(1,2)A ,(2,1)B -,(1,2)C --,所以()()3,1,1,3AB BC =--=-,所以033·AB BC =-+=,所以90ABC ∠=︒ 设第四个点为(,)D x y ,则按照,,,A B C D 的顺序才能构成正方形, 所以AB DC =,即(3-,1)(1x -=--,2)y --即1321x y --=-⎧⎨--=-⎩,解得21x y =⎧⎨=-⎩,则(2,1)D -,对应的复数为2i -, 故答案为:2i - 45.证明详见解析 【解析】 【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立.。

复数练习题及答案

复数练习题及答案

复数练习题及答案一、选择题1. The _______ on the trees turn red in autumn.A) leafs B) leaves C) leafies D) leafesAnswer: B2. Can you pass me two _______ of milk from the fridge?A) bottls B) bottle C) bottels D) bottlesAnswer: D3. My parents have two _______.A) child B) childs C) children D) childes Answer: C4. There are many _______ on the farm.A) sheeps B) sheep C) sheepes D) sheepies Answer: B5. We need to buy three _______ for the party.A) cakies B) cakes C) cakees D) cakeAnswer: B二、变成复数形式1. Cat2. BrushAnswer: Brushes3. WolfAnswer: Wolves4. BabyAnswer: Babies5. KnifeAnswer: Knives三、填空题1. My mom bought two _______ for the living room.Answer: sofas2. The teacher picked up the _______ and put them in his bag. Answer: textbooks3. We ate delicious _______ at the restaurant.Answer: pizzas4. The _______ in the zoo came close to the visitors.Answer: tigers5. I have three _______ living in a pond near my house.四、将下列名词的复数形式改为单数形式1. DogsAnswer: Dog2. CatsAnswer: Cat3. BalloonsAnswer: Balloon4. ChairsAnswer: Chair5. GlassesAnswer: Glass总结:复数形式是英语中常见的形式之一,准确掌握名词的复数形式对于正确表达是非常重要的。

复数运算练习题

复数运算练习题

复数运算练习题高年级数学课上,学生们开始接触到更加复杂的数学运算,其中之一就是复数运算。

复数可以看作是实数与虚数的结合,它的运算规则与实数稍有不同。

为了帮助学生更好地理解和掌握复数运算,本文将提供一些复数运算练习题,帮助学生进行巩固和练习。

1. 复数的加法与减法练习题1: 计算以下复数的和与差,并将结果写成标准形式。

a) (2 + 3i) + (1 - 2i)b) (3 - 4i) - (2 + 6i)c) (-5 + 7i) + (-3 - 8i)练习题2: 比较以下复数,判断它们是否相等。

a) 3 + 5i 与 7 - 2ib) -4 + 2i 与 -4 + 2ic) 6i 与 -6i2. 复数的乘法与除法练习题1: 将以下复数相乘,并将结果写成标准形式。

a) (2 + 3i)(4 - 5i)b) (1 + 2i)(-3 + 4i)c) (-2 - i)(3 - 2i)练习题2: 将以下复数相除,并将结果写成标准形式。

a) (5 + 3i)/(2 - i)b) (8 - 6i)/(4 + 2i)c) (-4 + 6i)/(-2 - i)3. 复数的乘方与开方练习题1: 计算以下复数的平方与立方。

a) (2 + i)^2b) (3 - 2i)^3c) (-4i)^2练习题2: 将以下复数开平方,并将结果写成标准形式。

若有多个解,请写出全部解。

a) √(-1)b) √(-4)c) √(-9)4. 复数的共轭与模练习题1: 求以下复数的共轭。

a) 3 + 5ib) -2 - 4ic) 1 - i练习题2: 求以下复数的模。

a) 4 + 3ib) -5 + 12ic) 3i5. 复数的综合运算练习题1: 计算下列复数的结果,并将结果写成标准形式。

a) [(2 + 3i) + (4 - 5i)] * (6 - 7i)b) (3 + 2i)^2 + (1 - 2i)^3c) |(2 + 3i) - (1 - 4i)|练习题2: 求以下复数的综合运算结果,并将结果写成标准形式。

