2016年八年级数学上册第十三章轴对称画轴对称图形导学案(新版)新人教版

合集下载

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

2024秋八年级数学上册第十三章轴对称13.2画轴对称图形1画轴对称图形教学设计(新版)新人教版

2024秋八年级数学上册第十三章轴对称13.2画轴对称图形1画轴对称图形教学设计(新版)新人教版
3.学生可能遇到的困难和挑战:在学习轴对称图形的过程中,学生可能会遇到一些困难和挑战。首先,理解轴对称图形的概念和性质可能需要一定的时间和空间想象力。其次,画出轴对称图形时,学生可能会遇到对对称轴的确定和对称点的找寻等方面的困难。此外,将轴对称图形的知识应用于实际问题解决时,学生可能会遇到问题建模和运算的挑战。因此,教师需要通过合理的教学设计和引导,帮助学生克服这些困难和挑战,提供必要的支持和指导。
教学过程设计
1.导入新课(5分钟)
目标:引起学生对轴对称图形的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是轴对称图形吗?它与我们的生活有什么关系?”
展示一些关于轴对称图形的图片或视频片段,让学生初步感受轴对称图形的魅力或特点。
简短介绍轴对称图形的基本概念和重要性,为接下来的学习打下基础。
2.轴对称图形基础知识讲解(10分钟)
2.轴对称图形的性质:引导学生探究轴对称图形的性质,如对应点的连线与对称轴垂直,对应点的距离相等。
3.轴对称图形的画法:教授学生如何画出轴对称图形,包括找出对称轴,画出对应点,连接对应点等步骤。
4.实际应用:通过一些实际问题,让学生运用轴对称图形的知识解决问题,提高学生的实际应用能力。
核心素养目标
本节课的核心素养目标主要包括以下几个方面:
⑤轴对称图形的性质和画法的应用:利用轴对称图形的性质和画法可以解决一些几何问题,如求解对称图形的面积、角度等。
板书设计:
1.轴对称图形的概念
-可以沿着某条直线折叠,两边完全重合
2.轴对称图形的性质
-对称轴和对应点
-对应点连线与对称轴垂直
-对应点距离相等
3.轴对称图形的画法
-找出对称轴
-画出对应点

新人教版数学八年级上册第十三章第4课时 画轴对称图形(教师版)

新人教版数学八年级上册第十三章第4课时 画轴对称图形(教师版)

