几何初步典型习题
七年级数学上册《第四章-几何图形初步》直线射线线段(三)练习题
直线、射线、线段(三)一、选择题1.如图,从A到B有3条路径,最短的路径是③,理由是( )A.因为③是直的 B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短2.如图,在线段AP上取三点B、C、D,则图中共有线段 ( )A.10条 B.8条 C.6条 D.4条3.如图所示,在线段BC上取三点D、E、F,在线段BC外取一点A,连接AB、AD、AE、AF、AC,则图中共有线段 ( )A.8条 B.10条 C.12条 D.15条4.如图所示,下列关系与图中不符合的是 ( )A.AB –CB=A D - BC B.AC+ CD=AB –BD C. AB - CD =AC +BD D. AD-AC= CB-DB第5题图第6题图5.如图,点C在AB上,下列表达式①AC =AB;②AB =2BC;③AC= BC;④AC+ BC =AB中,能表示C是AB中点的有 ( )A.1个 B.2个 C.3个 D.4个6.如图所示,E是AB的中点,F是AE的中点,若BF =6cm,则EF的长度是 ( )A.2cm B.3cm C.4cm D.lcm7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象是 ( )A.①② B.①③ C.②④ D.③④8.已知线段AB= 10cm,PA+ PB= 20cm,下列说法正确的是 ( )A.点P不能在直线AB上 B.点P只能在直线AB上C.点P只能在线段AB的延长线上 D.点P不能在线段AB上二、填空题9.如图,线段AB_____AC +BC,理由是_______两点之间,线段最短____________.10.如图,AC=_______+BC,BD -________=BC.11. 如图,用线段a、b表示线段AD的长,则线段AD=____________12.有四个点(其中任三点不在同一直线上),则连结任意两点,可得____条线段.13.在一条线段上添上一个点,则图中有______条线段,若添上2个点,图中有______ 条线段;添上________个点,能使线段AB上共有15条线段.第9题图第10题图第11题图N的距离是________.15.延长线段AB到C,使BC = 12AB,若AB =8cm,则AC=______第16题图第17题图第19题图16.如图,C、D、E为线段AB上的点,且AC= CD= DE=EB,那么图中有______个点是线段的中点。
几何图形初步技巧及练习题含答案
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
15.下列图形中,是圆锥的侧面展开图的为()
A. B. C. D.
45°+30°=75°,45°+60°=105°,45°+90°=135°,
故选:D.
【点睛】
此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.
19.如图,已知点P(0,3),等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()
9.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()
A.35°B.45°C.55°D.65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°
故选:A.
【点睛】
本题考查余角、补角的计算.
10.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
【详解】
解:将其折成正方体后,则“扫”的对面是除.
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.
7.如图,已知直线 和 相交于 点, , 平分 , ,则 大小为()
A. B. C. D.
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
几何图形初步练习题
几何图形初步练习题几何图形初步练习题几何学是数学中的一个重要分支,它研究空间形状、大小、相对位置等性质。
在几何学中,图形是我们研究的基本对象之一。
通过练习几何图形的相关题目,我们可以加深对几何学的理解,提高解决问题的能力。
下面,我将给大家提供一些几何图形的初步练习题,希望能对大家的学习有所帮助。
1. 矩形面积计算已知一个矩形的长为12cm,宽为8cm,求其面积。
解析:矩形的面积可以通过长乘以宽来计算,即12cm × 8cm = 96cm²。
2. 正方形周长计算已知一个正方形的边长为5cm,求其周长。
解析:正方形的周长可以通过边长乘以4来计算,即5cm × 4 = 20cm。
3. 三角形面积计算已知一个三角形的底边长为6cm,高为4cm,求其面积。
解析:三角形的面积可以通过底边长乘以高再除以2来计算,即6cm × 4cm ÷2 = 12cm²。
4. 圆的周长计算已知一个圆的半径为3cm,求其周长。
解析:圆的周长可以通过半径乘以2再乘以π(取近似值3.14)来计算,即3cm × 2 × 3.14 = 18.84cm。
5. 梯形面积计算已知一个梯形的上底长为5cm,下底长为8cm,高为6cm,求其面积。
解析:梯形的面积可以通过上底长加下底长再乘以高再除以2来计算,即(5cm + 8cm)× 6cm ÷ 2 = 39cm²。
通过以上几个练习题,我们可以发现几何图形的计算方法并不复杂,只需要掌握一些基本的公式和计算技巧即可。
当然,在实际应用中,我们还需要注意题目中给出的单位,并进行必要的单位换算。
除了计算题,我们还可以通过练习几何图形的性质和特点来提高对几何学的理解。
例如,我们可以尝试以下题目:1. 证明三角形内角和为180度。
提示:画一条平行于底边的直线,利用平行线内外角性质。
2. 证明平行四边形的对角线相等。
几何图形初步技巧及练习题附答案解析
几何图形初步技巧及练习题附答案解析一、选择题1.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.5.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.6.如图,有A ,B ,C 三个地点,且AB BC ⊥,从A 地测得B 地在A 地的北偏东43︒的方向上,那么从B 地测得C 地在B 地的( )A .北偏西43︒B .北偏西90︒C .北偏东47︒D .北偏西47︒【答案】D【解析】【分析】 根据方向角的概念和平行线的性质求解.【详解】如图,过点B 作BF ∥AE ,则∠DBF=∠DAE=43︒,∴∠CBF=∠DBC-∠DBF=90°-43°=47°,∴从B 地测得C 地在B 地的北偏西47°方向上,故选:D.【点睛】此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.7.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】+的值最小解:如图,连接DE,交AC于P,连接BP,则此时PB PE∵四边形ABCD是正方形B D∴、关于AC对称∴PB PD=∴+=+=PB PE PD PE DEQ==2,3BE AE BE∴==AE AB6,822DE∴=+=;6810+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.8.