复数练习题(有答案)

复数练习题(有答案)

复数练习题(有答案)一、单选题1.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3-B .2-C .2D .32.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.3.复数(2i 的虚部为( )A .2B .C .2-D .04.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭6.复数z 满足()12i z =,i 为虚数单位,则复数z 的虚部为( )A .BC .D 7.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限8.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2 C .i - D .1- 10.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1-11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -12.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-13.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知复数z 满足()43i 5i z +=,则z =( )A .1BC .15D .516.若复数4i1iz =-,则复数z 的模等于( ) AB .2C .D .4 17.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4C D 18.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限19.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i20.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-二、填空题21.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________.22.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 23.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 24.已知i34i z =+,求|z |=___________ 25.计算:()()12i 34i 2i-+=+_________.26.设12z i =-,则z =___________ .27.写出一个在复平面内对应的点在第二象限的复数z =__________. 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.若复数2(1i)34iz +=+,则z =__________.33.已知复数z 满足1z =,则22z i +-的最大值为______. 34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 35.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________. 36.计算cos 40isin 40cos10isin10________.37.i 是虚数单位,则1i1i+-的值为__________.38.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 39.已知i 为虚数单位,复数21iz =-的虚部为___________.40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.设实部为正数的复数z ,满足z =(12i)z +在复平面上对应的点在第一、三象限的角平分线上. (1)求复数z ; (2)若i()1im z m R ⋅+∈+为纯虚数,求实数m 的值.42.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.43.实数k 为何值时,复数()()223456i z k k k k =--+--是:(1)实数? (2)虚数? (3)纯虚数? (4)0?44.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.45.求数列{}n a :112n n na a a ++=-的周期.【参考答案】一、单选题 1.B 2.D 3.C 4.C 5.A 6.D 7.C 8.D 9.D 10.D 11.B 12.C 13.D 14.D 15.A 16.C17.C 18.C 19.D 20.C二、填空题21.1 22.1 23.四24.15##0.225.43i-##3i4-+2627.1i-+(答案不唯一)28.29.30.13132.825i 6 25 -33.134.-1+2i##2i-1 353612i37.138.2i-+39.140.三、解答题41.(1)3iz=-;(2)6m=-.【解析】【分析】(1)根据复数的模公式,结合复数乘法的运算法则、第一、三象限的角平分线的性质进行求解即可;(2)根据纯虚数的定义,结合共轭复数的定义、复数除法的运算法则进行求解即可. (1)设i(0,),10,(12i)2(2)i z a b a b R z z a b b a =+>∈∴=+=-++,由题意得,22223,101a b b a a a b b -=+=⎧⎧∴⎨⎨+==-⎩⎩,即3i z =-; (2)i i 3i 3(1)i 1i 222m m m m m z ⋅++=++=++++为纯虚数, 30,62mm ∴+=∴=-. 42.(1)1i z =+或1i z =-- (2)1 【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--. (2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.43.(1)6k =或1k =-; (2)6k ≠且1k ≠-; (3)4k =; (4)1k =-. 【解析】 【分析】(1)解方程2560k k --=即得解; (2)解不等式2560k k --≠即得解;(3)解不等式2560k k --≠,且2340k k --=即得解; (4)解方程2560k k --=,且2340k k --=即得解. (1)解:当2560k k --=,即6k =或1k =-时,z 是实数; (2)解:当2560k k --≠,即6k ≠且1k ≠-时,z 是虚数; (3)解:当2560k k --≠,且2340k k --=,z 是纯虚数,即4k =时为纯虚数; (4)解:当2560k k --=,且2340k k --=,即1k =-时,z 是0. 44.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根, 所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部. 45.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】 因为112n n na a a ++=-,所以特征方程为210x x -+=, 因为Δ14130=-⨯=-<,解得:m k == 所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =,。