新人教八年级数学上册画轴对称图形导学案一、学习目标通过具体实例学画轴对称图形,认识轴对称变换,探索它的基本性质和定义;能利用轴对称进行图案设计,通过利用轴对称作图和图案设计发展实践能力;通过作轴对称图形的另一半,设计图案,锻炼克服困难的意志,培养创新精神.二、知识回顾1.什么样的图形是轴对称图形?什么是轴对称?如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.2.轴对称图形或成轴对称的两个图形上的对称点与对称轴有什么联系?对称轴是任何一对对称点所连线段的垂直平分线,也就是说对称点到对称轴的距离相等.3.如何画轴对称图形的对称轴?对于轴对称图形或成轴对称的两个图形,只要找到任意一对对称点,作出对称点所连线段的垂直平分线,就可以找到它们的对称轴.三、新知讲解1.轴对称变换由一个平面图形得到与它成轴对称的另一个图形的过程,叫做轴对称变换.2.轴对称变换的特征(1)成轴对称的两个图形中的任何一个图形可以看作由另一个图形经过轴对称变换后得到,一个轴对称图形也可以看作以它的部分为基础经过轴对称变换后扩展而成的;(2)经过轴对称变换得到的新图形与原图形的形状、大小完全相同;(3)经过轴对称变换得到的新图形上的每一点都和原图形上的某一点关于对称轴对称;(4)连接任意一对对称点的线段被对称轴垂直平分;(5)当对称轴的方向和位置发生变化时,得到的图形的方向和位置也会发生变化.3.对称点的画法画某点关于某直线的对称点的一般步骤如下:(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线的另一侧从垂足出发截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.轴对称图形的画法(1)几何图形都可以看做由点组成,只要分别作出这些点关于对称轴的对称点,再顺次连接这些对称点,就可以得到原图形的轴对称图形;(2)对于一些直线、线段或射线,或由线段组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,再顺次连接这些对称点,就可以得到原图形的轴对称图形.四、典例探究扫一扫,有惊喜哦!1.画出已知图形关于某条直线对称的图形【例1】(1)已知线段AB和直线CD,如图,画AB关于CD的轴对称图形.(2)如图,作出△ABC关于直线l的对称图形.总结:画已知图形关于直线的轴对称图形的方法:(1)找点:确定图形中的一些特殊点;(2)画点:画出特殊点关于已知直线的对称点;(3)连点:连接这些对称点,注意顺次连接.注意:所画轴对称图形用实线,其他的线可以用虚线.练1.已知直线AB和△DEF,作△DEF关于直线AB的对称图形,将作图步骤补充完整:(如图所示)(1)分别过点D,E,F作直线AB的垂线,垂足分别是点;(2)分别延长DM,EP,FN至,使=,=,=;(3)顺次连接,,,得△DEF关于直线AB的对称图形△GHI.练2.(2014•厦门模拟)如图,画出△ABC关于BC对称的图形.2.在网格图中补画图形使之成为轴对称图形【例2】(2015•杭州模拟)如图,下面均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.总结:在网格图中画已知图形的轴对称图形的步骤:(1)确定对称轴(2)确定已知图形中的对称点;(3)用数格子的方法画出特殊点关于已知直线的对称点;(4)顺次链接其对称点.练3.如图是4×4正方形网格,其中已有3个小方格涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有______个.五、课后小测1.(2011•潮州校级模拟)如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)2.以直线l为对称轴,画出图形的另一半.3.如图,以虚线为对称轴,请画出下列图案的另一半.4.(2014秋•上蔡县校级期末)如图是边长为1个单位的小正方形组成的网格,按要求作答.(1)在网格内画出△ABC关于直线L对称的△A′B′C′.(2)计算△ABC的面积.5.(2011春•内江期末)如图,在正方形网格上有一个△DEF.(1)作△DEF关于直线HG的轴对称图形;(2)作△DEF的EF边上的高;(3)若网格上的最小正方形边长为1,求△DEF的面积.6.(2014秋•腾冲县校级期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.7.(2013秋•丹阳市校级期末)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的△A′B′C′;(2)线段CC′被直线l;(3)△ABC的面积为;(4)在直线l上找一点P,使PB+PC的长最短.8.(2014秋•厦门期末)如图,请把△ABC和△A′B′C′图形补充完整,使得它们关于直线l对称.(保留作图痕迹)9.(2013秋•泗阳县校级月考)(1)生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的三个商标(图1、2、3),请在图4,图5中画出两个是轴对称图形的新图案;(2)把图中(实线部分)补成以虚线L为对称轴的轴对称图形,你会得到一只美丽的蝴蝶案.典例探究答案:【例1】【解析】根据轴对称的性质分别找到A、B的对应点A’,B’,连接A’B’即可.解:如图所示:点评:本题考查了轴对称作图及尺规作图的知识,注意熟练掌握作已知点关于已知直线对称点的方法.(2)【解析】分别作出点A、B、C关于直线l的对称点A′、B′、C′,然后顺次连接即可.解:△ABC关于直线l的对称图形△A′B′C′如图所示.点评:本题考查了利用轴对称,熟练掌握已知点关于对称轴对称点的作法是解题的关键.练1.【解析】作轴对称图形就是从图形的各顶点向轴引垂线并延长相同长度找对应点,顺次连接所成的图形.根据这个做法填空.解:依据轴对称的性质得:(1)M,P,N;(2)点G,H,L,MG=DM,PH=EP,NL=FN;(3)GH,HL,LG.点评:考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.练2.【解析】作AA′⊥BC,使BC垂直平分AA′,连接A′B、A′C即可得解.解:△ABC关于BC对称的图形如图所示.点评:本题考查了利用轴对称变换作图,熟练掌握轴对称点的作法确定出点A的对称点是解题的关键.【例2】【解析】根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以先找出不同的对称轴,再思考如何画对称图形.解:点评:作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.练3.【解析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.解:如图,有4个位置使之成为轴对称图形.故答案为:4.点评:此题利用方格图,考查学生对轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置得到4种画法.课后小测答案:1.【解析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.解:如图所示,△A′B′C′即为△ABC关于直线m对称的图形.点评:本题考查了利用轴对称变换作图,准确找出点A、B、C的对称点的位置是解题的关键.2.【解析】作AO⊥l于点O,并延长,在延长线上截取OA′=OA,得到点A的对称点A′,同法作出左侧图形中其余关键点关于直线l的对称点,按左侧图形中的次序连接即可.解:如图所示:.点评:用到的知识点为:两点关于某条直线对称,那么这两点的连线被对称轴垂直平分.3.【解析】根据轴对称图形的定义,右侧和左侧对折后重合.解:所作图形如下所示:点评:解答此题要明确轴对称的性质:(1)对称轴是一条直线;(2)垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;(3)在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;(4)在轴对称图形中,对称轴把图形分成完全相等的两份;(5)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.4.【解析】(1)利用关于轴对称图形的性质得出各对应点位置进而得出答案;(2)利用矩形面积减去周围三角形面积求出即可.解:(1)如图所示:△A′B′C′即为所求;(2)△ABC的面积为:2×4﹣×1×2﹣×1×2﹣×2×2=4.点评:此题主要考查了轴对称变换以及三角形面积,得出对应点位置是解题关键.5.【解析】(1)根据网格结构找出点D、E、F关于直线HG的对称点D′、E′、F′的位置,然后顺次连接即可;(2)根据网格结构以及EF的位置,过点D作小正方形的对角线,与FE的延长线相交于H,DH 即为所求作的高线;(3)DE为底边,点F到DE的距离为高,根据三角形的面积公式列式进行计算即可得解.解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;(2)如图所示,DH为EF边上的高线;(3)△DEF的面积=×3×2=3.点评:本题考查了利用轴对称变换作图,比较简单,熟练掌握网格结构准确找出对应点的位置是解题的关键.6.【解析】(1)根据网格结构找出点A、B、C关于直线DE对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C与DE的交点即为所求点Q.解:(1)△A1B1C1如图所示;(2)点Q如图所示.点评:本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.7.【解析】(1)根据网格结构找出点B、C关于直线l的对称点B′、C′的位置,在于点A(即A′)顺次连接即可;(2)根据轴对称的性质,对称轴垂直平分对称点的连线;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(4)根据轴对称确定最短路线问题,连接B′C与对称轴的交点即为所求的点P.解:(1)△A′B′C′如图所示;(2)线段CC′被直线l垂直平分;(3)△ABC的面积=2×4﹣×1×2﹣×1×4﹣×2×2=8﹣1﹣2﹣2=8﹣5=3;(4)点P如图所示.故答案为:(2)垂直平分;(3)3.点评:本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置,熟记轴对称的性质是解题的关键.8.【解析】过点C,点B′作关于直线l的对称点,连接AB,BC,B′C及A′C′即可.解:如图所示.点评:本题考查的是作图﹣轴对称变换,熟知关于直线对称的点的坐标特点是解答此题的关键.9.【解析】(1)根据线段及长方形是轴对称图形,所以可根据可在圆中画对称的线段可长方形.(2)将三角形不在对称轴的那两个顶点分别向l轴引垂线并延长相同长度得到对应点,顺次连接.解:(1)如图:(2)所画图形如下:.点评:本题主要考查了轴对称图形的性质,及垂直平分线的性质,难度不大,注意作图的标准性.。

