高考数学复习考知识解析与专题练习1---集合

合集下载

2023年高考数学总复习历年真题题型归纳与模拟预测1-1集合带讲解

2023年高考数学总复习历年真题题型归纳与模拟预测1-1集合带讲解

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第一章集合与简单逻辑1.1 集合高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.题型一.集合中元素的个数1.(2020•新课标Ⅲ)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5【答案】B.【解析】解:∵集合A={1,2,3,5,7,11},B={x|3<x<15),∴A∩B={5,7,11},∴A∩B中元素的个数为3.故选:B.2.(2015•新课标Ⅲ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2【答案】D.【解析】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.3.(2020•新课标Ⅲ)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【答案】C .【解析】解:∵集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},∴A ∩B ={(x ,y )|{y ≥xx +y =8,x ,y ∈N ∗}={(1,7),(2,6),(3,5),(4,4)}.∴A ∩B 中元素的个数为4.故选:C .4.(2018•新课标Ⅲ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4【答案】A .【解析】解:当x =﹣1时,y 2≤2,得y =﹣1,0,1,当x =0时,y 2≤3,得y =﹣1,0,1,当x =1时,y 2≤2,得y =﹣1,0,1,即集合A 中元素有9个,故选:A .5.(2017•新课标Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为()A .3B .2C .1D .0【答案】B .【解析】解:法一:由{x 2+y 2=1y =x ,解得:{x =√22y =√22或{x =−√22y =−√22,∴A ∩B 的元素的个数是2个,法二:画出圆和直线的图象,如图示:,结合图象,圆和直线有2个交点,故A ∩B 中元素的个数为2个,故选:B .题型二.集合与集合之间的关系1.(2015•重庆)已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A ⫋BD .B ⫋A 【答案】D .【解析】解:集合A ={1,2,3},B ={2,3},可得A ≠B ,A ∩B ={2,3},B ≠⊂A ,所以D 正确.故选:D .2.(2015•港澳台)设集合A ⊆{1,2,3,4},若A 至少有3个元素,则这样的A 共有( )A .2个B .4个C .5个D .7个 【答案】C .【解析】解:∵集合A ⊆{1,2,3,4},A 至少有3个元素,∴满足条件的集合A 有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},∴这样的A 共有5个.故选:C .3.(2012•新课标)已知集合A ={x |x 2﹣x ﹣2<0},B ={x |﹣1<x <1},则( )A .A ⫋BB .B ⫋AC .A =BD .A ∩B =∅【答案】B .【解析】解:由题意可得,A ={x |﹣1<x <2},∵B ={x |﹣1<x <1},在集合B 中的元素都属于集合A ,但是在集合A 中的元素不一定在集合B 中,例如x =32∴B ⫋A .故选:B.4.(2012•湖北)已知集合A={x|x2﹣3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4【答案】D.【解析】解:由题意可得,A={1,2},B={1,2,3,4},∵A⊆C⊆B,∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选:D.5.(2021•上海)已知集合A={x|x>﹣1,x∈R},B={x|x2﹣x﹣2≥0,x∈R},则下列关系中,正确的是()A.A⊆B B.∁R A⊆∁R B C.A∩B=∅D.A∪B=R【答案】D.【解析】解:已知集合A={x|x>﹣1,x∈R},B={x|x2﹣x﹣2≥0,x∈R},解得B={x|x≥2或x≤﹣1,x∈R},∁R A={x|x≤﹣1,x∈R},∁R B={x|﹣1<x<2};则A∪B=R,A∩B={x|x≥2},故选:D.题型三.集合的基本运算1.(2021•北京)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【答案】B.【解析】解:∵A={x|﹣1<x<1},B={x|0≤x≤2},∴A∪B={x|﹣1<x<1}∪{x|0≤x≤2}={x|﹣1<x≤2}.故选:B.2.(2021•新高考Ⅲ)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁U B=()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B.【解析】解:因为全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},所以∁U B={1,5,6},故A∩∁U B={1,6}.故选:B.3.(2019•新课标Ⅲ)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3}【答案】C.【解析】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.4.(2016•天津)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【答案】D.【解析】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故选:D.5.(2021•乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z【答案】C.【解析】解:当n是偶数时,设n=2k,则s=2n+1=4k+1,当n是奇数时,设n=2k+1,则s=2n+1=4k+3,k∈Z,则T⊊S,则S∩T=T,故选:C.6.(2017•山东)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)【答案】C.【解析】解:集合M={x||x﹣1|<1}=(0,2),N={x|x<2}=(﹣∞,2),∴M∩N=(0,2),故选:C.7.(2017•新课标Ⅲ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【答案】A.【解析】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.8.(2013•辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]【答案】D.【解析】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.题型四.集合中的含参问题1.(2013•江西)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4【答案】A.【解析】解:当a=0时,方程为1=0不成立,不满足条件当a≠0时,△=a2﹣4a=0,解得a=4故选:A.2.(2020•新课标Ⅲ)设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.4【答案】B.【解析】解:集合A={x|x2﹣4≤0}={x|﹣2≤x≤2},B={x|2x+a≤0}={x|x≤−12a},由A∩B={x|﹣2≤x≤1},可得−12a=1,则a=﹣2.故选:B.3.(2017•新课标Ⅲ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【答案】C.【解析】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.4.(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【答案】B.【解析】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选:B.5.(2020•海南)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【答案】C.【解析】解:设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,由题意,可得x+z=60,x+y+z=96,y+z=82,解得z=46.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C.一.单选题(共8小题)1.已知集合A={﹣1,0,m},B={1,2},若A∪B={﹣1,0,1,2},则实数m的值为()A.﹣1或0B.0或1C.﹣1或2D.1或2【答案】D.【解析】解:集合A={﹣1,0,m},B={1,2},A∪B={﹣1,0,1,2},因为A,B本身含有元素﹣1,0,1,2,所以根据元素的互异性,m≠﹣1,0即可,故m=1或2,故选:D.2.设全集U=R,集合A={x|xx+3<0},B={x|x≤−1},则集合A∩(∁U B)=()A.{x|x>0}B.{x|x<﹣3}C.{x|﹣3<x≤﹣1}D.{x|﹣1<x<0}【答案】D.【解析】解:由xx+3<0,即x(x+3)<0,解得﹣3<x<0,则A={x|﹣3<x<0},∵B={x|x≤﹣1},∴∁U B={x|x>﹣1},∴A∩(∁U B)={x|﹣1<x<0},故选:D.3.若集合A={x|x2﹣2x﹣3≤0},B={x|2x≥√2},则A∩B=()A.[12,3]B.[12,1]C.[−3,12]D.[2,3]【答案】A.【解析】解:∵A={x|−1≤x≤3},B={x|x≥12},∴A∩B=[12,3].故选:A.4.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B的子集个数为()A.2B.4C.8D.16【答案】B.【解析】解:∵A={x∈N|﹣2≤x≤2}={0,1,2},B={y|y≤1},∴A∩B={0,1},∴A∩B的子集个数为22=4个.故选:B.5.集合A={x|y=lg(x﹣1)},集合B={y|y=√x2+2x+5},则A∩∁R B=()A.[1,2)B.[1,2]C.(1,2)D.(1,2]【答案】C.【解析】解:∵y=√x2+2x+5=√(x+1)2+4≥2,∴B=[2,+∞),∴∁R B=(﹣∞,2).∵x﹣1>0,∴x>1,∴A=(1,+∞).∴A∩∁R B=(1,+∞)∩((﹣∞,2)=(1,2).故选:C.6.若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N)D.(∁U M)∩(∁U N)【答案】D.【解析】解:∵5∉M,5∉N,故5∈∁U M,且5∈∁U N.同理可得,6∈∁U M,且6∈∁U N,∴{5,6}=(∁U M)∩(∁U N),故选:D.7.集合A={﹣1,2},B={x|ax﹣2=0},若B⊆A,则由实数a组成的集合为()A.{﹣2}B.{1}C.{﹣2,1}D.{﹣2,1,0}【答案】D.【解析】解:∵集合A={﹣1,2},B={x|ax﹣2=0},B⊆A,∴B=∅或B={﹣1}或B={2} ∴a=0,1,﹣2.∴由实数a组成的集合为:{﹣2,1,0}.故选:D.8.已知集合A ={x |a ﹣2<x <a +3},B ={x |(x ﹣1)(x ﹣4)>0},若A ∪B =R ,则a 的取值范围是( )A .(﹣∞,1]B .(1,3)C .[1,3]D .[3,+∞)【答案】B .【解析】解:B ={x |x <1,或x >4};∵A ∪B =R ;∴{a −2<1a +3>4;∴1<a <3; ∴a 的取值范围是(1,3).故选:B .二.多选题(共4小题)9.若集合P ={x |y =x 2,x ∈R },集合T ={y |y =x 2,x ∈R },则( )A .0∈PB .﹣1∉TC .P ∩T =∅D .P =T 【解答】解:集合P ={x |y =x 2,x ∈R }={x |x ∈R },集合T ={y |y =x 2,x ∈R }={y |y ≥0},故0∈P ,选项A 正确,故﹣1∉T ,选项B 正确,故P ∩T =[0,+∞),选项C 错误,P =R ,T =[0,+∞),选项D 错误.故选:AB .10.设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则( )A .A ∩B ={0,1}B .∁U B ={4}C .A ∪B ={0,1,3,4}D .集合A 的真子集个数为8【解答】解:∵全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},∴A ∩B ={0,1},故A 正确,∁U B ={2,4},故B 错误,A ∪B ={0,1,3,4},故C 正确,集合A 的真子集个数为23﹣1=7,故D 错误故选:AC .11.已知集合A =(﹣2,5),集合B ={x |x ≤m },使A ∩B ≠∅的实数m 的值可以是( )A .0B .﹣2C .4D .6【解答】解:因为集合A =(﹣2,5),集合B ={x |x ≤m },且A ∩B ≠∅,则m >﹣2.故选:ACD .12.我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S,且x∉A}.类似地,对于集合A、B,我们把集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A﹣B.例如,A={1,2,3,4,5},B={4,5,6,7,8},则有A﹣B={1,2,3},B﹣A={6,7,8},下列说法正确的是()A.若A={x|x>2},B={x|x2>4},则B﹣A={x|x<﹣2}B.若A﹣B=∅,则B⊆AC.若S是高一(1)班全体同学的集合,A是高一(1)班全体女同学的集合,则S﹣A=∁S AD.若A∩B={2},则2一定是集合A﹣B的元素【解答】解:对于A:B={x|x2>4}={x|x<﹣2或x>2},则B﹣A={x|x<﹣2},故A正确;对于B:如A={3,4,5},B={3,4,5,6,7,8},则有A﹣B=∅,但B⊈A,所以B错误;对于C:A是高一(1)班全体女同学的集合,∁S A是高一(1)班全体男同学的集合,S﹣A是高一(1)班全体男同学的集合,所以C正确;对于D:若A∩B={2},则2∈A且2∈B,所以2∉A﹣B,故D错误;故选:AC.。

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解第1讲集合一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B(或B A )A∪B=A∩B=∁A=常用结论1.空集的性质空集不含任何元素,空集是任意一个集合A的子集,即∅⊆A.2.集合的运算性质(1)A∩A=A,A∩∅=∅.(2)A∪A=A,A∪∅=A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(4)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.3.集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n -1个.二、教材衍化1.(人A必修第一册P5习题1.1T1(4)改编)若集合A={x∈N|1≤x≤10},则( )A.8∈AB.9.1∈AC.{8}∈AD.{9.1}⊆A 答案:A2.(人A必修第一册P14习题1.3T4改编)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.解析:把集合A,B在数轴上表示如图.由图知,A∪B={x|2<x<10},(A∪B)={x|x≤2或x≥10},所以∁RA={x|x<3或x≥7},因为∁RA)∩B={x|2<x<3或7≤x<10}.所以(∁R答案:{x|x≤2或x≥10}{x|2<x<3或7≤x<10}一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.( )(2){x|x≤1}={t|t≤1}.()(3)若{x2,1}={0,1},则x=0或x=1.( )(4)若A∩B=A∩C,则B=C.( )答案:(1)×(2)√(3)×(4)×二、易错纠偏1.(多选)(混淆元素、集合间的关系致误)已知集合A={x|x2-2x=0},则有( )A.∅⊆AB.-2∈AC.{0,2}⊆AD.A⊆{y|y<3}解析:选ACD.因为A={0,2},所以∅⊆A,{0,2}⊆A,A⊆{y|y<3}均正确,-2∉A,故选ACD.2.(混淆子集与真子集的定义致误)已知集合A={x|x2<2,x∈Z},则A的真子集的个数为( )A.3B.4C.6D.7解析:选D.因为A={x|x2<2,x∈Z}={-1,0,1},所以其真子集的个数为23-1=7.故选D.3.(多选)(忽视空集致误)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m=( )A.3B.2C.1D.0解析:选ABD.当m =0时,可得集合B =∅,此时满足B ⊆A ;当m ≠0时,可得集合B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫6m , 所以6m =2或6m=3,解得m =3或m =2,综上,实数m 等于0,2或3.考点一 集合的概念(自主练透)复习指导:1.了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.(2022·常州市前黄高级中学高三适应性考试)设集合A ={1,2,3,4},B ={5,6},C ={x +y |x ∈A ,y ∈B },则C 中元素的个数为( )A.3B.4C.5D.6解析:选C.由题知,当y =5时,x +y 的值有6,7,8,9,当y =6时,x +y 的值有7,8,9,10,于是得C ={6,7,8,9,10},所以C 中元素的个数为5.2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则a 2 023-b 2 023=( )A.1B.-1C.2D.-2解析:选D.由题易得a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1.所以a 2 023-b 2 023=-2.3.已知集合P ={}x |x =2k ,k ∈Z ,Q ={}x |x =2k +1,k ∈Z ,M ={}x |x =4k +1,k ∈Z ,且a ∈P ,b ∈Q ,则()A.a +b ∈PB.a +b ∈QC.a +b ∈MD.a +b 不属于P ,Q ,M 中的任意一个 解析:选B.因为a ∈P ,所以a =2k 1,k 1∈Z .因为b ∈Q ,所以b =2k 2+1,k 2∈Z .所以a +b =2(k 1+k 2)+1=2k +1∈Q (k 1,k 2,k ∈Z ).4.(多选)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C.0D.23解析:选BC.若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实数根或有两个相等的实数根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的值为0或98.与集合中元素有关问题的求解步骤步骤一:确定集合的元素是什么,集合是数集还是点集. 步骤二:看这些元素满足什么限制条件.步骤三:根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.考点二 集合间的基本关系(思维发散)复习指导:理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A.1B.2C.3D.4(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若A ⊆B ,则m 的取值范围是________.【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)由题得,A ={x |-1<x <3},若A ⊆B (如图)可得⎩⎨⎧-m ≤-1,m ≥3,所以m ≥3.故m 的取值范围是[3,+∞). 【答案】 (1)D (2)[3,+∞)(链接常用结论1)本例(2)中,若“A ⊆B ”改为“B ⊆A ”,其他条件不变,则m 的取值范围是________.解析:当m ≤0时,B =∅, 显然B ⊆A .当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 答案:(-∞,1](1)判断两集合关系的2种常用方法列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(2)根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性.②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.|跟踪训练|1.(2022·广州高一期中)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =x 12,x ≠0},则下列选项正确的是( )A.M =NB.N ⊆MC.M =∁R ND.∁R NM解析:选C.由题意,得集合M ={y |y ≤0},而集合N ={y |y >0},所以∁R N ={y |y ≤0},则M =∁R N ,故C 正确.2.(链接常用结论3)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A.7B.8C.15D.16解析:选A.因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 3.(多选)(2022·河南范县高一月考)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14x +a ≥0,B ={x |x 2≤1},若B ⊆A ,则实数a 的取值可以是( )A.-2B.0C. 2D.4解析:选CD.因为A ={}x |x ≥-4a ,B ={x |-1≤x ≤1},又因为B ⊆A ,则-4a ≤-1,解得a ≥14,故选CD.考点三 集合的基本运算(多维探究)复习指导:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.理解给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.角度1 集合的运算(1)(2021·新高考卷Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}(2)(2021·高考全国卷乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A.∅B.SC.TD.Z【解析】 (1)由题易知A ∩B ={2,3},故选B.(2)S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .【答案】 (1)B (2)C 角度2 利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B={x |-2≤x ≤1},则a =( )A.-4B.-2C.2D.4(2)设集合A ={(x ,y )|2x +y =1,x ,y ∈R },集合B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,则a 的值为( )A.2B.4C.2或-2D.-2【解析】 (1)易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.(2)由题意可知,集合A ,B 的元素为有序数对,且都代表的是直线上的点.因为A ∩B=∅,所以两条直线没有公共点,所以两条直线平行,所以⎩⎨⎧4-a 2=0,-2a +a 2≠0,解得a =-2. 【答案】 (1)B (2)D本例(1)中,若“A ∩B ={x |-2≤x ≤1}”改成“A ∩B ⊆{x |-2≤x ≤1}”,则实数a 的取值范围是________.解析:A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x ≤-a 2, 当A ∩B =∅时,即-a2<-2,a >4时,符合题意;当A ∩B ≠∅时,令⎩⎪⎨⎪⎧-a 2≥-2,-a2≤1,得-2≤a ≤4.综上,实数a 的取值范围是a ≥-2. 答案:[-2,+∞) 角度3 集合的新定义问题(1)(2022·南阳一中第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为 ( )A.1B.0C.-1D.sin α+cos α(2)(2022·保定一模)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x <4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( )A.{x |0<x ≤1}B.{x |0≤x <2}C.{x |1≤x <2}D.{x |0<x <1}【解析】 (1)因为x ∈A ,所以x 的可能取值为-1,0,1.同理,y 的可能取值为sinα,cos α,所以xy 的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.(2)由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, 所以P -Q ={x |0<x <1}. 【答案】 (1)B (2)D(1)集合运算的常用方法①若集合中的元素是离散的,则常用Venn 图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值的取舍.②若集合中的元素能一一列举,则一般先用观察法得到集合中元素之间的关系,再列方程(组)求解.在求出参数后,注意结果的验证(满足集合中元素的互异性). (3)解决以集合为背景的新定义问题,要抓住两点①准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.②方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.|跟踪训练|1.(2021·高考全国卷乙)已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则∁U (M ∪N )=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}解析:选A.因为集合M ={1,2},N ={3,4},所以M ∪N ={1,2,3,4}. 又全集U ={1,2,3,4,5},所以∁U (M ∪N )={5}. 2.(2021·高考全国卷甲)设集合M ={}x |0<x <4,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4 C.{}x |4≤x <5 D.{}x |0<x ≤5解析:选B.M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A.2B.3C.4D.6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4.4.给定集合S={1,2,3,4,5,6,7,8},对于x∈S,如果x+1∉S且x-1∉S,那么x是S的一个“好元素”,由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.解析:由题意知这3个元素一定是连续的3个整数,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6[A 基础达标]0,m,m2-3m+2,且2∈A,1.(2022·湖南师大附中高二入学考试)已知集合A={}则实数m的值为( )A.0B.1C.2D.3解析:选D.若m=2,则m2-3m+2=0,不满足集合中元素的互异性,舍去;若m2-3m+2=2,则m=0或m=3,又m≠0,故m=3.2.(2022·豫北名校联盟4月联考)已知集合A={1,3,5,6},B={x∈N|0<x<8},则图中阴影部分表示的集合的元素个数为( )A.4B.3C.2D.1解析:选B.B={x∈N|0<x<8}={1,2,3,4,5,6,7},图中阴影部分表示的集合为∁B A={2,4,7},共3个元素.3.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( )A.7个B.8个C.15个D.16个解析:选A.因为集合A={1,2,3},所以集合A中共有3个元素,所以真子集有23-1=7(个).x|2x>7,则M∩N=( )4.(2021·高考全国卷甲)设集合M={1,3,5,7,9},N={}A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}解析:选B.由题得集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72,所以M ∩N ={5,7,9}.故选B.5.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2,则下列结论中正确的是()A.NM B.M NC.N ∩M =∅D.M ∪N =R解析:选B.由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.6.(多选)已知非空集合M 满足:①M ⊆{-2,-1,1,2,3,4},②若x ∈M ,则x 2∈M .则集合M 可能是( )A.{-1,1}B.{-1,1,2,4}C.{1}D.{1,-2,2}解析:选AC.由题意可知3∉M 且4∉M ,而-2或2与4同时出现,所以-2∉M 且2∉M ,所以满足条件的非空集合M 有{-1,1},{1}.7.(2022·福建厦门质量检查)已知集合A ={x |x 2-4x +3>0},B ={x |x -a <0},若B ⊆A ,则实数a 的取值范围为( )A.(3,+∞)B.[3,+∞)C.(-∞,1)D.(-∞,1]解析:选D.集合A ={x |x <1或x >3},B ={x |x <a }.因为B ⊆A ,所以a ≤1.8.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 解析:由题知⎩⎨⎧a +1=-1,a 2-2=2,或⎩⎨⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意. 答案:-2或19.(2022·重庆高一月考)若集合M ={x ||x |>2},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3<0,则N =________;∁R (M ∩N )=________.解析:由题意得N ={x |-1<x <3},M ={x |x <-2或x >2},所以M ∩N ={x |2<x <3},所以∁R (M ∩N )={x |x ≤2或x ≥3}. 答案:{x |-1<x <3}{ |x x ≤2或 }x ≥310.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为________. 解析:集合A ={x |x ≤a },集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1.答案:[1,+∞)[B 综合应用]11.对集合{1,5,9,13,17}用描述法来表示,其中正确的是 ( ) A.{x |x 是小于18的正奇数} B.{}x |x =4k +1,k ∈Z 且k <5 C.{}x |x =4s -3,s ∈N 且s ≤5 D.{}x |x =4s -3,s ∈N *且s ≤5解析:选D.对于A :{x |x 是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,故A 错误;对于B :{}x |x =4k +1,k ∈Z 且k <5={}…,-3,1,5,9,13,17,故B 错误;对于C :{}x |x =4s -3,s ∈N 且s ≤5={}-3,1,5,9,13,17,故C 错误;对于D :{}x |x =4s -3,s ∈N *且s ≤5={}1,5,9,13,17,故D 正确.12.某班有46名学生,有围棋爱好者22人,足球爱好者27人,同时爱好这两项的最多人数为x ,最少人数为y ,则x -y =( )A.22B.21C.20D.19解析:选D.如图,设集合A ,B 分别表示围棋爱好者,足球爱好者,全班学生组成全集U ,A ∩B 就是两者都爱好的,要使A ∩B 中人数最多,则A ⊆B ,x =22,要使A ∩B 中人数最少,则A ∪B =U ,即22+27-y =46,解得y =3,所以x -y =22-3=19.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <2, 则B ={x |m <x <2},画出数轴, 可得m =-1,n =1.答案:-1 114.定义集合P ={p |a ≤p ≤b }的“长度”是b -a ,其中a ,b ∈R .已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫m ≤x ≤m +12,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,那么集合M ∩N的“长度”的最小值是________.解析:因为集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +12,所以集合M 的长度为12,因为集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -35≤x ≤n ,所以集合N 的长度为35,因为M ,N 都是集合{x |1≤x ≤2}的子集,所以m 最小为1,n 最大为2,此时集合M ∩N 的“长度”最小,为32-75=110.答案:110。

