练习1_分式的运算-优质公开课-沪科7下精品
沪科版七下数学分式的乘除运算习题课件
原式=x+2xy+xy-2 2y·xxx++2yy=xxx- +2yy.
14.当 a=2 018,b=2 019 时,求a2-a42-abb+4 b2·ab2-+ab2的值. 解:原式=a2+b2aa-+bb2a-b·-a2a+-bb2
=-(a+b) =-a-b. 当 a=2 018,b=2 019 时,-a-b=-2 018- 2019=-4 037.
解:设两块试验田收获水稻质量均为 x kg,则“杂交 1 号”水稻试 验田的单位面积产量为2ax2-1kg/m2,“杂交 2 号”水稻试验田的 单位面积产量为2a-x 12kg/m2,故“杂交 2 号”水稻试验田的每平 方米的产量是“杂交 1 号”水稻试验田的每平方米的产量的
2a-x 12÷2ax2-1=22aa-2-112=2a+2a1-21a-2 1=22aa+ -11倍.
=(m-n)·mm+-nn
=m+n.
16.如图所示,图①是“杂交 1 号”水稻的试验田,它是边长为 2a m 的正方形去掉 1 个边长为 1 m 的正方形蓄水池后余下 的部分;图②是“杂交 2 号”水稻的试验田,它是边长为(2a -1)m 的正方形.若两块试验田收获了相等质量的水稻,则 “杂交 2 号”水稻试验田的每平方 米的产量是“杂交 1 号”水稻试验 田的每平方米的产量的多少倍?
力中,自己负责的一步出现错误的是( )
A.只有乙
B.甲和丁 C.乙和丙
D.乙和丁
【点拨】乙在化简过程中将 1-x 写成 x-1 后没有补上负号,所 以错误.丁约分后分母应该是 x 而不是 2,所以错误.
【答案】D
11.现有 A,B 两个圆,A 圆的半径为2ab2,B 圆的半径为3ba,则
沪科版七下数学分式的运算之分式的加减教学课件
9.2 分式的运算 分式的加减
1 课堂讲授 ➢ 同分母分式的加减
➢ 异分母分式的加减
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
台风中心距A市s千米,正以b千米/时的速度向 A市移动.救援车队从B市出发,以4倍于台风中心移 动的速度向A市前进. 已知A,B两地的路程 为3 s 千米,问救援车 队能否在台风中心到 来前赶到A市?
a1 1a a1 a1 a1 a1
总结
知1-讲
分母相同,而分子是多项式,分子相加减时要 把分子看作一个整体,先用括号括起来,再进行加 减,能分解因式的要分解因式,最后结果要进行约 分化简;两个分式的分母互为相反数时,可通过添 加负号把两个分式变为同分母的分式,再按照同分 母的分式相加减的法则进行计算.
变成同分母分式,再按照法则进行计算.
2.异分母分式加减法的一般步骤: (1)通分,如果分母是多项式,要先分解因式求
出最简公分母; (2)进行同分母分式的加减; (3)结果化为最简分式或整式.
3.进行分式加减运算时应注意: (1)正确地找出各分式的最简公分母; (2)分式的分子或分母的系数为负数时,要把
解:原式
2
2
x1 x1
1
1
x2 x2
知2-讲
2x 1 2x 1 x 1x 1
4
4
x2 1 x2 4
=
12
.
x2 1 x2 4
x2 x2 x 2x 2 4 x2 4 4 x2 1 x2 1 x2 4
总结
知2-讲
多个分式相加减时,要先视察其特征,如果 有同分母的,可以把同分母分式先相加减;如果 有同分子的,也可把同分子的先相加减.
分式的混合运算专项训练—2023-2024学年七年级数学下册(沪科版)(解析版)
分式的混合运算专项训练考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对分式的混合运算各种方法的理解!1.(2023上·山东菏泽·七年级统考期中)计算:(1)3x −61−x−x+5x2−x(2)x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y【答案】(1)8x(2)1【分析】(1)先对各个分式分子分母因式分解,再通分,利用分式加减运算法则运算后约分即可得到答案;(2)先对各个分式分子分母因式分解,根据分式混合运算顺序,先计算乘除,再利用分式加减运算法则运算后约分即可得到答案.【详解】(1)解:3x −61−x−x+5x2−x=3(x−1)x(x−1)+6xx(x−1)−x+5x(x−1)=8x−8 x(x−1)=8(x−1) x(x−1)=8x;(2)解:x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y=x−yx+3y ⋅(x+3y)2(x+y)(x−y)−2yx+y=x+3yx+y −2yx+y=x+y x+y=1.【点睛】本题考查分式混合运算,涉及通分、约分、因式分解等知识.掌握分式混合运算法则及运算顺序,熟记因式分解的方法,准确找到最简公分母通分是解决分式混合运算的关键.2.(2023上·天津东丽·七年级统考期末)计算(1)4a 3b⋅b 2a 4÷(1a )2 (2)a a−1÷a 2−a a 2−1−1a−1【答案】(1)23a ;(2)a a−1【分析】(1)先将除法写成乘法,再计算乘法,分子、分母约分化为最简分式;(2)先将除法写成乘法,计算乘法得到最简分式,再与后一项相减即可得到答案.【详解】(1)原式=4a 3b ⋅b 2a 4⋅a 2=23a ;(2)原式=a a−1⋅(a+1)(a−1)a(a−1)−1a−1=a+1a−1−1a−1=a a−1. 【点睛】此题考查分式的混合运算,先将除法化为乘法,再约分结果,再计算加减法.3.(2023上·山东菏泽·七年级统考期末)计算(1)12m 2−9−2m−3(2)(2a −12a a+2)÷a−4a 2+4a+4【答案】(1)−2m+3(2)2a 2+4a【分析】(1)通分计算即可;(2)先通分算减法,再算除法.【详解】(1)解:原式=12−2(m+3)(m+3)(m−3)=−2(m −3)(m +3)(m −3)=−2m+3;(2)解:原式=[2a(a+2)a+2−12a a+2]⋅(a+2)2a−4=2a 2+4a −12a a +2⋅(a +2)2a −4=2a 2−8a a +2⋅(a +2)2a −4=2a(a−4)a+2⋅(a+2)2a−4=2a(a+2)=2a2+4a,【点睛】此题考查分式的混合运算,通分、因式分解和约分是解答的关键.4.(2023下·江苏常州·七年级校考期中)计算:(1)2x+y −1x−y.(2)(1−1m+1)÷m2m+1.