最新人教版八年级数学上册第十三章轴对称 教案教学设计 共10课时,含教学反思

最新人教版八年级数学上册第十三章轴对称 教案教学设计 共10课时,含教学反思

第十三章轴对称13.1 轴对称 (1)13.1.1 轴对称 (1)13.1.2 线段的垂直平分线的性质 (3)13.2 画轴对称图形 (8)第1课时作轴对称图形 (8)第2课时用坐标表示轴对称 (12)13.3 等腰三角形 (16)13.3.1 等腰三角形 (16)13.3.2 等边三角形 (25)13.4 课题学习最短路径问题 (33)章末复习 (35)13.1 轴对称13.1.1 轴对称【知识与技能】掌握轴对称图形和关于直线成轴对称等概念.【过程与方法】通过生活中的具体实例认识,培养观察、思维、操作、归纳能力.【情感态度】体验数学与生活的联系,发展审美观.【教学重点】准确掌握轴对称图形和关于直线成轴对称的实质.【教学难点】轴对称图形和关于直线成轴对称的区别与联系.一、情境导入,初步认识展示学生按要求收集的图片资料,教师指导并对所有图片进行分类:第一类是轴对称图形,第二类是关于一条直线对称的图形.学生观察,并以小组为单位,讨论下列问题:1.第一类图案有什么共同特征?2.第二类图案有什么共同特征?【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.轴对称图形在学生交流和说出两类图案的特征的基础上,教师提出第一类的图案称为轴对称图形.问题1 学生尝试说出轴对称图形的定义,教师适当纠正与补充.问题2 请学生再举一些日常生活中的轴对称图形的例子.问题3 请观察下列图案,看这些轴对称图形各有几条对称轴.2.两个图形关于某条直线对称教师提出第二类图案称为两个图形关于某条直线对称.问题4 鼓励学生说出两个图形关于某条直线对称的定义.问题5 举出生活中两个图形成轴对称的例子.如:提示:对称轴可能不止1条,也可能是水平的或倾斜的.教师再归纳总结轴对称图形和两个图形成轴对称间的区别与联系.三、运用新知,深化理解1.如图,在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.2.角是轴对称图形,它的对称轴是 .【教学说明】问题1中有两种方法比较容易,方法3鼓励学生交流讨论得到;问题2提醒学生不能说成角平分线.【答案】1.2.角平分线所在的直线.四、师生互动,课堂小结本节课你学会了什么?有哪些收获?还有什么疑问?1.布置作业:从教材“习题13.1”中选取.2.如图是一个圆形的纸片,请问:它是轴对称图形吗?如果是, 对称轴有多少条?请你找到它的圆心.3.完成练习册中本课时的练习.本课时教学应重视以下几点:1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.形成提炼概念的能力,注重从实物的形象思维向抽象思维转变.3.在对比中发现,认识知识,如“轴对称”与“轴对称图形”的区别与联系.13.1.2 线段的垂直平分线的性质【知识与技能】1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.【过程与方法】经历探索轴对称图形性质的过程,发展空间观察能力.【情感态度】体验数学与现实间的联系,发展审美感,激发兴趣.【教学重点】轴对称的性质,线段垂直平分线的性质.【教学难点】线段垂直平分线的性质.一、情境导入,初步认识问题1 下面图形中哪些是轴对称图形?如果是,请说出它的对称轴.问题2 如果两个图形成轴对称,那么这两个图形有什么关系?(如图2,△ABC和△A′B′C′关于直线MN对称)【教学说明】两个图形成轴对称,那么这两个图形就全等.由此提出线段垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图3,直线l是线段AB的垂直平分线.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.探究轴对称的性质(1)作两个成轴对称的三角形,如图.(2)将对称点分别用线段连接起来,观察它与对称轴的位置关系及数量关系,你能得到什么结论?是如何得到这个结论的?(3)轴对称图形是否也具备这样的性质呢?举例说明.2.探索线段垂直平分线的性质探究1 教材中的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,画出它的垂直平分线MN,在MN上任取点P1,P2,P3,分别量一量点P1,P2,P3到点A,点B 的距离,你有什么发现?与同伴交流,说明理由.探究2 如图,PA=PB,取线段AB的中点O,连接PO,PO与AB有怎样的位置关系?指导学生运用三角形全等知识判定△PAO≌△PBO,从而推得PO是线段AB的垂直平分线.教师总结线段垂直平分线的性质与判定.例1 如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,请你替测量人员计算BC的长.解:∵ED是AB的垂直平分线,∴DA=DB.又∵△BDC的周长为17m,AB=AC=10m,∴BD+DC+BC=17(m).∴DA+DC+BC=17, 即AC+BC=17(m). ∴10+BC=17(m),BC=7(m). 3.作简单轴对称图形的对称轴.例2 如图所示,△ABC 与△A ′B ′C ′关于某条直线对称,请你作出这条直线.【分析】△ABC 与△A ′B ′C ′中的点A 与A ′,点B 与B ′,点C 与C ′是对应点,连接一对对应点,如连接BB ′,作线段BB ′的垂直平分线即可.解:(1)如图所示,连接BB ′,分别以点B ,B ′为圆心,以大于21BB ′的长为半径作弧,两弧相交于D 、E 两点;(2)作直线DE ,DE 即为所求的直线. 三、运用新知,深化理解1.如果△ABC 中,∠BAC=110°,P\,Q 在BC 上,若MP\,NQ 分别垂直平分AB\,AC,则∠PAQ 的度数是 .2.如图,正方形ABCD 的边长为4cm,则图中阴影部分的面积为.3.如图所示,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A.6B.5C.4D.34.如图所示,OC是∠AOB的平分线,AC⊥AO,BC⊥BO,则OC与AB的关系是( ).A.AB垂直平分OCB.OC垂直平分ABC.OC只平分AB但不垂直D.OC只垂直AB但不平分5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.【教学说明】指导学生解答上述习题时,强调学生应:(1)注意成轴对称的两个图形的全等关系,由此可得到几组边、角的相等;(2)注意线段垂直平分线的性质的灵活运用.【答案】1.40° 2.8cm2 3.B 4.B5.(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∴∠BEC=72°=∠B,∴BC=EC=5.四、师生互动,课堂小结问题:本节课学会了什么?有哪些收获?还有什么疑问?由学生表述,教师归纳总结.1.布置作业:从教材“习题13.1”中选取.2.完成练习册中本课时的练习.本课教学力求充分体现内容的基础性,方法的灵活性、学生学习的主体性和教学的主导性,在学习活动中,要求学生主动参与,认真思考、比较观察、动手交流和表述,并借助多媒体的手段辅助教学,增强直观性、激发学习兴趣.强调分组讨论,学生与学生之间很好地交流与合作,利用师生的双边活动,激发学生学习兴趣,教师从中发现、搜集学生的学习情况,查漏补缺,适时调度,从而顺利达到教学的目的.13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题 1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.第2课时用坐标表示轴对称【知识与技能】1.能在直角坐标系中画出已知点关于坐标轴对称的点.2.能求出已知点关于坐标轴对称的点的坐标,求出已知点关于平行于坐标轴的直线对称的点的坐标.【过程与方法】在找关于坐标轴对称的点的坐标之间规律并检验其正确性的过程中,培养学生的语言表达能力、归纳能力.【情感态度】在找点,绘图的过程中使学生体验数形结合思想、体验学习乐趣,养成良好的科学研究方法.【教学重点】能求出已知点关于坐标轴对称的点的坐标.【教学难点】找对称点的坐标之间的关系,规律.一、情境导入,初步认识用多媒体展示北京城风光图片,及北京城形象地图.问题 1 老北京的地图(教材图13.2-3)中,西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,很方便确定一个地方的位置.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2(1)在直角坐标系中画出下列已知点:A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点,并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【归纳结论】点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.二、典例精析,掌握新知例1 已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2012的值为( ).A.0B.-1C.1D.(-3)2012出示新问题:1.如图,分别作出△PQR关于直线x=1和直线y=1对称的图形.2.试找出它们对应点的坐标.3.猜想:如果作关于直线x=3和直线y=-4对称的图形,试找出它们对应点的坐标,并总结出一般性规律.点(x,y)关于直线x=m 对称点的坐标是(2m-x,y),即若两点(x 1,y 1),(x 2,y 2)关于直线x=m 对称,则m=221x x +,y 1=y 2. 