人教新课标高考复习配套测评卷 必修5-4
人教新课标高考复习配套测评卷必修5-2
必修5 Unit2课时作业(二十二)The United Kingdom联合王国Ⅰ.单项填空1.—What about your journey to Mount Hua?—Everything was wonderful except that the car we rented________on the way back.A.broke up B.broke downC.broke out D.broke in2.Boys and girls,please remain________and keep quiet until theelectricity supply returns to normal.A.seated B.seatingC.to seat D.seat3.Five men and three women make up the temporary group to look into the case.In other words,it________eight people.A.consists of B.is consisted ofC.is consisting of D.is being consisted of4.According to the present findings,we can draw a conclusion________so far a large number of people have died of cholera in this town.A.whether B.thatC.what D.if5.Though computers can do a lot of work man can’t do,they can’t completely________human beings.A.replace with B.instead ofC.take place D.take the place of6.Life in London has so many________—nightclubs,good restaurants and so on.A.collections B.instructionsC.attractions D.expressions7.He tried to deal with the increasing burden of his work,but he finally________and had to take a co mplete rest.A.broke off B.broke awayC.broke out D.broke down8.To their great fear,they found________in the heaviest snowfall they had ever had.A.they were catching B.themselves caughtC.they had caught D.themselves catching9.—Did you meet with the famous space hero,Yang Liwei?—________I had come here earlier!A.If only B.If notC.But for D.For fear10.—Could you please tell us about some good ways to learn English?—My suggestion is that reading often and writing regularly ________.A.are needed B.is neededC.be needed D.should need11.________ by the problem that was put forward at the meeting,the people in the audience had ________ looks on their faces.A.Puzzled;puzzling B.Puzzled;puzzledC.Puzzling;puzzling D.Puzzling;puzzled12.When you come to the fence,you can see a notice________there saying “________the grass”.A.putting up;Keep off B.putting up;Keep awayC.put up;Keep out D.put up;Keep off第 1 页共 4 页。
人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)
综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。
人教版新课程高中数学测试题(必修5)含答案(38页)
目录:数学5(必修)数学5(必修)第一章:解三角形 [基础训练A组]数学5(必修)第一章:解三角形 [综合训练B组]数学5(必修)第一章:解三角形 [提高训练C组]数学5(必修)第二章:数列 [基础训练A组]数学5(必修)第二章:数列 [综合训练B组]数学5(必修)第二章:数列 [提高训练C组]数学5(必修)第三章:不等式 [基础训练A组]数学5(必修)第三章:不等式 [综合训练B组]数学5(必修)第三章:不等式 [提高训练C组]新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .A tan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
人教新课标高考复习配套测评卷 必修4-5
必修4 Unit 5课时作业(二十)Theme parks主题公园Ⅰ.单项填空1.You can imagine what great trouble they have________the problem________.A.to solve;being talked aboutB.solving;discussingC.to solve;to talk aboutD.solving;being discussed2.Most members of the committee were in favour of the suggestion;only a(n)________were against it.A.majority B.minorityC.quantity D.amount3.Not only________the activity________public awareness of world hunger,but raised a lot of money for the poor children.A./;has increased B.is;increaseC.has;increased D./;increased4.Sorry,Madam.You’d better come tomorrow because it’s__________the visiting hours.A.during B.atC.beyond D.before5.The person who was taking photos asked the family to sit______and listen________to his order.A.closely;close B.close;closelyC.close;close D.closely;closely6.More and more people choose to shop in a supermarket as it offers a great________of goods.A.variety B.mixtureC.extension D.combination7.Everything________life in the spring with the warm weather and long days.A.comes back B.comes downC.comes to D.comes along8.—It seems that he is________our village.—He spent________of his childhood here.A.new to;most B.familiar with;partC.similar to;a part D.like;much9.What about the two of us________to the newly opened theme park in our city this afternoon?A.going B.to goC.go D.will go10.I can’t say which wine is best—it’s a(n)________of personal taste.A.affair B.eventC.matter D.variety11.Leaves are found on all kinds of trees,but they differ greatly________size and shape.A.on B.fromC.by D.in12.________tomorrow,our ship will set sail for Macao.A.However the weather is likeB.However is the weather likeC.Whatever is the weather likeD.Whatever the weather is like13.In October,the price of the________to Mount Tai has risen by 50 yuan.A.permission B.admissionC.introduction D.instruction14.We’re________at the________news that Saddam was sentenced to death.A.amazing;amazed B.amaze;amazingC.amazed;amazing D.amazed;amazed15.________by the beauty of nature,the girl from London decided to spend another two days on the farm.A.Attracting B.AttractedC.To be attracted D.Having attractedⅡ.