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()A.28°B.32°C.34°D.36°【答案】B【解析】【分析】根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.【详解】解:如图,设CD和BF交于点O,由于矩形折叠,∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,∵∠AEC=32°,∴∠ACE=90°-32°=58°,∴∠BCO=90°-∠ACE=32°,∴∠BOC=90°-32°=58°=∠DOF,∴∠BFD=90°-58°=32°.故选B.【点睛】本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.9.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.10.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )A.B.C.D.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.13.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.14.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD =12∠BAC =19°, ∴∠ADB =∠C +∠DAC =52°+19°=71°,∵BF ⊥AD ,∴∠BFD =90°,∴∠FBD =90°﹣∠ADB =19°,∴∠EBF =∠EBC ﹣∠FBD =52°﹣19°=33°;故选:B .【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;③若AB BC=,则点B是线段AC的中点;④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;③若AB BC=,则点B不一定是线段AC的中点,故错误;④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.17.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
七年级数学,几何图形初步,直线、射线、线段基础练习题
七年级数学,几何图形初步,直线、射线、线段基础练习题1.正确说法:A。
可以画一条长度为10厘米的直线AB;B。
可以画一条经过A、B、C三点的直线;D。
可以画一条与直线AB平行且经过直线AB外一点的直线。
2.正确答案为C,即A′B′=AB。
3.正确原理为D,即两点可以确定一条直线。
4.正确说法:A。
可以延长线段AB到C,使得BC=AC;B。
可以反向延长线段AB,得到射线BA;C。
可以取直线AB的中点。
5.不同的线段条数为C,即10条。
6.该条直线上的线段有B,即4条。
7.正确图为A。
8.A、C两点的距离为B,即9cm。
9.正确图为C。
10.可以作出一条直线。
11.不同的线段数共有C,即10条。
12.第二条路最近,理由是因为它是直线AC的一部分,而其他三条路都需要绕路。
13.AD的长度为5,因为D是AB的中点;BD的长度为3,因为BC=EC=3;根据勾股定理可知AC的长度为√(8^2+3^2)=√73.14.AB的长度为8,因为CD=2,所以AC=3AB,又因为D是AC的中点,所以AD=DC=1.5AB,即AD=3,DC=4.5,从而可得AB=8.15.AB的长度为9,BC的长度为6,CD的长度为15.16.MN的长度不大于AM的长度,因为___在AB上,___是AB的一部分,所以___不可能比AM更长。
17.AD的长度为√(5^2+9^2)=√106,DE的长度为2.5.若原点O在数轴上点C的右边且CO=28,则求p的值。
参考答案:p = 28解析:题目已经给出了CO的长度为28,而题目又要求求p的值,因此可以利用数轴的基本性质,即两点之间的距离等于它们的坐标差的绝对值,得出p的值为28.因此,答案为p=28.。
成都市实验外国语学校七年级数学上册第四单元《几何图形初步》经典习题(含答案)
一、选择题1.如图所示,已知直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=42°,∠BOC=34°,OM是∠AOD的平分线,则∠MOC的度数是()A.125°B.90°C.38°D.以上都不对2.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个3.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.4.点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为﹣3、1,若 BC=2,则 AC 等于()A.3 B.2 C.3 或 5 D.2 或 65.如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置()A.线段BC的任意一点处B.只能是A或D处C.只能是线段BC的中点E处D.线段AB或CD内的任意一点处6.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有().A.4个B.3个C.2个D.1个7.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 9.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .1610.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 11.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 12.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,EF EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒ 13.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D.∠=∠的图形的个数是()14.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.415.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确二、填空题16.如图,能用O,A,B,C中的两个字母表示的不同射线有____条.17.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.18.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.19.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.20.