【答案】(1)x−3yx2−y2(2)1m【分析】(1)根据异分母分式减法运算法则,先通分,再根据同分母分数减法运算求解即可得到答案;(2)根据分式混合运算法则及运算顺序,先算括号里的异分母分式减法运算,再利用乘除互化将除法转化为乘法运算求解即可得到答案.【详解】(1)解:2x+y −1x−y=2(x−y)(x+y)(x−y)−x+y(x+y)(x−y)=2x−2y−x−y (x+y)(x−y)=x−3y (x+y)(x−y)=x−3yx2−y2;(2)解:(1−1m+1)÷m2m+1=(m+1m+1−1m+1)÷m2m+1=m+1−1m+1×m+1m2=mm+1×m+1m2=1m.【点睛】本题考查分式混合运算,涉及分式加减乘除运算、通分、约分等知识,熟练掌握分式混合运算法则及运算顺序是解决问题的关键.5.(2023下·江苏常州·七年级统考期中)计算:(1)4ac3b ⋅(−6b22ac2)(2)a+2a−3÷a2−42a−6(3)x23x−9−3x−3(4)(4a+2+a−2)÷aa+2【答案】(1)−4bc(2)2a−2(3)x+33(4)a【分析】(1)根据分式的乘法运算法则进行计算即可得到答案;(2)先将分式除法变为乘法,再根据分式的乘法运算法则和平方差公式进行计算即可得到答案;(3)先进行通分,再计算分式减法,最后利用平方差进行约分即可得到答案;(4【详解】(1)解:4ac3b ⋅(−6b22ac2)=−4bc;(2)解:a+2a−3÷a2−42a−6=a+2a−3×2(a−3)(a+2)(a−2)=2a−2;(3)解:x23x−9−3x−3=x23(x−3)−3×33(x−3)=x2−93(x−3)=(x+3)(x−3)3(x−3)=x+33;(4)解:(4a+2+a−2)÷aa+2=(4a+2+(a−2)(a+2)a+2)×a+2a=4+a2−4a+2×a+2a=a.【点睛】本题考查了分式的混合运算,平方差公式,熟练掌握相关运算法则是解题关键.6.(2023下·河南南阳·七年级统考期中)计算:(1)2x−6x2−6x+9÷3−xx2−9(2)(8a+3+a−3)÷a2+2a+1a+3【答案】(1)−2x+6x−3(2)a−1a+1【分析】(1)根据完全平方式、平方差公式化简,再把除法转化成乘法计算即可;(2)括号内先通分,再根据完全平方公式、平方差公式化简,再把除法转化成乘法计算即可.【详解】(1)解:原式=2(x−3)(x−3)2×(x+3)(x−3)3−x=−2x+6x−3(2)解:原式=(8+a2−9a+3)×a+3(a+1)2=(a+1)(a−1)×1(a+1)2=a−1a+1【点睛】本题考查分式计算,掌握完全平方式、平方差公式是关键.7.(2023下·江苏淮安·七年级校考期中)计算:(1)a2a−1−a−1(2)(a+2−42−a )÷(aa−2)【答案】(1)1a−1(2)a【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.【详解】(1)a2a−1−a−1=a2 a−1−(a+1)(a−1)a−1=a2−(a+1)(a−1)a−1=a 2−(a 2−1)a−1 =a 2−a 2+1a−1=1a−1(2)(a +2−42−a )÷(a a−2)=(a +2+4a−2)÷(a a−2) =a 2−4+4a−2÷(a a−2) =a 2a−2×a−2a=a 【点睛】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.8.(2023上·山东泰安·七年级统考期中)计算(1)x x−1−x 2+2x x 2−2x+1÷x+2x ; (2)(a+2a−2−a a+2)÷3a+2a 2+2a .【答案】(1)−x (x−1)2(2)2a a−2【分析】该题主要考查了分式的混合运算问题;(1)先算除法再算减法即可;(2)先算括号再算除法即可.【详解】(1)原式=x x−1−(x+2)x (x−1)2⋅x x+2=x x −1−x 2(x −1)2=x (x −1)−x 2(x −1)2=−x (x−1)2;=−x x 2−2x +1(2)原式=[(a+2)2(a−2)(a+2)−a(a−2)(a−2)(a+2)]÷3a+2a(a+2)=2(3a+2)(a−2)(a+2)⋅a(a+2)3a+2=2aa−2.9.(2023上·山东烟台·七年级统考期中)计算:(1)b2ca ×acb÷(−ca)2(2)a2−4a ÷(a+1−5a−4a)【答案】(1)a2b(2)a+2a−2【分析】(1)根据分式的乘除运算法则进行化简即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【详解】(1)解:原式=bc2⋅a2c2=a2b.(2)解:原式=(a+2)(a−2)a ÷a2−4a+4a=(a+2)(a−2)a⋅a(a−2)2=a+2a−2.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.10.(2023上·山东东营·七年级校考期中)计算下列各式.(1)(−a2bc )3⋅(−c2a)2÷(bca)4;(2)a2a−1−a−1.【答案】(1)−a8bc3(2)1a−1【分析】(1)先根据积的乘方等于乘方的积,幂的乘方计算各分式,然后利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;进行分式的乘除运算即可;(2)先加括号,进行通分,根据平方差公式求解多项式乘多项式,然后进行加减运算即可.【详解】(1)解:(−a2bc )3⋅(−c2a)2÷(bca)4=−a6b3c3⋅c4a2÷b4c4a4=−a4b3c⋅a4 b4c4=−a8bc3;(2)解:a2a−1−a−1=a2a−1−(a+1)=a2−(a+1)(a−1)a−1=a2−a2+1a−1=1a−1.【点睛】本题考查了积的乘方,幂的乘方,分式的乘除混合运算,同底数幂的乘除运算,异分母分式的减法运算,平方差公式等知识.解题的关键在于熟练掌握各知识的运算法则并正确的运算.11.(2023上·河南许昌·七年级统考期末)计算:(3xx−1−xx+1)⋅x2−1x+1【答案】2x2+4xx+1【分析】利用分式的混合运算顺序:先括号内的分式减法运算,再括号外的分式2乘法运算即可化简原式.【详解】解:(3xx−1−xx+1)⋅x2−1x+1=3x(x+1)−x(x−1)(x−1)(x+1)⋅(x−1)(x+1)x+1=3x2+3x−x2+xx+1=2x2+4xx+1.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.12.(2023上·重庆沙坪坝·七年级重庆一中校考阶段练习)计算:(1)(x−y)2−x(x−3y)(2)m2−25m+3÷(1−8m+3)【答案】(1)xy+y2(2)m+5【分析】(1)先用完全平方公式与单贡式乘以多项式法则展开,再合并同类项即可.