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。

新高考数学复习考点知识提升专题训练1--- 集合的概念

新高考数学复习考点知识提升专题训练1--- 集合的概念

新高考数学复习考点知识提升专题训练(一) 集合的概念(一)基础落实1.下列判断正确的个数为( ) (1)所有的等腰三角形构成一个集合; (2)倒数等于它自身的实数构成一个集合; (3)质数的全体构成一个集合;(4)由2,3,4,3,6,2构成含有6个元素的集合; (5)平面上到点O 的距离等于1的点的全体. A .2 B .3 C .4D .5解析:选C 在(1)中,所有的等腰三角形构成一个集合,故(1)正确;在(2)中,若1a =a ,则a 2=1,∴a =±1,构成的集合为{1,-1},故(2)正确;在(3)中,质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故(3)正确;在(4)中,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故(4)错误;在(5)中,“平面上到点O 的距离等于1的点的全体”的对象是确定的,故(5)正确.2.下列说法不正确的是( ) A .0∈N * B .0∈N C .0.1∉ZD .2∈Q解析:选A N *为正整数集,则0∉N *,故A 不正确;N 为自然数集,则0∈N ,故B 正确;Z 为整数集,则0.1∉Z ,故C 正确;Q 为有理数集,则2∈Q ,故D 正确.3.(多选)表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集,下面正确的是( )A .(-1,2) B.⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =-1,y =2C.{}-1,2D.{}(-1,2)解析:选BD ∵⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0,∴⎩⎪⎨⎪⎧x =-1,y =2,∴列举法表示为{}(-1,2),故D 正确. 描述法表示为⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =-1,y =2或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0, 故B 正确.∴选B 、D.4.已知集合A ={a -2,2a 2+5a,12},且-3∈A ,则a 等于( ) A .-1 B .-32C .-23D .-32或-1解析:选B 因为集合A ={a -2,2a 2+5a,12},且-3∈A ,所以当a -2=-3即a =-1时,A ={-3,-3,12},不满足集合中元素的互异性;当2a 2+5a =-3时,解得a =-32或a =-1(舍去),此时A =⎩⎨⎧⎭⎬⎫-72,-3,12,满足题意.综上,a =-32.5.(多选)设所有被4除余数为k (k =0,1,2,3)的整数组成的集合为A k ,即A k ={x |x =4n +k ,n ∈Z },则下列结论中正确的是( )A .2 020∈A 0B .a +b ∈A 3,则a ∈A 1,b ∈A 2C .-1∈A 3D .a ∈A k ,b ∈A k ,则a -b ∈A 0解析:选ACD 2 020=4×505+0,所以2 020∈A 0,故A 正确;若a +b ∈A 3,则a ∈A 1,b ∈A 2,或a ∈A 2,b ∈A 1或a ∈A 0,b ∈A 3或a ∈A 3,b ∈A 0,故B 不正确;-1=4×(-1)+3,所以-1∈A 3,故C 正确;a =4n +k ,b =4m +k ,m ,n ∈Z ,则a -b =4(n -m )+0,(n -m )∈Z ,故a -b ∈A 0,故D 正确.6.集合{x ∈N |x -3<2}用列举法表示是________.解析:由x -3<2得x <5,又x ∈N ,所以集合表示为{0,1,2,3,4}. 答案:{0,1,2,3,4}7.已知集合A ={-1,0,1},则集合B ={x +y |x ∈A ,y ∈A }中元素的个数是________. 解析:集合B ={x +y |x ∈A ,y ∈A }={-2,-1,0,1,2},则集合B 中元素的个数是5. 答案:58.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A ,B 相等,则实数a =______.解析:由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解方程组可得a =1,经检验此时A ={1,-2,0}, B ={1,-2,0},满足A =B ,所以a =1. 答案:19.设集合A ={-4,2a -1,a 2},B ={9,a -5,1-a },且A ,B 中有唯一的公共元素9,求实数a 的值.解:∵A ={-4,2a -1,a 2},B ={9,a -5,1-a },且A ,B 中有唯一的公共元素9, ∴2a -1=9或a 2=9.当2a -1=9时,a =5,此时A ={-4,9,25},B ={9,0,-4},A ,B 中还有公共元素-4,不符合题意;当a 2=9时,a =±3,若a =3,B ={9,-2,-2},集合B 不满足元素的互异性. 若a =-3,A ={-4,-7,9}, B ={9,-8,4},A ∩B ={9},∴a =-3. 综上可知,实数a 的值为-3. 10.根据要求写出下列集合.(1)已知-5∈{x |x 2-ax -5=0},用列举法表示集合{x |x 2-4x -a =0};(2)已知集合A =⎩⎨⎧⎭⎬⎫168-x ∈N x ∈N ,用列举法表示集合A ;(3)已知方程组⎩⎪⎨⎪⎧x -y +1=0,2x +y -4=0,分别用描述法、列举法表示该集合;(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合; (5)用适当的方法表示坐标平面内坐标轴上的点集. 解:(1)∵-5∈{x |x 2-ax -5=0}, ∴(-5)2-a ×(-5)-5=0, 解得a =-4,∵x 2-4x +4=0的解为x =2,∴用列举法表示集合{x |x 2-4x -a =0}为{2}. (2)∵168-x ∈N ,则8-x 可取的值有1,2,4,8,16,∴x 的可能值有7,6,4,0,-8,∵x ∈N ,∴x 的取值为7,6,4,0, ∴168-x的值分别为2,4,8,16, ∴A ={2,4,8,16}.(3)∵方程组⎩⎪⎨⎪⎧ x -y +1=0,2x +y -4=0的解为⎩⎪⎨⎪⎧x =1,y =2,∴用描述法表示该集合为{(x ,y )|x =1,y =2},列举法表示该集合为{(1,2)}. (4)∵当x =0时,y =5;当x =1时,y =3; 当x =2时,y =1,∴用列举法表示该集合为{(0,5),(1,3),(2,1)}. (5)坐标轴上的点满足x =0或y =0,即xy =0, 则该集合可表示为{(x ,y )|xy =0}.(二)综合应用1.已知集合A ={a 2,0,-1},B ={a ,b,0},若A =B ,则(ab )2 021的值为( ) A .0 B .-1 C .1D .±1解析:选B 根据集合中元素的互异性可知a ≠0,b ≠0, 因为A =B ,所以-1=a 或-1=b ,当a =-1时,b =a 2=1,此时(ab )2 021=(-1)2 021=-1; 当b =-1时,则a 2=a ,因为a ≠0, 所以a =1,此时(ab )2 021=(-1)2 021=-1.综上可知,(ab )2 021=-1.2.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a ,b 同正时,|a |a +|b |b =a a +bb =1+1=2.当a ,b 同负时,|a |a +|b |b =-a a +-bb =-1-1=-2.当a ,b 异号时,|a |a +|b |b=0.∴|a |a +|b |b 的可能取值所组成的集合中元素共有3个. 答案:33.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B ={1,2,3,6},则A 中的元素与B 中的元素组成的集合为________.解析:由题意可知-2x =x 2+x ,解得x =0或x =-3. 而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A 中的元素与B 中的元素组成的集合为{-6,0,1,2,3,6}. 答案:{-6,0,1,2,3,6}4.若集合P ={x |ax 2+4x +4=0,x ∈R }中只含有1个元素,则实数a 的取值是________. 解析:当a =0时,方程为4x +4=0,解得x =-1,此时P ={-1},满足题意; 当a ≠0时,则Δ=42-4a ×4=0,解得a =1,此时P ={-2},满足题意,∴a =0或1. 答案:0或15.已知集合A ={x |x 2-ax +1>0}. (1)若1∉A,2∈A ,求实数a 的取值范围;(2)已知a ≠0,判断a +1a能否属于集合A ,并说明你的理由.解:(1)因为1∉A,2∈A ,所以⎩⎪⎨⎪⎧1-a +1≤0,4-2a +1>0,即⎩⎪⎨⎪⎧a ≥2,a <52,所以实数a 的取值范围是⎩⎨⎧⎭⎬⎫a | 2≤a <52.(2)假设a +1a 属于集合A ,则⎝⎛⎭⎫a +1a 2-a ⎝⎛⎭⎫a +1a +1>0, 整理得1a 2+2>0恒成立,所以a +1a 属于集合A .(三)创新发展已知集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },M ={x |x =6n +3,n ∈Z }. (1)若m ∈M ,则是否存在a ∈A ,b ∈B ,使m =a +b 成立?(2)对任意a ∈A ,b ∈B ,是否一定存在m ∈M ,使a +b =m ?证明你的结论. 解:(1)设m =6k +3=3k +1+3k +2(k ∈Z ), 令a =3k +1(k ∈Z ),b =3k +2(k ∈Z ),则m =a +b . 故若m ∈M ,则存在a ∈A ,b ∈B ,使m =a +b 成立. (2)设a =3k +1,b =3l +2,k ,l ∈Z , 则a +b =3(k +l )+3,k ,l ∈Z .当k +l =2p (p ∈Z )时,a +b =6p +3∈M ,此时存在m ∈M ,使a +b =m 成立;当k +l =2p +1(p ∈Z )时,a +b =6p +6∉M ,此时不存在m ∈M ,使a +b =m 成立.故对任意a ∈A ,b ∈B ,不一定存在m ∈M ,使a +b =m .。

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(

A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.

高考数学复习考点知识与结论专题讲解1 集合技巧全攻略

高考数学复习考点知识与结论专题讲解1 集合技巧全攻略

高考数学复习考点知识与结论专题讲解第1讲 集合技巧全攻略结论一、集合的互异性对于一个给定的集合,它的任意两个元素是不能相同的.凡是出现含参数的集合,必须首先考虑集合的互异性,即集合中元苏不相等,例如集合{},A a b =,则有a b ≠[例1]设集合{}{1,2,3},4,5,{|,,}A B M x x a b a A b B ====+∈∈,则M 中元素的个数为().A.3B.4C.5D.6[答案]B[解析]因为集合{1,2,3},{4,5},{|,A B M x x a b a A b B ====+∈∈,所以a b +的值可能为:145,156,246,257,347,358+=+=+=+=+=+=.所以M 中元素只有:5,6,7故选B .[变式]已知集合()2{|()10}M x x a x ax a =--+-=各元素之和等于3,则实数a =()[答案] 2或32[解析] 根据集合中元素的互异性,当方程()2()10x a x ax a --+-=重根时,重根只能算一个元素.{()(1)[(1)]0}M x x a x x a =----=∣.当1a =时,{0,1}M =,不合题意;当11a -=,即2a =时,1,2}M =∣,符合题意;当1a ≠,且2a ≠时,1a a ++-13=,则313,,1,222a M ⎧⎫==⎨⎬⎩⎭,符合题意.综上,2a =或32.结论二、集合相等对于两个集合A 与B ,如果A B ⊆,且B A ⊆,那么集合A 与B 相等,记作A B =.[例2]设,R a b ∈,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=().A.1B.1-C.2D.2-[答案] C[解析] 由题意知,{}01,,a b a ∈+又0a ≠,故0a b +=,得1ba=-,则集合}{1,0,a {0,1,}b =-,可得1,1a b =-=,则2b a -=.故选C .【变式】设,,{1,},{1,}a b P a Q b ∈==--R ,若P Q =,则a b +=()[解析]因为P Q =,所以11ba =-⎧⎨=-⎩,所以1,1a b =-=-,所以2a b +=-.结论三、集合子集个数真子集有()21n-个,非空真子集有()22n-个.[例3]已知集合{}**(,)|43120,,B x y x y x N y N =+-<∈∈,则B 的子集个数为().A.3B.4C.7D.8[答案] D[解析] 因为集合{}**(,)43120,,B x y x y x y =+-<∈∈N N ∣,所以{(1,1)B =,(1,2),(2,1)},所以B 中含有3个元素,集合B 的子集个数有328=.故选D .【变式】设集合{1,2,3,4A ⊆∣,若A 至少有3个元索,则这样的A 一共有().A.2个B.4个C.5个D.7个[答案] C[解析] 因为集合{1,2,3,4},A A ⊆至少有3个元素,所以满足条件的集合A 有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},所以这样的A 一共有5个.故选C .结论四、子集与交集若A B ⊆,则A B A ⋂=;若A B A ⋂=,则A B ⊆.[例4]已知集合{0,1,2},{1,}A B m ==.若A B B ⋂=,则实数m 的值是().A.0B.2C.0或2D.0或1或2[答案] C[解析] 因为A B B ⋂=,所以B A ⊆,所以0m =或 2.m =故选C .【变式】已知集合2{|320},{|}M x x x N x x a =+->=>,若M N M ⋂=,则实数a 的取值范围是().A.[3,)+∞B. (3,)+∞ C. (,1]-∞ D.(,1)-∞-[答案] C[解析] 由2320x x +->,即2230x x --<,可得13x -<<,故{|13}M x x =-<<.由M N M ⋂=可得M N ⊆,故(,1]a ∈-∞-.故选C .结论五、子集与并集若A B ⊆,则A B B ⋃=;若A B B ⋃=,则A B ⊆.[例5]已知集合{}2|1P x x =≤,{}M a =.若P M P ⋃=,则a 的取值范围是().A.(,1]-∞-B.[1,)+∞C.[1,1]-D.(,1][1,)-∞-⋃+∞ [答案] C[解析] 因为P M P ⋃=,所以M P ⊆,即a P ∈,得21a …,解得11a -剟,所以a 的取值范围是[1,1]-.故选C.【变式】设全集U =R ,若11|,,|,3663k k A x x k B x x k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,则下列正确的是( ).A.U U C B C A ⊇B.A B A ⋂=C.A B A ⋃=D.U C A B ⊆[答案] B[解析] 由212|,,|,66k k A x x k B x x k ++⎧⎫⎧⎫==∈==∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z 可得A B ⊆,所以A B A ⋂=.故选B.结论六、子集与空集题目中若有条件B A ⊆,则应分B =∅和B ≠∅两种情况进行讨论.[例6]若集合{}2|60M x x x =+-=,{}|10N x ax =-=,且N M ⊆,则实数a =[答案] 0或12或13- [解析] 由260x x +-=可得2x =或3x =-,因此{2,3}.M =- (1)若0a =,得N =∅,此时,N M ⊆; (2)若0a ≠,得1N a ⎧⎫=⎨⎬⎩⎭.若N M ⊆,满足12a =或13a =-,解得12a =或13a =-. 故所求实的值为0或12或13-. 【变式】已知{|25},{|121},A x x B x m x m B A =-=+-⊆剟剟,则m 的取值范围是___________ [答案] 3m …[解析] 应分B =∅和B ≠∅两种情况讨论.当121m m +>-, 即2m <时, B =∅,满足B A ⊆, 即2m <; 当121m m +=-, 即2m =时,{3}B =,满足B A ⊆, 即2m =; 当121m m +<-, 即2m >时,由B A ⊆,得12215m m +-⎧⎨-⎩……即23m <…;综上, 3m …. 故m 的取值范围是3m ….结论七、交集与空集由于A ⋂∅=∅,因此,A B A ⋂=中的A 可以为∅.[例7]已知集合{}2120,{211}A x x x B x m x m =--=-<<+∣∣…,且A B B ⋂=,则实数m 的取值范围为().[).1,2A -[].1,3B -[).2,C +∞[).1,D -+∞[答案] D[解析]由2120x x --…, 得(3)(4)0x x +-…, 得34x -剟, 所以||3A x x =-剟4}.又A B B ⋂=,所以2m …. (1)当B =∅时,有121m m +-…,解得2m …. (2)当B ≠∅时,有321,1 4 ,12211,m m m m m -≤-⎧⎪+≤⇒-≤<⎨⎪-<+⎩综上, [1,)m ∈-+∞. 故选D .【变式】设{}}2|8150,{|10A x x x B x ax =-+==-=, 若A B B ⋂=, 实数a 组成的集合的子集有()个. [答案] 8[解析] 集合A 化简得{3,5}A =,由A B B ⋂=知B A ⊆,故(I )当B =∅时,即方程10ax -=无解,此时0a =符合已知条件.()II 当B ≠∅时, 即方程10ax -=的解为3或5,代人得13a =或1.5综上,满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个.结论八、并集与空集由于A A ⋃∅=,因此,A B B ⋃=中的A 可以为∅.[例8]已知集合}2||230,{10},A x x x B x mx A B A =--==+=⋃=∣,则m 的取值是().A.11,3⎧⎫-⎨⎬⎩⎭B.10,1,3⎧⎫-⎨⎬⎩⎭C.11,3⎧⎫-⎨⎬⎩⎭D.10,1,3⎧⎫-⎨⎬⎩⎭[答案] D[解析]{}2|230{|13}{1,3}A x x x x x x =--===-==-或,{|10}B x mx =+=,当A B A ⋃=时,B A ⊆.若B =∅,则方程10mx +=无实数解,此时0m =;{1}B =-,则方程10mx +=的实数解为1-,此时1m =;若{3}B =,则方程10mx +=的实数解为3,此时13m =-;若{1,3}B =-,则方程10mx +=的实数解为1-和3,此时m 不存在.综上,m 的取值是10,1,3⎧⎫-⎨⎬⎩⎭.故选 D.【变式】已知集合{}{}2|121,|310P x a x a Q x x x =+≤≤+=-≤,若P Q Q ⋃=,实数a 的取值范围为_______ [答案] (,2]-∞[解析] 2{|310}{|25}Q x x x x x =-≤=-≤≤, 因为P Q Q ⋃=,所以P Q ⊆. (1)当P =∅时,即121a a +>+,解得0.a <(2)当P ≠∅时,即121,12, 02215,a a a a a ++⎧⎪+-⇒≤≤⎨⎪+⎩………综上,实数a 的取值范围为(,2]-∞.结论九、反演律(德摩根定律)()()()I I I C A B C A C B ⋂=⋃(交的补等于补的并)()()()I I I C A B C A C B ⋃=⋂(并的补等于补的交)[例9]若U 为全集,下面三个命题中是真命题的有() (1)若A B ⋂=∅,则()()U U C A C B U ⋃=. (2)若A B U ⋃=,则()()U U C A C B ⋂=∅. (3)若A B ⋃=∅,则A B ==∅.A.0个B.1个C.2个D.3个[答案] D[解析] (1)()()()U U U U C A C B C A B C U ⋃=⋂=∅= (2)()()()U U U U C A C B C A B C U ⋂=⋃==∅;(3) 证明:因为()A A B ⊆⋃,即A ⊆∅,而A ∅⊆,所以A =∅; 同理B =∅, 所以A B ==∅ 综上,三个命题均为真命题.故选D.【变式】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于()..A M N ⋃.B M N ⋂.()()U U C C M C N ⋃.()()U U D C M C N ⋂[答案] D[解析]因为{1,2,3,4}M N ⋃=,所以()()(){5,6}U UU M N M N ⋂=⋃=痧?.故选D.结论十、容斥原理用card()A 表示集合A 中的元素个数(有资料中用A 或其他符号),则通过维恩图可理解其具备的二维运算性质card()card()card()card()A B A B A B ⋃=+-⋂.[例10]高一某班学生参加大舞台和风情秀两个节目情况如下:参加风情秀的人数占该班全体人数的八分之三;参加大舞台的人数比参加风情秀的人数多3人;两个节目都参加的人数比两个节目都不参加的学生人数少7人.则此班的人数为_____[答案] 40人[解析]设{}|U x x =是高一某班学生,{}|A x x =是该班参加大舞台学生,{}|B x x =是该班参加风情秀学生.设该班两个节目都参加的人数为x ,只参加风情秀的人数为y ,由图可知,3(73)8x y x y x y +=+++++,解得15x y +=, 因为315408÷=(人),所以该班总人数为40人. 【变式】设A B ,是有限集,定义(,)card()card()d A B A B A B =⋃-⋂, 其中card()A 表示有限集A 中的元素个数,命题(1):对任意有限集 ,",A B A B ≠"是“(,)0d A B >"的充分必要条件;命题(2):对任意有限集,,,(,)(,)(,)A B C d A C d A B d B C +….下列判断正确的是(). A.命题(1)和命题(2)都成立 B.命题(1)和命题(2)都不成立C.命题(1)成立,命题(2)不成立D.命题(1)不成立,命题(2)成立[答案]A[解析](,)d A B 实际表示的是只在A 中或只在B 中的元素个数.对命题(1),当A B ≠时,至少有1个元素只在A 中或只在中, 所以(,)0;d A B > 对命题(2),如图所示,记图中的各个区域内的元素个数是(1,2,,7)i S i =且0i S …,所以(,)d A C =1245134623,(,),(,)S S S S d A B S S S S d B C S S +++=+++=++56S S +, 所以123456(,)(,)22d A B d B C S S S S S S +=+++++…,1245(,)S S S S d A C +++=,所以命题(2)也成立. 故选A.。

