高一数学 2.1.2 指数函数及性质1课件 新人教A版必修1

合集下载

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时

人教A版高中数学必修一第二章2.1.2指数函数的图像及性质 1.2-第2课时
栏目 导引
第二章 基本初等函数(Ⅰ)
因为 t=-x2+2x=-(x-1)2+1≤1, 所以 y=23t(t≤1),所以 y≥23. 所以这个函数的值域为y|y≥23, 所以原函数的值域为y|y≥23.
栏目 导引
第二章 基本初等函数(Ⅰ)
函数 y=af(x)(a>0,a≠1)的单调性的处理方法 (1)关于指数型函数 y=af(x)(a>0,且 a≠1)的单调性由两点决定, 一是底数 a>1 还是 0<a<1;二是 f(x)的单调性,它由两个函数
栏目 导引
第二章 基本初等函数(Ⅰ)
3.函数 y=121-x的单调递增区间为(
)
A.(-∞,+∞)
B.(0,+∞)
C.(1,+∞)
D.(0,1)
解析:选 A.定义域为 R.设 u=1-x,则 y=12u.
因为 u=1-x 在 R 上为减函数,
又因为 y=12u在(-∞,+∞)上为减函数,
栏目 导引
第二章 基本初等函数(Ⅰ)
(2)重视数学语言的规范和准确 对于函数的单调性、奇偶性的表述要注意语言的规范性、准确 性.如本例中证明函数 f(x)在 R 上是单调增函数,必须严格按 照增函数的定义证明,同时要特别注意与 0 的比较.
栏目 导引
第二章 基本初等函数(Ⅰ)
1.下列判断正确的是( A.2.52.5>2.53 C.π2<π 2
栏目 导引
第二章 基本初等函数(Ⅰ)
比较幂值大小的三种类型及处理方法源自栏目 导引第二章 基本初等函数(Ⅰ)
1.试比较下列各组数的大小: (1)20.3,12-0.4,80.2; (2)1.30.3,0.82,-343.
栏目 导引
第二章 基本初等函数(Ⅰ)

人教A版高中数学必修一:第2章指,对,幂函数2.1.2指数函数及其性质

人教A版高中数学必修一:第2章指,对,幂函数2.1.2指数函数及其性质
年份 1999 2000 2001 2002 „ 1999+x 经过年数 0 1 2 3 „ x
• x y=13(1+1%)
人口数(亿)
练习
1设y1=a3x+1,y2=a-2x,其中a>0且a1, 确定x为何值时,有 (1)y1=y2(2)y1>y2
1 2 求函数y 2
x2 2x 1
的单调递增区间。

1、指数函数的定义。 2、指数函数简图的作法以及应注意的地方。 3、指数函数的图像和性质。


2.1.2指数函数及其 性质

材料1:某种细胞分裂时,由1个分
裂成2个,2个分裂成4个……一个这样 的细胞分裂x次后,得到的细胞分裂的个 数y与x的函数关系是什么?
材料2:当生物死后,它机体内原有
的碳14会按确定的规律衰减,大约每经 过5730年衰减为原来的一半,这个时间 称为‘‘半衰期”.根据此规律,人们获 得了生物体内碳14含量P与死亡年数t之 间的关系,这个关系式应该怎样表示呢?








4 2 练习:将 பைடு நூலகம்2 , 3 3
1 2
1 3
2 3
3
3 , 用“”号连接起来。 4
1 3
1 2
2 3 4 2 3 4 3

3
2 3
例8、截止到1999年底,我国人口约13亿。如果今 后能将人口年平均增长率控制在1%,那么经过20年 后,我国人口数最多为多少(精确到亿)?