(2)先计算括号内的,再计算除法,用除法法则转化成乘法计算即可.【详解】(1)解:原式=x2−2xy+y2−x2+3xy=xy+y2;(2)解:原式=(m+5)(m−5)m+3÷m−5m+3=(m+5)(m−5)m+3⋅m+3m−5=m+5.【点睛】本题考查多项式混合运算,分式混合运算,熟练掌握多项式与分式混合运算法则是解题的关键.13.(2023上·山东菏泽·七年级统考期中)计算(1)4x22x−3+93−2x(2)3b24a2⋅(a−6b)(3)xx−1−x+3x2−1⋅x2+2x+1x+3(4)(1x−4+1x+4)÷2x2−16【答案】(1)2x+3(2)−b8a(3)−1x−1(4)x【分析】(1)利用分式的加法计算即可.(2)利用分式的乘法计算即可.(3)利用分式的混合运算法则计算即可.(4)利用分式的混合运算法则计算即可.【详解】(1)4x22x−3+93−2x=4x22x−3−92x−3=4x2−92x−3=(2x−3)(2x+3)2x−3=2x+3.(2)3b24a2⋅(a−6b)=−b8a.(3)xx−1−x+3x2−1⋅x2+2x+1x+3=xx−1−x+3(x−1)(x+1)⋅(x+1)2x+3=xx−1−x+1x−1=x−x−1x−1=−1x−1.(4)(1x−4+1x+4)÷2x2−16=(1x−4+1x+4)×(x+4)(x−4)2=1x−4×(x+4)(x−4)2+1x+4×(x+4)(x−4)2=x+42+x−42=x.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.(2023下·重庆南岸·七年级统考期末)计算:(1)a−ba+b ÷a2−aba3−ab2;(2)(2x−3−1x)⋅x2−3xx2+6x+9【答案】(1)a−b(2)1x+3【分析】(1)直接根据分式的除法法则进行计算即可;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)解:原式=a−ba+b ⋅a3−ab2 a2−ab=a−ba+b⋅a(a2−b2)a(a−b)=(a+b)(a−b)a+b=a−b;(2)解:原式=[2x−(x−3)x(x−3)]⋅x(x−3)(x+3)2=x+3x(x−3)⋅x(x−3)(x+3)2=1x+3.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算法则是解答此题的关键.15.(2023下·重庆北碚·七年级统考期末)计算:(1)2a2b÷(−a2b )2⋅a4b2;(2)(a2+3aa−3−3)÷a2+9a2−9.【答案】(1)2ab(2)a+3【分析】(1)先算乘方,再算乘除,即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】(1)原式=2a2b⋅4b2a2⋅a 4b2=2ab(2)原式=(a2+3aa−3−3a−9a−3)⋅a2−9a2+9=a2+9a−3⋅(a+3)(a−3)a2+9=a+3【点睛】本题考查了分式的混合运算,准确熟练地进行计算是解题的关键.16.(2023下·广东清远·七年级统考期中)分式计算:(1)3x−3−xx−3(2)yxy+x +1xy−x(3)x2x+1−x+1(4)(3xx−2−xx+2)÷xx2−4.【答案】(1)−1(2)y2+1xy2−x(3)1x+1(4)2x+8【分析】(1)根据同分母的分式的加减法进行计算即可求解;(2)根据异分母的分式的加法进行计算即可求解;(3)根据分式与整式的运算进行计算即可求解;(4)先计算括号的分式的减法,再将除法转化为乘法进行计算即可求解.【详解】(1)3x−3−xx−3=3−xx−3 =−1;(2)yxy+x +1xy−x=y(y−1)+y+1x(y+1)(y−1)=y2+1xy2−x;(3)x2x+1−x+1=x2−(x−1)(x+1)x+1=x2−x2+1x+1=1x+1;(4)(3xx−2−xx+2)÷xx2−4=3x(x+2)−x(x−2)(x−2)(x+2)⋅(x+2)(x−2)x=3(x+2)−(x−2)=3x+6−x+2=2x+8.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.17.(2023上·山东济宁·七年级统考期末)计算:(xx+2−2x+2)÷x2−4x+4x+2.【答案】1x−2【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:(xx+2−2x+2)÷x2−4x+4x+2=x−2x+2÷x2−4x+4x+2=x−2x+2⋅x+2x2−4x+4=x−2x+2⋅x+2(x−2)2=1x−2.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则18.(2023上·山东泰安·七年级统考期中)计算:(1)2x2x−y +yy−2x;(2)1−x−yx+2y ÷x2−y2x2+4xy+4y2.【答案】(1)1(2)−yx+y【分析】(1)本题考查了分式的加减,利用同分母分式加减法法则进行计算,即可解答;(2)本题考查了分式的混合运算,先算分式的除法,再算加减,即可解答;【详解】(1)解:原式=2x−y2x−y=2x−y 2x−y=1;(2)解:原式=1−x−yx+2y ×(x+2y)2(x+y)(x−y)=1−x+2y x+y=−yx+y.19.(2023下·江苏常州·七年级常州市第二十四中学校考期中)计算:(1)6x+3+2xx+3;(2)a2−b2a ÷(a+b2−2aba).【答案】(1)2(2)a+ba−b【分析】(1)根据同分母分式加法计算法则求解即可;(2)根据分式的混合计算法则求解即可.【详解】(1)解:6x+3+2xx+3=6+2x x+3=2(x+3) x+3=2;(2)解:a2−b2a ÷(a+b2−2aba)=a2−b2a÷a2+b2−2aba=(a+b)(a−b)a÷(a−b)2a=(a+b)(a−b)a⋅a(a−b)2=a+ba−b.【点睛】本题主要考查了分式的混合计算,同分母分式加法,熟知相关计算法则是解题的关键.20.(2023上·山东菏泽·七年级统考期末)计算:(1)4x2−1−2x2+x;(2)(2x2x−2−x−2)÷2x2+8x2−4.【答案】(1)2x2−x(2)x+22【分析】(1)利用提公因式和平方差公式进行计算即可; (2)利用提公因式和平方差公式进行计算即可. 