高中数学总复习知识点专题讲解与练习1集合、复数、逻辑

高中数学总复习知识点专题讲解与练习1集合、复数、逻辑

高中数学总复习知识点专题讲解与练习专题1集合、复数、逻辑一、单项选择题1.(2021·华大新高考联盟5月)已知集合M={(x,y)|x-y=0},N={(x,y)|y=x3},则M∩N 中元素的个数为()A.0 B.1 C.2 D.3答案 D解析因为直线y=x与曲线y=x3交于(-1,-1),(0,0),(1,1)三点,所以M∩N中有3个元素.故选D.2.(2021·安徽六校联考)设全集为实数集R,集合P={x|x≤1+2,x∈R},集合Q={1,2,3,4},则图中阴影部分表示的集合为()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}答案 B解析本题考查集合的表示方法.因为全集为U=R,集合P={x|x≤1+2,x∈R},Q ={1,2,3,4},所以∁U P={x|x>1+2,x∈R},所以图中阴影部分表示的集合为(∁U P)∩Q ={3,4}.故选B.3.(2021·湖北八市联考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件答案 B4.(2021·山东临沂一模)如图,若向量OZ →对应的复数为z ,且|z |=5,则1z-=( )A.15+25i B .-15-25i C.15-25i D .-15+25i答案 D解析 由题意,设z =-1+b i(b >0),则|z |=1+b 2=5,解得b =2,即z =-1+2i ,所以1z -=1-1-2i =-1+2i (-1-2i )(-1+2i )=-1+2i 5=-15+25i.故选D. 5.(2021·唐山市三模)已知i 是虚数单位,a ∈R ,若复数a -i 1-2i为纯虚数,则a =( ) A .-2 B .2 C .-12 D.12 答案 A解析 由题意a -i 1-2i =(a -i )(1+2i )(1-2i )(1+2i )=a -i +2a i +21+4=a +25+2a -15i.又因为a -i 1-2i 为纯虚数,所以⎩⎪⎨⎪⎧a +25=0,2a -15≠0,解得a =-2.故选A. 6.(2021·江西九江三校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 答案 C解析 当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x -tan x <0,可知命题p 是真命题.綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0.故选C.7.若向量a =(a -1,2),b =(b ,4),则“a ∥b ”是“a =1,b =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ∥b 可知4(a -1)-2b =0,即2a -b =2,推不出“a =1,b =0”;而a =1,b =0,满足2a -b =2,可推出“a ∥b ”.故选B.8.(2021·皖南八校第三次联考,理)设集合A ={x |y =log 2(x +1)},B ={y |y =sin x ,x ∈R },且(∁R A )∩B =( )A .∅B .{-1}C .(-1,1]D .[-1,1]答案 B解析 A =(-1,+∞),B =[-1,1],∁R A =(-∞,-1],可得(∁R A )∩B ={-1}.故选B.9.(2021·重庆月考)已知复数z 的共轭复数是z -,若z -3z -=1+2i ,则|z |=( ) A.22 B.12 C.52 D.52答案 A解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由题意,-2a +4b i =1+2i ,则a =-12,b =12,所以|z |=a 2+b 2=22.故选A.10.(2021·江淮十校质量检测,理)下列命题中,真命题是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .sin 2x +2sin x ≥3(x ≠k π,k ∈Z )C .函数f (x )=2x -x 2有两个零点D .a >1,b >1是ab >1的充分不必要条件答案 D解析 当x =0时,没有正整数小于0,A 错误;当sin x =-1时,sin 2x +2sin x =-1,B错误;f (x )=2x -x 2有三个零点(2,4,还有一个小于0),C 错误;(这时就可选D)当a >1,b >1时,一定有ab >1,但当a =-2,b =-3时,ab =6>1也成立.故D 正确.11.若命题“∃x ∈R ,使得3x 2+2ax +1<0”是假命题,则实数a 的取值范围是( )A .(-3,3)B .(-∞,-3)∪[3,+∞)C.[-3,3] D.(-∞,-3)∪(3,+∞)答案 C解析命题“∃x∈R,使得3x2+2ax+1<0”是假命题,即“∀x∈R,3x2+2ax+1≥0”是真命题,故Δ=4a2-12≤0,解得-3≤a≤ 3.故选C.12.已知p:2xx-1<1,q:(x-a)(x-3)>0,p为q的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(-1,+∞) 答案 A解析根据题意,对于p:2xx-1<1,解可得-1<x<1,即不等式的解集为(-1,1).若p为q的充分不必要条件,则(-1,1)是不等式(x-a)(x-3)>0解集的真子集.当a>3时,解得q:x>a或x<3,满足条件;当a<3时,解得q:x>3或x<a,即a≥1;当a=3时,不等式化为(x-3)2>0,解得x>3或x<3满足条件,综上a≥1,即a的取值范围为[1,+∞).故选A.二、多项选择题13.已知集合A={x∈N||x|≤3},B={a,1},若A∩B=B,则实数a的值可以是() A.0 B.1 C.2 D.3答案ACD解析∵A∩B=B,∴B⊆A,又A ={x ∈N |-3≤x ≤3}={0,1,2,3},B ={a ,1},∴a =0,2,3.14.(2021·石家庄一模)设z 为复数,则下列命题中正确的是( )A .|z |2=z z -B .z 2=|z |2C .若|z |=1,则|z +i|的最大值为2D .若|z -1|=1,则0≤|z |≤2 答案 ACD解析 设复数z =a +b i(a ∈R ,b ∈R ),|z |2=a 2+b 2,z ·z -=(a +b i)·(a -b i)=a 2+b 2,故A 正确;z 2=(a +b i)2=a 2-b 2+2ab i ,|z |2=a 2+b 2,故B 错误;|z |=1,表示z 对应的点Z 在单位圆上,|z +i|表示点z 对应的点与(0,-1)的距离.故|z +i|的最大值为2,故C 正确;|z -1|=1表示z 对应的点Z 在以(1,0)为圆心,1为半径的圆上,|z |表示z 对应的点Z 与原点(0,0)的距离,故0≤|z |≤2,D 正确.故选ACD.15.a <0,b <0的一个必要条件为( )A .a +b <0B .(a +1)2+(b +3)2=0 C.a b >0 D.a b <0答案 AC三、填空题16.(2021·石家庄二质检)已知i 为虚数单位,复数z =1-i 2 0211-i 2 018,则z 的虚部为________. 答案 -12解析 i 2 021=i 4×505+1=i ,i 2 018=i 4×504+2=i 2=-1,∴复数z =1-i 2 0211-i 2 018=1-i 1-(-1)=12-12i ,则z 的虚部为-12.17.设函数f (x )=(m 2-1)sin x cos x -cos 2x (m ∈R ),则“f (x )为偶函数”的一个充分不必要条件是________.答案 m =1(或m =-1)解析 f (x )=(m 2-1)sin x cos x -cos 2x =m 2-12sin 2x -cos 2x (m ∈R ). 若m =±1,则f (x )=-cos 2x 是偶函数,若f (x )为偶函数,则f (-x )=f (x ),所以m 2-12sin 2(-x )-cos 2(-x )=m 2-12·sin 2x -cos 2x ,即(m 2-1)sin 2x =0对任意x ∈R 恒成立,所以m =±1.故“m =±1”是“f (x )为偶函数”的充要条件.所以“f (x )为偶函数”的一个充分不必要条件是m =1(也可以填m =-1).18.已知下列命题:①到两定点(-1,0),(1,0)距离之和等于1的点的轨迹为椭圆;②∃x ∈N ,x 2-2x -1≤0;③已知a =(2,3,m ),b =(2n ,6,8),则“a ,b 为共线向量”是“m +n =6”的必要不充分条件.其中假命题有________.答案 ①③解析 对于命题①:到两定点(-1,0),(1,0)距离之和等于1的点不存在,故命题①是假命题;对于命题②:解不等式x 2-2x -1≤0,得1-2≤x ≤1+2,又∵x ∈N ,∴x =0或1或2,∴∃x ∈N ,使得x 2-2x -1≤0,故命题②是真命题;对于命题③:已知a =(2,3,m ),b =(2n ,6,8),若a ,b 为共线向量,则⎩⎨⎧2n =4,8=2m ,∴⎩⎨⎧m =4,n =2,∴m+n=6,反之若m+n=6,则m不一定为4,n不一定为2,∴“a,b为共线向量”是“m+n=6”的充分不必要条件,∴命题③是假命题.19.【多选题】已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论正确的是()A.∃x∈N,使得x∈M B.∃x∈N,使得x∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案ABC解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.20.设a,b均为单位向量,则“cos〈a,b〉<0”是“|a-b|=|2a+b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析记条件p:cos〈a,b〉<0,条件q:|a-b|=|2a+b|,|a-b|=|2a+b|左右平方得a2-2a·b+b2=4a2+4a·b+b2⇒3a2=-6a·b,a,b均为单位向量,则3=-6cos〈a,b〉,则|a-b|=|2a+b|可以推出cos〈a,b〉=-12<0,但cos〈a,b〉<0不能得到cos〈a,b〉=-12,即q⇒p,但p推不出q,p是q的必要不充分条件.故选B.1.已知集合A={4,a},B={1,a2},a∈R,则A∪B不可能是() A.{-1,1,4} B.{1,0,4}C .{1,2,4}D .{-2,1,4}答案 A解析 若A ∪B 含3个元素,则a =1或a =a 2或a 2=4,当a =1时,不满足集合元素的互异性,当a =0,a =2或a =-2时满足题意.∴A ∪B 不可能是{-1,1,4}.故选A.2.(2021·山东临沂一模)已知全集U =A ∪B =(0,4],A ∩∁U B =(2,4],则集合B =( )A .(-∞,2]B .(-∞,2)C .(0,2]D .(0,2)答案 C解析 因为U =A ∪B =(0,4],A ∩∁U B =(2,4],所以B =∁U (A ∩∁U B )=(0,2].故选C.3.已知集合M ={y |y =2x +1,x ∈R },集合N ={x |-x 2+5x +6>0},则M ∩N =( )A .(-2,3)B .(0,6)C .(6,+∞)D .(1,6)答案 D解析 ∵M ={y |y >1},N ={x |-1<x <6},∴M ∩N =(1,6).故选D.4.(2021·长郡十五校联考(二))已知复数z 满足:z 2=74+6i(i 为虚数单位),且z 在复平面内对应的点位于第三象限,则复数z -的虚部为( )A .2iB .3 C.32 D.32i答案 C解析 设z =a +b i(a ,b ∈R ),∴z 2=a 2-b 2+2ab i =74+6i ,∴⎩⎪⎨⎪⎧a 2-b 2=74,2ab =6,∵a <0,b <0,∴a =-2,b =-32,∴z =-2-32i ,∴z -=-2+32i.故选C.5.(2021·潍坊市二模)已知集合A ={x |y =ln(x -1)},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫12x ,x >-2,则A ∩B=( )A .∅B .[1,4)C .(1,4)D .(4,+∞)答案 C解析 ∵A ={x |x >1},B ={y |0<y <4},∴A ∩B =(1,4).故选C.6.(2021·湖南期中试卷)设(-1+2i)x =y -1-6i ,x ,y ∈R ,则|x -y i|=( )A .6B .5C .4D .3答案 B解析 因为(-1+2i)x =y -1-6i ,所以⎩⎨⎧2x =-6,-x =y -1,解得⎩⎨⎧x =-3,y =4,所以|x -y i|=|-3-4i|=(-3)2+(-4)2=5.故选B.7.(2021·江淮十校质量检测,理)已知集合U =[-5,4],A ={x |x2-2x ≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x ≤0,则(∁U A )∩B =( )A .∅B .[0,2]C .[-2,0)D .[-2,2]答案 C解析 由题知A =[0,2],B =[-2,0),所以A ∩B =∅,B ⊆(∁U A ),(∁U A )∩B =B =[-2,0).故选C.8.(2021·长沙市一中模拟(一))若复数z =(1+a i)·(1-i)的模等于2,其中i 为虚数单位,则实数a 的值为( )A .-1B .0C .1D .±1答案 D解析 因为z =(1+a i)·(1-i)=1-i +a i -a i 2=(1+a )+(a -1)i ,则|z |=(1+a )2+(a -1)2=2a 2+2=2,解得a =±1.9.(2021·哈师大第三次理考)设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ).若A ={2,3,4,5},B ={3,5,6},则A *B 表示的6位字符串是( )A .101010B .011001C .010101D .000111答案 C10.(2021·东北三校第二次联考)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={1,2,3},则集合A *B 的所有元素之和为( )A .16B .18C .14D .8答案 A解析 因为A ={1,2},B ={1,2,3},所以A *B ={1,2,3,4,6},所以A *B 的所有元素之和为1+2+3+4+6=16.故选A.11.(2021·南昌市一模)已知角α是△ABC 的一个内角,则“sin α=12”是“cos α=32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为角α是△ABC 的一个内角,所以α∈(0,π).由sin α=12可得α=π6或α=5π6,此时cos α=32或cos α=-32.由cos α=32可得α=π6,此时sin α=12.所以“sin α=12”是“cosα=32”的必要不充分条件.故选B.12.(2021·吉林五校联考)已知α⊥β,α∩β=l,n⊂α,m⊂β,则“m⊥n”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析在如图所示的正方体中,设平面ABCD为α,平面ADD1A1为β,AD1为m,AB为n,AD为l,则n⊥β,而m⊂β,所以n⊥m,但是m与l不垂直,所以m⊥n不是m⊥l 的充分条件;因为α⊥β,α∩β=l,m⊂β,m⊥l,则m⊥α,所以m⊥n,所以m⊥n 是m⊥l的必要条件.于是m⊥n是m⊥l的必要不充分条件.故选B.13.(2021·辽宁锦州第一次联考)若命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,则实数a的取值范围是()A.1≤a≤3 B.-1≤a≤3 C.-3≤a≤3 D.-1≤a≤1答案 B解析由特称命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,可知该命题的否定“∀x∈R,x2+(a-1)x+1≥0”是真命题.则对于方程x2+(a-1)x+1=0,有Δ=(a-1)2-4≤0,解得-1≤a≤3.故选B.14.【多选题】(2021·八省八校联考)下列命题中正确的是()A .∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB .∀x ∈(0,1),log 12x >log 13x C .∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12 D .∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x 答案 ABC解析 对于A ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x 的图象如图1所示,由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故A 正确.对于B ,分别画出y =log 12x ,y =log 13x 的图象如图2所示,由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确.对于C ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象如图3所示,由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确.对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC. 15.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 本题考查充分条件与必要条件、函数的奇偶性.当f (x )为R 上的奇函数时,若x 1+x 2=0,则有x 1=-x 2,所以f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0;若f (x )=0,则当x 1=-1,x 2=2时,f (x 1)+f (x 2)=0,但x 1+x 2≠0,所以“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.故选A.16.已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4},若A ∩B 只有4个子集,则a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]答案 D分析 A ∩B 只有4个子集,则元素有两个.解析 集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},A ∩B ={x ∈Z |a ≤x ≤2},A ∩B 只有4个子集,则A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1.故选D.评说 结合数轴、动态演示,效果更佳,结果更明显.17.【多选题】“∀x ∈[1,2],ax 2+1≤0”为真命题的必要不充分条件是( )A .a ≤-1B .a ≤-14C.a≤-2 D.a≤0答案BD解析∵∀x∈[1,2],ax2+1≤0,∴ax2≤-1,∴a<0,∵x∈[1,2],∴ax2∈[4a,a],∴a≤-1,∴“∀x∈[1,2],ax2+1≤0”⇒“a≤-1”,“a≤-1”⇒“∀x∈[1,2],ax2+1≤0”.∴“∀x∈[1,2],ax2+1≤0”为真命题的充分必要条件是a≤-1.故必要不充分条件为B、D.18.(2021·浙江适应性试卷)已知a,b∈R,则“a2>b2”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若a=-2,b=1,此时a2>b2成立,而a>|b|不成立,而a>|b|时,由不等式的性质,两边平方得,a2>b2,所以“a2>b2”是“a>|b|”的必要不充分条件.故选B.19.(2021·湖北十一校第二次联考)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2 C.3 D.4答案 B解析若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1个有序集合对(A,B);同理,若集合B中只有1个元素,则集合A中有3个元素,则3∈B ,1∈A ,此时有1个有序集合对(A ,B );若集合A 中有2个元素,则集合B 中有2个元素,则2∉A ,且2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2.故选B.20.【多选题】下列说法正确的是( )A .设a ,b 为两个非零向量,则“a ·b =|a |·|b |”是“a 与b 共线”的充分不必要条件B .“平面向量a ,b 的夹角是钝角”的充分不必要条件是“a ·b <0”C .已知数列{a n },则“a n ,a n +1,a n +2成等比数列”是“a n +12=a n a n +2”的充要条件D .在三角形ABC 中,“A >B ”的充要条件是“sin A >sin B ”答案 AD解析 若a ·b =|a |·|b |,则a 与b 方向相同;若a 与b 共线,则a 与b 方向相同或相反,不一定有a ·b =|a |·|b |,故A 正确;因为a ·b <0时,〈a ,b 〉∈(90°,180°],所以“a ·b <0”是“平面向量a ,b 的夹角是钝角”的必要不充分条件,故B 错误;由“a n ,a n +1,a n +2成等比数列”,可得“a n +12=a n a n +2”成立,反之不成立,如a n +1=a n =a n +2=0,故C 错误;由A >B 得a >b ,由正弦定理a sin A =b sin B ,得sin A >sin B ,反之也成立,故D 正确.故选AD.21.设p :|x -a |≤3,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 (-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ 解析 由|x -a |≤3,可得a -3≤x ≤a +3,即p :a -3≤x ≤a +3.由(x +1)(2x -1)≥0,可得x≤-1或x≥12,即q:x≤-1或x≥12.因为p是q的充分不必要条件,所以a+3≤-1或a-3≥12,解得a≤-4或a≥72.故a的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞.。