把棱长为1cm的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm.21.将下列几何体分类,柱体有:______(填序号).22.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)23.如图所示,直线AB ,CD 交于点O ,∠1=30°,则∠AOD =________°,∠2=________°.24.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.25.在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______. 26.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.三、解答题27.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.28.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.29.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)30.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.。
几何证明初步经典练习题(含答案)
几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°. 推理过程:○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800.2.求证:在一个三角形中,至少有一个内角大于或者等于60°。
3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。
4. 已知,如图,AE//DC ,∠A=∠C ,求证:∠1=∠B.5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。
求证:AB 与CD 必定相交。
8.2是无理数。
一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分B A C ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2.10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分A B C ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18A B D D B E ∠=∠=,108A B E D ∠=∠=,36C A B C ∠=∠=.∴72D E CE D C ∠=∠=,∴CD =CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交B A C ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN .二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF .求证:45E A F ∠=.CBA DE FDAB C B AE DN M BDA C分析:将ΔADF 绕A顺时针旋转90得A B G .∴G A B F A D ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452F A E G A E F A G ∠=∠=∠=13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE . 分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B A D E ∠=∠.∵12B A D E ∠+∠=∠+∠,且12∠=∠.∴B A D E ∠=∠.又∵13∠=∠.∴B A C D A E ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE . 14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90F A B B A E E A D B A E ∠+∠=∠+∠=.∴F B A E D A ∠=∠. 又∵90F B AE D A ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF.平移第14题图 第15题图 第16题图 第17题图 三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长.分析:延长DC到E使得CE=AB.连接BE.可得AC E B .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为D C E F .∴DM=EM.线段中点的常见技巧 --倍长四、倍长17、已知,AD为AB C 的中线.求证:AB+AC>2AD. 分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA . ∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC . 分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB.∵B A D C A D ∠=∠.∴E C A D ∠=∠.∴AC=EC=AB.19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60A B D C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴C B E B A D ∠=∠.∴60B P Q P B A P A B P B A D B P ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60B P D ∠=.∴ΔBPF 为等边三角形. ∴BP=2PQ.中位线E五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点,求证:1()2E F B C A D =-.分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线.∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2E F B C A D =-.直角三角形斜边上的中线等于斜边的一半 21、已知,在A B C D 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG.∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG.22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G. 求证:(1)CG=EG.(2)2B B C E ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL). ∴EG=CG.