高等数学模拟试题1
《高等数学(一)》(专升本)2024年福建省全真模拟试题含解析
《高等数学(一)》(专升本)2024年福建省全真模拟试题一、单选题(每题4分)1、设x2是f(x)的一个原函数,则f(x)=()2、()A.收敛B.发散C.收敛且和为零D.可能收敛也可能发散3、设z=z3-3x-y,则它在点(1,0)处( )A.取得极大值B.取得极小值C.无极值D.无法判定4、5、()A.0或1B.0或-1C.0或2D.1或-16、设b≠0,当x→0时,sinbx是x2的( )A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量7、A.xex2B.一xex2C.Xe-x2D.一xe-x28、A.充分必要条件B.充分条件C.必要条件D.既非充分也非必要条件9、10、A.0B.1C.2D.+∞二、填空题(每题4分)11、12、13、设y=5+lnx,则dy=_______。
14、求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.15、设ex-ey=siny,求y'16、17、18、函数y=cosx在[0,2x]上满足罗尔定理,则ξ= .19、20、设函数z=x2ey。
则全微分dz= .三、解答题(每题10分)21、22、23、求微分方程y”-5y'-6y=0的通解.24、25、26、27、求微分方程y''-y'-2y=0的通解.参考答案一、单选题(每题4分)1、【正确答案】:A【试题解析】:由于x2为f(x)的一个原函数,由原函数的定义可知f(x)=(x2)'=2x,故选A.2、【正确答案】:D【试题解析】:本题考查了数项级数收敛的必要条件的知识点.3、【正确答案】:C【试题解析】:本题考查了函数在一点处的极值的知识点.(1,0)不是驻点,故其处无极值.4、【正确答案】:B【试题解析】:由级数收敛的定义可知B正确,C不正确.由于极限存在的数列不一定能保证极限为0,可知A不正确.极限存在的数列也不一定为单调数列,可知D也不正确.5、【正确答案】:A【试题解析】:本题考查了定积分的知识点.k2-k3=k2(1-k)=0.所以k=0或k=1.6、【正确答案】:D【试题解析】:本题考查了无穷小量的比较的知识点.7、【正确答案】:B【试题解析】:本题考查了变上限积分的性质的知识点.8、【正确答案】:C【试题解析】:由级数收敛的必要条件可知C正确,D不正确.9、【正确答案】:D【试题解析】:10、【正确答案】:B【试题解析】:所给级数为不缺项情形。
高等数学基础模拟题
高等数学基础模拟题一、单项选择题(每小题4分,本题共20分)1.函数2e e xx y -=-的图形关于( )对称.(A)坐标原点 (B)x 轴 (C)y 轴 (D)x y = 2.在下列指定的变化过程中,()是无穷小量. (A))(1sin∞→x xx (B))0(1sin →x xk4.函数x y arctan =的单调增加区间是 .5.若⎰+=c x x x f sin d )(,则=')(x f .三、计算题(每小题11分,共44分) 1.计算极限1)1sin(lim 21-+-→x x x .2.设xx y 3e cos +=,求y d .3.计算不定积分⎰x xxd e21.4.计算定积分⎰e1d ln x x .四、应用题(本题16分)某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容径与高各为多少时用料最省?答案一、单项选择题(每小题4分,本题共20分) 1.A 2.C 3.C 4.B 5.D二、填空题(每小题4分,本题共20分) 1.)2,1(- 2.e 3.3 4.),(∞+-∞ 5.sin- 三、计算题(每小题11分,共44分) 1.解:21)1)(1()1sin(lim 1)1sin(lim 121-=-++=-+-→-→x x x x x x x )3(d )e (cos xx +h ,则其表面积为 ,由实际问题可知,当3π4V =,即当容器x(B))(xx f =x ln (D)ln )(x x f =),+∞,则函数 轴坐标原点(A)x 1 (B)xx sin(C)1e -x(D)32xx⑷设)(x f 在点1=x 处可导,则--→hf h f h ()21(lim0( ). (A))1(f ' (B))1(f '-(C))1(2f ' (D))1(2f '-⑸函数322-+=x x y 在区间)4,2(内满足().(A)先单调上升再单调下降 (B)单调上升(C)先单调下降再单调上升 (D)单调下降⑹若x x f cos )(=,则='⎰x x f d )(().(A)c x +sin (B)c x +cos (C)c x +-sin (D)c x +-cos⑺=+-⎰-x x x x d )22cos (2π2π7().(A)0 (B)π(C)2π(D)2πk ⑺=⎰x xx d e d d 2. (三)计算题⑴已知32)1(2-+=+x x x f ,求1(,)2(,)(xf f x f .⑵计算极限xxx 5sin 6tan lim 0→.⑶计算极限5456lim 221--++-→x x x x x .⑷计算极限32)1sin(lim 21-+-→x x x x .⑸设2ln sin x xx y -=,求'y . ⑹设x y 3sin ln =,求y d .⑺设y yx =()是由方程x y x y cos e e 3+=确定的函d y .⑻计算不定积分⎰x x xd sin .⑼计算不定积分⎰x x d )1. .x .)0,2(A 的距离d ,问当底的无盖圆柱形铁桶,问怎样62.5立方米的长方体x x arctan >.e e x x>.]a 上可积并为奇函数,则0d )(=⎰-aax x f .三、综合练习答案 (一)单项选择题⑴C ⑵D ⑶C ⑷D ⑸B ⑹B ⑺D ⑻B ⑼B(二)填空题⑴)2,1()1,2[Y -⑵0=x ⑶e ⑷41⑸),2(∞+⑹x 3cos 3⑺2e x(三)计算题⑴42-x ,0,2241x x -⑵56⑶32-⑷41 ⑸3ln 2sin 21cos xxx x x +--⑹x x d cot 3⑺x xy xy y x d cos 3e sin e 23--⑻c x +-cos2⑼c x ++ln 1ln ⑽c x+-1e ⑾-h h4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( ).(A))(x F (B)c x F +)((C)c x F +)(2(D))(2x F5.下列无穷限积分收敛的是( ). (A)⎰+∞1d 1x x (B)⎰+∞d e x x(C)⎰+∞1d 1x x(D)⎰+∞12d 1x x二、填空题(每小题3分,共15分)1.函数)1ln(1-+=x x y 的定义域是.2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(1x kx x x x f x ,在0=x 处连续=k.3.曲线x x f =)(在)1,1(处的切线斜率是4.函数)1ln(2x y +=的单调增加区间是.5.='x x d )(cos .分) .'. 3e y y =+确定的函数,..l ,问当底半 )1ln(x +>.e 3.21 4.),0(∞+1.42.xx x x x e sin cos 22+++ 3.22ecos e 2x x x 4.x y x yd )e 3(12- 5.c x +-1sin 6.94e 923+ 四、应用题当底半径l r 36=,高l h 33=时,圆柱体的体积最大. 山东广播电视大学开放教育高等数学基础课程综合练习题(1)一、 单项选择题1.下列各函数对中,( )中的两个函数相等. (A)2)()(x x f =,x x g =)((B)2)(x x f =,x x g =)((C)3ln )(x x f =,x x g ln 3)(=(D)4ln )(x x f =,g f(C)2π(D)2π8.若)(x f 的一个原函数是x1,则=')(x f ( ).(A)x ln (B)32x(C)x 1(D)21x-9.下列无穷积分收敛的是( ). (A)⎰∞+0d cos x x(B)⎰∞+-03d ex x(C)⎰∞+1d 1x x(D)⎰∞+1d 1x x二、填空题 1.函数x x xy ++-=2)2ln(的定义域是2.函数⎩⎨⎧≤>+=0sin 02x x x x y 的间断点是 .3.若函数⎪⎨⎧≥<+=00)1()(1x x x x f x ,在0=x 处连)处的切线斜率是的单调增加区间是=)(x f 3,求,)2(,)(f x f .x y cos 3+确定的函x9.计算不定积分⎰+x x x d )ln 1(1. 10.计算不定积分⎰x x xd e21. 11.计算不定积分⎰x xxd ln 2.12.计算定积分⎰102d e x x x .13.计算定积分⎰e12d ln x x x .14.计算定积分⎰e1d ln x x x .四、应用题 1.求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.2.圆柱体上底的中心到下底的边沿的距离为d ,问当底半径与高分别为多少时,圆柱体的体积最大?3.某厂要生产一种体积为V 的无盖圆柱形铁桶,问怎样才能使用料最省?⎰2.53.32-4.41 5.3ln 2sin 21cos x x x x x +--6.x x d cot 37.x xy x y y x d cos 3e sin e 23-- 8.c x +-cos29.c x ++ln 1ln10.c x+-1e11.c x x x +--1ln12.)1e (412+13.)12e (13+2)(x f -=()(A) (B)(C)e 41 (D)e 214.=⎰x x xf xd )(d d 2( ). (A))(2x xf (B)x x f d )(21(C))(21x f (D)x x xf d )(2 5.下列无穷限积分收敛的是( ). (A)⎰+∞d e x x(B)⎰+∞-0d e x x(C)⎰+∞1d 1x x(D)⎰+∞1d 1x x二、填空题(每小题3分,共15分)1.函数)1ln(92--=x x y 的定义域是 .2.函数⎩⎨⎧≤>-=0sin 01x x x x y 的间断点是 .3.曲线1)(+=x x f 在)2,1(处的切线斜率是.21.解:5655sin lim 66sin lim5655sin 66sin 56lim 5sin 6sin lim0000=⋅=⋅=→→→→xx x xx x x x x x x x x x 2.解:由导数四则运算法则得3.解:)e 2sin(e e cos e sin e 2x x x x x y =='4.解:等式两端求微分得 左端y x x y x y d cos )(cos d )cos (d +==右端y yy d e )e (d ==由此得 整理后得5.解:由分部积分法得6.解:由换元积分法得四、应用题(本题12分)解:如图所示,圆柱体高h 与底半径r 满足222l r h =+圆柱体的体积公式为 将222h l r -=代入得求导得 令0='V 得l h33=,并由此解出l r 36=.即当底63x ,则有)(x 单调增加,所以当x。
高等数学模拟试题15套
= a-b
C. lim xn = a n yn b
( ) D. lim n
xn × yn
= ab
3.当 x 0 时,下列量中,无穷小的为
A. e x sin x
B. e xcosx
1
C. e x sin x
()
1
D. e x cos x
4.下列描述中错误的是 A.无穷间断点属于第一类间断点 B.初等函数在定义域是连续的 C.闭区间上的连续函数一定有最大值与最小值
次方程 y¢+ p( x) y = q( x)的通解为
()
A. y = yc + yd
B. y = yc + Cyd
C. y = Cyc - yd
二.计算题(本大题共 5 小题,每小题 10 分,共 50 分)
21.求极限
lim
p x(
- arctan
x)
2 x®+¥
D. y = Cyc + yd
3
C. -F (sin x) + C
D. F (sin x) + C
ò 13.