2023年新高考数学一轮复习1-1 集合(知识点讲解)解析版

2023年新高考数学一轮复习1-1  集合(知识点讲解)解析版

专题1.1 集合【知识框架】【核心素养】1.考查集合的概念、元素的性质,凸显数学抽象的核心素养.2.考查集合的基本关系,凸显数学运算、逻辑推理的核心素养.3.与不等式、数轴、Venn 图等相结合考查集合的运算,凸显数学运算、直观想象的核心素养.【知识点展示】1.元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、区间法、图示法.(4)五个特定的集合及其关系图: N*或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为C U A.4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(C U A)=∅,A∪(C U A)=U,C U(C U A)=A.特别提醒:1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔C U A⊇C U B.4. C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B).【常考题型剖析】题型一集合的基本概念例1.(2018课标II 理2)已知集合(){}22,3,,A x y xy x y =+≤∈∈Z Z ,则A 中元素的个数为( )A .9B .8C .5D .4【答案】A方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.【规律方法】与集合中的元素有关的问题的三种求解策略(1)研究一个用描述法表示的集合时,首先要看集合中的代表元素,然后再看元素的限制条件. (2)根据元素与集合的关系求参数时要注意检验集合中的元素是否满足互异性. (3)集合中的元素与方程有关时注意一次方程和一元二次方程的区别.例2.(2022·贵州·贵阳一中模拟预测(文))已知集合{}()()2,1,0,1,2,{Z 230},A B x x x =--=∈+-<∣则集合{},,z z xy x A y B =∈∈∣的元素个数为( ) A .6 B .7C .8D .9【答案】B 【解析】 【分析】化简集合B ,由条件确定{},,z z xy x A y B =∈∈∣的元素及其个数. 【详解】由()()023x x +-<解得23x -<<,所以{}1,0,1,2B =-.又{}2,1,0,1,2A =--所以{}{},,2,0,2,4,1,1,4z z xy x A y B =∈∈=---∣,共有7个元素, 故选:B.【规律方法】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性 题型二:集合间的基本关系例3.(2022·河南·开封市东信学校模拟预测)集合{0,1,2}A =的非空真子集的个数为( ) A .5 B .6 C .7 D .8【答案】B 【解析】 【分析】根据真子集的定义即可求解. 【详解】由题意可知,集合A 的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个. 故选:B.【易错警示】空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 例4.(2012·湖北省高考真题(文))已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【方法技巧】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题. 题型三:集合的基本运算例5.(2022·全国·高考真题(文))设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}【答案】A 【解析】 【分析】根据集合的交集运算即可解出. 【详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A.例6.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D 【解析】 【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D.例7.(2022·全国·高考真题(理))设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( ) A .2M ∈B .3M ∈C .4M ∉D .5M ∉【答案】A 【解析】 【分析】先写出集合M ,然后逐项验证即可 【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误 故选:A例8.(2020·全国高考真题(理))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2 B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C. 【规律方法】 如何解集合运算问题(1)看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简:有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决. (3)应用数形结合:常用的数形结合形式有数轴、坐标系和Venn 图.(4)创新性问题:以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.题型四:利用集合的运算求参数例9.(2020·全国高考真题(理))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B. 【方法规律】利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;①若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.例10.(2022·山西运城·高二阶段练习)设集合{23},{}A x x B x x a =-<<=>,若R A B ⋂=∅,则实数a 的取值范围为____. 【答案】2a ≤- 【解析】 【分析】 先求出RB ,则RA B ⋂=∅,{23}A x x =-<<,由分析即可求出a 的取值范围.【详解】RB {}x x a =≤,又因为RA B ⋂=∅,{23}A x x =-<<,所以2a ≤-.故答案为:2a ≤-.【易错提醒】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.题型五:集合的新定义问题例11.(2015·湖北高考真题(理))已知集合A ={(x,y)|x 2+y 2≤1, x,y ∈Z},B ={(x,y)| |x|≤2 , |y|≤2, x,y ∈Z},定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A, (x 2,y 2)∈B},则A ⊕B 中元素的个数为( )A .77B .49C .45D .30 【答案】C 【解析】因为集合A ={(x,y)|x 2+y 2≤1, x,y ∈Z},所以集合中有9个元素(即9个点),即图中圆中的整点,集合B ={(x,y)| |x|≤2 , |y|≤2, x,y ∈Z}中有25个元素(即25个点):即图中正方形中的整点,集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A, (x 2,y 2)∈B}的元素可看作正方形中的整点(除去四个顶点),即个.例12. (2021·江西·丰城九中高二阶段练习)已知非空集合,A B 满足下列四个条件:①{}1,2,3,4,5,6,7A B =;①A B =∅;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对()A B ,叫作有序集合对,则有序集合对(),A B 的个数是________.【答案】 {6} 32 【解析】 【分析】根据给定信息,分析集合A ,B 不能取的元素即可得解;按集合A 中元素个数分类计算作答. 【详解】(1)因{}1,2,3,4,5,6,7A B =,A B =∅,则集合A ,B 的元素个数和为7,而集合A 中只有1个元素,则集合B 中有6个元素,又B 中的元素个数不是B 中的元素,即6B ∉, 所以{6}A =;(2)集合A 中有1个元素时,由(1)知{6}A =,{1,2,3,4,5,7}B =,则有序集合对(),A B 有1个,集合A 中有2个元素时,即2,5A B ∉∉,则{5,},{1,3,4,6,7}A a a =∈,有序集合对(),A B 有15C 5=个,集合A 中有3个元素时,即3,4A B ∉∉,则{4,,},,{1,2,5,6,7}A a b a b =∈,有序集合对(),A B 有25C 10=个,集合A 中有4个元素时,即4,3A B ∉∉,则{3,,,},,,{1,2,5,6,7}A a b c a b c =∈,有序集合对(),A B 有35C 10=个,集合A 中有5个元素时,即5,2A B ∉∉,则{2,,,,},,,,{1,3,4,6,7}A a b c d a b c d =∈,有序集合对(),A B 有45C 5=个,集合A 中有6个元素时,即6,1A B ∉∉,则{1,,,,,},,,,,{2,3,4,5,7}A a b c d e a b c d e =∈,有序集合对(),A B 有55C 1=个,所以有序集合对()A B ,的个数是1+5+10+10+5+1=32. 故答案为:{6};32 【方法技巧】解决集合新定义问题的方法(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.。

2023年新高考数学一轮复习1-1 集合(真题测试)解析版

2023年新高考数学一轮复习1-1  集合(真题测试)解析版

专题1.1集合(真题测试)一、单选题1.(2022·全国·高考真题(文))集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.(2021·全国高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则ST ( )A .∅B .SC .TD .Z3.(2022·辽宁·鞍山一中模拟预测)设全集{}22,4,U a =,集合{}4,2A a =+,{}UA a =,则实数a 的值为( ) A .0B .-1C .2D .0或24.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤5.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z6.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2021·江苏·高考真题)已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .18.(2020·全国高考真题(文))已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2}D .{–2,2}9.(2020·全国高考真题(理))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}10.(2022·福建省德化第一中学高二阶段练习)设集合(){},A x y y x ==,(){}22,1B x y xy =+=,则A B 的子集的个数是( )A .2B .3C .4D .511.(2022·北京·高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则UA ( )A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)--12.(2022·浙江·高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}13.(2022年普通高等学校统一模拟招生考试新未来4月联考理科数学试题)已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =-<<,则图中阴影部分表示的集合为( )A .[2,2]-B .(2,2)-C .(2,2]-D .[2,2)-14.(2022·贵州·贵阳一中高三阶段练习(理))已知集合{2,1,0,1,2}A =--,203x B x Zx ⎧⎫+=∈<⎨⎬-⎩⎭∣,则集合{},,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .915.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,416.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤<D .{}|02x x ≤≤17.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( ) A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-18.(2022·全国·高考真题)若集合{4},{31}M xN x x =<=≥∣,则M N =( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭二、填空题19.(2022·上海·高考真题)已知(1,2)A =-,(1,3)B =,则A B =________20.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 21.(2022·北京八中高二阶段练习)给定数集M ,若对于任意a 、b M ∈,有a b M ,且a b M -∈,则称集合M 为闭集合,则下列所有正确命题的序号是______: ①集合{}2,1,0,1,2M =--是闭集合; ②正整数集是闭集合;③集合{}3,Z M n n k k ==∈是闭集合; ④若集合1A 、2A 为闭集合,则12A A ⋃为闭集合.。

高考数学一轮复习全套课时作业1-1集合

高考数学一轮复习全套课时作业1-1集合

题组层级快练1.1集合一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4 3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .54.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅6.已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥168.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .410.已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( ) A .2 B .4 C .8 D .16二、多项选择题11.(2021·沧州七校联考)设集合A =⎭⎬⎫⎩⎨⎧<<7221x x ,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3} C .{x|1<x<2} D .∅12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R三、填空题与解答题13.集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.517.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .41.1集合 参考答案1.答案 B2.答案 B 解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.答案 C4.答案 B 解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.答案 C6.答案 C 解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.答案 C 解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.答案 B 解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.答案 A 解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.答案 B11.答案 ACD 解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.答案 ABC 解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.13.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得 ①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.答案A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.。

新高考数学一轮复习考点知识专题讲解与练习 1 集合

新高考数学一轮复习考点知识专题讲解与练习 1 集合

新高考数学一轮复习考点知识专题讲解与练习第一章 集合与常用逻辑用语考点知识总结1 集合高考 概览本考点在高考中是必考知识点,常考题型为选择题,分值为5分,低难度考纲 研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集 4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集 7.能使用Venn 图表达集合的关系及运算一、基础小题1.已知集合A ={x |x 2-x -6<0},B ={x |2<x <5},则A ∪B =( ) A .(1,6) B .(-2,5) C .(2,3) D .(3,5) 答案 B解析 A ={x |-2<x <3},A ∪B =(-2,5).故选B.2.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 集合M ={a 1,a 2}或{a 1,a 2,a 4},有2个.故选B. 3.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13,则(∁R P )∩N =()A .{x |0<x <3}B .{x |0<x ≤3}C .{0,1,2,3}D .{1,2,3} 答案 C 解析 由题意,得P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -33x >0={x |x >3或x <0},则(∁R P )∩N ={x |0≤x≤3}∩N ={0,1,2,3}.故选C.4.已知集合A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 的子集共有( ) A .2个 B .4个 C .6个 D .8个 答案 A解析 由已知得B ={(2,1)},所以B 的子集有2个.故选A.5.已知集合A ={x |(x -2)(x +2)≤0},B ={y |x 2+y 2=16},则A ∩B =( ) A .[-3,3] B .[-2,2] C .[-4,4] D .∅ 答案 B解析 由题意,得A ={x |-2≤x ≤2},B ={y |-4≤y ≤4},所以A ∩B ={x |-2≤x ≤2}.故选B.6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅ 答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B ,∵A ∪B ={1,2,3},∴1∈A .又1∉A ∩(∁U B )={3},∴1∉∁U B ,即1∈B ,矛盾.故1∈B .同理2∈B .故选A.7.已知集合A ={x |y =x 2-2},集合B ={y |y =x 2-2},则有( ) A .A =B B .A ∩B =∅ C .A ∪B =A D .A ∩B =A 答案 C解析 A ={x |y =x 2-2}=R ,B ={y |y =x 2-2}=[-2,+∞),所以B ⊆A ,故A ∪B =A .故选C.8.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x <12 C .⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x <12且y ≥-4D .∅ 答案 B解析 由题意,得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12.故选B.9.若集合U =R ,A ={1,2,3,4,5},集合B ={x |0<x <4},则图中阴影部分表示( )A .{1,2,3,4}B .{1,2,3}C .{4,5}D .{1,4} 答案 C解析 集合A ={1,2,3,4,5},B ={x |0<x <4},图中阴影部分表示A ∩(∁U B ),又∁U B ={x |x ≥4或x ≤0},所以A ∩(∁U B )={4,5}.故选C.10.已知集合A ={(x ,y )|y =2x },B ={(x ,y )|y =x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 答案 B解析 由y =2x 与y =x +1的图象可知,两函数图象有两个交点,如图所示.∴A ∩B中元素的个数为2.故选B.11.(多选)已知全集U=R,函数y=ln (1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)≠∅C.M∪N=U D.M⊆(∁U N)答案AB解析由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x≥1},所以M∩(∁U N)={x|x≤0}≠∅,M∪N={x|x<1}=M,M⊆/(∁U N).故选AB.12.(多选)已知集合A={0,1,2},若A∩(∁Z B)≠∅(Z是整数集合),则集合B可以为()A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}答案ABD解析由题意知,集合A={0,1,2}.{x|x=2a,a∈A}={0,2,4},则A∩(∁Z B)={1}≠∅,A满足题意;{x|x=2a,a∈A}={1,2,4},则A∩(∁Z B)={0}≠∅,B满足题意;{x|x=a-1,a∈N}={-1,0,1,2,3,…},则A∩(∁Z B)=∅,C不满足题意;{x|x=a2,a∈N}={0,1,4,9,16,…},则A∩(∁Z B)={2}≠∅,D满足题意.故选ABD.二、高考小题13.(2022·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2} B.{2,3} C.{3,4} D.{2,3,4}答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.故选B. 14.(2022·新高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3} 答案 B解析 由题意可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.故选B.15.(2022·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4C .{x |4≤x <5}D .{x |0<x ≤5} 答案 B 解析 由已知得M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4.故选B.16.(2022·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z 答案 C解析 因为s =2n +1,n ∈Z ,当n =2k ,k ∈Z 时,s =4k +1,k ∈Z ;当n =2k +1,k ∈Z 时,s =4k +3,k ∈Z ,所以TS ,S ∩T =T .故选C.17.(2022·天津高考)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4} 答案 C解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C={0,1,2,4}.故选C.18.(2022·新高考Ⅰ卷)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 答案 C解析 A ∪B =[1,3]∪(2,4)=[1,4).故选C.19.(2022·全国Ⅰ卷)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4 答案 B 解析 ∵A ={x |x2-4≤0}={x |-2≤x ≤2},B ={x |2x +a ≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2,A ∩B ={x |-2≤x ≤1},∴-a2=1,解得a =-2.故选B.20.(2022·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6 答案 C解析 由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以A ∩B 中的元素有(1,7),(2,6),(3,5),(4,4),共4个.故选C.三、模拟小题21.(2022·江苏镇江市第一中学高三上学期期初考试)已知集合A ={x ||x |≤2,x ∈N },集合B ={x |x 2+x -6=0},则A ∩B =( )A .{2}B .{-3,2}C .{-3,1}D .{-3,0,1,2}答案 A解析集合A={x||x|≤2,x∈N}={0,1,2},集合B={x|x2+x-6=0}={-3,2},所以A∩B={2}.故选A.22.(2022·广东广州荔湾区高三上调研考试)已知全集U=R,设集合A={x|x2-x-6≤0},B={x|x-1<0},则图中阴影部分表示的集合是()A.{x|x≤3} B.{x|-3≤x<1}C.{x|-2≤x<-1} D.{x|1≤x≤3}答案 D解析由题意得,A={x|-2≤x≤3},B={x|x<1},∴∁U B={x|x≥1},∴A∩(∁U B)={x|1≤x≤3}.故选D.23.(2022·新高考八省联考)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R答案 B解析解法一:∵∁R M⊆N,∴M⊇∁R N,据此可得M∪(∁R N)=M.故选B.解法二:如图所示,设矩形区域ABCD表示全集R,矩形区域ABHE表示集合M,则矩形区域CDEH表示集合∁R M,矩形区域CDFG表示集合N,满足∁R M⊆N,结合图形可得M∪(∁R N)=M.故选B.24.(2022·河南南阳模拟)设集合P={3,log2a},Q={a,b},若P∩Q={0},则P ∪Q=()A.{3,0} B.{3,0,1}答案 B解析 ∵P ∩Q ={0},∴log 2a =0,∴a =1,从而b =0,∴P ∪Q ={3,0,1}.故选B.25.(2022·河北沧州第一中学等十五校高三上摸底考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪y = x -4x -7,集合B ={3,4,5,6,7},则A ∩B =( ) A .(3,4) B .{3,4} C .[3,4] D .{3,4,7} 答案 B解析 由x -4x -7≥0得⎩⎨⎧(x -4)(x -7)≥0,x ≠7,得x ≤4或x >7,所以A ={x |x ≤4或x >7},因为B ={3,4,5,6,7},所以A ∩B ={x |x ≤4或x >7}∩{3,4,5,6,7}={3,4}.故选B.26.(2022·湖北襄阳五中高三开学考试)已知集合M ={x |1-a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,0]C .⎝ ⎛⎦⎥⎤-∞,13D .⎣⎢⎡⎭⎪⎫13,2答案 C解析 因为M ⊆N ,而∅⊆N ,所以当M =∅时,2a ≤1-a ,则a ≤13;当M ≠∅时,M ⊆N ,则⎩⎪⎨⎪⎧1-a <2a ,1-a ≥1,2a ≤4⇒⎩⎪⎨⎪⎧a >13,a ≤0,a ≤2,无解.综上得a ≤13,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,13.故选C.27.(2022·湖南长沙长郡中学高三上开学考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,B={x |x 2-4x +m =0},若1∈A ∩B ,则A ∪B =( )A .{1,2,3}B .{1,2,3,4}答案 D 解析由题可知,A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,即2-1<2x +1<24,解得-2<x <3,又x ∈N ,所以A ={0,1,2}.因为1∈A ∩B ,则1∈B ,所以1-4+m =0,解得m =3,所以B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={0,1,2,3}.故选D.28.(多选)(2022·江苏沭阳如东中学测试)设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A .15B .0C .3D .13 答案 ABD解析 ∵x 2-8x +15=0的两个根为3和5,∴A ={3,5},∵A ∩B =B ,∴B ⊆A ,∴B =∅或B ={3}或B ={5}或B ={3,5},当B =∅时,满足a =0即可,当B ={3}时,满足3a -1=0,∴a =13,当B ={5}时,满足5a -1=0,∴a =15,当B ={3,5}时,显然不符合条件,∴实数a 的值可以是0,13,15.故选ABD.29.(多选)(2022·山东滨州模拟)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中的真命题有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集 答案 AB解析 因为两个复数的和是复数,两个复数的差是复数,两个复数的积也是复数,所以集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集,A 正确;当S 为封闭集时,因为x -y ∈S ,取x =y ,得0∈S ,B 正确;集合S ={0}显然是封闭集,但S 是有限集,C 错误;取S ={0},T ={0,1},满足S ⊆T ⊆C ,但由于0-1=-1不属于T ,故T 不是封闭集,D 错误.故选AB.30.(多选)(2022·湖南衡阳模拟)对于集合M ,定义函数f M (x )=⎩⎨⎧-1,x ∈M ,1,x ∉M .对于两个集合M ,N ,定义集合M ⊗N ={x |f M (x )·f N (x )=-1}.已知集合A ={2,4,6},B ={1,2,4},则下列结论正确的是( )A .1∈A ⊗B B .2∈A ⊗BC .4∉A ⊗BD .A ⊗B =B ⊗A 答案 ACD解析 由题意知,f A (x )=⎩⎨⎧-1,x ∈{2,4,6},1,x ∉{2,4,6},f B (x )=⎩⎨⎧-1,x ∈{1,2,4},1,x ∉{1,2,4}.当x =1时,f A (1)=1,f B (1)=-1,所以f A (1)f B (1)=1×(-1)=-1,故1∈A ⊗B ,A 正确;当x =2时,f A (2)=-1,f B (2)=-1,所以f A (2)f B (2)=(-1)×(-1)=1,故2∉A ⊗B ,B 错误;当x =4时,f A (4)=-1,f B (4)=-1,所以f A (4)f B (4)=(-1)×(-1)=1,故4∉A ⊗B ,C 正确;由定义及乘法的交换律可知,D 正确.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·江西南昌高三模拟)已知全集U =R ,集合A ={x |x 2-4x -5≤0},B ={x |2≤x ≤4}.(1)求A ∩(∁U B );(2)若集合C ={x |a ≤x ≤4a ,a >0},满足C ∪A =A ,C ∩B =B ,求实数a 的取值范围. 解 (1)由题意,得A ={x |-1≤x ≤5},∁U B ={x |x <2或x >4}, ∴A ∩(∁U B )={x |-1≤x <2或4<x ≤5}.(2)由C ∪A =A 得C ⊆A ,则⎩⎨⎧a ≥-1,4a ≤5,解得-1≤a ≤54.由C ∩B =B 得B ⊆C ,则11 / 11 ⎩⎨⎧a ≤2,4a ≥4,解得1≤a ≤2. 从而实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪1≤a ≤54. 2.(2022·云南师大附中月考)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}. (1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围. 解 (1)A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4={x |-1≤x ≤2}, ∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1,即实数b 的取值范围为[0,1].。