点(x,y)关于直线y=n 对称点的坐标是(x,2n-y),即若两点(x 1,y 1),(x 2,y 2)关于直线y=n 对称,则x 1=x 2,n=221y y +. 例2 如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【分析】已知点D 与点A 关于y 轴对称,点B 和点C 关于y 轴对称,由此可推知点D,点C 的坐标.解:∵点D 与点A(-3,3)关于y 轴对称,∴点D 的坐标为(3,3).同理点C 的坐标为(2,0).故AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S 梯形=21 (AD+BC)·OE=21×(6+4)×3=15. 【教学说明】由以上例题,应让学生掌握:1.平行于x 轴的两点之间的距离等于两点横坐标差的绝对值.2.求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便.三、运用新知,深化理解1.说出下列各点关于x轴,y轴对称的点的坐标.(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形关于x轴和y轴对称的图形.3.在坐标系中描出点A(-1,3),B(5,-4),C(-3,-1),D(-1,1),E(-3,5),F(5,8),连接AB,BC,AC,DE,EF,DF,请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴.【教学说明】教师指导学生完成上述问题的解答,提示学生解题过程中注重画图找答案,体验数形结合的作用.同时,鼓励学生从实际解题中总结题中所隐含的规律.【答案】1.2.略3.图略.所得图形是轴对称图形,对称轴是y=2.四、师生互动,课堂小结教师引导学生总结本节课用坐标表示轴对称的主要解题方法和解题思路.1.已知点关于某条直线对称的点的坐标可以通过寻找线段间关系来求.2.学生表述关于x轴,y轴对称的点的坐标规律.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.13.3 等腰三角形13.3.1 等腰三角形第1课时等腰三角形的性质【知识与技能】1.理解掌握等腰三角形的性质.2.运用等腰三角形性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.【过程与方法】1.通过实践、观察、证明等腰三角形的性质,发展学生推理能力.2.通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力.【情感态度】引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验.【教学重点】等腰三角形的性质及应用.【教学难点】等腰三角形的证明.一、情境导入,初步认识问题 1 让学生根据自己的理解,做一个等腰三角形.要求学生独立思考,动手做图后,再互相交流评价.可按下列方法做出:作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形.问题2 老师拿出事先准备好的长方形纸片,按下图方式折叠剪裁.观察并讨论:△ABC有什么特点?教师指导,并介绍等腰三角形的相关概念,及等腰三角形是轴对称图形.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师依据学生讨论发言的情况,归纳等腰三角形的性质:①∠B=∠C→两个底角相等.②BD=CD→AD为底边BC上的中线.③∠BAD=∠CAD→AD为顶角∠BAC的平分线.∠ADB=∠ADC=90°→AD为底边BC上的高.指导学生用语言叙述上述性质.性质1等腰三角形的两个底角相等(简写成:“等边对等角”).性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”).教师指导对等腰三角形性质的证明.1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.在引导学生分析思路时强调:(1)利用三角形全等来证明两角相等.为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形.(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等.2.证明等腰三角形“三线合一”的性质.【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验.例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°于是在△ABC中,有∠A=36°,∠ABC=∠C=72°.【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数.要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题.三、运用新知,深化理解第1组练习:1.如图,在下列等腰三角形中,分别求出它们的底角的度数.2.如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段.3.如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.第2组练习:1.如果△ABC是轴对称图形,则它一定是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形2.等腰三角形的一个外角是100°,它的顶角的度数是( )A.80°B.20°C.80°和20°D.80°或50°3.已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.求这个等腰三角形的边长.4.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.【教学说明】等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用.【答案】第1组练习答案:1.(1)72°;(2)30°2.∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD3.∠B=77°,∠C=38.5°第2组练习答案:1.C2.C3.设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.∴等腰三角形的三边长为4cm,6cm和6cm.4.延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC.∴∠P=∠ACD.又∵DE∥AP,∴∠CDE=∠P.∴∠CDE=∠ACD,∴DE=EC.同理可证:AE=DE.∴AE=CE.四、师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用.请学生表述性质,提醒每个学生要灵活应用它们.学生间可交流体会与收获.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.本课时应把重点放在逐步展示知识的形成过程上,先让学生通过剪纸认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证.由特殊到一般、由感性上升到理性,逻辑演绎,层层展开,步步深入.第2课时等腰三角形的判定【知识与技能】1.理解掌握等腰三角形的判定.2.运用等腰三角形判定进行证明和计算.【过程与方法】通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】引导学生观察,发现等腰三角形的判定方法,获得成功的感受,并在这个过程中体验学习的乐趣.【教学重点】等腰三角形的判定定理.【教学难点】等腰三角形判定定理的证明.一、情境导入,初步认识先请学生回忆等腰三角形的性质,再向学生提出下列问题.问题1 如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素).引导学生作如下思考:(1)应该能同时赶到出事地点,因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.(2)能同时赶到O点位置的一个很重要的因素是∠A=∠B,也就是说如果∠A不等于∠B,那么同时以同样的速度出发就不能同时赶到出事地点.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 根据上述探究,考虑:“在一个三角形中,如果两个角相等,那么它们所对的边也相等”,并证明这个结论.1.指导学生表述结论并写出证明过程.2.指出表述要严谨,如不能说成:“如果一个三角形的两个底角相等,那么它是等腰三角形”.二、思考探究,获取新知例1 求证:如果一个三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【教学说明】本题是文字叙述的证明题,先应将文字语言转化为相应的数学语言,再根据题意画出相应的几何图形.要证明这个问题,由特征结论联想“等角对等边”,而等角由已知的平行线和角平分线可推得.例2 如图,标杆AB高5m,为了将它固定,需要由它的中点C向地面上与点B距离相等的D,E两点拉两条绳子,使得D,B,E在一条直线上,量得DE=4m,绳子CD和CE要多长?【教学说明】这是一个与实际生活相关的问题,要解决这类问题,需要将实际问题抽象为数学模型.本题的实质是已知等腰三角形的底边和底边上的高,求腰长的问题.解:如图(2),选取比例尺为1∶100.①作线段DE=4cm.②作线段DE的垂直平分线MN,与DE交于点B.。