人教版高中数学必修1(A版) 指数函数及其性质说课 PPT课件

人教版高中数学必修1(A版) 指数函数及其性质说课 PPT课件

三、课堂过程
2.启发探究,归纳总结 教师活动: (1)给出两个基本的指数函数,引导学生用列 表描点的办法画出函数的草图。 (2)引导学生根据草图,初步分析指数函数的 图象与性质的联系。 (3)利用几何画板软件动态改变底数a,观察对 函数图象的影响,引导学生深入分析指数函数的 性质并进行总结归纳。 (4)引导学生对所得到的结论进行整理,填写指 数函数图象和性质表格。
指数函数及其性质(第一课时)
一、教材分析
1.《指数函数及其性质》在教材中的地位、 作用和特点
指数函数是进入高中以后学生遇到的第一 个系统研究的函数,对后续的各种基本初等 函数性质的研究,指明了一种研究方向,对 初步培养函数的应用意识打下了良好的学习 基础
一、教材分析
(1)知识目标: ①掌握指数函数的概念; ②掌握指数函数的图象和性质; ③能初步利用指数函数的概念解决实际问题;
一、教材分析
3.教学重点与难点
教学重点:指数函数的图象和性质。 教学难点:指数函数的图象性质与底数a的关系。
二、教法与学法分析
1.教法
充分体现“教师主导、学生主体”的作用
采用启发发现、主动探究的教学模式
二、教法与学法分析
2.学法
1.通过对生活实例的分析再现旧有知识结构, 复习回顾函数性质、指数概念,为理解指数 函数的概念做好准备 2.探究指数函数的图象,通过自主研究 体会知识的形成过程 3.学习过程循序渐进,让学生经历从概念到 图象、 到性质、到应用、再到拓展,先易后 难的学习过程,让学生感觉 到挑战,又学有 所获
Байду номын сангаас
三、课堂过程
5.教学评价,调动气氛 情景导入的表达式评价 回忆指数知识的记忆评价 得出指数函数概念的归纳评价 作图时的准确性评价 解题时的规范性评价 小结时的表述性评价

2014高中数学 2-1-2-1 指数函数及其性质课件 新人教A版必修1

2014高中数学 2-1-2-1 指数函数及其性质课件 新人教A版必修1

函数 y=(2a2-3a+2)·x 是指数函数,求 a 的值. a
[解析] y = (2a2 - 3a + 2)·x 是 指 数 函 数 , 则 有 a
2a2-3a+2=1, a>0且a≠1,
1 ∴a= . 2
2
利用指数函数的性质比较大小
学法指导:比较幂大小的方法 (1)对于底数相同但指数不同的两个幂的大小的比较,可 以利用指数函数的单调性来判断. (2)对于底数不同,指数相同的两个幂的大小比较,可利 用指数函数的图象的变化规律来判断. (3)对于底数不同且指数不同的幂的大小的比较,则应通 过中间值来比较.


(5)比较大小,用“<”或“>”连接下列每组中的两个数. ①3
-2
<3
+1
-1
12 ②23
a+2;
<

11 2 2

-2.8
③0.4a
> 0.4
④1.1a 3 > 1.1a
⑤0.2-4 > 0.4-4.
2 2 (6)已知3a>3b,则
1 1 (3)当a<0时,n并不能取任意实数,如n= 2 , 4
时an
没有意义;
(4)当a=0时,n取 零或负数 没有意义. (5)实数幂的运算性质:ar·s=ar a
+s
ar ar-s;(ab)r= ;as=
arbr ;其中a>0,b>0,r、s∈R.
2.如果y=f(x)在D上是增函数,则对任意x1,x2∈D且 x1<x2,有f(x1) < (填“>”、“<”或“=”)f(x2),y=f(x)的图象从 左至右逐渐 上升 (填“上升”或“下降”).

课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

人教版高中数学必修1(A版) 2.1.2指数函数及其性质 PPT课件

人教版高中数学必修1(A版) 2.1.2指数函数及其性质 PPT课件

本题评述:(1)指数函数图象的应用; (2)数形结合思想的体现。
例2:说明函数 y 2 x1 与 y 2 x 的图象的关系,并画出它们 的示意图。 分析:做此题之前,请大家一起回顾初中接触的二次函数平移 问题。 评述:此题目在于让大家了解图象的平移交换,并能逐步掌握 平移规律。
课堂小结
指 数 函 数 及 其 性 质
创设情境,形成概念
故事:
有人要走完一段路,第一次走这段路 的一半,每次走余下路程的一半,请问最 后能达到终点吗?
终点
创设情境,形成概念
《庄子.天下篇》中 写道:“一尺之锤,日取一半,万世不竭”。 请写出取x次后,木锤的剩留量y与x的函数关系式。
引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个…… 1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式 是: x
y 10
x
y 2x
x
y 3
1 x y 1 2 y
x
y 10x y 2 x
3
y 3x
(0,1)
相同点
1)图象都在x轴的上方; 2)图象都经过(0,1)点。
相异点
当底数大于1时,图象是上升的;底 数小于1时,图象是下降的。
指数函数的性质
x
ax
例1下列函数中,哪些是指数函数:
y 3x2y42xy 3 1
x
y2
2 x
x
y2
x
y 2
例2 在同一坐标系中作出下列函数的图象, 并观察其异同:
1)y= 2
x
1 2)y= 2
x
画出 y = 2
x
y=2
x
x,
1 y=( 2