高考数学总复习考点知识讲解与提升练习1 集合

高考数学总复习考点知识讲解与提升练习1 集合

高考数学总复习考点知识讲解与提升练习专题1 集合考点知识1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若1∈{x2,x},则x=-1或x=1.(×)(4)对任意集合A,B,都有(A∩B)⊆(A∪B).(√)教材改编题1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B解析由|x-1|≤1,得-1≤x-1≤1,解得0≤x≤2,所以B={x|0≤x≤2},所以A∩B ={1,2},故选B.2.下列集合与集合A={2022,1}相等的是()A.(1,2022)B.{(x,y)|x=2022,y=1}C.{x|x2-2023x+2022=0}D.{(2022,1)}答案C解析(1,2022)表示一个点,不是集合,A不符合题意;集合{(x,y)|x=2022,y=1}的元素是点,与集合A不相等,B不符合题意;{x|x2-2023x+2022=0}={2022,1}=A,故C符合题意;集合{(2022,1)}的元素是点,与集合A不相等,D不符合题意.3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________,∁U(A∩B)=________.答案{x|x≥-1}{x|x<2或x≥3}解析因为A={x|-1≤x<3},B={x|2x-4≥x-2}={x|x≥2},所以A∪B={x|x≥-1},A∩B={x|2≤x<3},∁U(A∩B)={x|x<2或x≥3}.题型一集合的含义与表示例1(1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B 的元素个数为()A.0B.1C.2D.3答案C解析如图,函数y=x与y=x2的图象有两个交点,故集合A∩B有两个元素.(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为()A.1B.1或0C.0D.-1或0答案C解析∵-1∈A,若a-2=-1,即a=1时,A={1,-1,-1},不符合集合元素的互异性;若a2-a-1=-1,即a=1(舍去)或a=0时,A={1,-2,-1},故a=0.思维升华解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1(1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是()A.0∉M B.{0}∈MC.{1}⊆M D.1⊆M答案ABD解析对于A,因为M={x|x-2<0,x∈N},所以0∈M,所以A错误;对于B,因为{0}是集合,且0∈M,所以{0}⊆M,所以B错误;对于C,因为1∈M,所以{1}⊆M,所以C正确;对于D,因为1是元素,1∈M,所以D错误.(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为()A.2B.3C.4D.5答案C解析因为A={0,1,2},a∈A,b∈A,所以ab=0或ab=1或ab=2或ab=4,故B={ab|a∈A,b∈A}={0,1,2,4},即集合B 中含有4个元素. 题型二 集合间的基本关系例2(1)(2022·宜春质检)已知集合A ={x |y =ln(x -2)},B ={x |x ≥-3},则下列结论正确的是() A .A =B B .A ∩B =∅ C .A B D .B ⊆A 答案C解析由题设,可得A ={x |x >2}, 又B ={x |x ≥-3}, 所以A 是B 的真子集, 故A ,B ,D 错误,C 正确.(2)设集合A ={x |-1≤x +1≤2},B ={x |m -1≤x ≤2m +1},当x ∈Z 时,集合A 的真子集有________个;当B ⊆A 时,实数m 的取值范围是________. 答案15(-∞,-2)∪[-1,0] 解析A ={x |-2≤x ≤1}, 若x ∈Z ,则A ={-2,-1,0,1}, 故集合A 的真子集有24-1=15(个). 由B ⊆A ,得①若B =∅,则2m +1<m -1,即m <-2,②若B ≠∅,则⎩⎨⎧2m +1≥m -1,2m +1≤1,m -1≥-2,解得-1≤m ≤0,综上,实数m的取值范围是(-∞,-2)∪[-1,0].思维升华(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练2(1)(多选)已知非空集合M满足:①M⊆{-2,-1,1,2,3,4},②若x∈M,则x2∈M.则集合M可能是()A.{-1,1}B.{-1,1,2,4}C.{1}D.{1,-2,2}答案AC解析由题意可知3∉M且4∉M,而-2或2与4同时出现,所以-2∉M且2∉M,所以满足条件的非空集合M有{-1,1},{1}.(2)函数f(x)=x2-2x-3的定义域为A,集合B={x|-a≤x≤4-a},若B⊆A,则实数a的取值范围是________________.答案(-∞,-3]∪[5,+∞)解析由x2-2x-3≥0,得x≥3或x≤-1,即A={x|x≥3或x≤-1}.∵B⊆A,显然B≠∅,∴4-a≤-1或-a≥3,解得a≥5或a≤-3,故实数a的取值范围是(-∞,-3]∪[5,+∞).题型三集合的基本运算命题点1集合的运算例3(1)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T等于()A.∅B.S C.T D.Z答案C解析方法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T.方法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以S∩T=T.(2)设全集U=R,A={x|-2≤x<4},B={x|y=x+2},则图中阴影部分表示的集合为()A.{x|x≤-2}B.{x|x>-2}C.{x|x≥4}D.{x|x≤4}答案C解析观察Venn图,可知阴影部分的元素由属于B而不属于A的元素构成,所以阴影部分表示的集合为(∁U A)∩B.∵A={x|-2≤x<4},U=R,∴∁U A={x|x<-2或x≥4},又B={x|y=x+2}⇒B={x|x≥-2},∴(∁U A)∩B={x|x≥4}.命题点2利用集合的运算求参数的值(范围)例4(2023·衡水模拟)已知集合A={x|y=ln(1-x2)},B={x|x≤a},若(∁R A)∪B=R,则实数a的取值范围为()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]答案B解析由题可知A={x|y=ln(1-x2)}={x|-1<x<1},A={x|x≤-1或x≥1},∁RA)∪B=R,得a≥1.所以由(∁R思维升华对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3(1)(2022·全国甲卷)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B ={x|x2-4x+3=0},则∁U(A∪B)等于()A.{1,3}B.{0,3}C.{-2,1}D.{-2,0}答案D解析由题意得集合B={1,3},所以A∪B={-1,1,2,3},所以∁U(A∪B)={-2,0}.故选D.(2)(2023·驻马店模拟)已知集合A={x|(x-1)(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a的取值范围是()A .[1,4)B .(1,4)C .[4,+∞) D.(4,+∞) 答案A解析由题意可得A ={x |1<x <4}. 因为A ∪B ={x |x >1}, 所以1≤a <4.题型四集合的新定义问题例5(1)(多选)当一个非空数集F 满足条件“若a ,b ∈F ,则a +b ,a -b ,ab ∈F ,且当b ≠0时,ab ∈F ”时,称F 为一个数域,以下说法正确的是()A .0是任何数域的元素B .若数域F 有非零元素,则2023∈FC .集合P ={x |x =3k ,k ∈Z }为数域D .有理数集为数域 答案ABD解析对于A ,若a ∈F ,则a -a =0∈F ,故A 正确;对于B ,若a ∈F 且a ≠0,则1=a a∈F ,2=1+1∈F ,3=1+2∈F ,依此类推,可得2023∈F ,故B 正确;对于C ,P ={x |x =3k ,k ∈Z },3∈P,6∈P ,但36∉P ,故P 不是数域,故C 错误;对于D ,若a ,b 是两个有理数,则a +b ,a -b ,ab ,ab (b ≠0)都是有理数,所以有理数集是数域,故D 正确.(2)已知集合M={1,2,3,4},A⊆M,集合A中所有元素的乘积称为集合A的“累积值”,且规定:当集合A只有一个元素时,其累积值即为该元素的数值,空集的累积值为0.设集合A的累积值为n.①若n=3,则这样的集合A共有________个;②若n为偶数,则这样的集合A共有________个.答案213解析①若n=3,据“累积值”的定义得A={3}或A={1,3},这样的集合A共有2个;②因为集合M的子集共有24=16(个),其中“累积值”为奇数的子集为{1},{3},{1,3},共3个,所以“累积值”为偶数的集合共有13个.思维升华解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4设集合U={2,3,4},对其子集引进“势”的概念:①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,依此类推.若将全部的子集按“势”从小到大的顺序排列,则排在第6位的子集是________.答案{2,4}解析根据题意,将全部的子集按“势”从小到大的顺序排列为:∅,{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}.故排在第6位的子集为{2,4}.课时精练1.(2022·全国乙卷)设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则()A .2∈MB .3∈MC .4∉MD .5∉M答案A解析由题意知M ={2,4,5},故选A.2.设集合A ={x ∈N *|2x <4},B ={x ∈N |-1<x <2},则A ∪B 等于()A .{x |-1<x <2}B .{x |x <2}C .{0,1}D .{1}答案C解析由2x<4可得x <2,则A ={x ∈N *|2x <4}={1}, B ={x ∈N |-1<x <2}={0,1},所以A ∪B ={0,1}.3.(2022·娄底质检)集合M ={(x ,y )|2x -y =0},N ={(x ,y )|x +y -3=0},则M ∩N 等于()A .{(2,-1)}B .{2,-1}C .{(1,2)}D .{1,2}答案C解析联立⎩⎨⎧ 2x -y =0,x +y -3=0,解得⎩⎨⎧ x =1,y =2,则M ∩N ={(1,2)}.4.(2023·南京模拟)已知集合A ={x |x 2-6x -7<0},B ={y |y =3x ,x <1},则A ∩(∁R B )等于()A .[3,7)B .(-1,0]∪[3,7)C .[7,+∞) D.(-∞,-1)∪[7,+∞)答案B解析A ={x |x 2-6x -7<0}=(-1,7),B ={y |y =3x ,x <1}=(0,3),所以∁R B =(-∞,0]∪[3,+∞),所以A ∩(∁R B )=(-1,0]∪[3,7).5.(2022·海南模拟)已知集合A ={x |x 2≤1},集合B ={x |x ∈Z 且x +1∈A },则B 等于()A .{-1,0,1}B .{-2,-1,0}C .{-2,-1,0,1}D .{-2,-1,0,1,2}答案B解析因为集合A ={x |x 2≤1},所以A ={x |-1≤x ≤1},在集合B 中,由x +1∈A ,得-1≤x +1≤1,即-2≤x ≤0,又x ∈Z ,所以x =-2,-1,0,即B ={-2,-1,0}.6.(2022·怀仁模拟)已知集合A ={x |1<x <2},B ={x |x >m },若A ∩(∁R B )=∅,则实数m的取值范围为()A .(-∞,1]B .(-∞,1)C.[1,+∞) D.(1,+∞)答案A解析由题知A∩(∁R B)=∅,得A⊆B,则m≤1.7.(多选)已知集合A={1,3,m2},B={1,m}.若A∪B=A,则实数m的值为()A.0B.1C.2D.3答案AD解析因为A∪B=A,所以B⊆A.因为A={1,3,m2},B={1,m},所以m2=m或m=3,解得m=0或m=1或m=3.当m=0时,A={1,3,0},B={1,0},符合题意;当m=1时,集合A、集合B均不满足集合元素的互异性,不符合题意;当m=3时,A={1,3,9},B={1,3},符合题意.综上,m=0或3.8.(多选)已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案CD解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.9.(2023·金华模拟)已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩(∁UT)=________,集合S共有________个子集.答案{1,5}8解析由题意可得∁U T={1,4,5},则S∩(∁U T)={1,5}.集合S的子集有23个,即8个.10.(2023·石家庄模拟)已知全集U=R,集合M={x∈Z||x-1|<3},N={-4,-2,0,1,5},则Venn图中阴影部分的集合为________.答案{-1,2,3}解析集合M={x∈Z||x-1|<3}={x∈Z|-3<x-1<3}={x∈Z|-2<x<4}={-1,0,1,2,3},则Venn图中阴影部分表示的集合是M∩(∁R N)={-1,2,3}.11.已知集合A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则m的值可能是________.答案0,-12,13解析由x2+x-6=0,得x=2或x=-3,所以A={x|x2+x-6=0}={-3,2},因为A∪B=A,所以B⊆A,当B =∅时,B ⊆A 成立,此时方程mx +1=0无解,得m =0;当B ≠∅时,得m ≠0,则集合B ={x |mx +1=0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1m , 因为B ⊆A ,所以-1m =-3或-1m=2, 解得m =13或m =-12, 综上,m =0,m =13或m =-12. 12.已知集合A ={x |(x +3)(x -3)≤0},B ={x |2m -3≤x ≤m +1}.当m =-1时,则A ∪B =________;若A ∩B =B ,则m 的取值范围为________.答案[-5,3][0,2]∪(4,+∞)解析A ={x |-3≤x ≤3},当m =-1时,B ={x |-5≤x ≤0},此时A ∪B =[-5,3].由A ∩B =B 可知B ⊆A .若B =∅,则2m -3>m +1解得m >4;若B ≠∅,则⎩⎨⎧ 2m -3≤m +1,m +1≤3,2m -3≥-3,解得0≤m ≤2,综上所述,实数m 的取值范围为[0,2]∪(4,+∞).13.(多选)已知全集U ={x ∈N |log 2x <3},A ={1,2,3},∁U (A ∩B )={1,2,4,5,6,7},则集合B 可能为()A.{2,3,4}B.{3,4,5}C.{4,5,6}D.{3,5,6}答案BDx<3得0<x<23,即0<x<8,于是得全集U={1,2,3,4,5,6,7},解析由log2因为∁U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;若B={2,3,4},则A∩B={2,3},∁U(A∩B)={1,4,5,6,7},矛盾,A不正确;若B={3,4,5},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},B正确;若B={3,5,6},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},D正确.14.某小区连续三天举办公益活动,第一天有190人参加,第二天有130人参加,第三天有180人参加,其中,前两天都参加的有30人,后两天都参加的有40人.第一天参加但第二天没参加活动的有________人,这三天参加活动的最少有________人.答案160290解析根据题意画出Venn图,如图所示,a表示只参加第一天的人,b表示只参加第二天的人,c表示只参加第三天的人,d表示只参加第一天与第二天的人,e表示只参加第一天与第三天的人,f表示只参加第二天与第三天的人,g表示三天都参加的人,∴要使总人数最少,则令g最大,其次d,e,f也尽量大,d+g=30,f+g=40,∴a+e=160,即第一天参加但第二天没参加的有160人,∴g max=30,d=0,f=10,a+d+g+e=190,∴c+e=140,∴e max=140,∴c=0,a=20,则这三天参加活动的最少有a+b+c+…+g=20+90+0+0+140+10+30=290(人).15.(多选)1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是()A.M={x∈Q|x<0},N={x∈Q|x>0}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M有一个最大元素,N有一个最小元素D.M没有最大元素,N也没有最小元素答案BD解析对于选项A,因为M={x∈Q|x<0},N={x∈Q|x>0},M∪N={x∈Q|x≠0}≠Q,故A 错误;对于选项B,设M={x∈Q|x<0},N={x∈Q|x≥0},满足戴德金分割,则M没有最大元素,N有一个最小元素0,故B正确;对于选项C,若M有一个最大元素m,N有一个最小元素n,若m≠n,一定存在k∈(m,n)使M∪N=Q不成立;若m=n,则M∩N=∅不成立,故C错误;对于选项D,设M={x∈Q|x<2},N={x∈Q|x≥2},满足戴德金分割,此时M没有最大元素,N也没有最小元素,故D正确.16.我们将b-a称为集合{x|a≤x≤b}的“长度”.若集合M={x|m≤x≤m+2022},N ={x|n-2023≤x≤n},且M,N都是集合{x|0≤x≤2024}的子集,则集合M∩N的“长度”的最小值为________.答案2021解析由题意得,M的“长度”为2022,N的“长度”为2023,要使M∩N的“长度”最小,则M,N分别在{x|0≤x≤2024}的两端.当m=0,n=2024时,得M={x|0≤x≤2022},N={x|1≤x≤2024},则M∩N={x|1≤x≤2022},此时集合M∩N的“长度”为2022-1=2021;当m=2,n=2023时,M={x|2≤x≤2024},N={x|0≤x≤2023},则M∩N={x|2≤x≤2023},此时集合M∩N的“长度”为2023-2=2021.故M∩N的“长度”的最小值为2021.。

新高考数学复习考点知识与题型专题讲解1---集合的概念(解析版)

新高考数学复习考点知识与题型专题讲解1---集合的概念(解析版)

新高考数学复习考点知识与题型专题讲解1 集合的概念考点知识讲解1 元素与集合1.元素与集合的概念(1)元素:一般地,把统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的叫做集合(简称为__).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的是一样的,就称这两个集合是相等的.(4)元素的特性:、、.答案:(1)研究对象(2)总体集(3)元素(4)确定性无序性互异性2.元素与集合的关系答案:∈∈NN*或N+ZQR考点知识讲解2 集合的表示方法1.列举法把集合的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:运用列举法表示集合,应注意:(1)元素间用“,”分隔,不能用其它符号代替;(2)元素不重复;(3)元素间无顺序;(4)“{}”表示“所有”、“整体”的含义,不能省略2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)书写形式:,其中x代表集合中的元素,p(x)为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.答案:一一列举共同特征{x|p(x)}题型一对集合含义的理解1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B【解析】①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.故选:B.2.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)【解析】(1)“高个子”没有明确的标准,因此(1)不能构成集合. (2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5)”不明确精确到什么程度,所以不能构成集合.故答案为:(2)题型二元素与集合的关系3.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 题型三 元素的特性的应用5.已知集合A ={x ∈Z|2x -4x -5<0},B ={x|4x >2m },若A∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4] 【答案】C【解析】∵A ={x ∈Z|-1<x<5}={0,1,2,3,4},B ={x|x>},A∩B 有三个元素,∴1≤<2,即2≤m<4. 故答案为C6.设a ,b ∈R ,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .﹣1D .不确定 【答案】A【解析】由题意可知a ≠0,则只能a +b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②; 由①得a =﹣1,b =1,符合题意; ②无解;则a +2b =﹣1+2=1. 故选:A题型四 用列举法表示集合 7.集合M ={61aN a ∈+,且a Z ∈},用列举法表示集合M =______________ 【答案】{}0,1,2,5 【解析】61N a ∈+016a ∴<+≤,即15a -<≤ 又a Z ∈0a ∴=时,661N a =∈+;1a =时,631N a =∈+;2a =时,621N a =∈+; 3a =时,6312N a =∉+;4a =时,6615N a =∉+;5a =时,611N a =∈+ {}0,1,2,5M ∴=本题正确结果:{}0,1,2,5 8.根据要求写出下列集合.(1)已知{}25|50x x ax -∈--=,用列举法表示集合{}2|40x x x a --=. (2)已知集合16|8A N x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A .(3)已知方程组10240x y x y -+=⎧⎨+-=⎩,分别用描述法、列举法表示该集合.(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合. (5)用适当的方法表示坐标平面内坐标轴上的点集.【答案】(1){2};(2){2,4,8,16};(3){(x ,y )|x =1,y =2},{(1,2)};(4){(0,5),(1,3),(2,1)};(5){(x ,y )|xy =0}. 【解析】(1){}25|50x x ax -∈--=,()()25550a ∴--⨯--=,解得4a =-,2440x x -+=的解为2x =,∴用列举法表示集合{}2|40x x x a --=为{}2;(2)168N x∈-,则8x -可取的值有1,2,4,8,16,x 的可能值有7,6,4,0,8-, x N ∈,7,6,4,0x ∴=,162,4,8,168x∴=-, {}2,4,8,16A ∴=;(3)方程组10240x y x y -+=⎧⎨+-=⎩的解为12x y =⎧⎨=⎩,∴用描述法表示该集合为(){},1,2x y x y ==,列举法表示该集合为(){}1,2;(4)当0x =时,5y =;当1x =时,3y =;当2x =时,1y =,∴用列举法表示该集合为()()(){}0,5,1,3,2,1;(5)坐标轴上的点满足0x =或0y =,即0xy =, 则该集合可表示为(){},0x y xy =.题型五 用描述法表示集合9.用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________. 【答案】()()()(){}1,42,33,24,1,,,{}41z x z x k k ∈=+∈,【解析】由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈.故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈ 题型六 集合表示方法的综合应用10. (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x=0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} 1.下列集合中,结果是空集的是( ) A .{x ∈R |x 2-1=0}B .{x |x >6或x <1} C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1} 【答案】D【解析】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数, 即:{x |x >6且x <1}=∅. 故选:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【解析】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;⑤的近似值的全体的对象”不确定,不能构成集合;故③④正确.故选:A.4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 5.下列各组中的M ,P 表示同一集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)} C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R } 【答案】CD【解析】在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =x -1}={y |y ≥-1},P ={t |t =x -1}={t |t ≥-1},二者表示同一集合,故正确;在D 中,M ={m |m ≥4,m ∈R },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4≥4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确. 故选:CD 6.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:187.下列命题正确的个数__ (1)很小的实数可以构成集合;(2)集合{y |y =x 2﹣1}与集合{(x ,y )|y =x 2﹣1}是同一个集合; (3)1,361,,||,0.5242-,这些数组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. 【答案】0【解析】解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合{y |y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合{(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确, 故答案为:0.8.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A =∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A , 所以11A a∈-, 所以1111111a A a a a -==-∈---. 9.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【解析】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。

高考数学复习典型题型专题讲解与练习1 集合的概念(解析版)

高考数学复习典型题型专题讲解与练习1 集合的概念(解析版)

高考数学复习典型题型专题讲解与练习专题1 集合的概念题型一判断元素与集合的关系1.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A2.下列四个命题:①{0}是空集;②若a∈N,则-a∉N;③集合{x∈R|x2-2x+1=0}含有两个元素;④集合6|x Q Nx⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是()A.1B.2 C.3D.0 【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确;④当x 为正整数的倒数时,6x∈N ,所以6|x Q N x⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1B .2C .3D .4 【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确; 对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确;综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈B .a A ∉C .a A =D .{}a A ∈ 【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0B .1C .2D .3 【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误; ③若0a =,1b =,则1a b +=,③错误.∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空: (1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}. 【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉5Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ;22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0B .2019 C .1D .0或2019 【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019.故选:C. 2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a =) A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23. 当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去. ∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a .(2)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}b b a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}bb a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0. 2.已知集合22{2,(1),33}Aa a a =+++,且1A ∈,则实数a 的值为________.【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性;当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1ba a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0b a=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ; ③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,A B z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________ 【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12.(2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈. ∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=,即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( )A .3B .2C .1D .4 【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( ) ①12π+;②1162+;③122+;④2323-++ A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾,②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+, 2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确, ④()22323426-++=+= 而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素.故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合;(3)方程(x 2-9)x =0的实数解组成的集合;(4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈;(2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-,(4){|x x 是三角形}或写成{三角形}.5.设A 是由一些实数构成的集合,若a ∈A ,则11a- ∈A ,且1∉A ,(1)若3∈A,求A.(2)证明:若a∈A,则11Aa-∈.【答案】(1)123,,23A⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A,所以11132A=-∈-,所以12131()2A=∈--,所以13213A=∈-,所以123,,23A⎧⎫=-⎨⎬⎩⎭.(2)因为a∈A,所以11Aa∈-,所以1111111aAa aa-==-∈---.。