八年级数学上册第十三章轴对称13.2画轴对称图形第1课时画轴对称图形作业课件(新版)新人教版

八年级数学上册第十三章轴对称13.2画轴对称图形第1课时画轴对称图形作业课件(新版)新人教版
第十三章 轴对称
画轴对称图形
第1课时 画轴对称图形
画轴对称图形 1.(4分)下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是( B )
2.(10分)(教材P67例1变式)已知直线AB和△DEF,作△DEF关于直线AB的对称 图形,将作图步骤补充完整:(如图所示)
(1)分别过点D,E,F作直线AB的垂线,垂足分别是点__M_,__P__,__N__; (2) 分 别 延 长 DM , EP , FN 至 __点__G_,__H__,__L___ , 使 _M__G_=__D__M___ , __N_L_=__F__N___ , __P_H__=__E_P_____; (3)顺次连接_G__H_,__H_L__,_L__G_,得△DEF关于直线AB的对称图形△GHL.
3.(8分)如图,将已知四边形分别在格点图中补成关于已知直线l1,l2,l3,l4为对 称轴的轴对称图形.
解:图略
4.(4分)如图,直线l都是这些轴对称图形的对称轴,画出这些图形关于直线l对称 的另一半图形.()(哈尔滨中考)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四 个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点; (2)求△AEF与四边形ABCD重叠部分的面积.
解:(1)△AEF如图所示 (2)重叠部分的面积=2×4-12 ×2×2=6

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

13.1 轴对称(第1课时)【教学目标】知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念、轴对称图形的概念.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重难点】重点:理解轴对称的概念.难点:能够识别轴对称图形并找出它的对称轴.【教学过程】一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:课本图13.1-2,把一X纸对折,剪出一个图案(折痕处不要完全剪断),再打开这X对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一X质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.5.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结:像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、课时小结这节课我们主要认识了轴对称图形,了解轴对称图形及其有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.13.1 轴对称(第2课时)【教学目标】知识与技能1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称的性质,线段垂直平分线的性质.难点:1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.【教学过程】一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小X围讨论)对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.画一个轴对称图形,并找出一组对称点,看一下对称轴和对称点连线的关系.3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如图,木条l与AB钉在一起,l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在△APC和△BPC中,AC=BC,∠ACP=∠BCP,CP=CP⇒△APC≌△BPC⇒PA=PB.证法二:利用轴对称的性质.由于点C是线段AB的中点,将线段AB沿直线l对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点到这条线段两个端点的距离相等;反过来,到这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是到线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.13.1 轴对称(第3课时)【教学目标】知识与技能1.探索作出轴对称图形的对称轴的方法,掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准确地作出轴对称图形的对称轴吗?2.轴对称图形的性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点的距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1:如图(1),点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB 的垂直平分线.作法:如图(2).(1)分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C,D 两点; (2)作直线CD.直线CD 就是线段AB 的垂直平分线.例2:图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A 和A',连接AA'.2.作出线段AA'的垂直平分线L .则L 就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.三、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形的一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出线段的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.。

人教版八年级数学上册第十三章《画轴对称图形》学习任务单(公开课导学案)及作业设计

人教版八年级数学上册第十三章《画轴对称图形》学习任务单(公开课导学案)及作业设计

人教版八年级数学上册第十三章
《画轴对称图形》学习任务单及作业设计
【学习目标】
1.依据轴对称的概念和性质,能作出简单平面图形关于给定对称轴的对称图形.
2.能利用轴对称进行简单的图案设计.
重点:画轴对称图形.
难点:利用轴对称性质解决问题.
【课前学习任务】
1.准备铅笔,三角尺等作图工具.
2.回顾近期学过的两个图形成轴对称的概念和性质.
【课上学习任务】
学习任务一:作一个图形关于某条直线的对称图形.
求作△ABC 关于直线l对称的△A′B′C′.
归纳作一个图形的轴对称图形的一般方法:
如图,把下列图形补成关于直线l对称的图形.
学习任务二:应用
如图,有一个英语单词,三个字母都关于直线l对称,请补全字母,补全后的单词是 .
如图,把一个正方形纸片三次对折后沿虚线剪下,则展开平纸片所得的图形是()
【作业设计】
1.把下面的图形补成关于直线l对称的图形.
2.将一张长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片展开铺平,则所得到的图案是()
【参考答案】
1.
2.按图中的顺序进行操作,选 C.。

八年级数学上册13.2画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版

八年级数学上册13.2画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版

八年级数学上册 13.2 画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版一. 教材分析八年级数学上册第13.2节“画轴对称图形”是新人教版数学课程的一部分,该部分内容在学生掌握了轴对称的概念和性质的基础上进行。

本节课的主要内容是让学生通过实际操作,学会如何画出轴对称图形,并理解轴对称图形在实际生活中的应用。

教材通过丰富的实例和 activities 来引导学生探索和发现轴对称图形的性质,培养学生的动手能力和思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识和一定的动手操作能力,对于轴对称的概念和性质已经有了一定的了解。

但是,学生对于如何将理论应用到实际问题中,可能会存在一定的困难。

因此,在教学过程中,我将会注重引导学生将理论知识和实际问题相结合,提高学生的应用能力。

三. 说教学目标1.知识与技能:学生能够理解轴对称图形的概念,学会如何画出轴对称图形,并能够运用轴对称图形的性质解决实际问题。

2.过程与方法:通过学生的自主探索和合作交流,培养学生的动手操作能力和团队协作能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解轴对称图形的概念,学会如何画出轴对称图形。

2.教学难点:学生能够将轴对称图形的性质应用到实际问题中,解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、演示法、探究法和小组合作法等多种教学方法。