完形填空(2010年东城检测)L ove in a BoxWhen I was a little girl,I found love in a box all because of a class assignment.On a Friday night I__1__at the dinner table,“My teacher said we have to bring a box,a special box,for our Valentines (情人节) on Monday.”Mother said,“We’ll see”,and she continued eating.What did “We’ll see” mean?I had to have that box__2__my second grade Valentine’s Day would be a disaster.Maybe they didn’t love me enough to help me with my__3__.All Saturday I waited__4__and with Sunday arriving,my concern increased,but I__5__an enquiry about the box might__6__anger or loud voice,for in my house children only ask once.More than that __7__trouble.Late Sunday afternoon,my father called me into the kitchen.The table was covered with colorful__8__of different kinds.A(n)__9__shoebox rested on top of it.__10__flooded through me when Daddy said,“Let’s get started__11__your project.”In the next hour my father__12__the shoebox into an impressive valentine box.Colorful paper covered the ugly cardboard with red hearts__13__to what I considered all the right places.He sang while he worked.When he finished,he was so delighted that a__14__smile spread over his face.“What do you think of that?” he asked.I answered him with a hug.But inside,__15__danced all the way to my heart.It was the first time that my father devoted so much__16__to me,for his world consisted of work only.The holiday party arrived,and my classmates put cards,and presents into the valentine ughter filled our classroom until dismissal time__17__.On the way home,I held out my valentine box for the world to__18__.The love that filled it meant more to me than all inside.The valentine box became a symbol of his love that__19__through decades of other Valentine’s Days.He gave me other gifts through the years,but none__20__compared with the love I felt within the limits of the old,empty shoebox.1.A.announced B.appearedC.served D.sat2.A.and B.howeverC.or D.so3.A.design B.planC.idea D.project4.A.sadly B.anxiouslyC.disappointedly D.patiently5.A.found B.realizedC.knew D.imagined6.A.start B.causeC.mark D.produce7.A.invited B.tookC.saved D.had8.A.boxes B.giftsC.paper D.food9.A.new B.bigC.attractive D.empty10.A.Relaxation B.ReliefC.Cheer D.Calm11.A.by B.atC.in D.on12.A.folded B.packedC.changed D.pressed13.A.joined B.attachedC.linked D.connected14.A.slight B.briefC.broad D.confident15.A.joy B.funC.interest D.amusement16.A.money B.timeC.support D.hope17.A.reached B.setC.spent D.came18.A.accept B.respectC.admire D.recognize19.A.carried B.keptC.spread D.lasted20.A.ever B.evenC.yet D.stillⅢ.阅读理解(2009年枣庄检测)I don’t know how I became a writer,but I think it was because of a certain force in me that had to write and that finally burst through and found a channel.My people were of the working class of people.My father,a stone-cutter,was a man with a great respect and veneration (崇敬) for literature.He had a tremendous memory,and he loved poetry,and the poetry that he loved best was naturally of the rhetorical kind that such a man would like.Nevertheless it was good poetry,Hamlet’s Soliloquy,Macbeth,Mark Antony’s “Funeral Oration”,Grey’s “Elegy”,and all the rest of it.I heard it all as a child;I memorized and learned it all.He sent me to college to the state university.The desire to write,which had been strong during all my days in high school,grew stronger still.I was editor of the college paper,the college magazine,etc.,and in my last year or two I was a member of a course in play writing which had just been established there.I wrote several little one-act plays,still thinking I would bec ome a lawyer or a newspaper man,never daring to believe I could seriously become a writer.Then I went to Harvard,wrote some more plays there,became obsessed with (着迷于) the idea that I had to be a playwright,left Harvard,had my plays rejected,and finally in the autumn of 1926,how,why,or in what manner I have never exactly been able to determ ine.But probably because the force in me that had to write at length sought out its channel,I began to write my first book in London.I was living all alone at that time.I had two rooms—a bedroom and a sitting room—in a litter square in Chelsea in which all the houses had that familiar,smoked brick and cream-yellow-plaster look.1.We may conclude,in regard to the author’s development as a writer,that hisfather________.A.made an important contributionB.insisted that he choose writing as a careerC.opposed his beco ming a writerD.insisted that he read Hamlet in order to learn how to be a writer2.The author believes that he became a writer mostly because of________.A.his special talentB.his father’s teaching and encouragementC.his study at HarvardD.a hidden urge within him3.The author________.A.began to think of becoming a writer at HarvardB.had always been successful in his writing careerC.went to Harvard to learn to write playsD.worked as a newspaper man before becoming a writer4.The author really started on his way to become a writer______.A.when he was in high schoolB.when he was studying at HarvardC.when he lived in LondonD.after he entered college5.What can we learn about the author’s life in the autumn of 1926?A.He left Harvard and got married.B.He couldn’t make up his mind what to do.C.He started his dream as a writer.D.He began to think seriously what to do.课时作业(二十)Ⅰ.单项填空1.D句意为:你可以想像他们费多大事来解决正在讨论的问题。