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

栏目导引
3.设23-2x>0.53x-4,则x的取值范围是 ________. 解析: 23-2x>0.53x-4 ⇒23-2x>24-3x ⇒3-2x>4-3x ⇒x>1. 答案: {x|x>1}
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
4.函数 f(x)=ax(a>0,且 a≠1)在区间[1,2]上的 最大值比最小值大a2,求 a 的值. 解析: 当 a>1 时,f(x)=ax 为增函数,在 x∈ [1,2]上, f(x)最大=f(2)=a2,f(x)最小=f(1)=a, ∴a2-a=a2,即 a(2a-3)=0, ∴a=0(舍)或 a=32>1,∴a=32.
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[题后感悟] 如何判断形如y=af(x)(a>0且a≠1) 的函数的单调性?
方法一:利用单调性定义比较y1=af(x1)与y2= af(x2)时,多用作商后与1比较. 方法二:利用复合函数单调性:当a>1时,函 数y=af(x)与函数y=f(x)的单调性相同;当 0<a<1时,函数y=af(x)与函数y=f(x)的单调性 相反.
必修1 第二章 基精品本PPT初等函数(I)
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[解题过程] (1)∵x-1≠0,∴x≠1, ∴函数 y=3x-1 1的定义域为{x|x≠1}, 又∵x-1 1≠0,∴y≠30=1. ∴函数的值域为{y|y>0 且 y≠1}, (2)函数的定义域为 R ∵x2-4x=(x-2)2-4≥-4, y=12x 在 R 上是减函数 ∴0<12x2-4x≤12-4=16. ∴函数的值域为(0,16].

高中数学 指数函数及性质课件1 新人教A版必修1

高中数学 指数函数及性质课件1 新人教A版必修1

书本练习2. 求下列指指的定义域 书本练习2 的图象与性质
例1、判断下列指指是否是指指指指: 、判断下列指指是否是指指指指:
y = a (a > 0,且 a ≠ 1)
x
[2,+∞)
(− ∞,0) ∪ (0,+∞)
y y 8 8 7 7 (1) y=2x ) x 6 6 1 y = y=2x 5 5 2 y=3x 4 4 3 3 2 2 (2)y=2-x = 1 1 y=3-x -8 -7 -6 -5 -4 -3 -2-1O -81 2-63-5 -4 -3 -2-1O 1 2 3 4 5 6 7 x = -7 4 5 6 7x
x
若a = 1, y = 1 = 1是一个常量
x
指指指指的定义: 指指指指的定义:
指如:y = a x (a > 0, a ≠ 1)的指指称为指指指指;
其中x是自变量,定义域为: R
现在研究指指指指
( ) 1 (1)1yx =13 ( 3,π ) ,求(21) y f= f (−3) . ; 的图象经过点 1 2与 为例 . 可出指指 y = − x 与 y = f (0), (1), 2 x+1 x 2 可a = 的图象 . (6) y = ; (7) y = 1 ; (8) y = 2 ; (9) y = ; (10) y 2 = 2 2 3 x
x∈R
.
y = a ( a > 0,且 a ≠ 1) 在指指 “ 为什么规定 a > 0,且 a ≠ 1” ? 呢
x
当x > 0时,a 恒等于0 若a = 0, x 当x ≤ 0时,a 无意义
x
1 1 若a < 0, 如y = (-4) , 则对于x = , , 4 2 ⋯ , 在实指范围内指指值不存在。

高中数学人教A版必修一课件:第二章 2.1.2指数函数 (共17张PPT)

高中数学人教A版必修一课件:第二章 2.1.2指数函数  (共17张PPT)
底数是一个大于0且不等于1的常量.
我们把这种自变量在指数位置上而底数是一个
大于0且不等于1的常量的函数叫做指数函数.
指数函数的定义:
函数 y a x (a 0且a 1)
叫做指数函数,其中x是自变量,函数定义域是R。
第四页,编辑于星期日:二十三点 十四分。
探究1:为什么要规定a>0,且a
1呢? zxxk
什么?
分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y
由上面的对应关系. 可知,函数关系是
y 2x
引例2:某种商品的价格从今年起每年降低15%,
设原来的价格为1,x年后的价格为y,则y与x的
函数关系式为
y 0.85x
第三页,编辑于星期日:二十三点 十四分。
在 y 2 x , y 0.85x 中指数x是自变量,
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
第八页,编辑于星期日:二十三点 十四分。
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
4
2
2
-0.5 0 0.71 1 1.4 1
0.5 1 2
3