同时,我将会利用多媒体教学手段,如PPT和几何画板等,来进行教学,以提高学生的学习兴趣和动手操作能力。

六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,如衣服的图案、建筑物的设计等,引导学生对轴对称图形产生兴趣,并引出本节课的主题。

2.讲解:通过PPT和几何画板,讲解轴对称图形的概念和性质,让学生理解并掌握。

3.实践操作:让学生分组进行实践活动,通过实际操作来画出轴对称图形,并观察和分析轴对称图形的性质。

八年级数学上册人教版《轴对称复习与小结》导学案

八年级数学上册人教版《轴对称复习与小结》导学案

第十三章轴对称复习与小结教学稿〔定稿〕课型:新授课主备:张艳玲协备:王明杰【教学内容】:轴对称复习【教学目标】:1.进一步认识轴对称、轴对称图形, 掌握轴对称的根本性质, 对应点连线被对称轴垂直平分的性质;2.能按照要求作出简单图形经过一次或两次轴对称后的图形;3.熟练掌握线段的垂直平分线的概念、等腰三角形、等边三角形的有关概念, 并能用它们的性质及判定方法解决相关问题【教学重点】:线段的垂直平分线、等腰三角形、等边三角形的性质及判定【教学难点】:运用线段的垂直平分线、等腰三角形、等边三角形的性质及判定解决相关问题.【教法学法】:教法:归纳总结学法:思考合作交流展示【教学准备】:多媒体课件【教学过程】:一、自主明标〔一〕诊断练习1.以下图案是轴对称图形的有〔〕A.1个B.2个C.3个D.4个2.△ABC中, DE是AC的垂直平分线, 垂足为E,交AB于点D, AE=5cm, △CBD的周长为24cm, △ABC的周长是 .3.等腰三角形是轴对称图形, 其对称轴是_______________________________.°, 那么另外两个角的度数是A〔x, -4〕与点B〔3, y〕关于x轴对称, 那么x+y的值为____________.6. 如图, △ABC中, ∠ACB=错误! 未找到引用源. , CD是△ABC的高, ∠A=错误! 未找到引用源. , AB=4, 求BD长.〔二〕明标预习板书目标:会用线段的垂直平分线、等腰三角形、等边三角形的性质及判定解决相关问题一.本章知识框架图1、轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用2、等腰三角形边与角计算中的分类讨论思想与方程思想〔1〕、等腰三角形的一个内角是800, 那么它的另外两个内角是〔2〕、等腰三角形的周长为24, 一边长为6, 那么另外两边的长是〔3〕、等腰三角形一腰上的高与另一腰的夹角为30°, 那么它的底角为二、互动达标(轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用〕探究一轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用3.如下图, AD是△ABC的角平分线, EF是AD的垂直平分线, 交BC的延长线于点F, 连结AF.求证:∠BAF=∠ACF.探究一等边三角形的性质, 30°所对的直角边等于斜边的一半的应用例2:如图, 在等边ABC△中, 点D E,分别在边BC AB,上, 且BD AE, AD与CE交于点F.〔1〕求DFC∠的度数.〔2〕假设CH⊥AD于H, 求证:CF=2FH〔3〕假设FH=3,EF=1,求AD的长.例:3:如图1, △ACB和△DCE均为等边三角形, 点A, D, E在同一直线上,连接BE.〔1〕①∠AEB的度数为_____②线段AD, BE之间的数量关系为______.〔2〕如图2, △ACB和△DCE均为等腰直角三角形, ∠ACB=∠DCE=90°, 点A, D, E在同一直线上, CM为△DCE中DE边上的高, 连接BE, 请判断∠AEB的度数及线段CM, AE, BE之间的数量关系, 并说明理由.〔三〕归纳小结〔1〕本章的核心知识有哪些?这些知识间有哪些联系?〔2〕通过本节课的复习, 你学会了哪些数学方法?四、多元测标〔5分钟, 1、2号互换, 对抗批阅, 核算达标人数进行小组考核〕1.点P(3, -1)关于y轴的对称点Q的坐标为(a+b, 1-b), 那么a b的值为.2.如图, AB∥CD, 点E在BC上, 且CD=CE, ∠D=74°, 那么∠B的度数为()A.68°B.32°C.22°D.16°3.如图, 在△ABC中, ∠B=30°, BC的垂直平分线交AB于E, 垂足BAFED C为D .假设ED =4, 那么CE 的长为()4.如图, 在△ABC 中, ∠ABC 和∠ACB 的平分线交于点E , 过点E 作MN ∥BC 交AB 于M , 交AC 于N , 如果MB +CN =6, 那么线段MN 的长为.5. 如图, ∠DEF =36°, AB=BC=CD=DE=EF, 求∠A 五、拓展练习1.等腰三角形一腰上的高与另一腰的夹角为60°, 那么这个等腰三角形的顶角为2.A 〔2, -1〕为平面直角坐标系内一点, O 为原点, P 是x 轴上的一个动点, 如果以点P 、O 、A 为顶点的三角形是等腰三角形, 那么符合条件的动点P 共有个.3.如下图, ∠ABC =90°, AB =BC , AE 平分∠BAC 交BC 于E , CD ⊥AE 交AE 的延长线于D . 求证:CD =21AE .4.如图, 在Rt △ABC 中, AB=AC, ∠BAC=90°, D 为 BC 的中点.〔1〕写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系〔不要求证明〕 〔2〕如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM, 请判断△DMN 的形状, 并证明你的结论6、如图, △ABC, △ADE 是等边三角形, B, C, D 在同一直线上.求证:(1)CE =AC +DC ;(2)∠ECD =60°第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( )A .y 是x 的函数B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1FEDCBADE CBAN MDCAC .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C .D .3.甲、乙两地相距s 〔单位:km 〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y 〔单位:h 〕关于行驶速度x 〔单位:km /h 〕的函数图象是〔 〕A .B .C .D .4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min 〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y 〔℃〕和时间x 〔min 〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔 〕 A .7:50B .7:45C .7:30D .7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y 与x 之间的关系的式子是〔 〕 体积x 〔mL 〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y =D.y =6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y =〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A .B .C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A .B.3C.﹣3D .9.直线y=x+3与x轴、y轴分别交于A, B点, 与y =〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF 的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D .﹣10.如图, 点A、B 在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A .B .C .D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k ≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热,水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A15 95% 3 B2099%4(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