∵DE=BE.∴B B D E D E C B C E ∠=∠=∠+∠.∵DE=CD.∴D E C B C E ∠=∠.∴2B B C E ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分)1、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( ) A .20° B .25° C .30° D .40°第2题图 第4题图 第6题图 第7题图 3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( ) A .有两个角是直角 B .有两个角是钝角 C .有两个角是锐角 D .一个角是钝角,一个角是直角 4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( )A .∠2=45°B .∠1=∠3C .∠AOD+∠1=180°D .∠EOD=75°30’ 5、下列说法中,正确的个数为( )①三角形的三条高都在三角形内,且都相交于一点②三角形的中线都是过三角形的某一个顶点,且平分对边的直线③在△ABC 中,若∠A=12∠B=13∠C ,则△ABC 是直角三角形OCDB AEFE CDG A B④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18A.1个 B.2个 C.3个 D.4个6、如图,在AB=AC的△ABC中,D是BC边上任意一点,DF⊥AC于F,E在AB边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于()A、50°B、65°C、70°D、75°7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B. C.5 D.49、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为()A.仅小明对 B.仅小亮对 C.两人都对 D.两人都对第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确; B.仅①和②正确; C.仅②③正确;D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5⑤A.1 B.2 C.3 D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________ ,结论是___________。
第四章 几何图形初步复习题--解答题(含解析)
人教版数学七上第四章几何图形初步复习题--解答题一.解答题1.(2018春•洛宁县期中)一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).2.(2017秋•海陵区校级月考)如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.3.(2018秋•埇桥区校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b=;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=.4.(2017秋•仓山区校级月考)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)5.(2018秋•历下区期中)如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?6.(2018秋•金水区校级月考)小明学习了“面动成体”之后,他用一个边长为3cm、4cm 和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)7.(2018秋•郓城县期中)如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)8.(2018秋•武昌区期中)如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.9.(2018秋•历下区期中)点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?10.(2018秋•滦县期中)在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是;点B对应的数是.(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.11.(2018秋•句容市月考)数轴是一个非常重要的数学工具,它使数和数轴上的点建立对应关系,解释了数与点之间的内在联系,它是“数形结合”的基础.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答(1)将点B向右移动4个单位长度后到达点D,点D表示的数是,A、D两点之间的距离是;(2)移动点A到达E点,使B、C、E三点的其中某一点到其它两点的距离相等,写出点E在数轴上对应的数值;12.(2017秋•潮阳区期末)如图,点C是线段AB上的一点,M是AB的中点,N是CB的中点.(1)若AB=13,CB=5,求MN的长度;(2)若AC=6,求MN的长度.13.(2017秋•洪泽区期末)已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;甲到达B点时共运动了秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距28个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.14.(2018•邵阳县模拟)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?15.(2017春•沂源县校级月考)如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.16.(2017秋•兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为°,分针每分钟转动的角度为°;(2)8点整,钟面角∠AOB=°,钟面角与此相等的整点还有:点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数.17.(2018秋•大石桥市校级月考)如图,经测量,B处在A处的南偏西55°的方向,C 处在A处的南偏东16°方向,C处在B处的北偏东83°方向,求∠C的度数.18.(2018秋•彭水县校级月考)如图,是A、B、C三个村庄的平面图,已知B村在A 村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B两村的视角∠ACB的度数.19.(2018秋•沙坪坝区校级月考)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求甲船由港口A到海岛B的行驶时间;(2)求乙船由港口A到经C港到达海岛B的行驶时间.20.