1.4 2 4
8

0.71 0.5 0.25 0.13 …
1 x 2
… -3 -2 -1 … 0.13 0.25 0.5
…8
4
2
x … -2.5 -2 -1
3x … 0.06 0.1 0.3
1 x … 15.6 9
3
3
-0.5 0 0.71 1 1.4 1
-0.5 0 0.6 1 1.7 1

高中数学人教A版必修1第一章指数函数及其性质公开课PPT全文课件

高中数学人教A版必修1第一章指数函数及其性质公开课PPT全文课件

(1)有些看起来是指数函数,而实际上不是指 数函数;
如: y a x k(a 0 且 a 1 ,k N )
(2)有些看起来不是指数函数,而实际上是指 数函数.
如: yax(a0且 a1)
(1)x(a0且a1) a
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
问题2:已知函数的解析式,得到函数 的图象一般用什么方法?
列表 描点 连线成图
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
2.函数的图像
y = 2x x -1 0 1 2 y 0.5 1 2 4
指数函数及其性质
一、情景引入
引例1:某种细胞分裂时,由1个分裂成2个,2 个分裂成4个…… 1个这样的细胞分裂x次后, 得到的细胞个数与x的关系式是什么?
分裂
次数 1次 2次 3次 4次
x次
……
y 2x xN*
细胞
总数
21
22
23
24
2x
引例2: “一尺之锤,日取其半,万世不竭”出自《庄子》 长度为1的尺子第一次截去它的一半,第二次截 去剩余部分的一半,第三次截去第二次剩余部分 的一半,依次截下去,问截的次数与剩下的尺子 长度之间的关系.
随堂练习:下列函数中,哪些是指数函数?
(1) y 3x (2) y 3x
你答对了吗?
(3) y x 3 (4) y 3x1
我也不是
总结:指数函数严格限定 y a x (a 0, 且a1) 这一结构,稍微有点出入,就会导致非指数函数的出现。

高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1

高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1

1
32
[走出误区] 易错点⊳忽略分类讨论致求指数型函数值域出错 [典例] [2013·赤壁高一检测]若函数f(x)=ax-1(a>0且a≠1)的定义域和值域都是[0,2],求实数a的值.
a0-1=0, [错解档案] 由题意可知a2-1=2, 解得a= 3.
[误区警示] 虽然结果正确,但解题过程缺少步骤,没有分类讨论的意识.实际上在不知底数a的取 值的情况下,要对a的取值分a>1和0<a<1两种情况讨论.
由指数函数的性质知,y=(13) x-2≤(13)0=1, 且y>0,故此函数的值域为(0,1].
1
31
[规律小结] 1.指数函数的定义 理解指数函数的定义,需注意的几个问题:
(1)因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R;且ax>0,所 以函数的值域是(0,+∞).
1.底数a与1的大小关系决定了指数函数图象的“升降”;当a>1时,指数函数的图象“上升”;当 0<a<1时,指数函数的图象“下降”.
2.底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数 图象越靠近y轴.
当a>b>1时, (1)若x>0,则ax>bx>1; (2)若x<0,则1>bx>ax>0. 当1>a>b>0时, (1)若x>0,则1>ax>bx>0; (2)若x<0,则bx>ax>1.
1
16
【跟踪训练1】 函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 象
a>1 6 5 4 3 2 11
0<a<1
6 5 4 3 2
11
-4
-2
0
-1
2
4
6
-4
-2
0
-1
2
4
6
性 1.定义域: (,) 质 2.值域: (0,)
3.过点 (0,1) ,即x= 0 时,y= 1
4.在 R上是 增 函数 在R上是 减 函数
例1.已知指数函数的图 过像 点(3经 ,),
1.指数函数定义:P54
函数 y=ax (a>0,a≠1)叫做指数函数,
其中x是自变量,函数的定义域为R
说明1:为什么要规定a>0,且a 1呢?
①若a=0,则当x≤0时, a x无意义
②若a<0,对于x的某些数值,可能使 a x无意义
11
如:a2、a4等等
③若a=1,则对于任何x R,
a x =1,是一个常量,没有研究的必要性.
1 x q x 3 6 h x 3 x
5
4
g x 1 2 x 3 2 f x 2 x
1
-4 -2
2
4
2.指数函数y=ax(a>0且a≠1) 的图象和性质:
图象特征: (1)都过点(0,1) (2)都在x轴上方; (3)当a>1时,上升;
当0<a<1时,下降 (4)y=ax与y=a-x图象
33
m>n
(2)求不ax等 a1x式 (a0,且 a1)中
x的取值范围
(3)已知a>0,且a≠1,若当x≠1时恒有:
成立,求a的取值范围.
ax21 a2x
0<a<1
例4.
(1)当0<a<1,b<-1时,函数y=ax+b的图 象必不经( A )
A.第一象限
B.
C.第三象限
D.第四象限
(2)若函数y=a2x+b+1(a>0且a≠1,b为实 数)的图象恒过定点(1,2),则b=__-_2__.
求: f (0),f (1),f (3)
例2、比较下列各题中两个值的大小:
( 1) 1.72.5和 < 1.73
( 3) 1.70.3和 0.93.1
(5)(12)13和>> (15)32
( (42) ) (02.8 ) 130 和 .1和 <(01.8 ) 130.2
3>2
例3、(1)若
( 2,)m则m与(n2的)大n小如何?
例4.
(3)指数函数① f(x)=mx② g(x)=nx满足不 等式1>n>m>0,则它们的图象是 ( C )
例4. (4).曲线C1,C2,C3,C4 分别是指数函数 y=ax,y=bx,y=cx,y=dx,和的图象,则a,b,c,d 与1的大小关系是
b<a<1<d<c
小结:1.指数函数的定义:函数 yax(a0且 a1)
777
666
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
fx = 2 x
555
444
g x 0 x = .5 333
222
111
- -66 6
-- 44 4
-- 22 2
222
444
66
x … -2.5 -2 -1
y 3x … 0.06 0.1 0.3
y 2x
解:列表如下:
y
1
x
2
y 3x
y 1 x 3
x
2x
1 x 2
x
3x
1 x 3
… -3 -2 -1 … 0.13 0.25 0.5 …8 4 2
… -2.5 -2 -1 … 0.06 0.1 0.3 … 15.6 9 3
-0.5 0 0.71 1 1.4 1
-0.5 0 0.6 1 1.7 1
y
1
x