人教版 高考总复习 生物必修一5-4
在生产上的应 用 冬天,温室栽 培可适当提高 温度;夏天, 温室栽培可适 当降低温度。 白天调到光合 作用最适温度 ,以提高光合 作用速率;晚 上适当降低温 度,降低酶的 活性,以降低 细胞呼吸强度 ,保证有机物 的积累
温度
生物
高考总复习人教版
因素
图像
关键点的含义
在生产上的 应用
CO2 浓 度
AB段:CO2是光合作用 的原料,直接影响光合作 用。在一定范围内,随 CO2浓度的增多,植物的 光合作用强度加强。A点 表示植物进行光合作用所 需CO2最低浓度。B点对 应的CO2浓度:表示CO2 的饱和点,超过该点,植 物的光合作用强度不再增 加(主要受细胞内酶的数 量和酶的活性的限制)
必修一 分子与细胞
生物
高考总复习人教版
【例1】普里斯特利把一只小白鼠和一盆植物一同放 到一个玻璃罩内,结果小白鼠和植物都能存活很长时间。
但后来有人重复这个实验,却有的能成功,有的不能成功。
以下关于这一现象的说法,不正确的是 ( A.该实验并不科学,没有可重复性 B.该实验的成功与否,要看是否将装置置于阳光下 )
位置和移动方向。
③没有光反应,暗反应无法进行,所以晚上植物只
进行呼吸作用,不进行光合作用;没有暗反应,有机物 无法合成,生物活动也就不能持续进行。
必修一 分子与细胞
生物
高考总复习人教版
④色素只存在于光反应部位——叶绿体类囊体薄膜
上,但光反应和暗反应都需要酶参与,所以与光合作 用有关酶存在于两个部位——叶绿体类囊体薄膜上和基 质中。 ⑤若同一植物处于两种不同情况下进行光合作用
O2是叶绿体 释放出来的, 叶绿体是光合 作用的场所
鲁宾、 卡门
光合作用释放的 氧全部来自水
数学人教A版必修5新课标(RJA)作业本高考数学练习测评卷及参考答案
高中数学必修5 新课标(RJA)单元测评(一)第一章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a=3,c=2,B=150°,则=()S△ABCA.2B.C.D.2.已知圆的半径R=4,a,b,c为该圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2B.8C.D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,b sin B-a sin A=a sin C,则sin B=()A. B.C. D.4.在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=()A.B.C. D.5.已知△ABC的周长为9,内角A,B,C的对边分别是a,b,c,且sin A∶sin B∶sin C=3∶2∶4,则cos C的值为()A.-B.C.-D.6.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a=2c·cos B,那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=k(k>0),b=k,A=45°,则满足条件的三角形有 ()A.0个B.1个C.2个D.无数个8.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b2+c2-a2=bc,sin2A+sin2B=sin2C,则角B的大小为()A.30°B.45°C.60°D.90°9.在△ABC中,已知A=60°,AC=16,面积为220,则BC的长度为()A.25B.51C.49D.4910.已知锐角三角形的三边长分别为1,3,a,则a的取值范围是()A.(8,10)B.(2,)C.(2,10)D.(,8)11.在△ABC中,内角A,B,C的对边分别为a,b,c,若a2+b2=2c2,则C的最大值为()A. B.C. D.12.在△ABC中,A=60°,BC=,D是AB边上的一点,CD=,△BCD的面积为1,则AC的长为 ()A.2B.C. D.第卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC的面积S=,A=,则·=.14.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.15.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a2+c2=ac+b2,b=,且a ≥c,则2a-c的最小值是.16.如图D1-1,△ABC中,∠BAC=,且BC=1,若E为BC的中点,则AE的最大值是.图D1-1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=2b=6,A=30°,求B及S△ABC.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,a+b=2,ab=2,且2cos A cos B-2sin A sin B=1.求:(1)角C的大小;(2)△ABC的周长.19.(12分)如图D1-2,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得轮船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,求船速.图D1-220.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a+2c=2b cos A.(1)求角B的大小;(2)若b=2,a+c=4,求△ABC的面积.21.(12分)已知△ABC的内角Α,Β,C所对的边分别为a,b,c,若向量m=cosB,2cos2-1与n=(2a-b,c)共线.(1)求角C的大小;(2)若c=2,S△ABC=2,求a,b的值.22.(12分)在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且sin2A=sin2B+sin2C-sin B sin C.(1)求角A的大小;(2)若a=2,求b+c的取值范围.单元测评(二)第二章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列-,,-,…的一个通项公式是()A.a n=(-1)n-B.a n=(-1)n++C.a n=(-1)n+D.a n=(-1)n-2.已知a,b,c,d依次成等比数列,且曲线y=x2-4x+7的顶点坐标是(b,c),则ad 等于()A.5B.6C.7D.123.设{a n}是等比数列,若a2=3,a7=1,则数列{a n}前8项的积为()A.56B.80C.81D.1284.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的等于较小的两份之和,则最小的一份为()A.B.C.D.5.已知数列{a n}中,a1=2,a n+1=a n+2n(n∈N*),则a100的值是()A.9900B.9902C.9904D.11 0006.在等差数列{a n}中,若a1008+a1009+a1010+a1011=18,则该数列的前2018项的和为()A.18 126B.9072C.9081D.12 0847.等差数列{a n}中,已知a1=-12,S13=0,则使得a n>0的最小正整数n为()A.7B.8C.9D.108.已知等差数列{a n}的前n项和为S n,S17>0,S18<0,则当S n取得最大值时,n为()A.7B.8C.9D.109.已知数列{a n}中,a1=3,a n+1=a n+2(n∈N*),则此数列的前10项和S10=()A.140B.120C.80D.6010.在等比数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8=()A.10B.11C.12D.1411.已知等比数列{a n}的前n项和为S n,且S n=2n-c(c∈R),若log2a1+log2a2+…+log2an=10,则n=()A.2B.3C.4D.512.对于正项数列{a n},定义G n=+++…+为数列{a n}的“匀称”值.已知正项数列{a n}的“匀称”值为G n=n+2,则该数列中的a10等于()A.2B.C.1D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设等比数列{a n}的前n项和为S n,若S10∶S5=1∶2,则S15∶S5=.14.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N*)在直线x-y+1=0上,则+++…+=.15.已知数列{a n}满足2a1+22a2+23a3+…+2n a n=n(n∈N*),则数列{a n}的前n项和S n=.16.若一个实数数列{a n}满足条件+-an=d(d为常数,n∈N*),则称这一数列为“伪等差数列”,d称为“伪公差”.给出下列关于“伪等差数列”{a n}的说法:①对于任意的首项a1,若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为递增数列;③若这一数列的首项为1,“伪公差”为3,则-可以是这一数列中的一项;④若这一数列的首项为0,第三项为-1,则这一数列的“伪公差”可以是-.其中说法正确的是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)求数列{-1}的前n项和S n.18.(12分) 设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和,已知S3=7,且a1+3,3a2,a3+4依次构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,求数列{b n}的前n项和T n.19.(12分) 已知数列和满足a1=2,b1=1,a n+1=2a n,b1+b2+b3+…+b n =bn+1-1.(1)求a n与b n;(2)记数列的前n项和为T n,求T n.20.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(1)求数列{a n}与{b n}的通项公式;(2)证明:数列的前n项和T n<.21.(12分) 已知数列为等差数列,且a2+a3=8,a5=3a2.(1)求数列的通项公式;(2)记b n=+,设的前n项和为S n,求最小的正整数n,使得S n>.22.(12分)已知数列{a n}的前n项和为S n,且S n=2a n-2.(1)求数列{a n}的通项公式;(2)设函数f(x)=,数列{b n}满足条件b1=2,f(b n+1)=--,若c n=,求数列{c n}的前n项和T n.单元测评(三)第三章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式-3x2+7x-2<0的解集为()A.<<B.<或>C.-<<-D.{x|x>2}2.已知a,b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.a2b<a3C.<D.->-3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是()A.(-3,4)B.(-3,-4)C.(0,-3)D.(-3,1)4.