【详解】(1)4x 2−1−2x 2+x=4(x +1)(x −1)−2x (x +1)=4x −2(x −1)x (x +1)(x −1)=2x +2x (x +1)(x −1)=2x 2−x ; (2)(2x 2x−2−x −2)÷2x 2+8x 2−4=[2x 2x −2−(x +2)(x −2)x −2]÷2x 2+8x 2−4=(2x 2−x 2+4x −2)⋅(x +2)(x −2)2(x 2+4)=x 2+4x −2⋅(x +2)(x −2)2(x 2+4) =x+22.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键. 21.(2023下·江西鹰潭·七年级统考期末)先化简x 2−4x+4x 2−1÷x−2x+1+2x−1,再从−2,−1,1,2中选一个合适的整数作为x 的值代入求值. 【答案】x x−1,x =−2时,原式=23【分析】先把除法转化为乘法,再约分,然后计算加法,由分式有意义的条件确定x 的值,最后代入化简后的式子即可求出答案. 【详解】解:x 2−4x+4x 2−1÷x−2x+1+2x−1=(x −2)2(x +1)(x −1)⋅x +1x −2+2x −1 =x −2x −1+2x −1=xx−1,由分式有意义的条件可知:x ≠−1,x ≠1,x ≠2, ∴x =−2, 当x =−2时, 原式=−2−2−1=23.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题的关键. 22.(2023下·福建宁德·七年级统考期末)先化简,再求值:(1−a a+1)÷a+3a 2+2a+1,其中a =−5.【答案】a+1a+3,2【分析】先根据分式的减法法则算括号内的减法,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可. 【详解】解:(1−aa+1)÷a+3a 2+2a+1 =1a +1⋅(a +1)2a +3 =a +1a +3当a =−5时,原式=a+1a+3=−5+1−5+3=2.【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序. 23.(2023下·江西景德镇·七年级统考期末)先化简,再求值:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1其中x =17【答案】1x ,代数式的值为7【分析】根据乘法公式,分式的性质,分式的加减乘除混合运算化简,再代入求出即可. 【详解】解:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1=[(x +1)2(x +1)(x −1)−3x −1]÷x(x −2)x −1=(x +1x −1−3x −1)×x −1x(x −2)=x −2x −1×x −1x(x −2)=1x ,当x =17时,原式=1x=117=7.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则是解题的关键.24.(2023下·江苏淮安·七年级统考期末)先化简,再求值:当a =2时,求代数式(a −aa+1)÷a 2−2a a 2−4×1a+2的值.【答案】aa+1;23【分析】运用乘法公式,分式的性质,分式的混合运算进行化简,再代入求值即可. 【详解】解:(a −a a+1)÷a 2−2a a 2−4×1a+2=(a 2+a a +1−a a +1)÷a(a −2)(a +2)(a −2)×1a +2=a 2a +1×a +2a ×1a +2 =a a+1,当a =2时,原式=aa+1=22+1=23.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则,代入求值等知识是解题的关键.25.(2023上·四川绵阳·七年级校联考阶段练习)先化简,再求值:(2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =4 【答案】x −1,3【分析】根据分式混合运算法则先化简,再代值求解即可得到答案. 【详解】解:(2x+2x 2−1+1)÷x+1x 2−2x+1 =(2x +2x 2−1+x 2−1x 2−1)×x 2−2x +1x +1=x 2+2x+1x 2−1×x 2−2x+1x+1, =(x+1)2(x+1)(x−1)×(x−1)2x+1,=x −1;当x =4时,原式=4−1=3.【点睛】本题考查了分式的混合运算和求值,能正确运用分式的运算法则进行化简是解此题的关键. 26.(2023上·湖北武汉·七年级武汉外国语学校(武汉实验外国语学校)校考期末)(1)计算:[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3;(2)先化简,再求值:(a 2a−1−a −1)÷a−a 2a 2−2a+1,其中a =2.【答案】(1)−32a 12;(2)−1a ,−12【分析】(1)根据幂的混合运算法则求解即可;(2)首先根据分式的混合运算法则求解,然后将a =2代入求解即可. 【详解】解:(1)[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3 =(3a 6+9a 6)÷(−8a −6) =12a 6÷(−8a −6) =−32a 12; (2)(a 2a−1−a −1)÷a−a 2a 2−2a+1=(a 2a −1−a 2−1a −1)÷−a (a −1)(a −1)2=1a −1⋅a −1−a=−1a ,当a =2时,原式=−12.【点睛】此题考查了幂的混合运算,分式的混合运算,解题的关键是熟练掌握以上运算法则. 27.(2023上·吉林白山·七年级统考期末)先化简,再求值:1﹣x−2y x+y ÷x 2−4xy+4y 2x 2−y 2,其中x =﹣2,y =12.【答案】﹣yx−2y ,16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x 、y 代入计算即可求得答案. 【详解】解:原式=1﹣x−2yx+y ⋅(x+y )(x−y )(x−2y )2=1−x−y x−2y =﹣yx−2y ,当x =﹣2,y =12时,原式=16.【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.28.(2023上·广东惠州·七年级统考期末)已知A =xy−y 2y 2−x 2÷(1x−y −1x+y ). (1)化简A ;(2)当x 2+y 2=13,xy =−6时,求A 的值;(3)若|x −y |+√y +2=0,A 的值是否存在,若存在,求出A 的值,若不存在,说明理由.