(2018春•黄岛区期中)林湾乡修建一条灌溉水渠,如图,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村水渠从C村沿什么方向修建,可以保持与AB的方向一致?21.(2018秋•防城港期中)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B处的北偏东80°方向,求∠ACB的度数.22.(2017秋•浠水县期末)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.23.(2017秋•孝感期末)计算:(1)48°39′+67°31′﹣21°17′;(2)23°53′×3﹣107°43′÷5.24.(2018秋•滦县期中)已知:如图,OM是∠AOC的角平分线,ON是∠BOC的角平分线,(1)当∠AOB=90°,∠BOC=40°时,求∠MON的度数.(2)若∠AOB的度数不变,∠BOC的度数为α时,求∠MON的度数.25.(2018秋•海港区期中)若∠AOC=100°,∠BOC=30°,OM、ON分别是∠AOC和∠BOC的平分线,求∠MON的度数.(自己画图,并写出解题过程)26.(2017秋•伍家岗区期末)射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.27.(2017秋•鼓楼区期末)如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,∠EOF的度数为°;(2)当∠BOC=α(0°<α<90°)时,求∠EOF的度数.28.(2017秋•平定县期末)如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.29.(2017秋•惠阳区期末)已知:如图,ON平分∠AOC,OM平分∠BOC,∠AOB=90°(1)若∠AOC=40°,求∠AOM和∠MON的大小;(2)当锐角∠AOC的度数发生改变时,∠MON的大小是否发生改变?如不会改变,请写出∠MON的大小,并写出推理过程;如会改变,也请说明理由30.(2017秋•硚口区期末)(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD 为折痕,求∠CBD的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)31.(2018春•大庆期末)∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.32.(2018秋•遵义月考)如图所示,将一副三角板直角顶点O重合,证明∠AOD=∠COB,并求∠AOC+∠BOD的度数.33.(2017秋•马山县期末)如图,已知∠AOB=50°,OD是∠COB的平分线.(1)如图1,当∠AOB与∠COB互补时,求∠COD的度数;(2)如图2,当∠AOB与∠COB互余时,求∠COD的度数.34.(2017秋•西陵区期末)如图,直线SN⊥直线WE,垂足是点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)写出图中与∠BOE互余的角:.(2)若射线OA是∠BON的角平分线,探索∠BOS与∠AOC的数量关系.人教版数学七上第四章几何图形初步复习题--解答题参考答案与试题解析一.解答题1.(2018春•洛宁县期中)一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).【分析】直接利用圆柱体体积公式计算得出答案.【解答】解:设圆柱的高是hcm,根据题意得:π×1.52h=4×3×2,∴h≈3.4,答:圆柱的高约是3.4cm.2.(2017秋•海陵区校级月考)如图所示为8个立体图形.其中,柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧.【分析】根据柱体的意义,椎体的意义,可得答案.【解答】解:柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧,故答案为:①②⑤⑦⑧;④⑥;③④⑧.3.(2018秋•埇桥区校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=8;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= 9;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 32;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到n3个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=12(n﹣2)+(n﹣2)3.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.4.(2017秋•仓山区校级月考)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)【分析】由底面圆的面积求出底面半径=3米,由勾股定理求得母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【解答】解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).5.(2018秋•历下区期中)如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?【分析】(1)先分别求出旋转后得出的圆锥的体积,再比较即可;(2)求出直角△ABC的高CD,再求出圆锥的体积即可.【解答】解:(1)三角形绕着边AC旋转一周,所得几何体的体积是×π×32×4=12π(cm)2;三角形绕着边BC旋转一周,所得几何体的体积是×π×42×3=16π(cm)2;∵12π≠16π,∴三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何的体积不一样;(2)过C作CD⊥AB于D,∵AC=4cm,BC=3cm,AB=5cm,又∵32+42=52,∴△ACB是直角三角形,∠ACB=90°由三角形的面积公式得:,CD=2.4(cm),由勾股定理得:AD===3.2(cm),BD=5cm﹣3.2cm=1.8cm,绕着边AB旋转一周,所得的几何体的体积是:×π×2.42×3.2+×1.8=9.6π(cm)2.6.(2018秋•金水区校级月考)小明学习了“面动成体”之后,他用一个边长为3cm、4cm 和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)依据面动成体,即可得到几何体简图.(2)依据几何体的底面半径,运用圆锥体积计算公式即可得到几何体的体积.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π(cm3),以3cm为轴的体积为×π×42×3=16π(cm3),以5cm为轴的体积为×π()2×5=9.6π(cm3).7.(2018秋•郓城县期中)如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.8.