(
1 sin 2
x
+1)d
sin
x
=
A. - cot x + x + C B. - cot x + sin x + C
C. - 1 + sin x + C sin x
()
D. - 1 + x + C sin x
1
14.根据定积分的性质,下列各式中成立的是
5.设
f
(x)
=
(x2
-1)(x x3 - x
高三数学模拟试题含答案
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
《高等数学》考试模拟题及答案
《高等数学》考试模拟题(一)一、求极限(每小题4分,共16分)1.1limcos 2n n n π→∞2.0tan limx kx x →4.1lim ()ln ln x x x x→∞-二、导数、微分及其应用(每小题6分,共30分)1.ln y x x =,求y '2.arccos y x x =y '3.求隐函数的导数求dy dx :cos()xy x = 3.1sin()sin()y xy x xy +-4.求x y x e =的n 阶导数。
5.利用微分求arcsin0.4983的近似值。
三、计算不定积分、定积分和反常积分(每小题6分,共36分) 1.121x x dx e ⎰2.arctan xdx ⎰ 2.21arctan ln(1)2x x x C -++3 111ln 21x C x x -+++4.42 0tan xdx π⎰5.⎰6. 0sin x x dx e -+∞⎰四、证明题(每小题6分,共18分)1.按极限定义证明3lim(31)8x x →-=。
2.证明sin sin a b a b -≤-, a b 、为任意实数。
3.若方程11100n n n n a x a x a x a --++++= 有一个正根0x ,证明方程 12121(1)20n n n n na x n a x a x a ---+-+++= 必有一个小于0x 的正根。
模拟题参考答案(一)一、1. 0 2. k 3. e 4. -1二、1.1ln x +2.arccos x3.1sin()sin()y xy x xy +- 4.()x x n e +5.0.00176π-或0.5216三、1.1x C e -+2.21arctan ln(1)2x x x C -++ 3.111ln 21x C x x -+++ 4.14π-5.3π+ 6.12四、1.0, =3εεδ∀>∃,当03x δ<-<时,318333x x δε--=-<=。
专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)
专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x0处不连续,则( )A.f’(x0)必存在B.f’(x0)必不存在C.f(x)必存在D.f(x)必不存在正确答案:B解析:f(x)在x0处不连续,是指连续性的三要素之一不满足,因此C、D都不对,由于可导必连续,则不连续必不可导,所以A不对,故选B.知识模块:一元函数微分学2.设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的( )。
A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分又非必要条件正确答案:A解析:由φ(1)=0可知即f+’(1)=f -’(1)=0,所以,f’(1)=0.设f(x)在x=1处可导,因为f(1)=0,所以(x2+x+1)φ(x)=3φ(1),知识模块:一元函数微分学3.设函数f(x)在x=0处可导,且f(0)=0,则=( ) A.一2f’(0)B.一f’(0)C.f’(0)D.0正确答案:B解析:由于f(x)在x=0处可导,且f(0)=0,则=f’(0)一2f’(0)=一f’(0).知识模块:一元函数微分学4.若f(x一1)=x2一1,则f’(x)等于( )A.2x+2B.x(x+1)C.x(x一1)D.2x一1正确答案:A解析:因f(x一1)=x2一1=(x—1)(x一1+2),故f(x)=x2+2x,则f’(x)=2x+2.知识模块:一元函数微分学5.函数y=f(x)可导,则y=f{f[f(x)]}的导数为( )A.f’{[f(x)]}B.f’{f’[f’(x)]}C.f’{f[f(x)]}f’(x)D.f’{f[f(x)]}f’[f(x)]f’(x)正确答案:D解析:y’(x)=(f{f[f(x)]})’=f’{f[f(x)]}f’[f(x)]f’(x),故选D.知识模块:一元函数微分学6.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f’(x)<0,则下列结论成立的是( )A.f(0)<0B.f(1)>0C.f(1)>f(0)D.f(1)<f(0)正确答案:D解析:因f’(x)<0,x∈(0,1),可知f(x)在[0,1]上是单调递减的,故f(1)<f(0).知识模块:一元函数微分学7.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f(x)在(a,b) ( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B解析:由题意知,f(x)在(a,b)上单调递增,且f(a).f(b)<0,则由零点定理以及单调性可得y=f(x)在(a,b)内存在唯一零点.知识模块:一元函数微分学8.曲线y=( )A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线正确答案:D解析:因=1,所以y=1为水平渐近线,又因=∞,所以x=0为铅直渐近线.知识模块:一元函数微分学9.下列函数在给定区间满足罗尔定理条件的有( )A.f(x)=B.y=C.y=xex,[0,1]D.y=x2一1,[一1,1]正确答案:D解析:A选项中,函数在x=5处不连续;B选项中,函数在x=1处不连续;C选项中,y(0)≠y(1);D选项中,函数在[一1,1]连续,在(一1,1)可导,y(-1)=y(1),符合罗尔定理条件,故选D.知识模块:一元函数微分学10.要制作一个有盖铁桶,其容积为V,要想所用铁皮最省,则底面半径和高的比例为( )A.1:2B.1:1C.2:1D.正确答案:A解析:设底面半径为r,高为h,则有V=πr2h,S=2πrh+2πr2=+2πr2,S’(r)=一+4πr=,由于驻点唯一,必是最值点,此时h=,则r:h=1:2.知识模块:一元函数微分学填空题11.设函数y=sin(x一2),则y’’=________.正确答案:一sin(x一2)解析:因为y=sin(x一2),y’=cos(x一2),y’’=一sin(x一2).知识模块:一元函数微分学12.设函数f(x)有连续的二阶导数且f(0)=0,f’(0)=1,f’’(0)=一2,则=_______.正确答案:一1解析:=一1.知识模块:一元函数微分学13.y=y(x)是由方程xy=ey-x确定的函数,则dy=_______.正确答案:解析:方程两边对x求导,注意y是x的函数,有y+xy’=ey-x(y’一1),所以y’=.知识模块:一元函数微分学14.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_________.正确答案:π解析:y’=一sinx,因函数在[0,2π]上满足罗尔定理,故存在ξ∈(0,2π),使一sinξ=0,故ξ=π.知识模块:一元函数微分学15.若函数f(x)在[0,1]上满足f’’(x)>0,则f’(0),f’(1),f(1)一f(0)的大小顺序为_________.正确答案:f’(1)>f(1)一f(0)>f’(0)解析:f’’(x)>0,则f’(x)单调递增,又有拉格朗日中值定理得f(1)一f(0)=f’(ξ)(1一0)=f’(ξ),ξ∈(0,1).故有f’(1)>f’(ξ)>f’(0),即f’(1)>f(1)一f(0)>f’(0).知识模块:一元函数微分学解答题16.设f(x)=其中a、b、A为常数,试讨论a、b、A为何值时,f(x)在x=0处可导?正确答案:若函数f(x)在x=0可导,则函数f(x)也连续,故有=f(0),f+’(0)=f-’(0),涉及知识点:一元函数微分学17.设y=,求y’.正确答案:涉及知识点:一元函数微分学18.设=a,且f’(0)存在,求f’(0).正确答案:∴f’(0)=a.涉及知识点:一元函数微分学19.求函数x=cosxy的导数.正确答案:等式两边关于x求导,可得1=一(sinxy)(xy)’=一(sinxy)(y+xy’),整理后得(xsinxy)y’=一1一ysinxy,从而y’=.涉及知识点:一元函数微分学20.已知y=,f’(x)=arctanx2,计算.正确答案:令y=f(μ),μ=,则涉及知识点:一元函数微分学21.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y’=0得x=e.而y’’=,令y’’=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y’<0,y’’<0,故y单调下降,且是凸的.当1<x<e时,y’<0,y’’>0,故y单调下降,且是凹的.当e<x<e2时,y’>0,y’’>0,故y单调上升,且是凹的.当e2<x<+∞时,y’>0,y’’<0,故y单调上升,且是凸的.当x=e时,y有极小值2e,且(e2,e2)是拐点.涉及知识点:一元函数微分学22.设f(x)在[1,e]可导,且f(1)=0,f(e)=1,试证f’(x)=在(1,e)至少有一个实根.正确答案:设F(x)=f(x)一lnx,F(1)=0,F(e)=0,由罗尔定理,至少存在一点ξ∈(1,e)使F’(ξ)=0,即f’(ξ)一=0,所以f’(x)=在(1,e)至少有一个实根.涉及知识点:一元函数微分学23.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的正数a及b,在(0,1)内必存在不相等的x1,x2,使=a+b.正确答案:因a,b>0,故0<<1,又因f(x)在[0,1]上连续,且f(0)=0,f(1)=1,由介值定理,必存在ζ∈(0,1),使f(ζ)=.又分别在[0,ζ],[ζ,1]上用拉格朗日中值定理,得f(ζ)一f(0)=(ζ一0)f’(x1),f(1)一f(ζ)=(1一ζ)f’(x2)(其中0<x1<ζ<x2<1)即有=1-ζ.考虑到1-,并将上两式相加,得=1,即存在不相等的x1,x2使=a+b.涉及知识点:一元函数微分学24.利用拉格朗日中值定理证明:当x>1时,ex>ex.正确答案:令f(μ)=eμ,μ∈[1,x].容易验证f(μ)在[1,x]上满足拉格朗日中值定理的条件,故存在ξ∈(1,x),使=f’(ξ),即=eξ,因为ξ∈(1,x),所以eξ>e.即>e,整理得,当x>1时,ex>ex.涉及知识点:一元函数微分学25.