【答案】(1)−x−y2;(2)A=−52或52;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)A=xy−y2y2−x2÷(1x−y−1x+y)=y(x−y) (y−x)(y+x)×(x+y)(x−y)x+y−x+y=−y(x−y)(x−y)(x+y)×(x+y)(x−y)2y=−x−y2;(2)∵x2+y2=13,xy=-6∴(x-y)2=x2-2xy+y2=13+12=25∴x-y=±5,当x-y=5时,A=−52;当x-y=-5时,A=52.(3)∵|x−y|+√y+2=0,∴x-y=0,y+2=0当x-y=0时,A的分母为0,分式没有意义.∴当|x−y|+√y+2=0时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.29.(2023上·山东泰安·七年级统考期中)(1)计算:3x(x−3)2−x3−x(2)计算:(x+1x2−1+xx−1)÷x+1x2−2x+1(3)先化简,再求值:已知ab =3,求a2+4ab+4b2a−b÷(3b2a−b−a−b)的值.【答案】(1)x2(x−3)2;(2)x﹣1;(3)a+2b2b−a,﹣5.【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案; (2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案; (3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=3x+x(x−3)(x−3)2=x 2(x−3)2;(2)原式=x+1+x(x+1)(x−1)(x+1)⋅(x−1)2x+1=(x+1)2(x−1)(x+1)⋅(x−1)2x+1=x −1;(3)原式=(a+2b)2a−b÷3b 2−a(a−b)−b(a−b)a−b=(a+2b)2a−b⋅a−b(2b+a)(2b−a)=a+2b2b−a∵ab =3,∴a =3b ,所以原式=3b+2b 2b−3b=−5.【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化. 30.(2023上·山东潍坊·七年级统考期中)计算: (1)aa+1+a−1a 2−1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1;(3)先化简再求值:(1−3x+2)÷x−1x 2+x−2,其中x 是﹣2,1,2中的一个数值. 【答案】(1)1;(2)2a+1;(3)x ﹣1,x =2时,原式=1. 【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解. 【详解】(1)a a+1+a−1a 2−1,=aa+1+1a+1, =a+1a+1, =1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1, =2aa+1−2(a−2)(a+1)(a−1)⋅(a−1)2a−2,=2a a+1−2(a−1)a+1,=2a−2(a−1)a+1,=2a+1; (3)(1−3x+2)÷x−1x 2+x−2,=x+2−3x+2⋅(x−1)(x+2)x−1,=x ﹣1,∵x +2≠0,x ﹣1≠0, ∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键. 31.(2023上·吉林白城·七年级统考期末)先化简,再求值:x 2−1x 2−2x+1÷x+1x−1·1−x1+x,其中x =12.【答案】1−x1+x ,13.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可. 【详解】x 2−1x 2−2x+1÷x+1x−1·1−x1+x , =(x +1)(x −1)(x −1)2⋅x −1x +1⋅1−x1+x=1−x1+x ,当x =12时,原式=1−121+12=13.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可.32.(2023上·山东烟台·七年级统考期中)先化简(a 2−4a+4a 2−4﹣aa+2)÷a−1a+2,再从a ≤2的非负整数解中选一个适合的整数代入求值. 【答案】−2a−1,2【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】解:原式=[(a−2)2(a−2)(a+2)−aa+2]⋅a+2a−1,=(a−2a+2−aa+2)⋅a+2a−1,=−2a+2⋅a+2 a−1,=−2a−1.∵a≤2的非负整数解有0,1,2,又∵a≠1,2,∴当a=0时,原式=2.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.33.(2023下·江苏盐城·七年级东台市三仓镇中学校考期中)先化简,再求值:x2−1(x−1)2÷x2+xx−1+2x,其中x为你喜欢的一个使原式有意义的整数.【答案】3x,1【详解】分析:根据据分式的混合运算的法则和步骤,先算乘除,再算加减,然后约分化简,最后代入求值即可,注意选择使分母不为零的数代入.详解:x2−1(x−1)2÷x2+xx−1+2x=(x+1)(x−1)(x−1)2÷x(x+1)x−1+2x=(x+1)(x−1)(x−1)2·x−1x(x+1)+2x=1 x +2x=3x当x=3时,原式=1.点睛:本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.34.(2023上·四川泸州·七年级统考期中)先化简,再求值:(3a+1−a+1)÷a2−4a+4a+1,其中a=4.【答案】−a+2a−2,-3.【详解】试题分析:先根据分式的混合运算的法则,先算括号里面的(通分后计算),再把除法化为乘法约分化简,最后代入求值即可.试题解析:(3a+1−a+1)÷a2−4a+4a+1=3−a2+1a+1×a+1(a−2)2,=−(a+2)(a−2)a+1×a+1(a−2)2=−a+2a−2,当a=4时,原式=-3.35.(2023上·北京昌平·七年级校考期中)先化简,再求值:xx2−1⋅(x−1x−2),其中x(x+1)=2(x+1).【答案】−1x−1,-1【详解】试题分析:先根据分式的混合运算的法则,先把分式的化简,然后再根据方程求出符合条件的x代入求值,注意分式有意义的条件,即分母不能为零.