集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。

备考2024年新高考数学一轮复习专题1-1 集合含详解

备考2024年新高考数学一轮复习专题1-1 集合含详解

专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x=,若A B =,则2x y +=______.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R A B ðB .()A BR ðC .A B⋂D .()()A B R RI痧练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}练习20.(2023·广东·统考模拟预测)集合{}2xA y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U A B⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M ⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且BA ,求实数m 的值.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R (1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.【答案】2【分析】分1a =,222a a a =-+分别求解,再根据元素的互异性即可得答案.【详解】解:当1a =时,则2221a a -+=不满足元素的互异性,故1a ≠;所以222a a a -+=,解得:1a =(舍)或2a =,故实数a 的值为2.故答案为:2.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________【答案】7【分析】根据集合中元素的互异性知集合中不能出现相同的元素.【详解】根据集合中元素的互异性,“notebooks”中的不同字母为“n ,o ,t ,e ,b ,k ,s”,共7个,故该集合中的元素个数是7;故答案为:7.练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.【答案】101-.【分析】由集合相等和元素互异性,进行求解.【详解】由题意得101,101,a a ≠⎧⎨=⎩所以101a =-.故答案为:-101.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.【答案】14【分析】根据元素特征,采用列举法表示出集合B ,由此可得元素个数.【详解】由题意得:()()()()()()()()()(){()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,2,3,3,1,3,2,B =()()()}4,1,5,1,6,1,B ∴中元素个数为14.故答案为:14.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x =,若A B =,则2x y +=______.【答案】2【分析】根据集合相等可得出关于x 、y 的方程组,解出这两个未知数的值,即可得解.【详解】由集合元素的互异性可知20x ≠,则0x ≠,因为A B =,则200x x y x ⎧=⎪=⎨⎪≠⎩,解得10x y =⎧⎨=⎩,因此,22x y +=.故答案为:2.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.【答案】1-【分析】根据集合相等及集合中元素的互异性求解即可.【详解】由集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则集合B 中21a =或1b =,若21a =,则1a =-或1(a =舍去),此时1b ≠±且0b ≠;若1b =,则集合A 中21b =,不符合集合中元素的互异性,不成立,综上, 1.a =-故答案为:1-练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.【答案】1【分析】根据集合相等,则元素完全相同,分析参数,列出等式,即可求得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,显然0a ≠,故0ba=,则0b =;此时两集合分别是{}{}2,1,0,,,0a a a ,则21a =,解得1a =或1-.当1a =时,不满足互异性,故舍去;当1a =-时,满足题意.所以2022202220222022(1)01a b +=-+=故答案为:1.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8【答案】C【分析】根据题意得到集合B ,然后根据集合B 中元素的个数求集合B 的真子集个数即可.【详解】由题意得{}1,0,1B =-,所以集合B 的真子集个数为3217-=.故选:C.例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4【答案】B【分析】由元素与集合的关系,集合与集合的关系考查所给式子是否正确即可.【详解】由元素与集合的关系可知{}10,1,2∈,故①错误;由集合与集合的关系可知{}{}10,1,2⊆,故②错误;任何集合都是自身的子集,故③正确;空集是任何非空集合的子集,故④正确;集合中的元素具有互异性和无序性,故⑤正确;综上可得,只有①②错误.故选B .练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数【答案】(1){R 5A x x =≥ð或}1x ≤-(2)8【分析】(1)根据补集的定义即可得解;(2)根据交集的定义求出A B ⋂,再根据子集的定义即可得解.【详解】(1)因为{}|15A x x =-<<,所以{R 5A x x =≥ð或}1x ≤-;(2){}{}Z 182,3,4,5,6,7B x x =∈<<=,所以{}2,3,4A B = ,所以A B ⋂的子集个数有328=个.练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个【答案】A【分析】根据任意角的定义和集合的基本关系求解.【详解】A ={第一象限角},只需要终边落在第一象限的都是属于第一象限角.B ={锐角},是指大于0 而小于90 的角.C ={小于90 的角},小于90 的角包括锐角,零角和负角.根据集合的含义和基本运算判断:①A B C ==,①错误;②A C ⊆,比如,361A ∈ ,但361C ∉ ,②错误;③C A ⊆,比如0C ∈ ,但0A ∉ ,③错误;④A C B ⊆=,④错误;∴正确命题个数为0个.故选:A .练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4【答案】D【分析】根据集合A 与集合B 中方程的几何意义,利用直线过圆心判断直线与圆的位置关系,确定交集中元素的个数,进而求解.【详解】集合(){}22,|4A x y x y =+=表示以(0,0)为圆心,2为半径的圆上的所有点,集合(){}|,0B x y x y =+=表示直线0x y +=上的所有点,因为直线0x y +=经过圆心(0,0),所以直线与圆相交,所以A B ⋂的元素个数有2个,则A B ⋂的子集个数为4个,故选:D .练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15【答案】B【分析】求得集合M ,即可求得结果.【详解】根据题意知,集合{M xx A =∈∣且}{1,6,7}x B ∉=,其非空真子集的个数为3226-=.故选:B练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集【答案】BD【分析】根据空集是任何集合的子集,是任何非空集合的真子集,可判断出选项AD 的正误;选项B ,通过解方程,可求出集合{}2|320x x x -+=中的元素,从而判断出选项B 正确;选项C ,通过求出两集合的元素满足的条件,从而判断出集合{}|,R y y x x =∈与{}2|,R y y x x =∈间的关系,从而判断出选项C 错误.【详解】对于选项A ,因为空集是任何集合的子集,所以空集也是它自身的子集,所以选项A 错误;对于选项B ,由2320x x -+=,得到1x =或2x =,所以{}{}2|3201,2x x x -+==,所以选项B 正确;对于选项C ,因为{}|,R R y y x x =∈=,{}{}2|,R |0y y x x y y =∈=≥,所以{}{}2|,R |,R y y x x y y x x =∈⊆=∈,所以选项C 错误;对于选项D ,因为空集是任何非空集合的真子集,所以选项D 正确.故选:BD题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A xB x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= ,故选:D.例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞【答案】A【分析】解一元二次不等式化简集合A ,再利用补集的定义求解作答.【详解】集合(){}|20[0,2]A x x x =-≤=,而全集[0,)U =+∞,所以(2,)U A =+∞ð.故选:A练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3【答案】C【分析】根据交集的定义求解即可.【详解】由条件可知,{}{}30,1,2A x x =∈<=N ,{}23203B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭,所以{1,2}A B = .故选:C.练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣【答案】B【分析】根据集合交集运算可得.【详解】因为{2}{04},{73}M x x x x N x x =<=≤<=-<<∣∣∣所以{|03}M N x x ⋂=≤<.故选:B练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-【答案】C【分析】先解绝对值不等式得出集合,再根据交集并集概念计算求解即可.【详解】因为{}{}1213A x x x x =-<=-<<,[]{}{}2,0,214xB y y x y y ==∈=≤≤,所以[)1,3A B ⋂=,(]1,4A B =- .故选:C.练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 【答案】B【分析】计算{}21A x x =-<<,再计算补集得到答案.【详解】{}{}2|2021A x x x x x =+-<=-<<,则(3,2][1,3)U A =--⋃ð.故选:B练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞【答案】B【分析】根据给定条件,求出函数的定义域、值域,再利用并集的定义求解作答.【详解】集合(){}{}{}lg 2202M x y x x x x x ==-=-=,即(2,)M =+∞,e 11x +>,则(1,)N =+∞,所以()1,M N =+∞U .故选:B题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3【答案】A【分析】解出集合{|1M x x =≤-或}3x ≥,再根据补集和交集的含义即可得到答案.【详解】12x -≥,解得3x ≥或1x ≤-,则{|1M x x =≤-或}3x ≥,则()R 1,3M =-ð,故(){}R 0,1,2M N ⋂=ð,故选:A.例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R AB ðB .()A BR ðC .A B⋂D .()()A B R RI痧【答案】B【分析】根据指数函数和对数函数的单调性分别求出集合,A B ,然后利用集合的运算逐项进行判断即可求解.【详解】集合{|21}{|0}x A x x x ==>>,集合{|ln 1}{|e}B x x x x =>=>,所以R {|0}A x x =≤ð,R {|e}B x x =≤ð,对于A ,()R {|0e}A B x x =<≤ ð,故选项A 不满足题意;对于B ,()A B =∅R I ð,故选项B 满足题意;对于C ,={|e}A B x x > ,故选项C 不满足题意;对于D ,()(){|0}A B x x =≤R R 痧,故选项D 不满足题意,故选:B .练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3【答案】B【分析】由集合的运算求解.【详解】(){}{}{}2,4,62,42,3,4U A B ⋂==⋂ð.故选:B练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4【答案】A【分析】由{}N |07U A B x x =⋃=∈≤≤可知集合U 中的元素,再由(){}1,3,5,7U A B = ð即可求得集合B .【详解】由(){}1,3,5,7U A B = ð知,{}{}1,3,5,71,3,5,,7U B A ⊆⊆ð又因为{}{}7017N 2356|04U A B x x =⋃=∈≤≤=,,,,,,,,所以B ={}0,2,4,6.故选:A.练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个【答案】B【分析】首先求集合,M N ,再求集合的运算.【详解】先求{}1,2M =,{Z 1}5}2,4|,{3N x x =∈<<=,所以{}1,2,3,4M N =U ,则(){}5U M N = ð,所以子集的个数为122=.故选:B练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}【答案】C【分析】利用集合的交并补运算即可求解.【详解】{1,2,3,4,5,6,7,8}I =,{1,3,4,5,6,7}A B = ,故(){}2,8I A B ⋃=ð.故选:C .练习20.(2023·广东·统考模拟预测)集合{}2x A y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦【答案】C【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()B A R ð.【详解】因为{}{}20xA y y y y ===>,(){}{}22log 323203B x y x x x x x ⎧⎫==-=->=>⎨⎬⎩⎭,则23B x x ⎧⎫=≤⎨⎬⎩⎭R ð,因此,()R 20,3B A ⎛⎤= ⎥⎝⎦ð.故选:C.题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .【答案】A【分析】化简集合M ,N ,根据集合的运算判断{}|10x x -≤<为两集合交集即可得解.【详解】{}|10[1,)M x x =+≥=-+∞ ,{}|21(,0)xN x =<=-∞,{}|10M N x x ∴-=≤< ,由Venn 图知,A 符合要求.故选:A例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U AB ⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð【答案】D【分析】利用Venn 图表示集合,,U A B ,结合图像即可找出表示空集的选项.【详解】由Venn 图表示集合,,U A B 如下:,由图可得()U BA B A = 痧,A B A = ,()()U U UA B B ⋂=痧,()U A B =∅ ð,故选:D练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .【答案】B【分析】利用图象求得正确答案.【详解】{}0,1,2A B = ,所以:A 选项,阴影部分表示{}0,1,2,不符合题意.B 选项,阴影部分表示{}4,8,符合题意.C 选项,阴影部分表示{}3,不符合题意.D 选项,阴影部分表示{}3,4,8,不符合题意.故选:B练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-【答案】D【分析】根据集合的交并补运算即可求解.【详解】全集为U ,集合{}2,1,1,2A =--,{}1,0,1,2,3B =-,{}{}1,1,2,2,1,0,1,2,3A B A B ⋂=-⋃=--,图中阴影部分表示是A B ⋃去掉A B ⋂的部分,故表示的集合是{}2,0,3-.故选:D .练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð【答案】AC 【分析】分析出阴影部分为M P 和U S ð的子集,从而选出正确答案.【详解】图中阴影部分是M P 的子集,不属于集合S ,属于集合S 的补集,即U S ð的子集,满足要求的为()()U U P S M M P S ⎡⎤=⎣⎦ 痧,均表示阴影部分,BD 不合要求.故选:AC练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%【答案】C【分析】根据公式()()()()card A B card A card B card A B ⋃=+-⋂列方程求解即可.【详解】对物理感兴趣的同学占56%,对历史感兴趣的同学占74%,这两组的比练习数据都包含了既对物理感兴趣又对历史感兴趣的同学的比练习,设既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习为x ,则对物理或历史感兴趣的同学的比练习是56%+74%-x ,所以56%+74%-x =90%,解得40x =%,故选:C.练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2【答案】B 【分析】先求得集合{}2,1,0A =--,结合题意及集合的运算,即可求解.【详解】由题意,集合{}1Z 32,1,02A x x ⎧⎫=∈-<<=--⎨⎬⎩⎭,根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{}1,2.故选:B.题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-【答案】B 【分析】由集合和元素的关系及并集的定义讨论即可.【详解】由题意可得:23a +=或22a a +=若23a +=,此时211a a =⇒=,集合A 的元素有重复,不符合题意;若22a a +=,解得2a =或1a =-,显然2a =时符合题意,而211a a =-⇒=同上,集合A 的元素有重复,不符合题意;故2a =.故选:B例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且B A ,求实数m 的值.【答案】13m =或12m =-或0m =【分析】分0m =和0m ≠两种情况讨论,结合已知即可得解.【详解】{}{}2|603,2A x x x =+-==-,当0m =时,B =∅A ,当0m ≠时,1{|10}B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ,所以13m -=-或12m-=,所以13m =或12-,综上所述,13m =或12m =-或0m =.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.【答案】(1){}25A C B x x ⋃=-≤≤R (2)1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或【分析】(1)根据题意,先求出集合A 的补集,再利用集合的并集运算求解即可;(2)根据集合的包含关系分A =∅和A ≠∅两种情况进行讨论即可求解.【详解】(1)若1a =-,则集合{}22A x x =-≤≤,所以{}15B x x =-≤≤R ð,所以{}25A C B x x ⋃=-≤≤R ;(2)因为集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >,因为A B ⋂=∅,所以分以下两种情况:若A =∅,即23a a >+,解得3a >,满足题意,若A ≠∅,则213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩解得122a -≤≤,综上所述a 的取值范围为1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >【答案】B【分析】先求出A R ð,根据()A B =∅R ð,可求得结果.【详解】由集合{2A x x =<∣或4}x ≥,得{24}A x x =≤<R ∣ð,又集合{}1B x a x a =≤≤+∣且()A B =∅R ð,则1a +<2或4a ≥,即1a <或4a ≥.故选:B.练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞【答案】B 【分析】根据集合的包含关系列出关于a 的不等式组即可.【详解】由已知可得,集合{}13A xx =-≤≤∣,{}5B x a x a =-<<,因为A B ⊆,所以351a a >⎧⎨-<-⎩,(注意端点值是否能取到),解得34a <<,故选:B .练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.【答案】(1)(){}|20U M P x x =-≤≤ ð;(2)71,,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.【分析】(1)利用集合的补集和交集的运算知识即可求解.(2)求出U P ð,U M P ⊆ð,分=∅≠∅,M M ,两种情况讨论,根据集合的运算求解即可.【详解】(1)当0a =时,{}|05=<<M x x ,{}|21P x x =-≤≤,所以{0U M x x =≤ð或5}x ³,(){}|20U M P x x ⋂=-≤≤ð;(2) 全集U =R ,{}|21P x x =-≤≤,{2U P x x ∴=<-ð或1}x >,⊆ U M P ð,∴分=∅≠∅,M M ,两种情况讨论.(1)当M 蛊时,如图可得,325252a a a <+⎧⎨+≤-⎩或32531a a a <+⎧⎨≥⎩,72a ∴≤-或153a ≤<;(2)当M =∅时,应有:325a a ≥+,解得5a ≥;综上可知,72a ∴≤-或13a ≥,故得实数a 的取值范围71,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R(1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.【答案】(1)(){}20U A B x x ⋂=-≤≤ð(2)(][],10,1-∞-⋃【分析】(1)根据交集与补集的运算求解即可;(2)分B =∅与B ≠∅由条件列不等式求范围即可.【详解】(1)当2a =时,{}06B x x =<<,所以{0U B x x =≤ð或}6x ≥,又{}23A x x =-≤≤,所以(){}20U A B x x ⋂=-≤≤ð.(2)由题可得:当B =∅时,有23a a -≥,解得a 的取值范围为(],1-∞-;当B ≠∅时有232233a a a a -<⎧⎪-≥-⎨⎪≤⎩,解得a 的取值范围为[]0,1,综上所述a 的取值范围为(][],10,1-∞-⋃.。

专题1-1 集合及集合思想应用(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版)

专题1-1 集合及集合思想应用(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版)