设a>b>0,n>1,证明:nbn-1(a一b)<an一bn<nan-1(a一b).正确答案:构造函数f(x)=xn(n>1),因为f(x)=xn在[a,b]上连续,在(a,b)内可导,所以,存在一点ξ∈(a,b)使得f’(ξ)==nξn-1,又0<a<ξ<b,故an-1<ξn-1<bn-1,所以nan-1<nξn-1<nbn-1,即nan-1<<nbn-1,整理得nan-1(b一a)<bn一an<nbn-1(b一a).两边取负号得nbn-1(a一b)<an一bn<nan-1(a一b).涉及知识点:一元函数微分学已知函数f(x)=.26.证明:当x>0时,恒有f(x)+;正确答案:则可知F(x)=C,C为常数.当x=1时,F(1)=C=f(1)+f(1)=,故当x>0时,F(x)=f(x)+恒成立;涉及知识点:一元函数微分学27.试问方程f(x)=x在区间(0,+∞)内有几个实根?正确答案:令g(x)=f(x)一x,则g‘(x)=一1<0,故g(x)在(0,+∞)上单调递减,又则g(x)=0在(0,+∞)上有且仅有一个实根,即f(x)=x在(0,+∞)上只有一个实根.涉及知识点:一元函数微分学28.假设某企业在两个互相分割的市场上出售同一种产品,两个市场的销售量分别是Q1=,Q2=12一x,其中x为该产品在两个市场的价格(万元/吨),该企业生产这种产品的总成本函数是C=2(Q1+Q2)+5,试确定x的值,使企业获得最大利润,并求出最大利润.正确答案:由已知条件得利润函数为L=(Q1+Q2)x—C=(Q1+Q2)x一2(Q1+Q2)一5=[+(12-x)](x-2)一5=x2+24x一47,求导得L’=一3x+24,令L’=0,得驻点x=8.根据实际情况,L存在最大值,且驻点唯一,则驻点即为最大值点.Lmax=.82+24.8—47=49.故当两个市场价格为8万元/吨时,企业获得最大利润,此时最大利润为49万元.涉及知识点:一元函数微分学。
2023年全国各类成人高等学校招生考试《高等数学(一)》模拟卷一
2023年全国各类成人高等学校招生考试《高等数学(一)》模拟卷一1. 【选择题】(江南博哥)A. 0B. 1C. ∞D. 不存在但不是∞正确答案:D参考解析:2. 【选择题】A. -1B. 0C.D. 1正确答案:C参考解析:3. 【选择题】下列函数中,在x=0处可导的是A. y=|x|B.C. y=x3D. y=lnx正确答案:C参考解析:4. 【选择题】函数y=ex+arctanx在区间[-1,1]上A. 单调减少B. 单调增加C. 无最大值D. 无最小值正确答案:B参考解析:单调增加.5. 【选择题】A. y=2B. y=-2C. y=1D. y=-1正确答案:D参考解析:6. 【选择题】设y=cosx,则y''=A. sinxB. cosxC. -cosxD. -sinx正确答案:C参考解析:7. 【选择题】A. 0B. 1C. 2D. -1正确答案:C参考解析:8. 【选择题】二元函数z=x3-y3+3x2+3y2—9x的极小值点为A. (1,0)B. (1,2)C. (-3,0)D. (-3,2)正确答案:A参考解析:9. 【选择题】A.B.C.D.正确答案:C参考解析:10. 【选择题】下列级数中发散的是A.B.C.D.正确答案:D参考解析:11. 【填空题】我的回答:正确答案:参考解析:12. 【填空题】我的回答:正确答案:参考解析:13. 【填空题】我的回答:正确答案:参考解析:14. 【填空题】我的回答:正确答案:参考解析:tanθ—cotθ+C15. 【填空题】我的回答:正确答案:参考解析:1连续应有a=1.16. 【填空题】我的回答:正确答案:参考解析:17. 【填空题】设函数z=x2ey,则全微分dz=________.我的回答:正确答案:参考解析:dz=2xeydx+x2eydy18. 【填空题】我的回答:正确答案:参考解析:19. 【填空题】微分方程y''+6y'+13y=0的通解为_____. 我的回答:正确答案:参考解析:y=e-3x(C1cos2x+C2sin2x)20. 【填空题】我的回答:正确答案:参考解析:4π21. 【解答题】我的回答:参考解析:22. 【解答题】我的回答:参考解析:23. 【解答题】我的回答:参考解析:24. 【解答题】我的回答:参考解析:25. 【解答题】我的回答:参考解析:用极坐标系进行计算.26. 【解答题】我的回答:参考解析:27. 【解答题】我的回答:参考解析:28. 【解答题】我的回答:参考解析:。
专升本(高等数学一)综合模拟试卷1(题后含答案及解析)
专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。
知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。
知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。
知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。
正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。
知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。
正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。
正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。
知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。
正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。
解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。
2023年高等教育自学考试《高等数学(一)》模拟真题一
2023年高等教育自学考试《高等数学(一)》模拟真题一1. 【单选题】(江南博哥)A. 奇函数B. 偶函数C. 有界函数D. 周期函数正确答案:C参考解析:2. 【单选题】A. (x+y)>1B. ln(x+y)≠0C. (x+y)≠1D. (x+y)>0正确答案:A参考解析:3. 【单选题】A. 1B. lnaC. aD. e a正确答案:C参考解析:4. 【单选题】设f(x)=2x,则f''(x)=A. 2x ln2 2B. 2x ln 4C. 2x·2D. 2x·4正确答案:A参考解析:5. 【单选题】设f(x)在x=0处可导,则f'(0)=A.B.C.D.正确答案:A参考解析:6. 【单选题】设二元函数 f(x,y)在点(x0,y0)处有极大值且两个一阶偏导数都存在,则必有A.B.C.D.正确答案:D参考解析:7. 【单选题】设z=e x sin y,则dz=A. e x cos y(dx+dy)B. e x(sin ydx-cosy dy)C. e x(sin ydx+dy)D. e x(sin ydx+cos ydy)正确答案:D参考解析:8. 【单选题】A. x=-3B. x=-1C. x=1D. x=3正确答案:B参考解析:9. 【单选题】若直线x=1是曲线y=f(x)的铅直渐近线,则f(x)是A.B.C.D.正确答案:C参考解析:10. 【单选题】下列无穷限反常积分发散的是A.B.C.D.正确答案:B参考解析:11. 【简单计算题】我的回答:参考解析:12. 【简单计算题】我的回答:参考解析:13. 【简单计算题】我的回答:参考解析:14. 【简单计算题】我的回答:参考解析:15. 【简单计算题】我的回答:参考解析:16. 【计算题】指出下列函数由哪些函数复合而成?(1)y=(cos x)3:(2)y=e-x(3)我的回答:参考解析:解:(1)y=(cosx)3是由y=u3,u=cosx复合而成。
《高等数学》统考模拟试题1及参考答案
《高等数学》统考模拟试题1参考答案中国农业大学网络教育学院编说明: 试卷按 全国高校网络教育部分基础课全国统一考试 “高等数学B ”考试大纲,适用于除数学专业以外的其它理工专业... ... 的本科学生。
一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、设函数ln(1+5x )0() 0x f x xa x ⎧≠⎪=⎨⎪=⎩在x=0处连续,则a 等于( )A 、-1B 、1C 、2D 、5答:D2、当x 0→时,下列变量中是无穷小的为( )A 、x e B、1xC 、ln(12x )+D 、cos x x答:C 3. 231215x (x )(x )limx→∞++=( ) A.56 B.53 C.52 D.答:A4、若⎰+=C )x (F dx )x (f ,则sin (cos )x f x dx ⎰等于( )A 、F(sinx)+CB 、-F(sinx)+C C 、F(cosx)+CD 、-F(cosx)+C答:D5、设f(x, y)是连续函数,则二次积分 y d )y ,x (f dx1xx2⎰⎰=( )A.x d )y ,x (f dy 10 yy⎰⎰B.x d )y ,x (f dy 11 0⎰⎰C.x d )y ,x (f dy 1 0yy⎰⎰ D.x d )y ,x (f dy 1 0y⎰⎰答:A二、填空题:本大题共7个小题,共7个空,每空4分,共28分,把答案填在题中横线上。
1、2cos 3cos 4limx x xx→-= 722、设xx e cos f()=,则x f ()'= x e c o ss i n x-3、1dxx(ln x )+⎰=1cln(ln x )++4. 定积分21 d 1x sin x x =-⎰5、41xdx x+∞=+⎰4π6、微分方程x dxdy 2= 的通解为cx y +=27. 若22f (x y ,x y )x y +-=- 则 f (x ,y )= xy三、计算题:本大题共4个小题, 每小题7分,共28分 1、计算22131xx lim x -+→解: 21x limx→=232x lim→==2、求函数32694y x x x =-+-的极大值与极小值解:32694y x x x =-+- ()()231293x 1x 3y x x x '=-+=--令y 0'= 解得驻点 121 3x ,x ,==根据极值判别的充分条件得,函数有极大值y 10()=, 极小值y 34()=-3、计算e21ln x dxx⎰解ee2111ln x dx ln xdxx=-⎰⎰ee1111ln x d ln x x x⎡⎤=-+⎢⎥⎣⎦⎰e2111e dx x =-+⎰e11121e ex ⎛⎫=--=- ⎪⎝⎭4. 求函数33z ln(x y )=+的全微分dz 解:z z dz dx+dy xy∂∂=∂∂ 233z 3xxx y∂=∂+ ,233z 3yyx y∂=∂+ ,2233333x3ydz dx+dy x yx y=++四、计算题:本大题共3个小题,每小题8分,共24分1. 计算二重积分⎰⎰Dy xdxdy e其中D 由y 轴及开口向右的抛物线xy 2=和直线y=1围成的平面区域。