试题解析:原式==.由解得或.因为x不能等于-1,所以当=2时,原式=.36.(2023下·湖南郴州·七年级校考期中)先化简,再求值:(x2x−1+91−x)÷x+3x−1,x在1,2,-3中选取适当的值代入求值.【答案】x-3,当x=2时,原式=-1【详解】解:(x2x−1+91−x)÷x+3x−1=(x+3)(x−3)x−1⋅x−1 x+3=x−3要是原式有意义,则x≠1,−3,则x=2原式=-137.(2023上·浙江杭州·七年级统考期中)先化简,再求值:(4x+6x2−1−2x−1)÷x+2x2−2x+1,其中x是不等式组{x+4>01−2x>3的整数解.【答案】2x−2x+1,4.【分析】原式中先计算分子,约分得到最简结果,求出不等式组的解集,找出解集中的整数解确定出x的值,代入计算即可求出值.【详解】原式= 4x+6−2(x+1)(x+1)(x−1)×(x−1)2x+2= 2(x+2)(x+1)(x−1)×(x−1)2x+2= 2(x−1)x+1=2x−2x+1解不等式组{x+4>01−2x>3得:-4<x<-1所以不等式组的整数解为-3,-2,即x=-3,-2.∵x≠-2∴x=-3,∴原式= 2(−3−1)−3+1=4.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.(2023上·重庆·七年级西南大学附中校考期中)先化简,再求值:(2a−2−6a2−2a)÷a2−6a+9a−2,其中a满足2a2−6a+3=0.【答案】2a2−3a ,−43【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】(2a−2−6a2−2a)÷a2−6a+9a−2=[2aa(a−2)−6a(a−2)]÷(a−3)2a−2=2(a−3)a(a−2)×a−2(a−3)2=2a(a−3)=2a2−3a∵2a2−6a+3=0∴2a2−6a=−3∴a2−3a=−32∴原式=2a2−3a =2−32=−43.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.39.(2023上·山东聊城·七年级校考期末)(1)计算:(x2−4x+4x2−4−xx+2)÷x−1x+2(2)先化简a2−2aa2−1÷(2a−1a−1−a−1),然后从−2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【答案】(1)21−x ;(2)−1a+1,1【分析】(1)先计算括号内的分式减法,再计算分式的除法即可得;(2)先计算括号内的分式减法,再计算分式的除法,然后根据分式有意义的条件选取合适的a的值,代入计算即可得.【详解】解:(1)原式=[(x−2)2(x+2)(x−2)−xx+2]⋅x+2x−1=(x−2x+2−xx+2)⋅x+2x−1=−2x+2⋅x+2x−1=21−x;(2)原式=a(a−2)(a+1)(a−1)÷[2a−1a−1−(a+1)(a−1)a−1]=a(a−2)(a+1)(a−1)÷(2a−1a−1−a2−1a−1)=a(a−2)(a+1)(a−1)÷2a−1−a2+1a−1=a(a−2)(a+1)(a−1)÷2a−a2a−1=a(a−2)(a+1)(a−1)⋅a−12a−a2=a(a−2)(a+1)(a−1)⋅a−1a(2−a)=−1a+1,∵a+1≠0,a−1≠0,a≠0,2−a≠0,∴a≠−1,a≠1,a≠0,a≠2,∵a是−2≤a≤2的范围内的一个整数,∴a=−2,则原式=−1−2+1=1.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键. 40.(2023上·山东滨州·七年级统考期末)(1)计算:3(x−1)(x+2)−xx−1+1;(2)先化简,再求值:a−1a 2−4a+4÷(1+1a−2),请从1,2,3中选一个合适的数作为a 的值,代入求值. 【答案】(1)−1x+2;(2)1a−2,1.【分析】(1)根据分式的四则运算求解即可;(2)根据分式的四则运算进行化简,然后代数求解即可. 【详解】解:(1)3(x−1)(x+2)−xx−1+1 =3(x −1)(x +2)−x (x +2)(x −1)(x +2)+(x −1)(x +2)(x −1)(x +2)=3−x 2−2x +x 2+x −2(x −1)(x +2)=1−x(x −1)(x +2)=−1x +2(2)a−1a 2−4a+4÷(1+1a−2) =a −1(a −2)2÷(a −1a −2) =a −1(a −2)2×(a −2a −1) =1a−2,由题意可得:a −2≠0,a −1≠0 ∴a ≠1,a ≠2将a =3代入得,原式=13−2=1.【点睛】此题考查了分式的四则运算,化简求值,解题的关键是熟练掌握分式的四则运算以及分式的有关知识.。
沪科初中数学七下 《分式的运算《分式的加减》课件 (公开课获奖)2022年沪科版2
森林面积〔单位:公顷〕分别是S1 ,S2
,S3 ,2003年与2002年相比 ,森林面积的
增长率提高了多少 ?
S3 S2
•2003年的森林面积增长 率是:
S2
•2002年的森林面积增长S 2 S 1
率是:
S1
•2003年与2002年相比 ,森林
面积增长率提高了:
S S S S
3
2
21
SS
2
1
观察、思考:
注意:过程中 ,分子、分母一般 保持分解因式的形式.
在计算异分母分式的加减时 ,要 利用分式的根本性质 ,先把分母不 相同的分式化为分母相同的分式 , 再进行加减.化异分母分式为同分 母分式的过程 ,叫做分式的通分.
练习:
x
1、〔1〕
x
1
1 x
〔2〕ba1b2a1b3a1
1 〔3〕2c2d
1 3cd2
通过这节课的学习活 动你有哪些收获 ?
你还有什么困惑吗 ?
在四边形外部找一点 ,作该点与 另四个顶点的连线.由图知 ,四 边形的内角和为:
180°×3- 180° =360°
1
2
怎样求n边形的内角和呢 ?
An A1
A2
A5
A3
A4
从n边形的一个顶点出 发 ,可以引 (n-3)条 对角线 ,它们将n边形 分为 (n-2) 个三角
形 ,n边形的内角和等 于180°×(n-2) .
a c ac b d bd
2、分式的乘除acadad b d b c bc
练习:
2
2xy
yx 2x y2
2y2 x
x12x2 1 1 x x1 x1 x1
(1)1 1 x x1 x2 1
沪科版七年级数学下册第九章《9.2 分式的运算(第1课时)》公开课课件
You made my day!
我们,还在路上……
9.2分式的运算(第1课时)
交流与反思
做一做1:
2.