15.6
9
3
3
-0.5 0 0.5
1 16 6
0.6 1 1.7
1 114 .7 4 1 0.6
12 39
0.3 0.1
2.5 … 15.6 …
0.06 …
1 12 2
1x gx = 3
1 10 0
8 8
f x 3 x =
6 6
4 4
2 2
- -10 1 0 - -5 5
5 5
1 10 0
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y
1
x

8
4
2
2
-0.5 0
0.71 1
888
1.4 1
§2.1.2指数函数及其性质
(第一课时)
引例:若从今年底开始我国的人口年平均增
长率为1%,那么经过20年后我国第二 达式
第 三
年Y=1.01年X
经过 X年 数


长增
长增
长增

1%
1%
1%
人口
倍数 Y 1
1.011 (1.01)2 (1.01)3 …...1.01X
叫做指数函数,其中x是自变量,函数定义域是R。 2.指数函数的的图象和性质:
a>1
0<a<1

6
5

4 3
2
11
-4
-2
0
-1
2
4
6
性 1.定义域:R
质 2.值域:(0,+∞)
6 5 4 3 2
11
-4
-2
0
-1
2
4
6
3.过点(0,1),即x=0时,y=1
4.在 R上是增函数
在R上是减函数
作业: 1.课本P59 :A组 5,6,7,8 B组1,3,4 2.作业本P272.1.2
说明2:观察指数函数的特点:
y 1ax
自变量仅有 这一种形式
系数为1
底数为正数且不为1
例: 下列函数是否是指数函数
(1) y (1.5√)x ,(2) y 2×ax, (3) y ×(4)x,(4)y 4×x, (5) y 4×x3, (6) y b×x
2.指数函数的图象和性质:
例:在同一坐标系中分别作出如下函数的图像:
性质: (1)定义域:(-∞,+∞) (2)值域:(0,+∞) (3)当a>1时,在R上是增函数;
当0<a<1时,在R上是减函数 (4)当a>1时,x>0 y>1
关于y轴对称
x<0
(5)在第一象限,a越大,越靠近y正半轴,
0<y<1
a越小,越靠近x正半轴,
2.指数函数y=ax(a>0且a≠1) 的图象和性质:P56
相关文档
最新文档