考研高数1试题及答案
考研高数1试题及答案考研高数1模拟试题一、选择题(每题4分,共40分)1. 下列函数中,满足条件f(-x) = f(x)的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:B2. 设函数f(x)在点x=a处连续,且lim (x->a) [f(x) - f(a)]/(x-a) = L,那么f(x)在x=a处的导数为:A. LB. aC. f(a)D. 不存在答案:A3. 设数列{an}满足an+1 = an + 1/n^2,若a1=1,则a5的值为:A. 2B. 5/4C. 11/4D. 3答案:C4. 曲线y = x^2在点(1,1)处的切线斜率为:A. 2B. 1C. 0D. -1答案:A5. 设函数f(x)在区间(a,b)内单调递增,则其反函数f^(-1)(x)在区间(b,a)内:A. 单调递增B. 单调递减C. 无单调性D. 不存在答案:B6. 微分方程dy/dx + y^2 = 0的通解为:A. y = CxB. y = C/xC. y^2 = CxD. y = Cxe^x答案:B7. 设函数f(x)在区间[a,b]上连续,若f(x)在(a,b)内单调递增,则定积分∫[a,b] f(x)dx的值:A. 一定为正B. 一定为负C. 可以为零D. 可以是正也可以是负答案:C8. 设函数f(x)在点x=0处可导,且f'(0)=1,则lim (x->0) [xsin(1/x) - cos(1/x)]/x^2为:A. 0B. 1C. -1D. 不存在答案:B9. 若级数∑[n=1,∞) (a_n^2)收敛,则级数∑[n=1,∞) a_n必定:A. 收敛B. 发散C. 条件不足,无法判断D. 绝对收敛答案:C10. 设函数f(x)在区间[a,b]上二阶可导,且f''(x)≥0恒成立,则f(x)在[a,b]上是:A. 单调递增B. 单调递减C. 凸函数D. 凹函数答案:C二、填空题(每题4分,共20分)11. 若函数f(x) = ∫[a, x] g(t) dt,则f'(x) = __________。
高等数学模拟考试题及答案1
《高等数学》模拟试题一一、选择题(本大题共5小题,每小题4分,共20分)1.点1=x 是函数112--=x x y 的 ( )A .连续点B .可去间断点C .跳跃间断点D .无穷间断点2.设)(x f 在),(b a 内可导,则在),(b a 内,0)(>'x f 是)(x f 在),(b a 内单调增加的 ( )A .必要条件B .充分条件C .充分必要条件D .无关条件3.设x x x F cos )(2+=是)(x f 的一个原函数,则)(x f 等于 ( )A .x x cos 2B .2cos xxC .x x sin 33+D .x x sin 2-4.级数∑∞=-11)1(n nn( ) A .绝对收敛 B .条件收敛 C .发散 D .敛散性不确定 5.微分方程'''20y y y ++=的通解为 ( )A .x ceB ..x ce -C .12()x c c x e +D .12()x c c x e -+二、 填空题(本大题共5小题,每小题4分,共20分)1. =--+→121lim21x x x . 2. 设),1cos()(+=x x f 则=')(x f .3. 过点(1,1,1)且与平面2x +3y =1垂直的直线方程为4. 设,1xyz =则=dz . 5. 设⎰-+=xx x dx x f 02,1sin )(则=')(x f .三、计算题(本大题共6小题,共48分).1. 计算极限: 302)1ln(limx dttxx ⎰+→ (5分).2.设0sin 2=++z z x e xy ,求xz∂∂ (5分). 3.设x x x f ln 2)(2-=,求)(x f 的单调区间和极值.(8分)4.D 是由曲线x e y =,Ox 轴,Oy 轴及4=x 围成的平面区域,试在(0,4)内找一点0x ,使直线0x x =平分平面区域D 的面积.(8分)5.验证函数2()n yz x f x =满足方程2z z x y nz x y ∂∂+=∂∂(其中f 可微).(8分) 6.改变二次积分21101(,)yy dy f x y dx --⎰⎰的积分次序(7分)7.求解下列微分方程:'2'1.y xy x y -=+(7分)四、证明题(本大题共2小题,共12分).1.证明:当1>x 时,1)1(2ln +->x x x .(6分) 2.函数f (x )在[0,1]上可导,且f (1)=2120()xf x dx ⎰,证明:存在一点ξ∈(0,1)使得ξf '(ξ)+ f (ξ)=0 (6分).《高等数学》模拟试题二一、选择题(本大题共5小题,每小题4分,共20分)1.曲线11+-=x x y 的垂直渐近线为 ( ) A .1-=x B .1=x C .1-=y D .1=y2.当0→x 时,)21ln(xα+与x 是等价无穷小,则α等于( )A .2B . 2-C .21D .21-3.下列式子中正确的是 ( )A .⎰+='c x f dx x f )3()3(B .'[()]()d f x dx f x =⎰C .⎰=bax f dx x f dx d )()( D .⎰⎰=-b a b a du u f dx x f 0)()( 4.下列命题中,正确的是 ( )A .0lim =∞→n n u ,则∑∞=1n n u 必收敛 B .0lim =∞→n n u ,则∑∞=1n n u 必发散C .0lim ≠∞→n n u ,则∑∞=1n n u 必收敛 D .0lim ≠∞→n n u ,则∑∞=1n n u 必发散5.微分方程'''23x y y y xe +-=的特解形式为 ( )A .()x ax b e +B .2x ax eC .x axeD .2()x ax bx e + 二、 填空题(本大题共5小题,每小题4分,共20分)6. 201cos limx xx →-=7. 设x x x f ln )(=,则='')1(f . 8.'(sin 1)cos f x xdx +⎰=9. 过点(2,0,1)且与直线210x y z==垂直的平面方程为 10. 幂级数∑∞=⎪⎭⎫⎝⎛02n nx 的收敛半径为=R .三、计算题(本大题共4小题,共48分).1. 求极限: lim (arctan )2x x x π→+∞- (5分).2.设),(y x z z =是由方程133=-xyz z 确定的隐函数,求全微分dz (5分).3.求函数x x x f ln )(2-=在],1[e 上的最值(8分).4.求由曲线1-=x y ,4=x 与0=y 所围成的平面图形绕Ox 轴旋转所得到的旋转体的体积V (8分).5.f (x )在[0,1]上连续,求证211()()()y x dy f x dx e e f x dx =-⎰⎰ (7分).6.求解下列微分方程: 2()0ydx x y dy ++= (7分).7.已知1(0),2f =-求f (x )使曲线积分[()]()x l e f x ydx f x dy +-⎰与路径无关,并计算(8分).(1,1)(0,0)[()]()x e f x dx f x dy +-⎰四、证明题(本大题共2小题,共12分).1.证明:当x >0时,2x arctan x >ln(1+x 2) (6分).2.设f (x )在(-1,1)内可微,且f (0)=0, |f ' (x )|< M (M >0), 试证在(-1,1)内恒有|f (x )|<M(6分).《高等数学》模拟试题三一、选择题(本大题共5小题,每小题4分,共20分)1.设53)(+=x x f ,则[]2)(-x f f 等于 ( )A .149+xB .33+xC .149-xD .33-x2.设x x f 3)(= ,则ax a f x f a x --→)()(lim 等于( )A .3ln 3aB .a3 C .3ln D .3ln 3a3.设函数f (x )连续,0(),s t I t f tx dx =⎰其中t >0,s >0,则积分I ( )A .依赖于s 和tB .依赖于s ,t,xC .依赖于t 和xD .依赖于s ,不依赖于t4.级数111nn a∞=+∑收敛的条件为( ) A .a ≥1 B .a >1 C . a ≤1 D .a <15.微分方程0cos =+x y dxdy的通解为 ( )A .x c y sin =B .x ce y sin -=C .x ce y cos -=D .x c y cos =二、 填空题(本大题共5小题,每小题4分,共20分)11. 设3lim ln()16,xx x a x a→∞+=-则a =12. 设22sin ,cos ,x t y t ==则dydx=13. ⎰=xdx x sin cos 3 .14.''()xf x dx ⎰=5.设sin y =xy , 则dydx= 三、计算题(本大题共4小题,共48分). 1. 求极限lim x →+∞(5分).2.求函数f (x )=20(1)(2)xt t dt --⎰的极值(7分).3.平面图形由曲线3,4y x y x=+=,求此图形的面积S (7分).4.求微分方程'cot ln y x y y =满足初始条件4x y π==(5分).5.求幂级数112nnn n x ∞=+∑的收敛区间以及和函数 (8分). 6. 计算二重积分:⎰⎰+Ddxdy y x )3(22,其中区域D 是由直线2,1,2,====x x x y x y 围成(8分)7.设函数f (x )满足0()()()x xx f x x f t dt e tf t dt +=+⎰⎰,求f (x ) (8分).四、证明题(本大题共2小题,共12分).1.证明:当0>x 时,2211)1ln(x x x x +>+++(6分).2.证明:双曲线)0(1>=x xy 上任一点处的切线与两坐标轴所围三角形的面积等于2(6分).《高等数学》模拟试题一参考答案一、选择题(本大题共5小题,每小题4分,共20分)1.B 2.B 3.D 4.B 5.D二、 填空题(本大题共5小题,每小题4分,共20分)1.1422.2sin(1)x x +3.111230x z z ---==4.2()ydx xdyxy + 5. sin 2x -+三、计算题(本大题共4小题,共44分).1.解:220322000ln(1)ln(1)21111limlim lim 6310331x x x x t dtx x x x xx →→→++==⨯=⨯=++⎰ 2.解:方程两边对x 求导得:22sin cos 0xy z zye x z x z x x∂∂+++=∂∂22sin 1cos xy z ye x z x x z∂+∴=-∂+3.解:对函数x x x f ln 2)(2-=求导得:'1()4f x x x =-,令11140 ()22x x x -==-得舍去, 列表:x (0,12) 12 (12,+∞) y’ - 0+ y单减极小值1ln 22+单增由表可知, f (x )在(0,12)上单调减少,在(2,+∞)上单调增加,在12x =处取得极小值1ln 22+.4.