3a
(3) 4b2
.16b3
9 a2
(4) 3ab ÷ 21b
4 x2 y 10xy
(5)-3xy÷ 2 y2 3x
(6)x y x么问题?
2、在学习的过程 中 你有什么体会?
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月30日星期三2022/3/302022/3/302022/3/30 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/302022/3/302022/3/303/30/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/302022/3/30March 30, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
沪科版数学七年级下册分式的运算(第1课时分式的乘除)(共21张)
a
b
d
=
c
a d
b c
ad
=
bc
ac
=
bd
再换一组数
进行计算
你得出了
什么结论?
分母
分子
分式乘以分式,用________的积做积的分子,________的积作为积的分母。
分子
分母
分式除以分式,把除式的________、________颠倒位置后,与
相乘
被除式________。
(4)
m 4m
12 3m
2
解:
m 16
1
原式
2
12 3m
m 4m
2
(m 4)(m - 4)
1
-(
3 m 4)
m(m 4)
1
3m
如果除式是整式,
则把它的分母看
做“1”
1.下面的计算对吗?如果不对,应该怎样改正?
(1)
x 6b 3b
• 2
2b x
沪科版数学七年级下册
第9章
9.2
分式
分式的运算
第1课时 分式的乘除
教学目标
1
• 借助类比的方法理解并掌握分式的乘除法运算法
则,
2
• 能运用分式乘除运算法则熟练进行运算并解决实
际问题
3
• 经历视察——猜想——验证,感知数学知识的普
遍联系性,在学习新知的过程中掌握学习方法
一、分式的基本性质是什么?
分式的分子与分母同时乘以(除以)同一个不等于零
这个整式的分式;
初中数学沪科版七年级下册9.2.1分式的乘除公开课优质课课件.ppt
分数的乘、除法法则:
1.两个分数相乘,把分子相乘的 积作为积的分子,把分母相乘的 积作为积的分母;
2.两个分数相除,把除数的分子 分母颠倒位置后,再与被除式相乘.
根据分数的乘、除法法则完成下面计算:
(1) 23190
( (
));
(2)
2 3
94
( (
)).
23190
322353
最新精品课件
初中数学优质课件
第9章
分式
9.2 分式的运算
1.分式的乘除
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握分式的乘除、乘方法则;(重点) 2.会运用分式的乘除、乘方法则进行分式的乘方运算.(重点、
难点)
导入新课
观察与思考
观察下面的运算,你想到了什么?
(1) 2 4 2 4 8 ; 3 5 35 15
例3 计算:
3
(1)
x y2
;
解:(1)原式=(yx23)3
x3 ; y6
(2)
4x2 3z
y
2
.
(2)原式= ( 4x2 y)2 (3z)2
16x4 y2 9z2 .
练一练
判断下列各式是否成立,并改正.
1
b3 2a
2
b5 2a2
;
.
2.计
算:
(1)
2x4 3z
y2
3
;
(2) 2acb2d3
2
6a4 b3
3c b2
沪科版七年级下册分式及其基本性质课件
b
bn
例题讲授: 例1:计算:
2a 3c
2b
2
2 a 2b 2
解 原式=
3c 2
4a 4b 2 9c2
例2:计算
ac2bd3
3
2da3 2ca2
解 原式= a6b3 2a c2 c3d9 d3 4a2
a 6b 3 c 3d 9
d3 2a
c2 4a2
先做乘 方,后 做乘除
a 3b3 8cd 6
(x 1)(x 2 )(x 2 ) (x 2 )2(x 1)(x 1)
x2 (x 2 )(x 1)
分子分母都 是
多项式! 分解因式
约分
合作学习
类比 (ab)n=anbn
猜一猜
(a )n ? b
分式乘方的法则为:
分式的乘方就是分子、分母分别乘方
符号语言表达为: ( a ) n a n
课堂练习
课本第98页 练习 1、2、3、4
小结
(1)分式的乘法法则和除法法则
(2)分子或分母是多项式的分式乘除法 的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂) 排列;在乘除过程中遇到整式则视其为分母为1,分 子为这个整式的分式;
②把各分式中分子或分母里的多项式分解因式;
③应用分式乘除法法则进行运算;(注意:结果为最 简分式或整式.)
9.2 分式的运算 分式的乘除
教学目标:
1、经历探索分式的乘除运算法则的过程,并能 结合具体情境说明其合理性;
2、会进行简单分式的乘除运算,具有一定的代数 化归能力。
3、能解决一些与分式有关的简单的实际问题.
自学提纲:(自学课本第96—98页内容)
1、类比分数乘除运算法则,你能归纳 出分式乘除运算的法则吗? 2、当分式的分子分母是多项式时,如 何进行分式的乘除运算? 3、分式乘除运算的结果是什么情势?
沪科版七年级数学下册第九章《9.2 分式的运算第2课时》公开课课件
先化简,再求值:
x2 1 ,其 中 x1.5. x1 1x
解 : 原 x2式 1 x-1 x1
x 2 - 1 (x1)(x1)
x -1
ห้องสมุดไป่ตู้x1
x1
当 x1.5时,原 x式 1
1 .5 1 0 .5
例2 先化简,再求值:
xx22--21x2xx--1 x2,其中x3.
解 : 原 式 x2-1 x-1 x2-2x x22x
分析
先找
最简公分母.
a2 -4 能分解 :
4
a2
a2 -4 =(a+2)(a-2),
(a 2)(a 2) (a 2)(a 2) 其中 (a-2)恰好为第二
4 (a 2)
(a 2)(a 2)
分式的分母. 所以 (a+2)(a-2)
2a
即为最简公分母.
(a 2)(a 2)
1 .