最新人教版第十三章轴对称导学案

最新人教版第十三章轴对称导学案

13.1.1轴对称班级小组姓名【学习目标】1.理解轴对称图形及轴对称的定义;2.了解轴对称图形与轴对称的联系与区别;3.了解线段垂直平分线的概念,理解轴对称图形和轴对称的性质.【重点难点】对轴对称图形与轴对称概念的理解;轴对称图形与轴对称的联系与区别.预习案【预习导学】预习课本58-60页内容,完成下列问题.1.轴对称图形的定义:.2.轴对称的定义:.3.线段垂直平分线的定义是:.4.轴对称图形和轴对称的性质:探究案探究1:准备一张纸;对折纸;用圆规在纸上扎出如图所示的图案(或者发挥你的想象扎出其它你认为美丽的图案);把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?图(1)有条对称轴;图(2)有条对称轴;图(3)有条对称轴;图(4)有条对称轴;图(5)有条对称轴.探究2:观察下列图形,有什么共同特点?思考:两图形关于直线a成轴对称,它们全等吗?已知两图形全等,它们成轴对称吗?探究3:参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系?区别:。

联系:。

.(A)(B)(C)(D)(A )(B )(C )(D )探究4:如图,ABC ∆和C B A '''∆关于直线MN 对称, 点A '、B '、C '分别是点A 、B 、C 的对称点, 线段A A '、B B '、C C '与直线MN 有什么关系? 由此你能得到什么结论?训练案1.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )2.下列图案中,不是轴对称图形的是( )3.下列图形中对称轴最多的是 ( )A 、圆B 、正方形C 、等腰三角形D 、线段4.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )5.下面哪些选项的右边图形与左边图形成轴对称?( )6.下面四组图形中,右边与左边成轴对称的是( )A. B. C. D.7.下列说法不正确的是 ( ) A.两个关于某直线对称的图形一定全等 B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称8.试想想“角的对称轴就是它的角平线”这句话对吗?判断正误,说明理由。

第13章《轴对称》总复习-导学案(人教版)

第13章《轴对称》总复习-导学案(人教版)

第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。

八年级数学上册 第13章 轴对称备课教案 (新版)新人教版

八年级数学上册 第13章 轴对称备课教案 (新版)新人教版

第十三章
对称在现实生活中的广泛应用。

在此基础上,利用轴对称,探索等腰三角形的性质,学
象,是密切数学与现实联系的重要内容。


合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理。

接下来,在
轴对称图形”中,通过作轴对称图形、简单的图案设计、确定最短路线等活动,让学生进点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中作出一个图形角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多
标表示轴对称等都是围绕这一性质进行的。

另外,等腰三角形的性质和判定也是本章的
应该充分设,积极调动学生学习的兴趣减少发呆人数,在作业批改中要注意规范书写对盲目自信
.满足学生多样化的学习需求,为学生提供个性化学习的时间和空间利用等腰三角形性质的问题都可以利用全等三角形来解决,。

人教版八年级上册第13章《轴对称》全章教案(22页,含反思)

人教版八年级上册第13章《轴对称》全章教案(22页,含反思)

第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA=CB,DA=DB?(2)可以用这种方法找线段的中点吗?四等分点呢?三、举例分析例2如图(1),△ABC和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为() A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC 中,若AB =AC ,则△ABC 是等腰三角形,AB ,AC 是腰,BC 是底边,∠A 是顶角,∠B 和∠C 是底角.【活动2】把活动1中剪出的△ABC 沿折痕AD 对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B =∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°.从而AD⊥BC,这也就证明了等腰△ABC底边上的中线平分顶角∠A并垂直于底边BC.添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2.三、应用提高例1如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC=∠ACB=∠CDB=∠A+∠ABD;(2)∠A=∠ABD;(3)∠A+2∠C=180°.若设∠A=x,则有x+4x=180°,得到x=36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时等腰三角形的判定1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法.难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系? 学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等. 如何证明? 二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证. 已知:在△ABC 中,∠B =∠C.求证:AB =AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD ⊥BC ,或AD 平分∠BAC ,但不能作BC 边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC 中,∠B =∠C ,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明. 学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B =∠C.因为∠1=∠2,所以可以设法找出∠B ,∠C 与∠1,∠2的关系.证明:∵AD ∥BC ,∴∠1=∠B(______________________),∠2=∠C(______________________).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(______________).2.出示教材例3.让学生自学例3.例3已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.重点等边三角形的性质和判定.难点等边三角形的性质的应用.一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?。