解:由题意知,4x xx x e dx e dx =⎰⎰,所以0041x x e e e -=-401 ln2e x +∴=5.证:求函数2()nyz x f x =的偏导数: 113223222()()()()2(),n n n n z y y y y y nx f x f nx f x yf x x x x x x---∂-=+•=-∂ 22221()()(),n n z y y x f x f y x x x-∂=•=∂ 所以132222222222[()2()]2[()] ()2()2()n n n n n n z z y y yxy x nx f x yf y x f x y x x xy y ynx f x yf x yf nzx x x -----∂∂+=-+∂∂=-+=6.解:21101(,)yy dy f x y dx --⎰⎰=0110(,)x dx f x y dy +-⎰⎰+110(,)xdx f x y dy -⎰⎰7.解:整理方程为1(1)dy dx y x x =-+,所以 (ln(1))(ln ln(1))d y d x x -=-+ 1ln(1)ln1xy C x -=++ 11x y Cx =++ 四、证明题(本大题共2小题,共12分).1.证明:令2(1)()ln ,(0)21x F x x F x -=-=+,由于2'2(1)()0 (1)(1)x F x x x x -=>>+, 所以,当1>x 时()(0)20F x F >=>,即1)1(2ln +->x x x .2.证明:令()()F x xf x =,函数F (x )在[0,1]上可导. 根据积分中值定理,存在1(0,)2c ∈,使得1122001(1)(1)2()2()2()()2F f xf x dx F x dx F c F c ====••=⎰⎰再根据罗尔定理,存在一点ξ∈(c ,1使得'()0,F ξ=即 ξf '(ξ)+ f (ξ)=0《高等数学》模拟试题二参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、 填空题(本大题共5小题,每小题4分,共20分)(sin 1)f x C ++ 40x y +-=三、计算题(本大题共4小题,共48分).22221arctan12lim (arctan )lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞--+-====+-233()0z dz yzdx xzdy xydz -++=2 yzdx xzdydz z xy+∴=-x x x f ln )(2-=求导得:'()2ln f x x x x =--,令'()0,f x =得12x e-=. 比较112211(),(1)0,()22f e e f f e e e --====-可知, f (x ) 在],1[e 上的最小值为2e -,最大值为12e.4442211119(1)()22V dx x dx x x ππππ==-=-=⎰⎰222111111000()()()[]()()yyyx x x dy f x dx dx e f x dy f x e dy dx e e f x dx ===-⎰⎰⎰⎰⎰⎰20ydx xdy y dy ++=31()03d xy y +=313xy y C +=曲线积分与路径无关的条件,有()()x df x e f x dx=+' (())x y y e y f x -==微分方程'x y y e -=的通解为x x y ce xe =+,由于1(0),2f =-有12c =-,所以1()2x x f x e xe =-+四、证明题(本大题共2小题,共12分).2()2arctan ln(1),(0)0F x x x x F =-+=,由于'2222()2arctan 2arctan 0 (0)11x xF x x x x x x =+-=>>++, 所以,当x >0时()(0)0F x F >=,即2x arctan x >ln(1+x 2).设x 为(-1,1)内任意点,函数f (x )在[x ,0](x <0)或[0, x ](x >0)上可导. 根据拉格朗日中值定理,存在介于x 与0之间的点c ,使得''|()||()(0)||()||0||()|f x f x f f c c f c M =-=-<<《高等数学》模拟试题三参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、填空题(本大题共5小题,每小题4分,共20分)2-141cos4x C-+'()()x f x C++cosyy x-三、计算题(本大题共4小题,共48分).3 lim lim lim2 x x x→+∞===f(x)=2(1)(2)xt t dt--⎰求导得:'2()(1)(2)f x x x=--,令'()0,f x=得121,2x x==. 列表:由表可知, f112320017(1)(2)[584]12t t dt t t t dt--=-+-=-⎰⎰.3321131(4)(43ln)43ln32S x dx x x xx=--=--=-⎰整理微分方程得tanlndyxdxy y=1ln ln tan ln|cos|y xdx x C==-+⎰ln|cos|xCey e-=对于初始条件4x y π==C =1. 所以所求特解为ln|cos |x e y e-=幂级数112n n n n x ∞=+∑的收敛半径为1112lim lim 222n n n n n n u n R u n +→∞→∞++==⨯=+,且当x =2或-2时幂级数发散,所以幂级数的收敛区间为(-2,2).设其和函数为S (x ),则1'1112221''22122222()(1)() (1)()222(1)2 ()()1(1)(1)444 1.(2)(2)(1)2n nn n n n n n x x S x n t n t t t t t t t t tt t t x x x x xx x ∞∞∞+===∞+==+=+=+-+====+++++===-+++∑∑∑∑⎰⎰+Ddxdy y x)3(22化为二次积分为222222122223311(3)(3) [()]830.xxDx xx y dxdy dx x y dy x y y dx x dx +=+=+==⎰⎰⎰⎰⎰⎰'()()xx f x f t dt e +=⎰两边再求导数,整理得到'''()()x f x f x e +=或'''x y y e +=微分方程'''x y y e +=对应的齐次方程的通解为12x y c c e -=+,特解为12x y e =.所以'''x y y e +=的通解为1212x x y c c e e -=++.又由于(0)1f =(原方程两边代入x =0), '(0)1f =(求一次导数后的方程两边代入x =0),所以11,c =212c =-,所求方程的解为11sh 2x x e e y x --=+=+.四、证明题(本大题共2小题,共12分).()ln(1(0)0F x x x F =+=,由于'()ln(0 (0)F x x x =>>,所以,当x >0时()(0)0F x F >=,即2211)1ln(x x x x +>+++.t 为(0,+∞)内任意点,双曲线1y x =上在x=t 处的切线方程为 211()y x t t t -=-- 该直线与两坐标轴分别相交于2(0,),(2,0)A B t t由A ,B 和坐标原点O 形成三角形面积为12|||2|22S t t=⨯⨯=所以结论成立.。
数学一模拟试题(一)
数学一模拟试题(一)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设⎪⎩⎪⎨⎧=≠=00,0,1sin )()(x x x x x f ϕ, 且0)0()0(='=ϕϕ,则=⎰→x dt xt f x 100)(lim . (2)直线L:,003⎩⎨⎧=--=++z y x z y x 与平面01:0=+--z y x π的夹角θ= . (3) 无穷级数∑∞=12!n n n = .(4) 设A 是正负惯性指数均为1的三阶实对称矩阵,且满足0=-=+A E A E , 则行列式A E 32+= .(5) 已知随机事件A 、B 、C 满足P(A)=0.4, P(B)=0.5,P(C)=0.5,且A,B 独立,A,C 互不相容,则概率P(A -C )C AB = .(6) 在总体N(1,4)中抽取一容量为5的简单随机样本54321,,,,X X X X X ,则概率 =<}1),,,,{min(54321X X X X X P .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)、g(x)都是可导函数,且)()(x g x f '<',则当x>a 时,有(A) ).()()()(a g x g a f x f -<- (B) ).()()()(a g x g a f x f ->-(C) ).()()()(a g a f x g x f -<- (D) ).()()()(a g a f x g x f ->- [ ](2)设正项级数∑∞=+1)1ln(n n a 收敛,则级数∑∞=+-11)1(n n n n a a (A) 条件收敛. (B) 绝对收敛.(C) 发散. (D) 敛散性不能确定. [ ](3) 设L:0,1422≥=+y y x , 0,0,14:221≥≥≤+y x y x L , 则(A) ⎰⎰+=+L L ds y x ds y x 1)(2)(. (B) ⎰⎰=L L xyds xyds 12.(C) ⎰⎰=L L ds y ds x 1222. (D) ⎰⎰+=+L L ds y x ds y x 1)(2)(222. [ ] (4) 已知A 、B 为三阶矩阵,且有相同的特征值0,2,2,则下列命题:①A,B 等价;② A,B 相似;③ 若A,B 为实对称矩阵,则A,B 合同;④ 行列式A E E A -=-22,成立的有(A) 1个 (B) 2个. (C) 3个. (D) 4个. [ ](5) 设随机变量Y X ,相互独立且均服从正态分布),(2σμN ,若概率21)(=<-μbY aX P ,则 (A) 21,21==b a . (B) 21,21-==b a . (C) 21,21=-=b a . (D) 21,21-=-=b a . [ ] (6) 设X 为随机变量,若矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--01020232X 的特征值全为实数的概率为0.5,则 (A) X 服从区间[0,2]的均匀分布. (B) X 服从二项分布B(2, 0.5).