(2018秋•武昌区期中)如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【分析】(1)根据数轴上的点移动时的大小变化规律,即“左减右加”即可得到结论;(2)根据题意列式计算即可;(3)根据题意得到点数是2的指数次幂+1,据此计算即可.【解答】解:(1)如图所示,(2)如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5;(3)∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×(+++…+)=130.9.(2018秋•历下区期中)点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?【分析】(1)依据两点间的距离公式,即可得到A、B两点间的距离;(2)依据BC的长,即可得出C点表示的数.【解答】解:(1)由图可得,A、B两点间的距离是|2﹣(﹣)|=;(2)由题可得,BC=|﹣﹣(﹣3)|=,当B点和A点重合时,C点表示的数是2﹣=.10.(2018秋•滦县期中)在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是﹣5;点B对应的数是﹣2.(2)A,B两点间的距离是3;B,C两点间的距离是2;A,C之间的距离是5.(3)当原点在点B处时,三个点到原点的距离之和最小,最小距离是5.【分析】(1)根据数轴上A、B、C三点的位置,可得A和B表示的数;(2)根据数轴上两点的距离公式=|x1﹣x2|,可得结论;(3)根据两点的距离公式分情况计算可得结论.【解答】解:(1)若以点C为原点,则点A对应的数是﹣5,点B对应的数是﹣2;故答案为:﹣5;﹣2.(2)∵点B为原点,则点A表示的数是﹣3;点C表示的数是2;∴AB=0﹣(﹣3)=3,BC=2﹣0=2,AC=2﹣(﹣3)=5,∴A,B两点间的距离是3;B,C两点间的距离是2,A,C之间的距离是5,故答案为:3;2;5.(3)①当原点在点A处时,三个点到原点的距离之和=0+3+5=8,②当原点在点B处时,三个点到原点的距离之和=3+0+2=5,③当原点在点C处时,三个点到原点的距离之和=5+2+0=7,∴当原点在点B处时,三个点到原点的距离之和最小,最小距离是5;故答案为:点B;5.11.(2018秋•句容市月考)数轴是一个非常重要的数学工具,它使数和数轴上的点建立对应关系,解释了数与点之间的内在联系,它是“数形结合”的基础.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答(1)将点B向右移动4个单位长度后到达点D,点D表示的数是2,A、D两点之间的距离是6;(2)移动点A到达E点,使B、C、E三点的其中某一点到其它两点的距离相等,写出点E在数轴上对应的数值﹣7或0.5或8;【分析】(1)根据数轴上的点向右移动加,可得D点的坐标,根据两点间的距离公式,可得答案;(2)根据线段的中点的性质,可得E点的坐标.【解答】解:(1)∵点B表示﹣2,∴点B向右移动4个单位长度后到达点D,点D表示的数是﹣2+4=2;∴A、D两点之间的距离是|﹣4|+2=6;故答案为:2,6;(2)当EB=BC时,E点表示的数是﹣7,当BE=EC时,E点表示的数是0.5,当BC=EC时,E点表示的数是8.综上所述:点E在数轴上对应的数值为:﹣7或0.5或8.故答案为:﹣7或0.5或8.12.(2017秋•潮阳区期末)如图,点C是线段AB上的一点,M是AB的中点,N是CB的中点.(1)若AB=13,CB=5,求MN的长度;(2)若AC=6,求MN的长度.【分析】(1)根据线段中点的定义即可得到结论;(2)根据线段中点的定义和线段的和差即可得到结论.【解答】解:(1)∵M是AB的中点,AB=13,∴BM=AB=13=6.5,∵N是CB的中点,CB=5,∴BN=CB=5=2.5;∴MN=BM﹣BN=4;(2)∵M是AB的中点,N是CB的中点,∴BM=AB,BN=CB,∵AC=6,∴MN=BM﹣BN=AB﹣BC=(AB﹣BC)=AC=6=3.13.(2017秋•洪泽区期末)已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.(1)A,B两点间的距离为60个单位长度;甲到达B点时共运动了20秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距28个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.【分析】(1)根据A,B两点之间的距离AB=|﹣40﹣20|,根据题意即可求解;(2)根据题意列方程即可得到结论;(3)根据题意列方程即可得到结论;(4)设甲到达B点前,甲,乙经过a秒在数轴上相遇,根据题意得方程解方程即可.【解答】解:(1)A、B两点的距离为AB=|﹣40﹣20|=60,甲到达B点时共运动了60÷3=20秒;故答案为:60,20;(2)设它们按上述方式运动,甲,乙经过x秒会相遇,根据题意得3x+5x=60,解得x=,﹣40+3x=﹣.答:甲,乙在数轴上的﹣点相遇;(3)两种情况,相遇前,设y秒时,甲、乙相距28个单位长度,根据题意得,3y+5y=60﹣28,解得:y=4,第一次相遇后,设y秒时,甲、乙相距28个单位长度,根据题意得,5y+3y﹣60=28,解得:y=11,答:4秒或11秒时,甲、乙相距28个单位长度;(4)甲到达B点前,甲,乙不能在数轴上相遇,理由:设甲到达B点前,甲,乙经过a秒在数轴上相遇,根据题意得,3a+60=5a,解得:a=30,3a=3×30=90>60,故甲,乙不能在数轴上相遇.14.(2018•邵阳县模拟)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC﹣BC即AB的一半.有AC﹣BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.15.(2017春•沂源县校级月考)如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.【分析】(1)由已知可求得CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.【解答】解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.16.(2017秋•兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;(2)8点整,钟面角∠AOB=120°,钟面角与此相等的整点还有:4点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数.【分析】(1)根据时针旋转一周12小时,可得时针旋转的速度,根据分针旋转一周60分钟,可得分针旋转的速度;(2)根据时针与分针相距的份数乘每份的度数,可得答案;(3)根据时针旋转的角度减去分针旋转的角度,可得答案.【解答】解:(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;故答案为:0.5,6;(2)0.5×60×4=120°,4点时0.5×60×4=120°,故答案为:120,4;(3)如图,∠AOB=6×30+15×0.5﹣15×6=97.5°.17.