设x,y满足约束条件+,,-,则z=3x+y的最大值为()A.5B.3C.7D.-85.不等式<的解集是()A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)6.若x>0,y>0,且+=1,则x+y的最小值是()A.3B.6C.9D.127.当k>0时,直线kx-y=0,2x+ky-2=0与x轴围成的三角形的面积的最大值为()A.B.C.D.8.已知关于x的方程x2+(a2-1)x+a-2=0的一根比1大且另一根比1小,则实数a的取值范围为()A.-1<a<1B.a<-1或a>1C.-2<a<1D.a<-2或a>19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.已知x,y满足约束条件--,--,若目标函数z=ax+by(a>0,b>0)在该约束条件下取到的最小值为2,则a2+b2的最小值为()A.5B.4C.D.211.在△ABC中,C=90°,BC=2,AC=4,AB边上的点P到边AC,BC的距离的乘积的取值范围是()A.[0,2]B.[0,3]C.[0,4]D.0,12.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值为 ()A.33B.26C.25D.21第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若f(x)=ax2+ax-1在R上满足f(x)<0恒成立,则实数a的取值范围是.14.若变量x,y满足约束条件-+,+-,,则z=3x+y的最小值为.15.函数y=log a(x+4)-2(a>0,且a≠1)的图像恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为.16.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知不等式ax2-3x+2>0.(1)若a=-2,求不等式的解集;(2)若不等式的解集为{x|x<1或x>b},求a,b的值.18.(12分)解关于x的不等式:x2-(m+m2)x+m3<0.19.(12分)如图D3-1,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成.已知休闲区A 1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式.(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?图D3-120.(12分)某企业生产甲、乙两种产品,已知生产1吨甲产品要用A原料3吨,B 原料2吨;生产1吨乙产品要用A原料1吨,B原料3吨.销售1吨甲产品可获得利润5万元,销售1吨乙产品可获得利润3万元.如果该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得的最大利润是多少?21.(12分)设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,]上有零点,求实数a的取值范围.22.(12分)第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x(x>0)台,需另投入成本C(x)万元.若年产量不足80台,则C(x)=x2+40x;若年产量不小于80台,则C(x)=101x+-2180.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?模块终结测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n}中,若a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3B.a1=2,d=-3C.a1=-3,d=2D.a1=3,d=-22.在△ABC中,a=2,b=,c=1,则最小角的大小为()A.B.C.D.3.设a,b,c∈R,且a>b,则()A.<B.a2>b2C.a-c>b-cD.ac>bc4.△ABC的内角A,B,C的对边分别为a,b,c,已知a=3,A=60°,b=,则B=()A.45°B.30°C.60°D.135°5.若数列{a n}满足a n+1=1+,a8=,则a5=()A.B.C.D.6.某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β.已知A,B在水塔的同一侧,AB=a,0<β<α<,则水塔CD 的高度为()A.-B.-C.-D.-7.不等式x2-ax-12a2<0(其中a<0)的解集为 ()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(-4,3)8.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于()A.-18B.-15C.-12D.-99.设变量x,y满足约束条件-,-,+-,则目标函数z=3x+y的最大值为()A.7B.8C.9D.1410.已知函数y=a x+2-2(a>0且a≠1)的图像恒过定点A,若点A在直线mx+ny +1=0上,其中mn>0,则+的最小值为()A.3B.3+2C.4D.811.数列{2n-(-1)n}的前10项和为()A.210-3B.210-2C.211-3D.211-212.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系式一定不成立的是 ()A.a=cB.b=cC.2a=cD.a2+b2=c2第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若x,y满足,--,+-,则z=x+y的最小值为.14.△ABC的内角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,a,b,c成等比数列,则sin A·sin C=.15.某人从A处出发,沿北偏东60°方向行走3km到达B处,再沿正东方向行走2 km到达C处,则A,C两地间的距离为.图M1-116.在数列{a n}中,若a1=2,a n+1=a n+ln1+,则a n=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a2+a4=14,S7=70.(1)求数列{a n}的通项公式.(2)设nb n=2S n+48,则数列{b n}的最小项是第几项?求出最小项的值.19.(12分)为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n年需要付出的维修费用记作a n 万元,已知{a n}为等差数列,相关信息如图M1-2所示.(1)设该公司前n年总盈利为y万元,试把y表示成关于n的函数,并求出y的最大值.(总盈利即n年总收入减去成本及总维修费用)(2)该公司经过几年经营后,年平均盈利最大?并求出最大值.图M1-220.(12分)如图M1-3,某货轮在A处看灯塔B在货轮的北偏东75°方向上,距离为12 n mile,在A处看灯塔C在货轮的北偏西30°方向上,距离为8 n mile,货轮由A处向正北方向航行到D处时,再看灯塔B在南偏东60°方向上,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.图M1-321.(12分)已知等差数列{a n}满足a1+a2+a3=a5=9,等比数列{b n}满足0<b n+1<b,b1+b2+b3=,b1b2b3=.n(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n·b n,试求数列{c n}的前n项和S n.22.(12分)已知函数f(x)=ax2-4x+c(a,c∈R),满足f(2)=9,f(c)<a,且函数f(x)的值域为[0,+∞).(1)求函数f(x)的解析式;(2)设函数g(x)= +-(k∈R),若对任意x∈[1,2],存在x0∈[-1,1],使得g(x)<f(x),求k的取值范围.模块终结测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式4x2-4x+1>0的解集是()A.>B.C.RD.⌀2.一个等差数列共有10项,其中偶数项的和为15,则这个数列的第6项是()A.3B.4C.5D.63.在△ABC中,内角A,B,C的对边分别是a,b,c,若B=45°,C=60°,c=1,则最短边的长为()A.B.C.D.4.下列说法中正确的是 ()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若a>b,则<D.若a>b,c<d,则a-c>b-d5.在△ABC中,内角A,B,C的对边分别是a,b,c,若a=80,b=100,A=45°,则此三角形的解的情况是()A.一解B.两解C.解的个数不确定D.无解6.已知等比数列{a n}的前n项和为S n,a4-a1=78,S3=39,设b n=log3a n,则数列{b n}的前10项和为()A.log371B.C.50D.557.若点M(a,b)在由不等式组,,+确定的平面区域内,则点N(a+b,a-b)所在平面区域的面积是()A.1B.2C.4D.88.海中有一小岛,周围a n mile内有暗礁.一艘海轮由西向东航行,望见该岛在北偏东75°方向上,航行b n mile以后,望见该岛在北偏东60°方向上.若这艘海轮不改变航向继续前进且没有触礁,则a,b所满足的不等关系是 ()A.a<bB.a>bC.a<bD.a>b9.将正奇数按下表排列:则199在()A.第10列B.第11列C.第11行D.第12行10.在△ABC中,a,b,c分别是内角A,B,C的对边,已知sin A,sin B,sin C成等比数列,且a2=c(a+c-b),则角A的大小为()A.B.C.D.11.已知a>b>0,则a+++-的最小值为()A.B.4 C.2D.312.设u(n)表示正整数n的个位数,例如u(23)=3.若a n=u(n2)-u(n),则数列{a n}的前2015项的和等于()A.0B.2C.8D.10第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在△ABC中,内角A,B,C的对边分别为a,b,c.若b=2,c=3,△ABC的面积为2,则sin A=.14.在数列{a n}中,a1=2,a n+1-2a n=0,b n是a n和a n+1的等差中项,设S n为数列{b n}的前n项和,则S6=.15.不等式(m+1)x2+(m2-2m-3)x-m+3>0恒成立,则m的取值范围是.16.定义:若数列{a n}对一切正整数n均满足++>an+1,则称数列{a n}为“凸数列”.有以下关于凸数列的说法: ①等差数列{an}一定是凸数列;②首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列;③若数列{an}为凸数列,则数列{a n+1-a n}是递增数列;④若数列{an}为凸数列,则下标成等差数列的项构成的子数列也为凸数列.其中正确说法的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于x的不等式ax2+(a-2)x-2≥0(a∈R)的解集为(-∞,-1]∪[2,+∞).