(C) X 服从参数为1的指数分布. (D) X 服从正态分布)1,0(N . [ ]三、(本题满分8分)设)1(f ''存在,且01)(lim 1=-→x x f x ,记⎰-+'=10])1(1[)(dt t x f x ϕ,求)(x ϕ在x=1某个邻域内的导数,并讨论)(x ϕ'在x=1处的连续性 .四、(本题满分12分)设函数u f x y =+(l n ),22满足 ∂∂∂∂22222232u x u y x y +=+(), 且极限1)(l i m 100-=⎰→xdt xt f x ,试求函数f 的表达式. .五、(本题满分12分)设曲面∑是锥面22z y x +=与两球面1222=++z y x ,2222=++z y x 所围立体表面的外侧,计算曲面积分dxdy yz f z dzdx yz f y dydz x ))(())((333++++⎰⎰∑其中f(u)是连续可微的奇函数.六、(本题满分12分) 设f x x n x nn (),.=≤≤=∞∑2101 证明:∀∈x (,),01 有(1) f(x)+f(1-x)+lnx ·ln(1-x)=C (常数)(2) C = f(1)=121n n =∞∑七、(本题满分12分)设微分方程 .0)()(=+'+''y x Q y x P y (1)证明:若 1+P(x)+Q(x)=0 ,则方程有一特解 x e y =;若 P(x)+xQ(x)=0,则方程有一特解 y=x.(2) 根据上面的结论,求 0)1(=+'-''-y y x y x 的通解和满足初始条件1)0(,2)0(='=y y 的特解.(3)求1)1(=+'-''-y y x y x 满足初始条件 1]1)(ln[lim0-=-→x x y x 的特解.八、(本题满分10分)设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且02cos )](2ln[lim 1=+→x x f x π,⎰=21)2()(f dx x f ,求证:)2,0(∈∃ξ,使 .0)()(=''+'ξξf f九、(本题满分8分)设1η与2η是非齐次线性方程组Ax=b 的两个不同解(A 是n m ⨯矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:(1) 向量组211,ηηη-线性无关;(2) 若秩r(A)=n-1,则向量组21,,ηηξ线性相关.十(本题满分10分)已知A 、B 为4阶矩阵,若满足AB+2B=0, r(B)=2,且行列式02=-=+A E A E ,(1)求A 的特征值;(2)证明A 可对角化;(3)计算行列式E A 3+.十一(本题满分9分)设二维随机变量(X ,Y )的联合概率密度函数为其他1,1,0,4/)1(),(<<⎩⎨⎧+=y x xy y x f 证明:X 与Y 不独立,但2X 与2Y 独立.十二(本题满分9分)设总体X 服从[0,θ]上的均匀分布,θ未知(θ>0),X X X 123,,是取自X 的一个样本(1) 试证: max θ11343=≤≤i i X , min θ2134=≤≤i i X 都是θ的无偏估计 (2) 上述两个估计中哪个方差最小?。
高等数学模拟卷1
高等数学模拟卷1一.单项选择题(本大题共10小题,每小题2分,共20分),在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设函数(,)z f x y =在点00(,)x y 处存在对,x y 的偏导数,则00(,)x f x y =( ). A .00000(,)(,)limx f x y f x x y x∆→--∆∆B .yy x f y x f y ∆-→∆),(),(lim0000C .00000(,)(,)limx f x x y y f x y x∆→+∆+∆-∆ D .0000(,)(,)lim x x f x y f x y x x →--2.设y x y y x z arcsin )2(2-+=,则=∂∂)2,1(x z( ). A .1B .2C .3D .43.设方程(,,)0F x y y z z x ---=确定z 是,x y 的函数,F 可微,则zx∂=∂( ). A .13F F '-'B .13F F ''C .''''2331F F F F --D . 1323F F F F ''-''-4.设可微函数(,)f x y 在点00(,)x y 处取得极小值,则下列结论正确的是( ). A .0(,)f x y 在点0y y =处的导数等于零 B .0(,)f x y 在点0y y =处的导数大于零 C .0(,)f x y 在点0y y =处的导数小于零 D .0(,)f x y 在点0y y =处的导数不存在 5.已知曲面22y x z +=上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是( ). A .(1,1,1)-B .(1,1,2)-C .(1,1,1)--D .)2,1,1(--6.设D 是xoy 平面上以点(1,1)A ,(1,1)B -,(0,0)O 为顶点的三角形闭区域;1D 是D 在第一象限的部分,则2(sin cos )Dx y x y dxdy +=⎰⎰( ). A .0B .⎰⎰122D ydxdy x C .⎰⎰1cos sin 2D ydxdy xD .⎰⎰+1)cos sin (22D dxdy y x y x7.设D 是由半圆21x y -=与x 轴所围区域,则积分2Dx ydxdy =⎰⎰( ). A .0B .151C .152 D .154 8.设Ω是由0x =,0y =,0z =以及1x y z ++=所围成的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰( ). A .1110(,,)x ydy dx f x y z dz --⎰⎰⎰B .1110(,,)x ydx dy f x y z dz --⎰⎰⎰C .1110(,,)xx ydx dy f x y z dz ---⎰⎰⎰D .1110(,,)xx ydy dx f x y z dz ---⎰⎰⎰9.设∑为部分抛物面:z y x 422=+,20≤≤z ,则曲面积分∑=( ). A .πB .π2C .π4D .π810.已知dy x y dx y x du )2()2(-+-=,则(1,1)u =( ). A .0B .1C .2D .3二.填空题(本大题共6小题,每小题3分,共18分),请在每小题的空格中填上正确答案,错填、不填均无分.11.已知(1,2,3)A ,(3,4,5)B 和)6,4,2(C ,则三角形ABC 的面积为. 12.设ln[sin()]z xy =,则dz =.13.设y y e z x+=sin ,则2zx y∂=∂∂.14.曲面122222=+-z y x 在点)1,2,2(-处的切平面方程为.15.求函数yxe z =在)0,1(处沿)0,1(到)1,2(的方向导数为.16.二重积分2219x y I dxdy ≤+≤==⎰⎰.三.计算题(本大题共8小题,每小题6分,共48分). 17.求点(1,1,1)M 在平面22:=+-z y x π上的投影.18.设),()(22xy y x g xy f z ++=,f ,g 可微,求z x ∂∂,z y∂∂. 19.设(,)z z x y =是由方程ze xy yz =+所确定的隐函数,求dz .20.计算二重积分dxdy y x y x D⎰⎰+++22221,其中D 是由曲线221x y +=所围成的有界闭区域. 21.计算二次积分dx x dy y ⎰⎰113sin .22.计算三重积分dv y x⎰⎰⎰Ω+)(22,其中Ω是由曲面222z y x =+及平面1z =所围成的闭区域.23.计算曲线积分⎰-++-+Lx x dy y x y e dx y x y e )22()2(222,其中L 是由点(4,0)A 到点(0,0)O 的上半圆周y = 24.计算⎰⎰∑+++-+++-dxdy z dzdx z y dydz z y x )1()1()1(,其中∑是上半球面z =的上侧.四.应用与证明题(本大题共2小题,每小题7分,共14分).25.求由曲面223y x z --=及222y x z +=所围成的立体的体积.26.已知平面区域{(,)|0,0}D x y x y ππ=≤≤≤≤,L 为D 的正向边界,试证:dy xe dx ye dy xe dx ye y Lx y Lx sin sin sin sin -=-⎰⎰--.。
高等数学模拟试卷6篇
模拟试题一一、单项选择题(本大题共10小题,每小题3分,共30分)1—5ACDDA 6—10DCCDD二、填空题(每小题4分)11.3/2,0,012.213.111110x y z ---==-14.cos (1)x y C e =+]15.011limsin 2sin _____x x x x x →+==216.-1,117.212!n x n e -+18.019.320.1三、计算题(本大题共8小题,每小题7分,共56分)21.()210lim cos x x x →。
()22ln cos 100lim cos lim x x x x x x e →→=又因为200ln cos sin 1lim lim 2cos 2x x x x x x x →→-==-所以原式=12e -或。
22.已知函数y =,求dy 。
等式两边取对数得()()()1ln 2ln ln 1ln 2ln 134y x x x x =-++--+⎡⎤⎣⎦等式两边同时求导得()()3132111424x y y x x x +'=-+-+-所以()()3132111424x y x x x ⎡⎤+'=-+-⎢⎥+-⎣⎦所以()()3132111424x dy y dx x x x ⎡⎤+'==-+-⎢⎥+-⎣⎦。
23.求由方程0=-+x y e xy e 所确定的隐函数y 的二阶导数22d y dx。
方程两边同时求导0y x e y y xy e ''++-=所以x y e y y e x-'=+对y '等式两边同时求导()()()()()21x y x y y e y e x e y e y y ex ''-+--+''=+把y '代入整理得()()()223x y y x y e e x e e y y e x +--''=+。
高等数学模拟试题及答案[1]