(2018秋•大石桥市校级月考)如图,经测量,B处在A处的南偏西55°的方向,C 处在A处的南偏东16°方向,C处在B处的北偏东83°方向,求∠C的度数.【分析】根据已知条件得出∠BAC=∠BAE+∠CAE,再根据平行线的性质得出∠DBA=∠BAE,然后求出∠ABC的值,最后根据三角形的内角和定理即可求出∠C的度数.【解答】解:∵∠BAE=55°,∠CAE=16°,∠DBC=83°,∴∠BAC=∠BAE+∠CAE=55°+16°=71°,∵AE∥BD,∴∠DBA=∠BAE=55°.∴∠ABC=∠DBC﹣∠DBA=83°﹣55°=28°,∴∠C=180°﹣28°﹣71°=81°.18.(2018秋•彭水县校级月考)如图,是A、B、C三个村庄的平面图,已知B村在A 村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B两村的视角∠ACB的度数.【分析】根据三角形的内角和即可得到结论.【解答】解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.19.(2018秋•沙坪坝区校级月考)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求甲船由港口A到海岛B的行驶时间;(2)求乙船由港口A到经C港到达海岛B的行驶时间.【分析】(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解;(2)根据时间=即可得到结论.【解答】解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=x,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=x,AB=BD=x,由AC+CD=AD得20+x=x解得:x=10+10∴AB=30+10。
人教版七年级数学上册第四章 几何图形的初步习题(含答案)
第四章几何图形的初步一、单选题1.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A.7B.8C.9D.103.下列几何中,属于棱柱的是()①①①①①①A.①①B.①C.①①①D.①①4.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形5.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OC到C7.若点P在线段AB上,PB=4,PA=12PB,则AB的长度是()A.3B.6C.12D.6或128.如图,点C、O、B在同一条直线上,①AOB=90°,①AOE=①DOB,则下列结论:①①EOD=90°;①①COE=①AOD;①①COE=①DOB;①①COE+①BOD=90°.其中正确的个数是()A.1B.2C.3D.49.如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则①CBD的度数是()A.85°B.90°C.95°D.100°10.如图,已知①AOC=90°,①COB=α,OD平分①AOB,则①COD等于()A .2a B .45°-2a C .45°-α D .90°-α二、填空题11.一个角的余角比这个角的补角的13还小10°,则这个角的度数是______ . 12.用度、分、秒表示52.36°的补角为_____.13.下图是一个正方体的表面展开图,若将其折叠成原来的正方体,则与点A 重合的两点应该是点________.14.如图,长度为12cm 的选段AB 的中点为,M C 为线段MB 上一点,且:1:2MC MB ,则线段AC 的长度为___cm .三、解答题15.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
七年级数学上册第四单元《几何图形初步》-解答题专项经典练习题(含答案解析)
一、解答题1.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.2.如图,已知点C 是线段AB 的中点,点D 在线段CB 上,且DA =5,DB =3.求CD 的长.解析:1【解析】【分析】根据线段的和差,可得AB 的长,根据线段中点的性质,可得AC 的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4. 由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.3.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】 ∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
人教版七年级数学上册第4章几何图形初步练习题
人教版七年级数学上册第4章几何图形初步习题一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.人教版七年级数学上册第4章几何图形初步练习题参考答案一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC= ∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD= BC= ×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1= ×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4= ×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数= .13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2= ∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得 .【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴ , .∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵ = ,又∠AOB是直角,不改变,∴ .【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC= A C= BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x= (180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 图形认识初步
一、填空题
1.圆柱的侧面展开图是 ;
2、如图为某立体图形的表面展开图,该立体图形的名称是
3.要在墙上固定一根木条,至少要 个钉子,根据的原理是 。
4.(2012•山东菏泽中考)已知线段AB =8 cm ,在直线AB 上画线段BC ,使它等于 3 cm ,则线段AC =_______cm .
5、如右图所示,直线上有4个点A 、B 、C 、D , 问:图中有 条线段, 条射线.
6. 已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = cm.