数学复数练习题附答案

数学复数练习题附答案

数学复数练习题附答案一、选择题(每题3分,共15分)1. 复数z=1-i对应的点在复平面上的坐标是:A. (1,1)B. (1,-1)C. (-1,1)D. (-1,-1)2. 复数z=2+3i的模长是:A. √13B. √23C. √33D. √433. 复数z=1+i的辐角主值是:A. π/4B. π/3C. π/2D. 3π/44. 复数z=-1+i的共轭复数是:A. -1-iB. -1+iC. 1-iD. 1+i5. 复数z=3-4i与z'=3+4i相等的条件是:A. z=z'B. |z|=|z'|C. arg(z)=arg(z')D. Re(z)=Re(z')二、填空题(每空2分,共20分)1. 复数z=2i的实部是______,虚部是______。

2. 复数z=-3-4i的模长是______。

3. 复数z=2+3i的辐角主值是______弧度。

4. 复数z=-2-2i的共轭复数是______。

5. 复数z1=1+i和z2=1-i的乘积是______。

三、计算题(每题10分,共30分)1. 计算复数z1=3+4i和z2=2-3i的和,并求出结果的模长与辐角主值。

2. 求解复数方程z^2+z+1=0,并写出每个解的模长和辐角。

3. 已知复数z=1/(2-i),求z的模长和辐角。

四、解答题(每题25分,共50分)1. 已知复数z=a+bi,其中a和b是实数。

如果z的模长为5,且辐角主值为π/3,求a和b的值。

2. 证明复数的乘法满足分配律,并给出一个具体的例子。

答案:一、选择题1. B2. A3. A4. A5. A二、填空题1. 0,22. 53. π/64. 2+2i5. 2i三、计算题1. z1+z2=(3+2)+(4-3)i=5+i,模长为√26,辐角主值为π/4。

2. z^2+z+1=0的解为z=-1/2±√3/2i,模长为√(1/4+3/4)=1,辐角主值为-5π/6和π/6。

(完整word版)复数练习题(有答案)

(完整word版)复数练习题(有答案)

复数学校:___________姓名:___________班级:___________考号:___________1.复数21−i (i 为虚数单位)的共轭复数是A . 1+iB . 1−iC . −1+iD . −1−i2.已知a ∈R,i 是虚数单位.若z =a +√3i ,z ·z =4,则a =( )A . 1或-1B . √7或-√7C . -√3D . √33.已知复数1z i =+(i 为虚数单位)给出下列命题:①z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A . 0B . 1C . 2D . 34.(2018兰州模拟)若复数z 满足(3−4i )z =4+3i ,则|z |=( )A . 5B . 4C . 3D . 15.(2018北京大兴区一模)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A . EB . FC . GD . H6.(2018江西省景德镇联考)若复数z =a−2i 2在复平面内对应的点在直线x +y =0上,则|z |=( )A . 2B . √2C . 1D . 2√27.(福建省三明市2018届高三下学期质量检查测试)已知复数a +bi =(1−i )21+i (i 是虚数单位,a,b ∈R ),则a +b =( )A . −2B . −1C . 0D . 28.(山东K 12联盟2018届高三开年迎春考试)若复数z = 1 + i + i 2 + i 3 +⋯+ i 2018 +|3−4i |3−4i ,则z 的共轭复数z̅的虚部为 A . −15 B . −95C.95D.−95i9.(上海市徐汇区2018届高三一模)在复平面内,复数5+4ii(i为虚数单位)对应的点的坐标为_____10.(上海市松江、闵行区2018届高三下学期质量监控(二模))设m∈R,若复数(1+ mi )(1+i )在复平面内对应的点位于实轴上,则m=______.11.(2018届浙江省杭州市第二中学6月热身)若复数z满足(1−2i)⋅z=3+i(i为虚数单位),则z=__________;|z|=__________.12.已知z=(a+i)2,(a∈R),i是虚数单位.(1)若z为纯虚数,求a的值;(2)若复数z在复平面上对应的点在第四象限,求实数a的取值范围.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