武汉大学网络教育入学考试 专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.xy e = B.1sin y x =+ C.ln y x =D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b )A. 一定可导B. 必不可导C. 可能可导D. 无极限 4、当x →0时,下列变量中为无穷大量的是( D ) A.sin x x B.2x-C.sin x x D. 1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d )A.1B.1-C.0D.不存在. 6、设0a >,则2(2)d aaf a x x -=⎰( a )A.0()d af x x -⎰B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4xy Ce = D. 412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a )A. 发散B. 条件收敛C. 绝对收敛D. 无法判定 11、函数()f x =( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1]12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不一定存在B.不一定连续C.可微D.不一定可微 13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞ 14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( )A.sin xB.sin 2xC.2sin xD. 2sin x15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100. 19、设()y f x =为连续的偶函数,则定积分()d aaf x x-⎰等于( c )A. )(2x afB.⎰adxx f 0)(2C.0D. )()(a f a f --20、微分方程d 1sin d yx x =+满足初始条件(0)2y =的特解是( c )A. cos 1y x x =++B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1x eC.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a ) A.1 B.1- C.2 D.2- 23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b )A.2B.12C.1D. 325、函数()f x =[0,3]上满足罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d baf x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数 28、已知naxy x e =+,则高阶导数()n y=( c )A. n axa e B. !n C. !axn e + D. !n axn a e + 29、若()()f x dx F x c =+⎰,则sin (cos )d xf x x ⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+31、函数21,y x =+(,0]x ∈-∞的反函数是( c )A. 1,[1,)y x =∈+∞B. 1,[0,)y x =∈+∞C. [1,)y =∈+∞D. [1,)y =∈+∞ 32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x + C. sin xD.33、若函数()f x 在点0x 处可导,则|()|f x 在点0x处( c )A. 可导B. 不可导C. 连续但未必可导D. 不连续 34、当x x →时,α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c ) A.y x= B. 2y x = C. 3y x = D. 23y x =36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d ) A.()()f x g x x -= B.相等 C.仅相差一个常数 D.均为常数二、填空题 1、极限20cos d limxx t tx →⎰=2、已知 102lim()2ax x x e -→-=,则常数 =a .3、不定积分2d xx ex -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x=+⎰,则()f x = . 6、导数12d cos d d x t t x-=⎰ . 7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =及直线1y =所围成的图形的面积是 .9、已知曲线()y f x =上任一点切线的斜率为2x , 并且曲线经过点(1,2)-, 则此曲线的方程为 .10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d x x x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限22arcsin d limxx t t x →⎰ =.16、导数2d sin d d x a t t x =⎰ .17、设d xt e t e=⎰,则x = .18、在区间[0,]2π上, 由曲线cos y x =与直线2x π=,1y =所围成的图形的面是 .19、曲线sin y x =在点23x π=处的切线方程为 . 20、已知22(,)f x y x y x y -+=-,则f fx y ∂∂-=∂∂ .21、极限01limln(1)sinx x x →+⋅ =22、已知21lim()1axxxex-→∞-=+,则常数=a.23、不定积分x=⎰.24、设()y f x=的一个原函数为tan x,则微分d y=.25、若()f x在[,]a b上连续,且()d0baf x x=⎰, 则[()1]dbaf x x+=⎰.26、导数2dsin ddxxt tx=⎰.27、函数224(1)24xyx x+=++的水平渐近线方程是.28、由曲线1yx=与直线y x=2x=所围成的图形的面积是.29、已知(31)xf x e'-=,则()f x= .30、已知两向量(),2,3aλ→=,()2,4,bμ→=平行,则数量积a b⋅=.31、极限2lim(1sin)x xx→-=32、已知973250(1)(1)lim8(1)xx axx→∞++=+,则常数=a.33、不定积分sin dx x x=⎰.34、设函数y=则微分d y=.35、设函数()f x在实数域内连续, 则()d()dxf x x f t t-=⎰⎰.36、导数2dddx tate tx=⎰.37、曲线22345(3)x xyx-+=+的铅直渐近线的方程为.38、曲线2y x=与22y x=-所围成的图形的面积是.三、计算题1、求极限:lim x →+∞.解:lim x →+∞=lim x →+∞/2x=2、计算不定积分:2sin 2d 1sin xx x +⎰解:3、计算二重积分sin d d Dx x y x ⎰⎰, D 是由直线y x =及抛物线2y x =围成的区域. 解:4、设2ln z u v =, 而x u y =, 32v x y =-. 求z x ∂∂, zy∂∂. 解:5、求由方程221x y xy +-=确定的隐函数的导数d d yx. 解:6、计算定积分: 20|sin | d x x π⎰.解:7、求极限:xxx e x 20)(lim +→.解:8、计算不定积分:x.解:9、计算二重积分22()Dx y d σ+⎰⎰, 其中D 是由y x =,y x a =+,y a =, 3y a =(0a >)所围成的区域. 解:10、设2u vz e -=, 其中3sin ,u x v x ==,求dz d t .解:11、求由方程lny x y=+所确定的隐函数的导数ddyx.解:,12、设2,01,(),1 2.x xf xx x⎧≤≤=⎨<≤⎩. 求0()()dxx f t tϕ=⎰在[0, 2]上的表达式.解:13、求极限:2 0x→解:14、计算不定积分:dln ln lnxx x x⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰,D是圆域222x y y+≤.解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe=+所确定的隐函数的导数ddyx.解:18、设1sin,0,2()0,x xf xπ⎧≤≤⎪=⎨⎪⎩其它.求0()()dxx f t tϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:x→解:20、计算不定积分:1d 1xx +解:21、计算二重积分2Dxy dσ⎰⎰,D是由抛物线22y px=和直线2px=(p>)围成的区域.解:22、设yzx=,而tx e=,21ty e=-,求dzd t.解:四、综合题与证明题1、函数21sin,0,()0,0x xf x xx⎧≠⎪=⎨⎪=⎩在点0x=处是否连续?是否可导?2、求函数(y x=-.解:3、证明:当0x >时, 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()01x x f x x +-<≤⎧⎪=<<, 讨论()f x 在0x =处的连续性与可导性. 解:,6、求函数32(1)x y x =-的极值.解:7、证明: 当20π<<x 时, sin tan 2x x x +>. 证明:8、某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解:9、讨论21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性.解:10、确定函数y =(其中0a >)的单调区间.解:;11、证明:当20π<<x 时, 331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x =1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间. 解:。
高等数学模拟试题及答案