7. 已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 cm. 8.如图,若
是
中点,
是
中点,若
,
,
_________。
9、如图,
若
是
中点
,
是
中点,
若
,
,
_________。
10.乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在A
B ,两站之间最多共有________种不同的票价;
11.若时针由2点30分走到2点55分,则时针转过 度,分针转过 度. 12.小明每天下午5:30回家,这时分针与时针所成的角的度数为____度。
13.已知α∠与β∠互余,且40α= ∠51',则β∠为 ; 14.如果一个角的补角是150
,那么这个角的余角是________; 15.若一个角的补角是这个角的余角的3倍,则这个角的度数是 .
16.22.5=
________度________分; 17. 1224'= ________
;
18、45.36度=___°____′___”。
19、已知∠1与∠2互补,且∠1=72°45′,则∠2= .
20.如图,AB ⊥CD 于点B ,BE 是∠ABD 的平分线,则∠CBE
= 度.
21.如图,OC ⊥AB ,OD ⊥OE ,图中与∠1 互余的角是 .
A
E
D B
C 第17题图 D
E
C
第18题
C
B
A
O
第19题
D
C
B
A
O
第20题
C
B
A
D
C
B
A
β
β
β
α
α
α
O
C
A
D
B
18.如图,已知点O是直线AD上的点,∠AOB、∠BOC、∠COD三个角从小到大
次相差25°,则这三个角的度数分别为.
19.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.
20.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,
则∠ABC=度.
二、选择题
1.平面上A、B两点间的距离是指()
A.经过A、B两点的直线 B. 射线AB C. A、B两点间的线段 D. A、B两点间线段的长度
2.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB
的长度是()
A.2㎝
B.0.5㎝
C.1.5㎝
D.1㎝
3、下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个的是()
4.下列哪个角不能由一副三角板作出()
A.︒
105 B.︒
15 C.︒
175 D.︒
135
5.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()
6.若︒
+
︒
=
∠
︒
-
︒
=
∠m
m90
,
90β
α,则∠α与∠β的关系是()
A.互补B.互余C.和为钝角D.和为周角
7.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( )
A.
2
1∠1 B.
2
1∠2 C.
2
1(∠1-∠2) D.
2
1(∠1+∠2)
8、如图,OC平分∠AOB,∠AOB=60°,∠AOD=50°,则∠COD的度数是()
A、80°
B、85°
C、90°
9、如图,下列说法中错误的是()
A.OA方向是北偏东30º
B.OB方向是北偏西15º
b
a O D
C
B
A
C.OC 方向是南偏西25º D.OD 方向是东南方向 三、解答题:
1.如图,已知线段a 、b ,画一条线段,使它等于2a -b.
2.如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点. (1)求线段MN 的长.
(2)若C 为线段AB 上任意一点,满足,其他条件不变,你能猜想出MN 的长度吗?并说明理由.
(3)若C 在线段AB 的延长线上,且满足,M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由
3.(1)如下图,已知点C 在线段AB 上,且AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段
MN 的的长度.
(2)在(1)中,如果AC=acm ,cm BC b ,其它条件不变,你能猜出MN 的长度吗?请你用 一句简洁的话表述你发现的规律.
(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm ,BC=4cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求MN 的长度。
”结果会有变化吗?如果有,求出结果。
(12分)
4.计算题:
(1)22°18′×5; (2)76°35′+69°55′(3)90°-57°23′27″.
⑴ (180°-91°32/24//)÷3 ⑵ 34°25/×3+35°42/
⑶ 一个角的余角比它的补角的3
1
还少20°,求这个角.
5. 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,
求∠AOC 的度数
.
第25题图
E A /
D
C B A
6、如图, 已知∠1=30°,OD 平分∠BOC,求∠AOD 的度数。
7.如图所示,点O 是直线AB 上一点,OE ,OF 分别平分∠AOC 和∠BOC ,若∠AOC =68°,则∠BOF 和∠EOF 是多少度?(9分)
9.探究题:
如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分
∠A /BE ,求∠CBD 的度数.
10.如图所示,OD 平分∠BOC ,OE 平分 ∠AOC .若∠BOC =70°,∠AOC =50°. (1)求出∠AOB 及其补角的度数;
(2)请求出∠DOC 和∠AOE 的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.
11、如图,∠AOB=120°,OE 是∠BOD 的平分线,OC 是∠AOD 的平分线, 求:(1)∠COE 的度数?(2)若∠COD=15°,求∠BOD 的度数?
第25题图
A C
D
B
1
O。