复数的练习题

复数的练习题

复数的练习题在英语中,名词的复数形式是一种基本的语法规则。

通过变化名词的形式,我们可以表示物体的数量、种类以及其他相关的含义。

正确使用名词的复数形式对于准确表达意思以及与他人交流非常重要。

本文将介绍一些关于复数形式的练习题,帮助读者在实践中掌握这一语法规则。

练习题一:选择正确的复数形式根据给出的名词选择正确的复数形式。

1. apple2. box3. child4. dress5. tomato6. wolf7. baby8. leaf9. potato10. thief练习题二:填空练习根据下面的句子,在横线上填写正确的名词复数形式。

1. The ____________ in the basket are ripe.2. My sister has many ____________ in her collection.3. Those ____________ are playing in the park.4. She bought three ____________ for the party.5. The ____________ were howling at the moon.6. We saw several ____________ in the zoo.7. There are two ____________ in our class.8. The wind blew the ____________ off the trees.9. He harvested a lot of ____________ from his farm.10. The police caught the ____________ yesterday.练习题三:连词成句将以下单词重新排列,使其成为正确的句子。

确保使用正确的名词复数形式。

1. are | These | books | my2. bought | She | some | apples3. dogs | my | have | Three | friends4. were | running | The | children | happily练习题四:写出合适的名词复数形式根据给出的单数名词,写出正确的复数形式。