(1) 5 2 10 ( × ) 7
xx x
x
分子相加减
94 5
(2) aa
2a
(
×
)
5 a
(3)1 1 2 aa
)
(
× a 1 a
分母不变
a
把1看作
a
做一做
(口算)计算
(1) 3 12 15 aa a
0
(3) y x xy xy
(2)
1 m
3 m
4 m
(4)
a x
y
y
a
x
1
2a
(2ab2b1)a122a2b
2ab2 2a2b
b a2
2ab(b a)
b a2
沪科初中数学七下 《分式的运算《分式的乘除》教案 (公开课获奖)2022沪科版2
分式的乘除1、教学目标分析知识目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题.能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.2、教学重难点教学重点:分式乘除法的法则及应用.教学难点:分子分母是多项式的分式的乘除法运算.3、教学过程分析1、类比联想,探究新知师生活动:首先让学生计算式子(1)2435⨯ (2)5275÷解后反思:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?依据的是:分数的乘法和除法法则,与分数的乘除法法则类似,类比分数的乘除法则,猜想出分式的乘除法则.分式的乘除法法则:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a c a cb d b d ⋅⋅=⋅ ac bd ÷a d b c =⋅a d b c ⋅=⋅分式乘方的法则:分式乘方就是把分子、分母分别乘方.根据负整数次幂的意义,可知: (b a)n =(ab 1-)n =a n b n -=n b n a2、例题分析,应用新知例1 计算:(1)3432x y y x ⋅; (2) 2322524ab a b ccd -÷.例2 计算222441214a a aa a a-+-⋅-+-.3、练习巩固,培养能力课堂练习:(1)()2233yxxy⋅-;(2)2211497m m m÷--.这两道练习和所讲的例题都不同,主要是为了检测学生的举一反三的能力,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则.4、课堂小结,回扣目标本节课我们学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获呢?5、布置作业1 补充题:22222356842143a a a a aa a a a a a--+-÷⋅++++-. (选做)2.思考题:2ab⎛⎫⎪⎝⎭=?3ab⎛⎫⎪⎝⎭=?nab⎛⎫⎪⎝⎭=?有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
沪科版七年级数学下册第九章《分式的乘除》优质课课件(共14张PPT)
答:成立
(1)
a b
·
c d
=
ac bd
(2)
a b
÷
c d
=
a b
·
d c
=
ad bc
你会用语言叙述一下吗?
二、新知的学习:分式的乘除法运算法则
分式乘分式,用分子的积做积的分子,分 母的积做积的分母;分式除以分式,把除式的 分子、分母颠倒位置后,与被除式相乘.
a c ac b d bd
ac ad ad b d b c bc
•
解: (1)
a2x by 2
ay 2 b2x
=
a 2 x ay 2 by 2 b 2 x
=
a3 b3
(2)
a2 b2
xy z2
a2 yz b2 x2
=
a 2 xy b2z2
b2x2 a 2 yz
x3
=
z3
二、学以致用
(1)你会利用分式的乘除法运算法则 计算下列各式吗?
学数学是为 了用数学解决 问题,看看你
•11、即使是普通孩子,只要教育得法,也会成为不平凡的人。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、儿童是中心,教育的措施便围绕他们而组织起来。 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、生活即教育,社会即学校,教学做合一。 •16、当在学校所学的一切全都忘记之后,还剩下来的才是教育。2021年10月21日星期四2021/10/212021/10/212021/10/21 •17、播种行为,可以收获习惯;播种习惯,可以收获性格;播种性格,可以收获命运。2021年10月 2021/10/212021/10/212021/10/2110/21/2021 •18、我们发现了儿童有创造力,认识了儿童有创造力,就须进一步把儿童的创造力解放出来2021/10/212021/10/21October 21, 2021 •19、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/10/212021/10/212021/10/212021/10/21
分式的运算PPT课件(沪科版)
4x8y4 9z2
(3)
(
2ab3 -c2d
)2 ÷
6a4 b3
●
(
-3c b2
)3
4a2b6 = c4d2
●
b3 6a4
-27c3
●
b6
= - 18b3 a2cd2
2.计算:
(1) (
b2 ac
)3 ÷ (-b6c);
(2) (-
x y
)2
●
(
y2 x
)3
÷(xy)4
解:(1) 原式=
b6 a3c3
)3
的结果是(
A
).
A. -a2 B. a2 C. a8 D.a15
2. 若 (
a3 b2
)2
÷(-
a b3
)2
=3,
则a8b4的值是( B ).
A. 6 B. 9 C. 12 D.81
3.先化简,再求值:
(
a2+abb2)3
÷
(
ab3 a2-b2
1 )2 • [ 2(a-b)
]2
,
其中a=-2,b=1.
2m2n 5p2q 3q
= 3pq2
●
4mn2
●
5mnp
=
1 2n2
m2-n2 (2) (m-n)2 ●
(n-m)2 m2n2
÷
m+n m
(m+n)(m-n) (n-m)2 m = (m-n)2 ● m2n2 ● m+n
=
m-n mn2
(3)
16-a2 a2+8a+16
÷
a-4 2a+8
●
a-2 a+2
D.
a-1 a+1
探究新知 你能结合有理数乘方的概念和分式乘法的法
沪科版数学七年级下册分式的运算(第5课时分式的混合运算)课件
正确的解法:
新
知
探
(x
2 2)2
×
× x2 x3
究
除法转化为乘法之后 可以运用乘法的交换 律和结合律
计算: (1) 2ba
2
a
1
b
a b
b
4
试一试
新 知
(2)x
1
x
2x
2
x 1
x
1 1
x
1
1
讲 授
(1) 2ba
2
a
1
b
a b
b
4
有乘方先计算乘方, 新 除法先转化为乘法 知
课
B
堂
练
习
B
课
堂
练
解:
习
提 升 练 习
∵x取整数解 ∴x=4
拓
展
∴2y2+3y=1
练
习
∴4y2+6y-1=2( 2y2+3y )-1=1
该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目
拓
解:
展
练
习
计算
课
1.
后
练
习
2.
3.
参考答案: 1. 2. 3.
沪科版数学七年级下册
9.2 分 式 的 运算
第5课时 分 式 的混合运算
复习回顾
复
习
1、分式的加减
回
顾
2、分式的乘除 3、分式的乘方
a c a d ad b d b c bc
请问下面的运算过程对吗?
注意:
新
知
乘除运算属于同级 探
运算,应按照先出 现的先算的原则,
究