(1)求a的值;(2)设关于x的不等式x2-(3c+a)x+2c(c+a)<0的解集是集合A,不等式(2-x)(x+1)>0的解集是集合B,若A⊆B,求实数c的取值范围.18.(12分)已知等差数列{a n}中,a7=4,a19=2a9.(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和S n.19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin C-sin A+sinB)(sin C+sin A-sin B)=sin A sin B.(1)求角C的大小;(2)若c=,求a+b的最大值.20.(12分)某公司因业务发展需要,准备印制如图M2-1所示的宣传彩页,宣传彩页由三幅大小相同的画组成,每幅画的面积都是200 cm2,这三幅画中都要绘制半径为5 cm的圆形图案,为了美观,每两幅画之间要留1 cm的空白,三幅画周围要留2 cm的页边距.设每幅画的一边长为x cm,所选用的彩页纸张面积为S cm2.(1)试写出所选用彩页纸张的面积S关于x的函数解析式及其定义域.(2)为节约纸张,即使所选用的纸张面积最小,应选用长、宽分别为多少的纸张?图M2-121.(12分)如图M2-2,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.当点B在什么位置时,四边形OACB的面积最大?图M2-222.(12分)设数列的前n项和为S n,且S n+a n=1,数列为等差数列,且b1+b2=b3=3.(1)求S n;(2)求数列的前n项和T n.模块终结测评(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{a n}为等差数列,若a3+a4+a8=9,则a5=()A.3B.4C.5D.62.若a<0,b>0,则下列不等式中恒成立的是()A.<B.-<C.a2<b2D.|a|>|b|3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cos B=,b=2,sin C=2sin A,则△ABC的面积为 ()A. B.C. D.4.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2B.4C.7D.85.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是()A.m≤-2或m≥2B.-2≤m≤2C.m<-2或m>2D.-2<m<26.在△ABC中,若sin2A-sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.已知S n表示数列{a n}的前n项和,若对任意n∈N*都有a n+1=a n+a2,且a3=2,则=()S2018A.1008×2017B.1008×2018C.1009×2017D.1009×2018(x>-1),当x=a时,y取得最小值b,则a+b=8.已知函数y=x-4++()A.-3B.2C.3D.89.在△ABC中,已知||=4,||=1,△ABC的面积为,则·=()A.±2B.±4C.2D.410.若实数x,y满足-+,+,,则z=3x+2y的最小值是()A.0B.1C.D.911.设圆x2+y2=4的一条切线与x轴、y轴分别交于点A,B,则|AB|的最小值为()A.4B.4C.6D.812.定义+++…+为n个正数p1,p2,p3,…,p n的“均倒数”.已知各项均为正数的数列{a n}的前n项的“均倒数”为+,且b n=+,则++…+=()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的公差d为整数,首项为13,若从第5项开始每一项均为负数,则d等于.14.已知A船在灯塔C北偏东80°方向上,且A到C的距离为2 km,B船在灯塔C 北偏西40°方向上,若A,B两船间的距离为3 km,则B到C的距离为km.15.已知变量x,y满足约束条件+,,-,若z=kx+y的最大值为5,且k为负整数,则k=.16.已知各项均为正数的等比数列{a n}中,a4与a14的等比中项为2,则2a7+a11的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,且a cos C+(c-2b)cos A=0.(1)求角A的大小;(2)若△ABC的面积为2,且a=2,求b+c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a4=-5,a8=3.(1)求数列{a n}的通项公式;(2)求S n的最小值及此时n的值.19.(12分)如图M3-1,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C都相距5 n mile,与小岛D相距3 n mile,在小岛A测得∠BAD 为钝角,且sin∠BAD=.(1)求小岛A与小岛D之间的距离;(2)记∠CDB=α,∠DBC=β,求sin(2α+β)的值.图M3-120.(12分)已知不等式-+>0(a∈R).(1)解这个关于x的不等式;(2)若当x=-a时不等式成立,求a的取值范围.21.(12分)某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式为S=+-+,<<,,.已知每日的利润L=S-C,且当x=2时,L=.(1)求k的值.(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值. 22.(12分)已知数列{a n}的首项为1,前n项和为S n,a n+1=2S n+1,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=log3a n+1,求数列的前n项和T n,并证明:1≤T n<.|高中数学必修5 新课标(RJA)单元测评(一)1.B【试题解析】由三角形面积公式得S△ABC=ac sin B=×3×2×=,故选B.2.C【试题解析】∵===2R=8,∴sin C=,∴S△ABC=ab sin C ===.3.A【试题解析】∵b sin B-a sin A=a sin C,∴由正弦定理可得b2-a2=ac.又∵c=2a,∴a2+c2-b2=4a2-ac=3a2,∴利用余弦定理可得cos B=+-==,由0<B<π,得sin B=-=-=,故选·A.4.B【试题解析】如图所示,设CD=a,则在△ACD中,CD2=AD2+AC2-2AD·AC·cos ∠DAC,∴a2=(a)2+(a)2-2×a·a·cos∠DAC,∴cos∠DAC=. 5.A【试题解析】由正弦定理可得a∶b∶c=sin A∶sin B∶sin C=3∶2∶4.设a=3k(k>0),则b=2k,c=4k,周长为9k=9,解得k=1,所以a=3,b=2,c=4,所以cos C=+-=-,故选A.6.A【试题解析】由正弦定理得=,代入a=2c·cos B,得sin A=2sin C cos B①.又∵sin A=sin(B+C)=sin B cos C+cos B sin C②,∴联立①②,得sin B cos C-cos B sin C=0,即sin(B-C)=0,即B=C,故选A.7.A【试题解析】由正弦定理得=,∴sin B==>1,即sin B>1,这是不成立的,∴没有满足题设条件的三角形.8.A【试题解析】b2+c2-a2=bc⇒cos A=+-=,所以A=60°.又sin2A +sin2B=sin2C⇒a2+b2=c2,所以C=90°,所以B=30°.9.D【试题解析】S△ABC=AC×AB×sin 60°=×16×AB×=220,∴AB=55,∴BC2=AB2+AC2-2AB×AC cos 60°=552+162-2×55×16×=2401,即BC=49,故选D.10.B【试题解析】设1,3,a所对的内角分别为C,B,A,则由余弦定理知a2=12+32-2×3cos A<12+32=10,且32=12+a2-2×a cos B<12+a2,∴2<a<.11.C【试题解析】∵a2+b2=2c2,∴cos C=+-≥+-+=-=,又C是三角形的内角,∴C的最大值为.12.D【试题解析】∵BC=,CD=,△BCD的面积为1,∴××sin ∠DCB=1,∴sin∠DCB=,∴cos∠DCB=,∴BD2=CB2+CD2-2CD·CB cos∠DCB =4,解得BD=2.在△BDC中,由余弦定理可得cos∠BDC==-,∴∠BDC =135°,∴∠ADC=45°.在△ADC中,∠ADC=45°,A=60°,DC=,由正弦定理可得,°=°,∴AC=.13.2【试题解析】S△ABC=·AB·AC·sin A,即=·AB·AC·,所以AB·AC =4,于是·=··cos A=4×=2.14.【试题解析】设内角A,B,C所对的边分别为a,b,c,且a=3,b=5,c=7,∴cos C=+-=-,∴sin C=,∴外接圆的半径R==.15.【试题解析】因为a2+c2-b2=2ac cos B=ac,所以cos B=,则B=60°,又a≥c,则A≥C=120°-A,所以60°≤A<120°.由正弦定理得====2,则2a-c=4sin A-2sin C=4sin A-2sin 120°-A)=2sin(A-30° ,所以当A=60°时,2a-c取得最小值.16.1+【试题解析】设C=α,则B=π--α=-α,在△ABC中,由正弦定理得====2,则AB=2sin α,AC=2sin-α.在△ABE中,AE2=AB2+BE2-2AB·BE cos-α=(2sin α)2+2-2×2sin α××cos-α=4sin2α-2sin α-cos α+sin α+=3sin2α+sin αcos α+=-+sin 2α+=-cos 2α+sin 2α+=sin2α-+,当sin2α-=1时,AE2有最大值+=1+2,即AE的最大值是1+.17.解:在△ABC中,由正弦定理得sin B=sin A=×=.又A=30°,且a<b,∴B=60°或B=120°.①当B=60°时,C=90°,△ABC为直角三角形,故S△ABC=ab=6.②当B=120°时,C=30°,△ABC为等腰三角形,故S△ABC=ab sin C=×2×6sin 30°=3.18.解:(1)∵2cos A cos B-2sin A sin B=1,∴cos(A+B)=,∴cos C=cos[180°-(A+B)]=-cos(A+B)=-.又∵C∈ 0°,180° ,∴C=120°.(2)由题知a+b=2,ab=2,∴c2=a2+b2-2ab cos 120°=a2+b2+ab=(a+b)2-ab=(2)2-2=10,∴c=.从而△ABC的周长为2+.19.解:设∠ABE=θ,船的速度为v km/h,则BC=v,BE=v.在△ABE中,=°,∴sin θ=.在△ABC中,°-=°,∴AC=··.在△ACE中,=25+-2×5×·cos 150°,即v2=25++100=,∴v2=93,∴船的速度为 km/h.20.解:(1)因为a+2c=2b cos A,所以由正弦定理,得sin A+2sin C=2sin B cos A,又C=π-(A+B),所以sin A+2sin(A+B)=2sin B cos A,即sin A+2sin A cos B+2cos A sin B=2sin B cos A,所以sin A(1+2cos B)=0,因为sin A≠0,所以cos B=-,又0<B<π,所以B=.