(完整版)复数练习题

(完整版)复数练习题

(完整版)复数练习题一、单选题1.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15- B .15 C .1i 5- D .1i 52.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( )A .32- B .32 C .6- D .63.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若0a <,则a 的三角形式为( )A .()cos0isin0a +B .()cos isin a ππ+C .()cos isin a ππ-+D .()cos isin a ππ-- 5.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( )A .负实数B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0) 6.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1B .2C .3D .4 7.已知复数12i 1i z -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .筹四象限 8.已知i 是虚数单位,复数12i i z -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i + 9.已知复数2i i +=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 10.复数1i i+(其中i 为虚数单位)在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 11.复数1i 1i +-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i - 12.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ).A .()3,1-B .()1,3-C .()1,+∞D .(),3-∞13. 设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 14.已知复数z 满足()43i 5i z +=,则z =( )A .1BC .15 D .515.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 16.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( ) A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0 17.向量a =(-2,1)所对应的复数是( ) A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i 18.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( ) A .-1+iB .1-iC .-5-5iD .5+5i 19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件20.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( )A .12B .1i 2- C .12-D .1i 2 二、填空题21.若复数2(1i)34i z +=+,则z =__________.22.已知复数z i =,i 为虚数单位,则z =______ 23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.复数2i z a =+,a ∈R ,若13i i +-z 为实数,则=a ________.25.若复数z 满足i 3i=i z -+,则z =________. 26.已知复数ππsin i cos 33z =+,则z =________.27.复数1i z =+(其中i 为虚数单位)的共轭复数z =______.28.设i 是虚数单位,且12w =-,则21w w ++=______. 29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 30.已知复数z 满足294i z z +=+,则z =___________.31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知复数z 满足()()1i 2i z t t +=∈R ,若z =,则t 的值为___________. 33.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2z z-=________. 34.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________37.已知z =22022z z z ++⋅⋅⋅+=___________. 38.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______. 39.设i 是虚数单位,复数z =,则z =___________.40.已知复数()3i R i b z b -=∈的实部和虚部相等,则z =___________. 三、解答题 41.在复平面内,复数()22234i z a a a a =--+--(其中i 为虚数单位,R a ∈).(1)若复数z 为纯虚数,求a 的值;(2)若复数z >0,求a 的值.42.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ;(2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.43.如图,向量OZ 与复数1i -+对应,把OZ 按逆时针方向旋转120°,得到OZ .求向量OZ '对应的复数(用代数形式表示).44.已知复平面内正方形的三个顶点所对应的复数分别是12i +,2i -+,12i --,求第四个顶点所对应的复数.45.根据复数的几何意义证明:121212z z z z z z -≤+≤+.【参考答案】一、单选题1.A2.A3.A4.C5.B6.B8.B9.D10.D11.B12.A13.D14.A15.A16.D17.D18.D19.B20.A二、填空题21.825i 625- 22.123.12或12##12-或12 24.3-2526.127.1i -##i+1-28.029.13i +##3i+130.53132.2或2-33.-1+2i##2i -1343536.237.039.40.三、解答题41.(1)2a =(2)4a =【解析】【分析】(1)根据纯虚数的知识列式,从而求得a 的值.(2)根据复数能比较大小列式,从而求得a 的值.(1)由于z 为纯虚数,所以2220340a a a a ⎧--=⎨--≠⎩,可得2a =. (2)由于z 与0可以比较大小,所以z 为实数,且0z >,所以2220340a a a a ⎧-->⎨--=⎩,可得4a =. 42.(1)2;(2)21i 3z =-;(3)25m -<<.【解析】【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解.【详解】(1)()()()()242i 42i 12i 4(1i)10i 2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+,化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得 ()2256,215m m m m ++--Z , 因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<, 故而当25m -<<时,复数Z 对应的点在第四象限.43.1313i 22-+- 【解析】【分析】复数的旋转用相应的三角函数公式即可.【详解】如上图,将Z 逆时针旋转到'Z ,即是向量'OZ 对应的复数:()()()1313131i cos120isin1201i 2︒︒⎛⎫-+-++=-+-= ⎪ ⎪⎝⎭, 1313-+. 44.2i -【解析】【分析】 根据复数的几何意义以及正方形的性质进行求解即可.【详解】设复数12i +,2i -+,12i --对应的点分别为,,A B C则(1,2)A ,(2,1)B -,(1,2)C --,所以()()3,1,1,3AB BC =--=-,所以033·AB BC =-+=,所以90ABC ∠=︒ 设第四个点为(,)D x y ,则按照,,,A B C D 的顺序才能构成正方形,所以AB DC =,即(3-,1)(1x -=--,2)y --即1321x y --=-⎧⎨--=-⎩,解得21x y =⎧⎨=-⎩, 则(2,1)D -,对应的复数为2i -,故答案为:2i -45.证明详见解析【解析】【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立.【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知: 121212z z z z z z -<+<+. 综上所述,不等式121212z z z z z z -≤+≤+成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数练习题
基础练习
1.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )
A .a ≠2或a ≠1
B .a ≠2或a ≠-1
C .a =2或a =0
D .a =0
2.当23
<m <1时,复数z =(3m -2)+(m -1)i 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.(2010·北京文,2)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )
A .4+8i
B .8+2i
C .2+4i
D .4+i
4.当z =1-i 2
时,z 100+z 50+1的值等于( ) A .1
B .-1
C .i
D .-i
5.设复数z 满足1-z 1+z
=i ,则|1+z |=( ) A .0
B .1 C. 2 D .2
6.复数z =1-i 1+i
,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1
B .-1
C .i
D .-i
7.(2010·江苏,2)设复数z 满足z (2-3i )=6+4i (i 为虚数单位),则z 的模为________.
8.复数z =a +bi ,a 、b ∈R 且b ≠0,若z 2-4bz 是实数,则有序实数对(a ,b )可以是________.(写出一个有序实数对即可)
9.若不等式m 2-(m 2-3m )i <(m 2-4m +3)i +10成立,求实数m 的值.
10.当实数m 为何值时,复数
z =m 2+m -6m
+(m 2-2m )i 为 (1)实数?
(2)虚数?
(3)纯虚数?
知识强化
11.已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根以及实数k的值分别为______________和____________.
12.已知f(z)=|1+z|-z且f(-z)=10+3i,则复数z为________.
13.已知复数z满足z+|z|=2+8i.求复数z.
14.已知a∈R,z=(a2-2a+4)-(a2-2a+2)i所对应的点在第几象限?复数z对应的点的轨迹是什么?
能力提升
15.若|z-1|=|z+1|,则|z-1|的最小值是______.
16.设存在复数z同时满足下列条件:
(1)复数z在复平面内对应点位于第二象限;
(2)z·z+2iz=8+ai(a∈R).
试求a的取值范围.。

相关文档
最新文档