武汉大学网络教育入学考试专升本高等数学 模拟试题一、单项选择题1、在实数范围内,以下函数中为有界函数的是( b ) A. ye xB.y 1 sin xC.y ln xD.y tanx2、函数 f ( x)A. x 1, x 3、设 f ( x) 在x 3 的中断点是 ( c )x 2 3x2x 3 C.2, x 3B.x 1, x 2 D. 无中断点x x 0 处不连续,则 f (x) 在 xx 0 处 ( b )A. 必定可导B.必不行导 C. 可能可导 D.无极限4、当 x0 时,以下变量中为无量大批的是(D)A. x sin xB.2 xC.sin x D.1 sin xxx5、设函数f ( x) | x |,则 f ( x) 在 x 0 处的导数 f '(0)( d )A. 1B.1C.D.不存在 .6、设 a 0 ,则2 ax)d x ( a )f (2 aaaf ( x)dxa2a2a A.0 B.f ( x)d xC.f (x)dxD.f ( x)dx7、曲线 y3x( d ) ex 2 的垂直渐近线方程是A.x2B.x3C.x 2 或 x 3D. 不存在8、设 f ( x) 为可导函数,且f x 0 hf x 02 ,则 f '(x 0 )( c)lim2hh124A. B.C. D.9、微分方程 y '' 4 y ' 0的通解是 (d )A. y e 4 xB.y e 4xC.y Ce 4 xD.y C 1 C 2e 4 x10、级数( 1)nn 的收敛性结论是(a)n13n4A. 发散B.条件收敛 C.绝对收敛D.没法判断11、函数f ( x)x(1x)的定义域是 ( d )A. [1,)B.( ,0] C.(,0] [1,) D. [0,1]12、函数 f ( x) 在 xa处可导,则 f ( x) 在 x a处 ( d )A. 极限不必定存在B. 不必定连续C.可 . 不必定可微1lim(1 e n )sin n(c)13、极限 nA. 0B.1C.不存在 D.14、以下变量中,当 x 0 时与 ln(12x)等价的无量小量是(A. sinxB.sin 2xC.2sin xD. 15、设函数f ( x)lim f (x2h) f (x)可导,则 h 0h(c )A. f '( x)1 f '(x)2 f '( x)B. 2C.D.y2ln x 3 316、函数x 的水平渐近线方程是 ( c )A.y2B.y1C.y3)sin x 2D.ysin x d x17、定积分( c )A.B.1C.D.218、已知 ysin x ,则高阶导数 y (100)在 x0 处的值为 ( a )A.B.1C.1D.100 .a19、设yf (x)为连续的偶函数,则定积分f ( x)dx)a等于 ( c2aA. 2af ( x)B. f (x)dxC. 0D. f ( a) f ( a)dy1 sin xy(0)2的特解是 ( c20、微分方程 dx知足初始条件)A. y x cos x 1B.yx cos x 2 C. y x cos x2D.yx cos x 321、当x时,以下函数中有极限的是( C )1x 1A. sin xB.e xC.x 2 1 D.arctanx22、设函数 f ( x)4x 2kx5 ,若 f ( x1) f (x)8x3,则常数 k等于 ( a)A. 1B.1C.2D.2lim f ( x)lim g( x)23、若 x x 0, xx 0,则以下极限建立的是( b )lim[ f ( x)g( x)]lim[ f ( x) g (x)] 0A.xx oB.x x 0lim1lim f ( x) g (x)xxf ( x)g (x)C.D.x x 024、当xsin 2 11k=( b 时,若x 与 x k 是等价无量小,则)1A. 2B.2C.1D.325、函数f ( x)x3 x 在区间 [0,3] 上知足罗尔定理的是 ( a )3A.B.3C. 2D.226、设函数yf ( x) , 则y '( c )A.f '(x)B.f '(x)C.f '( x)D.f '( x)b27、定积分f ( x)dx是 ( a )aA. 一个常数B.f ( x)的一个原函数C.一个函数族D.一个非负常数28、已知 yxne ax ,则高阶导数 y (n )( c )A. a n e axB.n!C.n!e axD.n! a n e ax29、若f (x)dx F ( x)c,则sin xf (cosx)dx 等于 ( b )A. F (sin x)cB.F (sin x) c C.F (cos x)cD.F (cos x) c30、微分方程xy 'y3的通解是 ( b )yc 3y 3 cyc 3ycxxx3A.B.C.D.x31、函数yx 2 1, x ( ,0]的反函数是 ( c)A. yx 1, x[1,)B.yx 1, x [0, ) C. yx 1,x[1, )D.yx 1,x [1,)32、当 x时,以下函数中为 x的高阶无量小的是 ( a )A.1 cosxB.x x 2C.sin xD.x33、若函数 f ( x) 在点 x0 处可导,则 | f ( x) |在点 x0 处 ( c )A. 可导B. 不行导C. 连续但未必可导D. 不连续34、当xx 0 时 ,和(0)都是无量小 . 当xx 0时以下可能不是无量小的是(d )A. B. C.D.35、以下函数中不拥有极值点的是( c)y xy x 2y x 32A.B.C.D.y x 336、已知f ( x)在 x3处的导数值为 f '(3)lim f (3 h)f (3)2 , 则 h 0 2h( b )33A.2B.2C.1D.137、设f (x)是可导函数,则 (f ( x)dx) 为 ( d )A. f (x)B.f ( x) cC.f ( x)D.f (x) c38 、若函数f ( x)和g( x)在区间(a,b)内各点的导数相等,则这两个函数在该区间内( d )A. f (x) g ( x) xB. 相等C. 仅相差一个常数D. 均为常数二、 填空题x1、极限 lim cos 2 tdt0 x =x 02、已知 lim( 2x ) a x e 1 ,则常数 a.x 023、不定积分 x 2 e x dx =.4、设 yf ( x) 的一个原函数为 x ,则微分 d( f ( x)cos x).5、设f ( x) dx x 2 C ,则 f ( x).x6、导数d1cos 2t d t.dx x 1) 37、曲线 y ( x 的拐点是.8、由曲线 y x 2 , 4 y x 2 及直线 y 1 所围成的图形的面积是.9、已知曲线 y f (x) 上任一点切线的斜率为 2x 而且曲线经过点(1, 2)则此曲线的方程为.10、已知f ( xy, xy)x 2y 2 xy ,则 ff .x y11、设f ( x1) x cos x ,则 f (1).lim(1x 1a )2 e1a12、已知xx,则常数.13、不定积分ln 2xdx.x14、设yf (x)的一个原函数为sin 2x ,则微分dy.x 2arcsin tdtlimx 215、极限 x=.dx 2sin t dt16、导数 dxa.xee t dt.17、设,则x[0, ]xy1所围成的图形的面是18、在区间2 上由曲线y cosx与直线2 , .x219、曲线y3sin x 在点处的切线方程为.f f20、已知f ( x y, x y) x2y 2x y.,则lim ln(1x)1sin21、极限x0x =lim(x 1 axe2)a22、已知x x1,则常数.23、不定积分e x dx.24、设y f (x)的一个原函数为tan x ,则微分dy.b0b[ f ( x)1]dx25、若f (x)在[ a, b]上连续,且f (x)dx.a, 则ad 2 x26、导数dx x sin t dt.y 4( x1)227、函数x22x 4 的水平渐近线方程是.y128、由曲线x 与直线yx x2所围成的图形的面积是.29、已知f(3x1) e x,则 f (x) = .a, 2,3b2, 4,r r30、已知两向量,平行,则数目积a b.2lim(1sin x) x31、极限x0( x 1)97 ( ax 1)38lim25032、已知x( x1),则常数a.x sin xdx33、不定积分.34、设函数ye sin 2 x,则微分dy.xf (t)dt35、设函数f ( x)在实数域内连续 ,则f ( x)d x0.dxte2t d t36、导数dxa.y3x24x5( x3)237、曲线的铅直渐近线的方程为.38、曲线yx2与 y 2x2所围成的图形的面积是.三、计算题1、求极限:lim (x2x 1x2x 1).x解: lim (x2x1x2x 1)= lim (x2x1x2x 1) /2x= x x2、计算不定积分:sin 2x dxsin 21x解:3、计算二重积分sin x dxdy D是由直线y x 及抛物线y x2围成的地区Dx解:4、设z u2ln v而 u x v 3x 2 y .求zzy x y 解:22dy5、求由方程x y xy 1 确立的隐函数的导数.解:26、计算定积分:0解:lim (x 7、求极限:x 0解:8、计算不定积分:解:|sin x | dx .2e x) x.x e 1 x2dx1 x2. ( x2y2 )d9、计算二重积分D此中D是由y x,y x a,y a y3a(a 0)所围成的地区解:x 3 dz10、设 zeu 2 v, 此中 u sin x, v,求dt.解:dy11、求由方程 yx ln y所确立的隐函数的导数 dx .解:,x 2 , 0 x 1,f ( x)x 2. . 求( x)xx, 112、设 0解:f (t)dt在[0, 2] 上的表达式 .x 2limx213、求极限:1 1 x.dx14、计算不定积分:x ln x ln ln x .解:(4 x y)d15、计算二重积分 D D 是圆域 x 2y 22y解:x 2 ydzzy,此中y2 x 3,求 dt .16、设x解:xeydy17、求由方程 y 1所确立的隐函数的导数dx.解:1sin x,0 x,f ( x)2其余 .( x)x18、设 0,求解:f (t)d t,内的表达式 .在2x 1 3lim19、求极限:x4x 22 .解:20、计算不定积分:解:arctan x1 dxx1 x2d p xy2 px 和直线x2 (p 0)围成的地区21、计算二重积分D D 是由抛物线y 2解:22、设zy, y 1 e2 tdz x而 x e t求dt.解:四、综合题与证明题210,在点 x1、函数f ( x)x sin x ,x0 处能否连续能否可导0,x0322、求函数y ( x 1) x 的极值.3、证明:当x0 时证明:4、要造一圆柱形油罐时底直径与高的比是多少解:ln(1f (x)5、设 1 x 解:1 x ln(x 1 x 2 ) 1 x2.体积为 V问底半径r和高h等于多少时才能使表面积最小这x),1x0,1 x,0x1议论f ( x)在 x处的连续性与可导性,x3y6、求函数( x 1)2的极值 .解:0 x7、证明 :当 2 时sin x tan x2x .证明:5m2问底宽x为多8、某地域防空洞的截面拟建成矩形加半圆( 如图 )截面的面积为少时才能使截面的周长最小进而使建筑时所用的资料最省解:1,x0,2x1,0x1, f (x)22,1x2,x9、议论x,x2在 x0 , x 1, x 2 处的连续性与可导性解:10、确立函数y3 (2x a)(a x)2( 此中a0) 的单一区间 .解:;0x tan x x1x 3 11、证明:当 2 时3.证明:12、一房地产企业有当月租金每增添100 元的维修费50 套公寓要出租当月租金定为50 元时就会多一套公寓租不出去试问房租定为多少可获最大收入1000 元时公寓会所有租出去而租出去的公寓每个月需花销解:x21,0x1,f ( x)1,1x13、函数3x在点 x 1 处能否可导为何解:y103 9x2 6x 的单一区间.14、确立函数4x解:。