(2)由余弦定理得a2+c2-2ac cos B=b2,即a2+c2+ac=12,即(a+c)2-ac=12, 因为a+c=4,所以ac=4,所以S△ABC=ac sin B=×4×=.21.解:(1)∵m=(cos B,cos C),m∥n,∴c cos B=(2a-b)cos C, 由正弦定理得sin C cos B=(2sin A-sin B)cos C,∴sin C cos B+sin B cos C=2sin A cos C,∴sin A=2sin A cos C.∵sin A>0,∴cos C=.∵C∈ 0,π ,∴C=.(2)由余弦定理得(2)2=a2+b2-2ab cos ,∴a2+b2-ab=12①.∵S△ABC =ab sin C=2,∴ab=8②.由①②得=,=或=,=.22.解:(1)由正弦定理及sin2A=sin2B+sin2C-sin B sin C,知a2=b2+c2-bc, 所以cos A=+-=.又0<A<,所以A=.(2)由(1)知A=,所以B+C=,所以B=-C.因为a=2,所以==,所以b=4sin B,c=4sin C,所以b+c=4sin B+4sin C=4sin-+4sin C=2(cos C+sin C)=4+.因为△ABC是锐角三角形,所以0<B=-C<,0<C<,所以<C<,所以<C +<,所以<sin+≤1,所以6<4sin+≤4.故b+c的取值范围为(6,4].单元测评(二)1.C【试题解析】观察数列各项知符号可用(-1)n表示.各项绝对值的分母依次为3,5,7,…,故可表示为2n+1;各项绝对值的分子依次为1,4,9,…,故可表示为n2.所以a n=(-1)n+,故选C.2.B【试题解析】由y=x2-4x+7,得y=(x-2)2+3,所以顶点坐标为(2,3),即b=2,c=3.由a,b,c,d依次成等比数列,得ad=bc=6,故选B.3.C【试题解析】由等比数列的性质,得a1a8=a2a7=a3a6=a4a5,则数列{a n}前8项的积为a1a2a3a4a5a6a7a8=(a2a7)4=34=81,故选C.4.A【试题解析】设五个人所分得的面包个数为a-2d,a-d,a,a+d,a+2d,其中d>0,则(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20.由(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d),∴24d=11a,∴d=,∴最小的一份为a-2d=20-=.故选A.5.B【试题解析】∵a1=2,a n+1=a n+2n,∴a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-an-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+2=2×-+2=n2-n+2,∴a100=1002-100+2=9902.6.C【试题解析】∵a1+a2018=a1008+a1011=a1009+a1010,而a1008+a1009+a1010+a1011=18,∴a1+a2018=9,∴S2018=(a1+a2018)×2018=9081,故选C.7.B【试题解析】由S13=+=0,得a13=12,则a1+12d=12,得d=2,∴数列{a n}的通项公式为a n=-12+(n-1)×2=2n-14,由2n-14>0,得n>7,即使得a n>0的最小正整数n为8,故选B.8.C【试题解析】∵等差数列{a n}中,S17>0,S18<0,∴a9>0,a9+a10<0,∴a10<0,∴数列的前9项和最大.9.B【试题解析】∵a n+1=a n+2,∴a n+1-a n=2,∴{a n}是首项为3,公差为2的等差数列,∴S10=10×3+×2=120,故选B.10.C【试题解析】由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,所以a5+a6=2×2=4,a7+a8=4×2=8,所以a5+a6+a7+a8=4+8=12.选C.11.D【试题解析】当n≥2时,a n=S n-S n-1=2n-c-(2n-1-c)=2n-1.∵{a n}是等比数列,∴当n=1时,a1=S1=2-c也满足上式,∴2-c=20=1,∴c=1,∴a n=2n-1.∴log2a1+log2a2+…+log2an=log2(a1a2…a n)=log2(20×21×…×2n-1)=log220+1+2+…+n-1=-=10,解得n=5.12.D【试题解析】由正项数列{a n}的“匀称”值的定义,得G1=a1=3;G2=+=4,即a2=;G3=++=5,即a3=;…….故数列{an}的通项公式为a n=+,所以a10=,故选D.13.3∶4【试题解析】显然等比数列{a n}的公比q≠1,则由=--=1+q5=⇒q5=-,故=--=--=----=.故S15∶S5=3∶4.14.+【试题解析】由题意,a n-a n+1+1=0,∴a n+1-a n=1,∴{a n}为等差数列,且a1=1,d=1,∴an =1+(n-1)×1=n,∴Sn=+,∴=+=2-+,∴++…+=21-+-+…+-+=+.15.1-【试题解析】由2a1+22a2+23a3+…+2n a n=n(n∈N*),可得2a1+22a2+23a3+…+2n an+2n+1an+1=n+1,两式相减得2n+1an+1=1,∴an+1=+.∵当n=1时,2a1=1,∴a1=,∴{an}是首项a1=,公比q=的等比数列,则数列{a n}的前n项和S n=--=1-.16.③【试题解析】①当a1=,d=-,a n>0时,依题意,a n=,这一数列不是有穷数列,故不正确;②当d>0,a1>0时,∵an+1=±+,∴这一数列不一定是递增数列,故不正确;③∵a1=1,d=3,∴a2=±+=±2,当a2=2时,a3=±+=±,故正确;④∵a1=0,∴=a1+d=d,∴d≥0,而-<0,故不正确.综上所述,③正确.17.解:(1)由题意知=a1a9,即(2+2d)2=2×(2+8d),即d2-2d=0,∴d=2或d =0(舍),∴an=2n.(2)-1=22n-1=4n-1,∴S n=41+42+43+…+4n-n=(4n-1)-n.18.解:(1)由已知得a1+a2+a3=7,a1+3+a3+4=2×3a2,可得a2=2.设数列{a n}的公比为q,由a2=2,可得a1=,a3=2q,∵S3=7,∴+2+2q=7,即2q2-5q+2=0,解得q=2或q=.由题意知q>1,∴q=2,∴a1=1,故数列{an}的通项公式为an=2n-1.(2)∵b n=ln a3n+1,a3n+1=23n,∴b n=ln 23n=3n ln 2,∴b n+1-b n=3ln 2,故数列{b n}为等差数列,∴T n=b1+b2+…+b n=+=+=+ln 2,故T n =+ln 2.19.解:(1)由a1=2,a n+1=2a n,得a n=2n.由题意知,当n=1时,b1=b2-1,故b2=2.易知当n≥2时,b n=b n+1-b n,整理得+=+(n≥2),所以b n=n(n≥2).又b1=1也满足上式,所以bn=n.(2)由(1)知,a n b n=n·2n,所以T n=2+2×22+3×23+…+n×2n,2T n=22+2×23+3×24+…+(n-1)×2n+n×2n+1,所以T n-2T n=-T n=2+22+23+…+2n-n×2n+1=(1-n)2n+1-2,所以T n=(n-1)2n+1+2.20.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由a1=3,b1=1,b2+S2=12,a3=b3,得+++=,=+,又q>0,∴=,=,∴数列{an}的通项公式为a n=3+3(n-1)=3n,数列{b n}的通项公式为b n=3n-1.(2)证明:由(1)知a n=3n,则S n=+,∴=+=-+,∴Tn =×1-+×-+×-+…+×-+=1-+<.21.解:(1)设等差数列的公差为d,则依题意有+=,+=+,解得=,=,所以数列的通项公式为a n=2n-1.(2)因为b n=+=--+,所以S n=-+-+…+--+=1-+.令1-+>,解得n>1009,所以满足条件的最小正整数n为1010.22.解:(1)当n≥2时,a n=S n-S n-1=2a n-2a n-1,得a n=2a n-1;当n=1时,a1=S1=2a1-2,得a1=2.因此数列{a n}为等比数列,且首项为2,公比为2,∴通项公式为an=2n.(2)∵f(x)=,f(b n+1)=--,∴+=--,∴+=+.∴bn+1=bn+3,即bn+1-bn=3.又∵b1=2,∴{bn}是以2为首项,3为公差的等差数列,∴bn =3n-1.∴cn==-,T n =+++…+--+-①,T n =+++…+-+-+②,①-②得Tn =1++++…+--+,即T n=1+3×-----+,即T n=1+----+,∴Tn =2+3----=2+3----=5-+.单元测评(三)1.B【试题解析】不等式-3x2+7x-2<0可化为3x2-7x+2>0,方程3x2-7x+2=0的两根为x1=,x2=2,则不等式3x2-7x+2>0的解集是<或>,故选B.2.D【试题解析】取a=-2,b=1,可排除选项A,B,C;由a<b,得a-b<0,不等式a<b两边都乘-,得->-,故D正确.故选D.3.A【试题解析】当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0,故选A.4.C【试题解析】如图,画出约束条件表示的可行域,由+-=,=-,得=,=-,即C(3,-2),由图可知,当直线3x+y-z=0过点C(3,-2)时,z取得最大值,z max=3×3-2=7.5.D【试题解析】不等式<可化为->0,即2x(x-2)>0,方程2x(x-2)=0的两根为x1=0,x2=2,则不等式2x(x-2)>0的解集是{x|x<0或x>2},故选D.6.C【试题解析】因为x>0,y>0,所以x+y=(x+y)+=5++≥5+2·=9,当且仅当=,即x=3,y=6时,等号成立,故选C.7.B【试题解析】由直线kx-y=0,2x+ky-2=0与x轴围成的三角形区域如图,易知A的坐标为(1,0).联立-=,+-=,解得B+,+,则S△OAB=×1×+=+=+≤·=,当且仅当k=,即k=时上式取等号,故选B.8.C【试题解析】构造函数f(x)=x2+(a2-1)x+a-2,因为方程x2+(a2-1)x +a-2=0的一根比1大且另一根比1小,所以f(1)<0,即a2+a-2<0,解得-2<a<1,故选C.9.A【试题解析】不等式x2-4x-2-a>0在区间(1,4)内有解等价于当x∈(1,4)时a<(x2-4x-2)max,令g(x)=x2-4x-2,x∈(1,4),则g(x)<g(4)=-2,所以a<-2.10.B【试题解析】画出约束条件表示的可行域(如图所示).显然,当直线z=ax+by过点A(2,1)时,z取得最小值,即2=2a+b,所以2-2a=b,所以a2+b2=a2+(2-2a)2=5a2-8a+20.构造函数m(a)=5a2-8a+20(>a >0),利用二次函数求最值,显然函数m(a)=5a2-8a+20的最小值是- =4,即a2+b2的最小值为4.