专题1-1 集合及集合思想应用目录讲高考 (1)题型全归纳 ................................................................................................................................................... 3 【题型一】集合中元素表示 ................................................................................................................... 3 【题型二】集合元素个数 ........................................................................................................................ 4 【题型三】知识点交汇处的集合元素个数........................................................................................ 5 【题型四】由元素个数求参 ................................................................................................................... 7 【题型五】子集关系求参 ........................................................................................................................ 8 【题型六】集合运算1:交集运算求参 .......................................................................................... 10 【题型七】集合运算2:并集运算求参 .......................................................................................... 12 【题型八】集合运算3:补集运算求参 .......................................................................................... 13 【题型九】应用韦恩图求解 ................................................................................................................ 15 【题型十】集合中的新定义 ................................................................................................................ 18 专题训练 .. (20)讲高考1.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-, 所以(){}U 2,0A B ⋃=-. 故选:D.2.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( ) A .∅ B .S C .T D .Z 【答案】C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.3.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【分析】结合题意利用并集的定义计算即可.【详解】由题意可得:{}|12A B x x =-<≤.故选:B.4.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤<.故选:D.5.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =,则(){}5U M N =.故选:A.6.(2007·全国·高考真题(文))已知集合{}cos sin ,02E θθθθπ=<≤≤∣,{}tan sin F θθθ=<∣,那么E F 为区间( )A .,2ππ⎛⎫ ⎪⎝⎭B .3,44ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭ D .35,44ππ⎛⎫ ⎪⎝⎭【答案】A【解析】先分别利用正弦函数、余弦函数和正切函数的图象化简集合E ,F ,再利用交集的运算求解.【详解】∵5{cos sin ,02}44E πθθθθπθθπ⎧⎫=<≤≤=<<⎨⎬⎩⎭∣∣, {}tan sin ,2F k k k πθθθθπθππ⎧⎫=<=+<<+∈⎨⎬⎩⎭Z ∣∣,∵2E F πθθπ⎧⎫=<<⎨⎬⎩⎭∣.故选:A.7.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( )A .34π B .π C .2π D .3π 【答案】B【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后可求区域的面积. 【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且2362332BO =⨯⨯=,故361226PO =-=.因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=⨯,故S 的轨迹圆在三角形ABC 内部,故其面积为π故选:B题型全归纳【题型一】集合中元素表示【讲题型】例题1:已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( ) (1){}∅(2){}{}∅(3)∅(4){}{},∅∅ A .(1)(2) B .(1)(3) C .(2)(3) D .(2)(4) 【答案】B【分析】根据元素与集合的关系判断. 集合A 有两个元素:{}∅和∅, 故选:B例题2、设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M N B .M N C .M N ⊆ D .M N【答案】B 【分析】对于集合N ,令2()k m m =∈Z 和21()k m m Z =-∈,即得解. 【详解】{|24k M x x ππ==+,}k Z ∈,{|42k N x x ππ==+,}k Z ∈, 对于集合N ,当2()k m m =∈Z 时,22m x ππ=+,m Z ∈; 当21()k m m Z =-∈时,24m x ππ=+,m Z ∈.M N ∴,故选:B .1.以下四个写法中:∵ {}00,1,2∈;∵{}1,2∅⊆;∵{}{}0,1,2,3=2,3,0,1;∵A A ⋂∅=,正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】C对于∵,{}00,1,2∈正确;对于∵,因为空集是任何集合的子集,所以{}1,2∅⊆正确;对于∵,根据集合的互异性可知{}{}0,1,2,3=2,3,0,1正确;对于∵, A ∅=∅,所以A A⋂∅=不正确;四个写法中正确的个数有3个,故选C.2.下面五个式子中:∵{}a a ⊆;∵{}a ∅⊆;∵{a }∈{a ,b };∵{}{}a a ⊆;∵a ∈{b ,c ,a };正确的有( ) A .∵∵∵ B .∵∵∵∵ C .∵∵ D .∵∵ 【答案】A【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. ①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确; {}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.3.若{}21,3,a a ∈,则a 的可能取值有( )A .0B .0,1C .0,3D .0,1,3 【答案】C【分析】根据元素与集合的关系及集合中元素的性质,即可判断a 的可能取值. 0a =,则{}1,3,0a ∈,符合题设;1a =时,显然不满足集合中元素的互异性,不合题设;3a =时,则{}1,3,9a ∈,符合题设;∵0a =或3a =均可以.故选:C【题型二】集合元素个数【讲题型】例题1.已知集合11|3381x A x Z -⎧⎫=∈<≤⎨⎬⎩⎭,2|03x B x N x +⎧⎫=∈<⎨⎬-⎩⎭,则集合{}|,,z z xy x A y B =∈∈的元素个数为( ) A .6 B .7 C .8 D .9 【答案】B 【分析】解指数不等式求得集合A ,解分式不等式求得集合B ,由此求得集合{}|,,z z xy x A y B =∈∈的元素个数. 【详解】 由113381x -<≤得411333x --<≤,411x -<-≤,解得32x -<≤,所以{}2,1,0,1,2A =--.由203x x +<-解得23x -<<,所以{}1,0,1,2B =-.所以{}|,,z z xy x A y B =∈∈{}2,0,2,4,1,1,4=---,共有7个元素.故选:B. 例题2.,若n A 表示集合n A 中元素的个数,则5A =_______,则12310...A A A A ++++=_______. 【答案】11; 682. 【详解】 试题分析:当时,,,即,,由于不能整除3,从到,,3的倍数,共有682个,1.若集合{}2N log3A x x =∈<,{B x y ==,则A B 的元素个数为( )A .3B .4C .5D .6 【答案】C【分析】分别求出集合,A B ,然后,由交集定义求得交集后可得元素个数.由题意得,{}{}081,2,3,4,5,6,7A x x =∈<<=N ,{}3B x x =≥,故{}3,4,5,6,7A B =,有5个元素. 故选:C2.已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为A .3B .4C .6D .9 【答案】B【分析】根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数.因为x A ∈,y A ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.3.集合{}2*|70,A x x x x =-<∈N ,则*6|,B y y A y N ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个 【答案】D{}{}{}2**|70,|07,1,2,3,4,5,6A x x x x x x x =-<∈=<<∈=N N , {}*6|,1,2,3,6B y y A y ⎧⎫=∈∈=⎨⎬⎩⎭N ,则B 中的元素个数为4个.本题选择D 选项.【题型三】知识点交汇处的集合元素个数【讲题型】例题1.1.已知全集{(,)|,}U x y x R y R =∈∈,集合S U ⊆,若S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =均对称,且(2,3)S ∈,则S 中的元素个数至少有 A .4个 B .6个 C .8个 D .10个 【答案】C求出点(2,3)关于原点、坐标轴、直线y x =的对称点,其中关于直线y x =对称点,再求它关于原点、坐标轴、直线y x =的对称点,开始重复了.从而可得点数的最小值.因为(2,3)S ∈,S 中的点在直角坐标平面内形成的图形关于原点、坐标轴、直线y x =对称,所以(2,3),(2,3),(2,3),(3,2),(32),S S S S S --∈-∈-∈∈--∈,(32),S ∈,-(32),S -∈,所以S 中的元素个数至少有8个, 故选:C.例题2.若正方体12341234A A A A B B B B -的棱长为1,则集合{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为( )A .1B .2C .3D .4【答案】A【分析】将1111=()i j i j AB A A A B B B ++代入11i j A B A B ⋅,结合111j A B A A ⊥和111j A B B B ⊥({}2,3,4j ∈)化简即可得出集合中元素的个数.∵当11i j A B A B ≠时 正方体12341234A A A A B B B B -∴111j A B A A ⊥ 故:1110j A B A A ⋅= ({}2,3,4j ∈)∴111j A B B B ⊥ 故:1110j A B B B ⋅= ({}2,3,4j ∈)1111()i j i j A B A A A B B B =++∴11111111()i j i j A B A B A B A A A B B B ⋅=⋅++2111111111j j A B A A A B A B B B =⋅++⋅= {}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.∵11=i j A B A B 时.2111111111i j x A B A B A B A B A B =⋅=⋅==此时{}{}11{|,1,2,3,4,1,2,3,4}i j x x A B A B i j =⋅∈∈中元素的个数为1.综上所述, {}{}{|,1,2,3,4,1,2,3,4}x x A B A B i j =⋅∈∈中元素的个数为1.故选:A.1.设集合{2,1,0,1,2}A =--,{1,0,1}B =-,22(,)1,,43x y C x y x A y B ⎧⎫⎪⎪=+≤∈∈⎨⎬⎪⎪⎩⎭,则集合C 中元素的个数为( ) A .11 B .9 C .6 D .4 【答案】A【分析】由题意可得出:x 从1-,0,1任选一个;或者x 从2-,2任选一个;结合题中条件,确定对应的选法,即可得出结果.解:根据条件得:x 从1-,0,1任选一个,y 从而1-,0,1任选一个,有9种选法; 2x =-或2时,0y = ,有两种选法;共11种选法; ∴C 中元素有11个. 故选A .2.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49C .45D .30【答案】C因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=A .50B .100C .150D .200 【答案】D当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0=t 时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D .【题型四】由元素个数求参【讲题型】例题1.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( )A .4B .2C .0D .0或4 【答案】A2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选 考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系. 例题2.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则 A .8k > B .8k ≥C .16k >D .16k ≥【答案】C试题分析:因为{}21log A x N x k =∈<<中到少有3个元素,即集合A 中一定有2,3,4三个元4【练题型】1.已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( ) A .0 B .0或2- C .0或2 D .2 【答案】C 【分析】根据题意转化为抛物线222y x ax a =++与x 轴只有一个交点,只需2480a a =-=△即可求解.若A 中只有一个元素,则只有一个实数满足2220x ax a ++≤,即抛物线222y x ax a =++与x 轴只有一个交点,∵2480a a =-=△,∵0a =或2.故选:C 2..已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( )A .77n =B .49n ≤C .64n =D .81n ≥ 【答案】A先理解题意,然后分∵当11x =±,10y =时,∵当10x =,11y =±时, ∵当10x =,10y =时,三种情况讨论即可.解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈,∵当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----, 123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,∵当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---, 124,3,2,1,0,1,2,3,4y y +=----,这种情况和第∵种情况除124,4y y +=-外均相同,故新增7214⨯=个, ∵当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个, 综合∵∵∵可得:A B ⊕的元素个数为6314077++=个, 故选:A.3.如果集合{}2210A x ax x =++=中只有一个元素,则a 的值是( ) A .0B .0或1C .1D .不能确定【答案】B因为A 中只有一个元素,所以方程2210ax x ++=只有一个根,当a=0时,12x =-;当0a ≠时,440,1a a ∆=-==,所以a=0或1.【题型五】子集关系求参【讲题型】例题1.已知集合{}(){}1,0A B x x x a ==-<,若A B ⊆,则a 的取值范围是( ) A .(),1-∞ B .()1,+∞ C .(),2-∞ D .()2,+∞【答案】D【分析】先化简集合A ,,B 再根据A B ⊆得解. 【详解】112x =>≤≤,故[]1,2A =, 当0a <时,(,0)B a =,显然不满足A B ⊆; 当0a =时,B =∅,显然不满足A B ⊆;当0a >时,(0,)B a =,若2A B a ⊆⇒>.故选:D例题2.已知集合{}2230A x x x =--<,非空集合{}21B x a x a =-<<+,B A ⊆,则实数a 的取值范围为( ). A .(],2-∞B .1,22⎛⎤ ⎥⎝⎦C .(),2-∞D .1,22⎛⎫ ⎪⎝⎭【答案】B先化简集合A ,再由B A ⊆建立不等式组即可求解 【详解】{}{}223013A x x x x x =--<=-<<,由B A ⊆且B 为非空集合可知,应满足211312a a a a-≥-⎧⎪+≤⎨⎪+>-,解得1,22a ⎛⎤∈ ⎥⎝⎦故选:B1.若集合{}|2135A x a x a =+≤≤-,{}|516B x x =≤≤,则能使A B ⊆成立的所有a 组成的集合为( ) A .{}|27a a ≤≤ B .{}|67a a ≤≤C .{}7|a a ≤D .∅【答案】C考虑A =∅和A ≠∅两种情况,得到21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得答案.【详解】当A =∅时,即2135a a +>-,6a <时成立;当A ≠∅时,满足21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得67a ≤≤;综上所述:7a ≤.故选:C.2. {}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m < B .23m ≤≤ C .3m ≤ D .23m <<【答案】C由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C.3.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,【答案】A解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-;∵当0a =时,B =∅,满足B A ⊆,符合题意;∵当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A .【题型六】集合运算1:交集运算求参【讲题型】例题1.已知集合(){},0A x y x ay a =+-=,()(){},2310B x y ax a y =++-=.若AB =∅,则实数=a ( )A .3B .1-C .3或1-D .3-或1 【答案】A【分析】将问题转化为“直线0x ay a +-=与直线()2310ax a y ++-=互相平行”,由此求解出a 的取值.【详解】因为A B =∅,所以直线0x ay a +-=与直线()2310ax a y ++-=没有交点, 所以直线0x ay a +-=与直线()2310ax a y ++-=互相平行,所以()1230a a a ⨯+-⨯=,解得1a =-或3a =,当1a =-时,两直线为:10x y -+=,10x y -+-=,此时两直线重合,不满足, 当3a =时,两直线为:330x y +-=,3910x y +-=,此时两直线平行,满足, 所以a 的值为3, 故选:A.例题2.已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( )A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0-- 【答案】D【分析】先求出集合A ,由A B B =得到B A ⊆,再分类讨论a 的值即可.【详解】{}{}22301,2A x N x x *=∈--<=,因为A B B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭,由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.故选:D .1.已知集合{}12A x x =<<,集合{B x y =,若A B A =,则m 的取值范围是( )A .(]0,1B .(]1,4C .[)1,+∞D .[)4,+∞ 【答案】D由A B A =可得出A B ⊆,可知B ≠∅,解出集合B ,结合题意可得出关于实数m 的不等式,由此可解得实数m 的取值范围.【详解】A B A =且{}12A x x =<<,则A B ⊆,B ∴≠∅. 若0m <,则20m x -<,可得B =∅,不合乎题意;若0m ≥,则{{B x y x x ==,2≥,解得4m ≥.因此,实数m 的取值范围是[)4,+∞.故选:D.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4 【答案】B【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.3.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞【答案】C【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a综上,实数a 的取值范围为{}[)12,+∞.故选:C.【题型七】集合运算2:并集运算求参【讲题型】例题1..已知{|A x y ==,{}2|220B x x ax a =-++≤,若A B A ⋃=,那么实数a的取值范围是( ) A .(12)-, B .182,7⎡⎤⎢⎥⎣⎦C .181,7⎛⎫- ⎪⎝⎭D .181,7⎛⎤- ⎥⎝⎦【答案】D【分析】由题意,可先化简集合A,再由A B A ⋃=得B A ⊆,由此对B 的集合讨论求a,由于集合B 可能为空集,可分两类探讨,当B 是空集时,与B 不是空集时,分别解出a 的取值范围,选出正确选项【详解】解:由题意,{|{|14}A x y x x ===, 由A B A ⋃=得B A ⊆又2{|220}B x x ax a =-++≤当B 是空集时,符合题意,此时有24480a a =--<解得12a -<<当B 不是空集时,有2448014122016820a a a a a a a ⎧∆=--⎪⎪⎨-++⎪⎪-++⎩解得1827a ≤≤综上知,实数a 的取值范围是181,7⎛⎤- ⎥⎝⎦故选:D例题2.设常数a∵R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A∵B=R ,则a 的取值范围为( ) A .(﹣∞,2) B .(﹣∞,2] C .(2,+∞) D .[2,+∞) 【答案】B【详解】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.1.设集合{}2|(3)30A x x a x a =-++=,{}2|540B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为( )A .{0}B .{03},C .{013,4},,D .{13,4},【答案】C【详解】试题分析:B={1,4},2(3)30x a x a -++=两根是x=3,x=a ,当a=0、1、3、4时,满足集合A B ⋃中所有元素之和为8,故选C.2.非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( )A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦【答案】A【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<,因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得: ()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤,所以,实数m 的取值范围为510,23⎛⎤⎥⎝⎦.故选:A3.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .1 【答案】B【分析】根据集合N 和并集,分别讨论a 的值,再验证即可.【详解】因为{}1,2,3M N =,若110a a -=⇒=,经验证不满足题意; 若121a a -=⇒=-,经验证满足题意.所以1a =-.故选:B.【题型八】集合运算3:补集运算求参【讲题型】例题1.已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.【答案】1,12⎡⎤-⎢⎥⎣⎦【详解】由题意,{|12}A B x x ⋃=-<< , ∵集合{|10}C x mx A B C >,=+⋃⊆ ,∵111102022m x m m m m -∴-≥∴≥-∴-≤<,<,,,<; ∵m 0= 时,成立;∵1101101m x m m m m -∴-≤-∴≤∴≤>,>,,,<, 综上所述,112m -≤≤,故答案为112m -≤≤. 例题2..已知集合1121A x R x ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()R A B =∅,则实数a 的取值范围是 A .[)1,+∞ B .[)0,+∞ C .()0,∞+ D .()1,+∞ 【答案】B解分式不等式求得集合A ,对a 进行分类讨论,结合()R A B =∅,求得实数a 的取值范围. 【详解】由1121210,021212121x x x x x x +--≤-=≤++++()2210210x x x ⎧-+≤⇔⎨+≠⎩12x ⇔<-或0x ≥.所以{1|2A x x =<-或}0x ≥,所以1|02R A x x ⎧⎫=-≤<⎨⎬⎩⎭.由()()2210x a x a ---=,解得2x a =或21x a =+.2122a a a +≥=≥,当1a =时,221a a =+,此时B =∅,满足()R A B =∅;当1a ≠时,{}2|21B x a x a =<<+,由()R A B =∅得201a a ≥⎧⎨≠⎩,即0a ≥且1a ≠.综上所述,实数a 的取值范围是[)0,+∞. 【讲技巧】补集运算:1.符号语言:∁U A ={x |x ∈U ,且x ∉A }.2.图形语言:【练题型】 1.设全集{}1,2,3,4,5U =,集合{}21,1,4A a =-,{}2,3UA a =+,则a 的值为( )A .2±B .C .2-D .2【答案】D【分析】根据集合A 及其补集情况分情况讨论即可.【详解】由已知得{}21,2,4,1,3a a U -+=,所以21335a a ⎧-=⎨+=⎩或21533a a ⎧-=⎨+=⎩,解得2a =,故选:D.2.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1U A =,则a 的所有可能值形成的集合为( )A .{}1-B .{}1C .{}1,1-D .∅【答案】A【解析】由U A U ⊆,可得21a =,即1a =±,当1a =时,不符合元素的互异性,1a =-时,符合题意.【详解】由U A U ⊆,即{}1{}22,4,a ⊆,则21a =,解得1a =±,若1a =,则34a +=,而{}4,3A a =+,不符合集合中元素的互异性,舍去; 若1a =-,则{}2,4,1U =,{}4,2A =,{}1UA =,符合题意.所以a 的所有可能值形成的集合为{}1-.故选:A.3.已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________ 湖北省荆州市沙市中学2022-2023学年高一上学期第一次月考数学试题 【答案】2【分析】要求a 的值,需正确理解原集和补集的含义,由于参数a 为未知数,此题应该进行分类讨论【详解】由补集概念及集合中元素互异性知a 应满足 ()()()()22222233(1)323|1|23(2)|1|3232(3)232233(4)2123433a a a a a a a a A a a B a a a a a a ⎧+=+=+-⎪+=+-⎧⎪⎪⎨+=⎪⎨+-≠⎪⎪+-≠⎪⎪+-≠+-≠⎩⎩或 分两种情况进行讨论:在A 中,由(1)得a=0依次代入(2)、(3)、(4)检验,不合∵,故舍去. 在B 中,由(1)得a=-3,a=2,分别代入(2、(3)、(4)检验,a=-3不合∵,故舍去,a=2能满足∵∵∵,故a=2符合题意.答案为:2【题型九】应用韦恩图求解【讲题型】例题1.全集U =R ,集合04xA xx ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞【答案】C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C .例题2.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1 【答案】C【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤, ∵(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤, 故选:C【练题型】1.若全集U =R ,集合(){}|lg 6A x y x ==-,{}|21x B x =>,则图中阴影部分表示的集合是( )【讲技巧】并集运算韦恩图:符号语言 Venn 图表示A ∪B ={x |x ∈A ,或x ∈B }交集运算韦恩图符号语言Venn 图表示A ∩B ={x |x ∈A ,且x ∈B }补集运算韦恩图图形语言:A .()2,3B .(]1,0-C .[)0,6D .(],0-∞ 【答案】D 【分析】根据函数定义域和指数函数单调性得到集合,A B ,阴影部分表示的集合是U B A ,计算得到答案.【详解】(){}{}|lg 66A x y x x x ==-=<,{}{}210xB x x x ==>,阴影部分表示的集合是(]()(]U,0,6,0BA =-∞-∞=-∞.故选:D.2.已知全集U R =,集合{}2313100M x x x =--<和{}2,N x x k k Z ==∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有A .1个B .2个C .3个D .无穷个 【答案】C【分析】由题意首先求得集合M ,然后结合韦恩图求解阴影部分所示的集合的元素个数即可.【详解】求解二次不等式2313100x x --<可得2|53M x x ⎧⎫=-<<⎨⎬⎩⎭,集合{}|2,N x x k k Z ==∈表示所有的偶数组成的集合, 由韦恩图可知,题中的阴影部分表示集合M N ⋂,由于区间2,53⎛⎫- ⎪⎝⎭中含有的偶数为0,2,4,故{}0,2,4M N ⋂=,即阴影部分所示的集合的元素共有3个. 本题选择C 选项.3.已知集合{|{||1|2}M x y N x x ==+≤,且 M 、M 都是全集 I 的子集,则右图韦恩图中阴影部分表示的集合为A .{|1}x x ≤B .{|31}z z -≤≤C .{|3z z -≤<D .{|1x x <≤【答案】C【详解】试题分析:{{}|,|31{|I M x x N x x C M x x ==-≤≤⇒=I N C M ⇒⋂={|3x x -≤<,故选C .【题型十】集合中的新定义【讲题型】例题1定义运算.()(),()()()(),()()C A C B C A C B A B C B C A C A C B -⎧*=⎨-<⎩若{}()(){}221,2,20A B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =_______.【答案】3【分析】由新定义1A B *=得集合B 可以是单元素集合,也可以是三元素集合,把问题转化为讨论方程2220x ax x ax 根的个数,即等价于研究两个方程20x ax 、220x ax ++=根的个数.【详解】2220x ax x ax等价于20x ax∵或220x ax ++=∵.由{}1,2A =,且*1A B =,得集合B 可以是单元素集合,也可以是三元素集合. 若集合B 是单元素集合,则方程∵有两相等实根,∵无实数根,可得0a =;若集合B 是三元素集合,则方程∵有两不相等实根,∵有两个相等且异于∵的实数根,即280a a ≠⎧⎨∆=-=⎩,解得a =±综上所述,0a =或a =±3C S. 例题2..对于集合M ,定义函数()1,1,M x Mf x x M -∈⎧=⎨∉⎩,对于两个集合,A B ,定义集合()(){}|1A B A B x f x f x *=⋅=-. 已知集合{}A x x =>,()(){}|330B x x x x =-+>,则A B *=__________.【答案】(,3][0,1)(3,)-∞-+∞.【分析】解不等式求得集合A 与集合B ,根据新定义函数()M f x 以及新定义集合A B *的概念,求得A B *中x 的取值范围.【详解】当0x >x 两边平方并化简得220x x +-<,即()()210x x +-<,解得2<<1x -,由于0x >,故x 的范围是()0,1.当0x ≤x >恒成立,故x 的取值范围是(],0-∞.综上所述,(),1A =-∞.故()1,11,1A x f x x -<⎧=⎨≥⎩∵. 由()()330x x x -+>,解得30x -<<或3x >,故()()3,03,B =-⋃+∞.故()()()(][]1,3,03,1,,30,3B x f x x ⎧-∈-⋃+∞⎪=⎨∈-∞-⋃⎪⎩∵.要使()()1A B f x f x ⋅=-,由∵∵可知,(,3][0,1)(3,)x -∞-∞∈+. 故答案为(,3][0,1)(3,)-∞-+∞.【练题型】1.设A 、B 、C 是集合,称(,,)A B C 为有序三元组,如果集合A 、B 、C 满足||A B =||||1B C C A ==,且A B C =∅,则称有序三元组(,,)A B C 为最小相交(其中||S 表示集合S 中的元素个数),如集合{1,2}A =,{2,3}B =,{3,1}C =就是最小相交有序三元组,则由集合{1,2,3,4,5,6}的子集构成的最小相交有序三元组的个数是________ 【答案】7680 【分析】令S ={1,2,3,4,5,6},由题意知,必存在两两不同的x ,y ,z ∵S ,使得A∩B ={x },B ∩C ={y},C ∩A ={z },而要确定x ,y ,z 共有6×5×4种方法;对S 中剩下的3个元素,每个元素有4种分配方式,即可得到最小相交的有序三元组(A ,B ,C )的个数.【详解】令S ={1,2,3,4,5,6},如果(A ,B ,C )是由S 的子集构成的最小相交的有序三元组,则存在两两不同的x ,y ,z ∵S ,使得A ∩B ={x },B ∩C ={y },C ∩A ={z },(如图),要确定x ,y ,z 共有6×5×4种方法;对S 中剩下的3个元素,每个元素有4种分配方式,即它属于集合A ,B ,C 中的某一个或不属于任何一个,则有43种确定方法.所以最小相交的有序三元组(A ,B ,C )的个数6×5×4×43=7680. 故答案为:7680 2..集合{}6666,11135,2333,10,99111,1,198,1000,0,M π=---有10个元素,设M 的所有非空子集为()1,2,,1023i M i =⋅⋅⋅,每一个i M 中所有元素乘积为()1,2,,1023i m i =⋅⋅⋅,则1231023m m m m +++⋅⋅⋅+=_____.【答案】1-【分析】将这1023个子集分成以下几种情况:∵含0的子集;∵不含0,含1-且还含有其他元素的子集;∵不含0,不含1-但含有其他元素的子集;∵只含1-的子集一个.将每种情况下的i m 计算出来,并根据∵∵中的集合是一一对应的,求满足的i m ,可得答案. 【详解】M 所有非空子集为()1,2,,1023i M i =⋅⋅⋅,这1023个子集分成以下几种情况: ∵含0的子集512个,这些子集均满足0i m =;∵不含0,含1-且还含有其他元素的子集255个; ∵不含0,不含1-但含有其他元素的子集有255个; ∵只含1-的子集一个{}1-,满足1i m =-.其中∵∵中的集合是一一对应的,且满足i m 对应成相反数,因此,12310235120255011m m m m ++++=⨯+⨯-=-. 故答案为:1-.3.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中:∵{}0x x ∈≠Z ;∵{},0x x x ∈≠R ;∵1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;∵,1n x x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______.上海市延安中学2022-2023学年高一上学期第一次月考数学试题 【答案】∵∵【解析】根据集合聚点的新定义,结合集合的表示及集合中元素的性质,逐项判定,即可求解.【详解】由题意,集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,∵对于某个0a >,比如0.5a =,此时对任意的{}0x x x ∈∈≠Z ,都有00x x -=或者01x x -≥,也就是说不可能000.5x x <-<,从而0不是{}0x x ∈≠Z 的聚点;∵集合{}0x x ∈≠R ,对任意的a ,都存在2ax =(实际上任意比a 小得数都可以),使得02ax a <=<,∵0是集合{}0x x ∈≠R 的聚点;∵集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 中的元素是极限为0的数列,对于任意的0a >,存在1n a >,使10x a n<=<,∵0是集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 的聚点;∵中,集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大12,∵在12a <的时候,不存在满足得0x a <<的x ,∵0不是集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 的聚点. 故答案为:∵∵.一、单选题1.已知集合{}N 23A x x =∈-<<,则集合A 的所有非空真子集的个数是( ) A .6 B .7 C .14 D .15 【答案】A【分析】根据自然数集的特征,结合子集的个数公式进行求解即可. 【详解】因为{}{}N 230,1,2A x x =∈-<<=,所以集合A 的元素个数为3,因此集合A 的所有非空真子集的个数是3226-=, 故选:A2.设全集{0,1,2,3,4,5}U =,集合{0,1,2,3},{2,3,4,5}A B ==,则()UA B =( )A .{0}B .{0,1}C .{0,1,2,3}D .{0,1,2,3,4,5}【答案】C 【分析】先求UB ,再求并集即可.【详解】由题可知:{0,1}U B =, 而{0,1,2,3}A =,所以(){0,1,2,3}U A B =. 故选:C3.如图,设U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合为( )A .()M P SB .()U M P S ⋂⋂C .()M P SD .()U M P S ⋂⋃【答案】B【分析】根据韦恩图,利用集合的运算即可求解.【详解】由图象可知:阴影部分对应的集合的元素x S ∉,∴U x S ∈,且x MP ∈, 因此()U x MP S ∈.故选:B . 4.设集合P ,Q 都是实数集R 的子集,且()R P Q =∅,则P Q =( )A .∅B .RC .QD .P【答案】D【分析】由题设交集的结果知P Q ⊆,进而可得P Q .【详解】由()R P Q =∅知:P Q ⊆,所以P Q P =.故选:D5.设集合{}2,,0A a a =-,{}2,4B =,若{}4A B ⋂=,则实数a 的值为( )A .2±B .2或-4C .2D .-4【答案】B【分析】根据给定条件可得4A ∈,由此列出方程求解,再验证即可得解.【详解】因{}4A B ⋂=,则4A ∈,即4a =-或24a =,当4a =-时,{}16,4,0A =,{}4A B ⋂=,符合题意,当24a =时,解得2a =或2a =-,若2a =,则{}2,4,0A =-,{}4A B ⋂=,符合题意,若2a =-,则{}2,4,0A =,{}2,4A B =,不符合题意,于是得2a =或4a =-,所以实数a 的值为2或4-.故选:B6.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤,若B A ⊆,则实数a 的取值范围是( )A .113a a ⎧⎫-≤<⎨⎬⎩⎭B .113a a ⎧⎫-≤≤⎨⎬⎩⎭C .{}10a a a <-≥或D .10013a a a ⎧⎫-≤<<<⎨⎬⎩⎭或 【答案】A【分析】根据B A ⊆,分B =∅和B ≠∅两种情况,建立条件关系即可求实数a 的取值范围.【详解】B A ⊆,∴①当B =∅时,即10ax +≤无解,此时0a =,满足题意; ②当B ≠∅时,即10ax +≤有解当0a >时,可得1x a ≤-,要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<当a<0时,可得1x a ≥-,要使B A ⊆,则需要013a a<⎧⎪⎨-≥⎪⎩,解得103a -≤< 综上,实数a 的取值范围是113a a ⎧⎫-≤<⎨⎬⎩⎭故选:A.7.用()C A 表非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩,若{}(){}21,20A B x x x ax ==++=∣,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =( )A .4B .3C .2D .9【答案】C【分析】由新定义,确定()1C A =,再由新运算确定()C B ,并由集合B 的定义确定()2C B =,然后由判别式求得a 值,得集合S ,从而得结论.【详解】由已知()1C A =,又*1A B =,所以()0C B =或()2C B =,又2(2)0x x ax ++=中0x =显然是一个解,即0B ∈,因此()1C B ≥,所以()2C B =, 所以220x ax ++=有两个相等的实根且不为0,280a ∆=-=,a =±{S =-,所以()2C S =.故选:C .8.已知集合{}12A x x =->,集合{}10B x mx =+<,若A B A ⋃=,则m 的取值范围是( )A .1,03⎡⎤-⎢⎥⎣⎦B .1,13⎡⎤-⎢⎥⎣⎦C .[0,1]D .1,0(0,1]3⎡⎫-⎪⎢⎣⎭ 【答案】B【分析】将集合A 化简,根据条件可得B A ⊆,然后分0m =,0m <,0m >讨论,化简集合B ,列出不等式求解,即可得到结果. 【详解】因为1212x x ->⇒->或12x -<-,解得3x >或1x <- 即{}31A x x x =><-或,因为A B A ⋃=,所以B A ⊆当0m =时,B =∅,满足要求.当0m >时,则110mx x m +<⇒<-,由B A ⊆, 可得111m m-≤-⇒≤,即01m <≤ 当0m <时,则110mx x m+<⇒>-,由B A ⊆, 可得1133m m -≥⇒≥-,即103m -≤< 综上所述,1,13m ⎡⎤∈-⎢⎥⎣⎦故选:B.二、填空题9.若集合{}3|1A x x =-≤<,{}|B x x a =≤,且{|1}A B x x ⋃=<,则实数a 的取值范围为_________.【答案】[)3,1-【分析】根据已知条件{}|1A B x x =<,运用集合并集运算定义,列出关于参数a 的不等式,即可求得参数的取值范围.【详解】已知{}3|1A x x =-≤<,{}|B x x a =≤,{}|1A B x x =<,∴31a -≤<,故参数a 的取值范围为[)3,1-.故答案为:[)3,1-10.已知A ={a 1,a 2,a 3,a 4},B ={}222124a a a ,,且a 1<a 2<a 3<a 4,其中ai ∈Z (i =1,2,3,4),若A ∩B ={a 2,a 3},a 1+a 3=0,且A ∪B 的所有元素之和为56,求a 3+a 4=_____.【答案】8【分析】先通过()A B B ⊆,判断得20a ≥,分类讨论20a >与20a =的情况,得到11a =-,20a =,31a =,再求A B ⋃的元素,进而得到24456a a +=,解得47a =,故得答案.【详解】由130a a +=得13a a =-,所以2213a a =,又因为()A B B ⊆,即{}{}22223124a a a a a ⊆,,,,所以20a ≥, (1)若20a >,因为2Z a ∈,所以21a ≥,此时222a a ≤,22331a a a <=,244a a <,即2432a a a >>,故{}2423a a a ∉,,从而{}{}222312a a a a =,,, 所以221232==a a a a ⎧⎨⎩,则2443213a a a a ===,即30a =或1,与32a a >矛盾; (2)若20a =,则4320a a a >>=,244a a >,即2432a a a >>,所以{}2423a a a ∉,, 从而{}{}222312a a a a =,,,显然222223130a a a a a ====,,即30a =或1, 而30a =与32a a >矛盾,故31a =,131a a =-=-,又{}212344A B a a a a a =,,,,,故21234456a a a a a ++++=, 将11a =-,20a =,31a =代入,得到24456a a +=,解得47a =或48a =-(舍去),所以348a a +=.故答案为:8.11.已知集合B 和C ,使得{}1,2,3,4,5,6,7,8,9,10B C ⋃=,B C =∅,并且C 的元素乘积等于B 的元素和,写出所有满足条件的集合C =___________.【答案】{}6,7或{}1,4,10或{}1,2,3,7.【分析】求得,B C 中所有元素之和后,根据C 中元素个数得到其元素所满足的关系式,依次判断C 中元素不同个数时可能的结果即可.【详解】{}1,2,3,4,5,6,7,8,9,10B C =,,B C ∴中所有元素之和为121055++⋅⋅⋅+=;若C 中仅有一个元素,设{}C a =,则55a a =-,解得:552a =,不合题意; 若C 中有且仅有两个元素,设{}(),C ab a b =<,则()55ab a b =-+,当6a =,7b =时,()55ab a b =-+,{}6,7C ∴=;若C 中有且仅有三个元素,设{}(),,C a b c a b c =<<,则()55abc a b c =-++;当1a =,4b =,10c =时,()55abc a b c =-++,{}1,4,10C ∴=若C 中有且仅有四个元素,设{}(),,,C a b c d a b c d =<<<,则()55abcd a b c d =-+++,当1a =,2b =,3c =,7d =时,()55abcd a b c d =-+++,{}1,2,3,7C ∴=; 若C 中有且仅有五个元素,若{}1,2,3,4,5C =,此时1234512055⨯⨯⨯⨯=>,∴C 中最多能有四个元素;综上所述:{}6,7C =或{}1,4,10或{}1,2,3,7.故答案为:{}6,7或{}1,4,10或{}1,2,3,7.【点睛】关键点点睛:本题解题关键是能够通过对C 中元素个数的分类讨论,依次从小至大排列C 中元素可能的取值,根据满足的关系式分析即可得到满足题意的集合.12.已知集合M ={x ∈N |1≤x ≤21},集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M .集合Ai 中元素的最大值与最小值之和称为集合Ai 的特征数,记为Xi (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为___.【答案】132【分析】判断集合的元素个数中的最小值与最大值的可能情况,然后按照定义求解即可.【详解】集合M ={x ∈N |1≤x ≤21},由集合A 1,A 2,A 3满足①每个集合都恰有7个元素; ②A 1∪A 2∪A 3=M 可知最小的三个数为1,2,3;21必是一个集合的最大元素,含有21集合中的元素,有21,20,19,…,16和1,2,3中一个组成,这样特征数最小,不妨取1,这时X 1最小值为22;15必是一个集合的最大元素,含有15集合中的元素,有15,14,13,…,10和2,3中一个组成,这样特征数最小,不妨取2,这时X 2最小值为17;9必是一个集合的最大元素,含有9集合中的元素,有9,8,7,…,4和3组成,这样特征数最小,这时X 3最小值为10;则X 1+X 2+X 3的最小值为22+17+12=51.同理可知最大的三个数为21,20,19;含有21集合中的元素,有21,18,17,16,16,15,13;这样特征数最大,为34; 含有20的集合中元素为20,12,11,10,9,8,7,这样特征数最大,为27; 含有19的集合中元素为19,6,5,4,3,2,1,特征数最大,且为20;则X 1+X 2+X 3的最大值为34+27+20=81;所以X 1+X 2+X 3的最大值与最小值的和为51+81=132.故答案为:132.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 / 17
A.(1,3)
B.(1,3]
C.[-1,2)
D.(-1,2)
答案 C 解析 因为 A={x|x2-2x-3≤0}={x|-1≤x≤3},B={x|x<2},所以 A∩B=[-1,2).
(2)(2020·沈阳检测)已知全集 U={1,3,5,7},集合 A={1,3},B={3,5},则如图所示的阴 影区域表示的集合为( )
8 / 17
()
A.a<1
B.a≤1
C.a>2
D.a≥2
答案 D 解析 集合 B={x|x2-3x+2<0}={x|1<x<2},
由 A∩B=B 可得 B⊆A,作出数轴如图.
可知 a≥2.
本例(2)中,若集合 A={x|x>a},其他条件不变,则实数 a 的取值范围是 ________. 答案 (-∞,1] 解析 ∵A={x|x>a},B={x|1<x<2}, 由 B⊆A 结合数轴观察(如图).
10 / 17
解析 要使 fA(x)·fB(x)=-1,必有 x∈{x|x∈A 且 x∉B}∪{x|x∈B 且 x∉A}={1,6,10,12}, 所以 A△B={1,6,10,12}. 例 2 (多选)设 P 是一个数集,且至少含有两个数,若对任意 a,b∈P,都有 a+b,a
思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须考虑空集的情况,否
则易造成漏解.
(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,
进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.
跟踪训练 1 (1)已知集合 A={x|y= 1-x2},B={x|x=m2,m∈A},则( )
c},{a,b,c},所以满足条件的集合 B 有 4 个.
4.设全集 U=R,集合 A={x|0≤x≤2},B={y|1≤y≤3},则(∁UA)∪B=________. 答案 (-∞,0)∪[1,+∞)
解析 因为∁UA={x|x>2 或 x<0},B={y|1≤y≤3},所以(∁UA)∪B=(-∞,0)∪[1,+ ∞).
题组三 易错自纠 5.(多选)已知集合 A={x|x2-2x=0},则有( )
A.∅⊆A
B.-2∈A
C.{0,2}⊆A
D.A⊆{y|y<3}
答案 ACD
解析 易知 A={0,2},A,C,D 均正确.
6.已知集合 A={1,3, m},B={1,m},若 B⊆A,则 m=________.
答案 0 或 3
A.AB
B.BA
6 / 17
C.A⊆B
D.B=A
答案 B
解析 由题意知 A={x|y= 1-x2},
所以 A={x|-1≤x≤1}. 所以 B={x|x=m2,m∈A}={x|0≤x≤1},
所以 BA,故选 B.
(2)已知集合 A={x|(x+1)(x-6)≤0},B={x|m-1≤x≤2m+1}.若 B⊆A,则实数 m 的
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)任何一个集合都至少有两个子集.( × ) (2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × ) (3)若{x2,1}={0,1},则 x=0,1.( × ) (4)若 P∩M=P∩N=A,则 A⊆(M∩N).( √ )
值范围是( )
A.(0,3)
B.(0,1)∪(1,3)
C.(0,1)
D.(-∞,1)∪(3,+∞)
答案 B 解析 因为 A∩B 有 4 个子集,所以 A∩B 中有 2 个不同的元素,所以 a∈A,所以 a2
-3a<0,解得 0<a<3.又 a≠1,所以实数 a 的取值范围是(0,1)∪(1,3),故选 B. (2)已知集合 A={x|x<a},B={x|x2-3x+2<0},若 A∩B=B,则实数 a 的取值范围是
集合的含义与表示
1.已知集合 A={0,1,2},则集合 B={(x,y)|x≥y,x∈A,y∈A}中元素的个数是( )
A.1 B.3 C.6 D.9
答案 C
解析 当 x=0 时,y=0;当 x=1 时,y=0 或 y=1;
当 x=2 时,y=0,1,2.
故集合 B={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合 B 中有 6 个元素.
A.{3} B.{7} C.{3,7} D.{1,3,5} 答案 B 解析 由图可知,阴影区域为∁U(A∪B).由题意知,A∪B={1,3,5},U={1,3,5,7},则
由补集的概念知,
∁U(A∪B)={7}.故选 B.
命题点 2 利用集合的运算求参数 例 3 (1)已知集合 A={x|x2-3x<0},B={1,a},且 A∩B 有 4 个子集,则实数 a 的取
取值范围为________. 答案 (-∞,-2)∪0,52
解析 A={x|-1≤x≤6}.
∵B⊆A,∴B=∅或 B≠∅.
当 B=∅时,m-1>2m+1,即 m<-2.符合题意.
m-1≤2m+1, 当 B≠∅时,m-1≥-1,
2m+1≤6.
5 解得 0≤m≤2.
5 得 m<-2 或 0≤m≤2.
集合的基本运算 命题点 1 集合的运算 例 2 (1)(2019·日照模拟)已知集合 A={x|x2-2x-3≤0},B={x|x<2},则 A∩B 等于 ()
则 B∩∁UA 等于( )
A.{1,6}
B.{1,7}
9 / 17
C.{6,7}
D.{1,6,7}
答案 C
解析 ∵U={1,2,3,4,5,6,7},A={2,3,4,5},
∴∁UA={1,6,7}.
又 B={2,3,6,7},∴B∩∁UA={6,7}.
(2)设集合 A={x|-1≤x<2},B={x|x<a},若 A∩B≠∅,则 a 的取值范围是( )
A.-1<a≤2
B.a>2
C.a≥-1
D.a>-1
答案 D
解析 在数轴上画出集合 A,B(如图),
观察可知 a>-1.
解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义 的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好 集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素. 例 1 对于集合 M,定义函数 fM(x)=-1,1,x∉Mx∈. M, 对于两个集合 A,B,定义集合 A△B ={x|fA(x)·fB(x)=-1}.已知 A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合 A△B 的结果为________. 答案 {1,6,10,12}
是 ________________________________________________________________________. 答案 [2 020,+∞) 解析 由 x2-2 021x+2 020<0,解得 1<x<2 020, 故 A={x|1<x<2 020}. 又 B={x|x<a},A⊆B,如图所示,可得 a≥2 020.
Z
Q若对于任意的 x∈A 都有 x∈B,则 A⊆B; (2)真子集:若 A⊆B,且 A≠B,则 AB; (3)相等:若 A⊆B,且 B⊆A,则 A=B; (4)∅是任何集合的子集,是任何非空集合的真子集. 3.集合的基本运算