新人教版教材八年级数学上册第13章《轴对称》全章教案

新人教版教材八年级数学上册第13章《轴对称》全章教案

§13.1 轴对称(1)教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是什么?(3)成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题13.1第1、2、3、4、5题课后反思:13.1 轴对称(2)教学目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.教学重、难点:线段垂直平分线的性质.教学过程:一、问题导入:探索并证明线段垂直平分线的性质如图,直线l 垂直平分线段AB,P1,P2,P3,…是l 上的点,请猜想点P1,P2,P3,…到点A 与点B 的距离之间的数量关系.教师:你能用不同的方法验证这一结论吗?二、课本精讲:请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.求证:PA =PB.用符号语言表示为:∵CA =CB,l⊥AB,∴PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA =PB,那么点P 是否在线段AB 的垂直平分线上呢?点P 在线段AB 的垂直平分线上.已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.用数学符号表示为:∵PA =PB,∴点P 在AB 的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?这些点能组成什么几何图形?在线段AB 的垂直平分线l 上的点与A,B 的距离都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书62页练习1、2.四、课堂小结:(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?五、课后作业:教科书习题13.1第6、9题课后反思:13.1 轴对称(3)教学目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点:作线段的垂直平分线.教学难点:作线段的垂直平分线.教学过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图.(1)分别以点A,B 为圆心,以大于AB的为半径作弧,两弧相交于C,D 两点;(2)作直线CD.CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:教科书64页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教学目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教学重点:画轴对称图形.教学难点:画轴对称图形.教学过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师:如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1 如图,已知△ABC 和直线l,画出与△ABC关于直线l 对称的图形.画法:(1)如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;(2)同理,分别画点B,C 关于直线l 的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.教师:如何验证画出的图形与△ABC 关于直线l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:教科书68页练习1、2四、课堂小结:(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?五、课后作业:教科书习题13.2第1题.课后反思:13.2 画轴对称图形(2)教学目标:1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.教学重、难点:在平面直角坐标系中关于x 轴或y轴对称的点的变化规律和作出与一个图形关于x 轴或y轴对称的图形.教学过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中.教师:观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数.教师:观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____).例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.教师:归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤.先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)在平面直角坐标系中,已知点关于x 轴或y 轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x 轴或y 轴对称?(3)说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教学目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教学重、难点:探索并证明等腰三角形性质.教学过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B = ∠C.你还有其他方法证明性质1吗?可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教学重、难点:理解和运用等腰三角形的判定定理教学过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?已知:如图,在△ABC 中,∠B =∠C. 求证:AB =AC.教师:你还有其他证明方法吗?思考能作底边BC 上的中线吗?等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:∵在△ABC 中,∠B =∠C,∴AB =AC.思考与等腰三角形性质进行比较看有什么区别?例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD∥BC.求证:AB =AC.例2 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB =a;(2)作线段AB 的垂直平分线MN,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.三、巩固提高:教科书79页练习1、2、3、4四、课堂小结:(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.五、课后作业:教科书习题13.3第2、5题.课后反思:13.3 等腰三角形(3)教学目标:1.探索等边三角形的性质和判定.2.能运用等边三角形的性质和判定进行计算和证明.教学重、难点:探索等边三角形的性质与判定.教学过程:一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.思考将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC 是等边三角形求证:∠A =∠B =∠C =60°.证明:∵△ABC 是等边三角形,∴BC =AC,BC =AB.∴∠A =∠B,∠A =∠C.∴∠A =∠B =∠C .∵∠A +∠B +∠C =180°,∴∠A =60°.∴∠A =∠B =∠C =60°.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.例1 如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.三、巩固提高:教科书80页练习1、2四、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.五、课后作业:教科书习题13.3第12、14题.课后反思:13.3 等腰三角形(4)教学目标:1.探索含30°角的直角三角形的性质.2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.教学重、难点:探索并理解含30°角的直角三角形的性质.教学过程:一、问题导入:问题已知△ABC 中,∠A =60°,().请你在括号内补充一个条件,使△ABC 能成为等边三角形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.问题你能借助这个图形,找到含30°角的直角△ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.思考这个命题是真命题吗?请进行证明.已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC = AB.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC 中,∠C =90°,∠A =30°,∴BC = AB.例如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?三、巩固提高:教科书81页练习四、课堂小结:(1)本节课学习了哪些内容?(2)在应用含30°角的直角三角形的性质时,能解决哪些问题?需要注意哪些问题?五、课后作业:教科书习题13.3第15题.课后反思:。

最新部编版人教初中数学八年级上册《第十三章(轴对称)全章导学案》精品完美优秀打印版导学单

最新部编版人教初中数学八年级上册《第十三章(轴对称)全章导学案》精品完美优秀打印版导学单

最新精品部编版人教初中八年级数学上册第十三章轴对称优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)13.1 轴对称13.1.1轴对称(1)学习目标:1、通过展示轴对称图形的图片,初步认识轴对称图形;2、通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3、培养良好的动手试验能力、归纳能力和语言表述能力。

学习重点:理解轴对称图形的概念。

学习难点:判断图形是否是轴对称图形。

课前预习:1、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________A直线 B射线 C线段6、课本P30练习题。

7、下面的图形是轴对称图形吗?如果是,指出对称轴。

课内探究:例1、我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.思路分析:(A) (B) (C) (D)第4题所用知识点:例2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:所用知识点:当堂检测:A组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。

2、课本P36习题1,3、课本P63复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

画轴对称图形
【学习目标】
1.指导学生能熟练画出一个图形关于某一条直线对称的轴对称图形.
2.培养学生的良好动手实践能力.
【学习重点】
理解两个图形关于某一条直线对称的特征,并能画轴对称图形.
行为提示:创设情境,引导学生探究新知.
行为提示:认真阅读课本,独立完成“自学互研”中的题目.在探究练习的指导下,自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.
提示:让学生亲自动手操作,通过操作体会两个图形关于某一条直线对称的特征.在学生动手操作的过程中,老师向学生提问左边的问题,引发学生的思考.
情景导入生成问题
如图,给出了一个图案的一半,其中的虚线是这个图案的对称轴.(1)你能猜出整个图案的形状吗?(2)你能画出这个图案的另一半吗?
几何图形都可以看作是由点组成的,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点便可以得到原图形的轴对称图形,如何作出点A、B、C、D关于直线l的对称点呢?
自学互研生成能力
知识模块一两个图形关于某一条直线对称的特征
(一)自主学习
阅读教材P67思考之前的内容,完成下列问题:
如图,观察下面图形剪纸形成过程并填空:
1.剪纸得到的另一半图形与原图形的形状、大小一样吗?
答:两个图形形状、大小完全一样.
2.新图形上的每一点,都与原图形上的某一点关于直线l对称.
3.连接任意一对对应点的线段被对称轴垂直平分.
(二)合作探究
1.轴对称图形的性质:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.
2.如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?
知识模块二画轴对称图形
(一)自主学习
阅读教材P67思考之后~P68练习之前的内容,完成以下问题:
从教材P67例1,我们可以知道:
1.找点A关于直线l的对称点A′的方法是:过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA.A′就是点A关于直线l的对称点.
2.作△ABC关于直线l对称的图形的方法是:分别找出三角形ABC的三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.
行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.
积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.(二)合作探究
1.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
2.在图中,画出△A′B′C′,使△A′B′C′与△ABC关于l成轴对称图形.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一两个图形关于某一条直线对称的特征
知识模块二画轴对称图形
检测反馈达成目标
1.作已知点关于某直线的对称点的第一步是( B)
A.过已知点作一条直线与已知直线相交
B.过已知点作一条直线与已知直线垂直
C.过已知点作一条直线与已知直线平行
D.不确定
2.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为( C) A.50°B.30°C.100°D.90°
第2题图
第3题图
3.如图,△ABC与△A1B1C1关于直线MN对称,△A1B1C1和△A2B2C2关于直线EF对称.
(1)画直线EF;
(2)若直线MN与直线EF交于点O,所夹的角为45°,求∠BOB2的度数.
解:(1)连C1C2作C1C2的垂直平分线EF;
(2)连OB、OB1、OB2,则∠BOB2=2∠M OE=90°.
课后反思查漏补缺
1.本节课学到了什么知识?还有什么困惑?
2.改进方法。

相关文档
最新文档