故选B.11.A【试题解析】以C为坐标原点建立直角坐标系(如图),则直线AB的方程为+=1,设点P的坐标为(m,n),则0≤m≤4,0≤n≤2,+=1,由+≥2·=,得mn≤2,故AB边上的点P到边AC,BC的距离的乘积的取值范围是[0,2],故选A.12.C【试题解析】由实数x,y满足xy-3=x+y,且x>1,可得y=+-,则y(x+8)=++-,令t=x-1(t>0),则有x=t+1,则y(x+8)=++=t ++13≥2·+13=12+13=25,当且仅当t=6,即x=7时取等号,此时y(x+8)取得最小值25.13.(-4,0]【试题解析】当a=0时,f(x)=-1<0恒成立,故a=0符合题意;当a≠0时,由题意得<,=+<⇒<,-<<⇒-4<a<0.综上所述,a的取值范围是-4<a≤0.14.1【试题解析】作出不等式组表示的平面区域(如图所示),把z=3x+y变形为y=-3x+z,则当直线y=-3x+z经过点(0,1)时,z最小,将(0,1)代入z=3x+y,得z min=1,即z=3x+y的最小值为1.15.5+2【试题解析】∵y=log a x的图像恒过定点(1,0),∴函数y=log a(x +4)-2的图像恒过定点A(-3,-2),把点A的坐标代入直线方程得m×(-3)+n×(-2)+1=0,即3m+2n=1,又mn>0,∴m>0,n>0,∴+=(3m+2n)+=5++≥5+2·=5+2,当且仅当=时,等号成立,故+的最小值为5+2.16.[-4,3]【试题解析】原不等式可化为(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得,-4≤a≤3.17.解:(1)当a=-2时,不等式为-2x2-3x+2>0,即2x2+3x-2<0,方程2x2+3x-2=0的两根为x1=-2,x2=,∴不等式2x2+3x-2<0的解集为-<<.(2)由题意知1,b是方程ax2-3x+2=0的两根,∴a-3+2=0,即a=1,又1×b =,∴b=2.18.解:方程x2-(m+m2)x+m3=0的解为x1=m和x2=m2.二次函数y=x2-(m+m2)x+m3的图像开口向上,所以①当m=0或1时,原不等式的解集为⌀;②当0<m<1时,原不等式的解集为{x|m2<x<m};③当m<0或m>1时,原不等式的解集为{x|m<x<m2}.19.解:(1)S=(x+20)×+=8x++4160,x>0.(2)∵x>0,∴S≥2+4160=1600+4160=5760,当且仅当8x=,即x=100时取等号.故要使公园所占面积最小,则休闲区A1B1C1D1的长应为100米,宽为40米.20.解:设生产甲产品x吨,生产乙产品y吨,在一个生产周期内该企业获得的利润为z万元,。
新课标人教版必修5高中数学综合检测试卷附答案解析
解题技巧
认真审题,理解 题意
运用所学知识, 分析问题
结合实际,联系 生活
细心计算,确保 答案准确
易错点提醒
计算错误:学生可 能因为粗心或计算 能力不足而犯错
概念混淆:学生对 相关概念理解不清 晰,导致填空题答 案错误
逻辑推理错误:学生 在解题过程中,可能 因为逻辑推理不严密 而导致答案错误
审题不清:学生可能因 为审题不仔细,导致理 解题意出现偏差,从而 影响答案的准确性
难度分布:试卷难度适中,注重基础知识的考查,同时也有一定的难度和区分度。
题型设计:本试卷包括选择题、填空题、解答题等多种题型,考查学生的不同能力。
考查重点:本试卷重点考查学生的数学基础知识和应用能力,以及学生的数学思维和解题技 巧。
难度分析
基础题占比: 40%
中档题占比: 40%
难题占比:20%
题目设计注重考查 学生的数学析
题目类型:单项选择题
题目数量:10道
题目难度:中等
解析:对每道题目进行详细的 解析,包括解题思路、方法、 答案等
解题技巧
掌握基础知识:选择题通常考察基础知识点,应熟练掌握相关概念和公式。 仔细审题:读懂题目要求,找出关键信息,避免因误解而选错答案。
排除法:对于一些难以确定答案的选择题,可以采用排除法,排除明显错误的选项。
善于利用选项:有些选择题的答案可以通过代入选项进行验证,从而快速找到正确答案。
易错点提醒
选项中涉及到的知识点是否准确掌握 选项中的陷阱和迷惑性词语是否能够识别 计算和分析过程中是否有遗漏或错误 解题思路和方法是否正确且符合题意
题目类型及解析
题目类型:填空题 题目难度:中等 题目数量:10道 解析:针对每道题目给出详细的解题思路和答案解析
2021-2022学年高中英语人教版必修五 阶段质量检测(四) Word版含答案
阶段质量检测(四)A卷学业水平达标(时间:120分钟满分:150分)第Ⅰ卷第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
(Text 1)W:You look sleepy. What's the matter?M:I didn't sleep for the whole night because I had a long report to prepare for the president.W:You must be very tired now. You'd better go and get some sleep.1.What does the woman advise the man to do?A.She advises him to work hard at his lessons.B.She advises him to go to sleep.C.She advises him to stay there and wait.(Text 2)W:You should have been here ten minutes ago. The film has been on for ten minutes. It's a pity you missed the first part.M:I was about to leave my house when I had an unexpected visitor. We talked for some time. So I was a little late for the film. But it doesn't matter too much.2. Why was the man late for the film?A.Because he had an unexpected visitor.B.Because he had to take his son to his parents.C.Because his car broke down on the way.(Text 3)M:Those oranges look nice. How much are they?W:They are sixty cents a pound.3. How much are the oranges?A.6 cents a pound. B.16 cents a pound.C.60 cents a pound.(Text 4)W:I haven't seen Bob all day.M:Have you checked the lab? I wouldn't be surprised if he slept there.4. Where may Bob be?A.In the bedroom sleeping.B.In the office working.C.At the lab sleeping.(Text 5)W:Aren't you watching the movie on the television?M:It's not on until eight.5. When will the movie start?A.It's already on. B.It'll start at eight.C.It'll start after eight o'clock.其次节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
高二英语人教版必修5Unit 4 单元过关检测卷(四)(新高考模式,含答案解析)
单元过关检测(四)(时间:120分钟,满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where does the conversation probably take place?A.At a TV store.B.In a restaurant.C.In a hotel.2.What’s the most probable relationship between the speakers?A.Customer and waiter.B.Teacher and student.C.Doctor and patient.3.What does the man say about turtles?A.The y’re ugly and lazy.B.They’re cute and smart.C.They’re noisy and dirty.4.What does the woman mean?A.The man doesn’t have to move at all.B.The man’s new apartment is near his school.C.She once lived on Victoria Street.5.What does the woman advise the man to do?A.Buy an iPad this week.B.Play games on iPad.C.Surf the Internet together.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
人教新课标高考复习配套测评卷 必修44.doc
姓名:A.In a word C. In timeB.In generalD. Intotal必修4 Unit 4学如/•趕苗,不兄再增.日齐所绘;学如虜力W/S.不兀具抿.日歹所号课时作业(十九)Body language身体语言I .单项填空1.Work hard, dear.With your work done, you will feel much ___________ .A.at easeB. out of workC ・ in peace D. as usual2.This is a new __________ to language teaching, which can stimulate students' interest to learn the language.A.approachB. meansC. methodD. way3.The kids seated themselves __________ t o the teacher and listened ___________ with great interest.A.closely; closeB. closely; closelyC. close; closelyD. close; close4.The _______ on his face told me that he wasn' t satisfied with my answer.A.impressionB. sightC・ appearance D・expression5.People are encouraged to speak openly, but careless words are ___________ to hurt others? feelings.A.possibleB. probableC. likelyD. sure6・_______ , most teenagers now listen to rock music.However, John likes classical music better*.7.The students entered the classroom, smiling and ___________ , and _________ down to have their lessons.A.talked; sat B・ talking; sittingC.talking; satD. talked; sitting8.Do tell me the ways you think of ________ the problem as soon as possible.A. to solveB. solvingC. solveD. being s olved9.The murderer reached his gun, and then shot at the man.A. forB. outC ・i n D. of10.