文字语言
集合语言
运算
图形语言 记法
1 / 17
2.已知集合 A=x∈Z2-3 x∈Z
,则集合
A
中的元素个数为(
)
A.2 B.3 C.4 D.5
答案 C 3
解析 因为2-x∈Z,且 x∈Z,所以 2-x 的取值有-3,-1,1,3,所以 x 的值分别为
5,3,1,-1,故集合 A 中的元素个数为 4.
3.给出下列四个命题:
4 / 17
①{(x,y)|x=1 或 y=2}={1,2}; ②{x|x=3k+1,k∈Z}={x|x=3k-2,k∈Z}; ③由英文单词“apple”中的所有字母组成的集合有 15 个真子集; ④设 2 021∈{x, x2,x2},则满足条件的所有 x 组成的集合的真子集的个数为 3. 其中正确的命题是________.(填序号) 答案 ②③④ 解析 ①中左边集合表示横坐标为 1,或纵坐标为 2 的所有点组成的集合,即 x=1 和 y=2 两直线上所有点的集合,右边集合表示有两个元素 1 和 2,左、右两集合的元素 属性不同.②中 3k+1,3k-2(k∈Z)都表示被 3 除余 1 的数,易错点在于认为 3k+1 与 3k-2 中的 k 为同一个值,对集合的属性理解错误.③中集合有 4 个元素,其真子集的 个数为 24-1=15(个).④中 x=-2 021 或 x=- 2 021,满足条件的所有 x 组成的集 合为{-2 021,- 2 021},其真子集有 22-1=3 个.所以②③④正确. 思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元 素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题. 特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互
2 / 17
题组二 教材改编
2.若集合 A={x∈N|x≤ 2 021},a=2 2,则下列结论正确的是( )
A.{a}⊆A
B.a⊆A
C.{a}∈A
D.a∉A
答案 D
3.已知集合 A={a,b},若 A∪B={a,b,c},满足条件的集合 B 有________个.
相关文档
最新文档