一Hi, Peter.Long time no see.一Oh, it' s you, Jack.I' m sorry I didn' t ______________ you at first.A. knowB. recognizeC ・ remember D. realize11.Tyron was very angry, but cool-headed enough to ____________ rushing into the boss' s office.A. preventB. avoidC. protectD. allow12.一You don' t look quite yourself today.What? s the matter?—Well, m suffering from a cold.Nothing serious, __________ .A. indeedB. anywayC. thoughD. yet13.When crossing the street, you should always _________ the traffic.A. watchB. watch out班C. watch forD. watch out for14.______ different kinds of pianos, the factory is sure they can satisfy people? s needs.A. To produceB. Being producedC. ProducedD. Having produced15.Smoking is one of the ________ c auses of cancer, killing millions of people each year.A. majorB. similarC・ commercial D. chemicalII.阅读理解(2009年安徽名校联考三,C) American teens are setting an example for their parents through their volunteer work, according to the Harris Interactive poll conducted in the United States between Jan.29 and Feb.2 among 2,003 adults.The random national telephone survey released this week by the Federal Way・based charity World Vision found that more teens volunteer to support a charitable (慈善的)cause—56 percent—than have a part-time job一39 percent.Parents and guardians said 82 percent of the teens in their lives do something to support charitable causes, including, volunteering, recruiting others to a cause, wearing a T-shirt or donating money.Forty-six percent of the adults surveyed said they volunteered their time and they also inspired their children to volunteer.Sara Johnson, a teacher who advises students at a private school in a Chicago suburb, says she' s seen a rise of teen involvement in social causes since President Barack Obama was elected in November.The Harris Interactive survey found a quarter of teens have become more involved in charitable causes or organizations as a result of the economic downturn, but the economy has also led to cuts in allowances, and has teens work more hours at a paying job.Alynn Woodson, director of volunteer engagement at Habitat for Humanity International, said she has noticed a new enthusiasm among teen volunteers for th e organization.Habitat for Humanity International celebrates the 20th anniversary of its alternative spring break program this year and is expecting more than 12,000 young people to help build homes for low-income people around the nation.1.The following statements about the teens' voluntary work are true EXCEPT ___________ .A.the economic downturn led teens to work less hours at paying jobsB.the poll was done at the end of January and the early FebruaryC ・ children do more voluntary work than their parentsD.more teens are involved in charitable causes or organizations2.We can infer from the passage that _______ .A.parents and guardians encourage their children to do voluntary workB.volunteers all wear T-shirts while doing charity workC・ more teens are doing paying jobs as a result of the economic downturnD. less teens were enthusiastic about voluntary work before Obama came into power3.The author mentioned Habitat for Humanity International in order to prove __________ .A.that homes for low-income people will be built around the nationB.Alynn Woodson is the director of volunteer engagementC.more young people are doing volunteer workD・ it' s 20 years since Habitat for Humanity International came into being4.Which of the following is the best ti tie of the passage?A.More teens doing voluntary workB.Teens setting examples for parents in charitable causesments on teens' voluntary workD・ The 20th anniversary of Habitat for Humanity International(2009年厦门检测,D)Just as the stock (股票)market rises and falls in response to what people are willing to put their money behind, we have inside ourselves an inner economy that rises and falls in response to our beliefsabout what is possible.Sometimes the degree to which we are willing to chall en ge our belief systems determines the success of our inner economy.For example, imagine that your family of origin had a belief that musical talent was not something they possessed.As a member of that group, you would likely hold that same belief about yourself.As a result, even if you had a great desire to create music, you might be hesitant to really get behind yourself, fearing that your investment (投资)would not pay off.Even if you had the courage to follow your passion, your inner belief that you are not born talented would probably be a major obstacle to investing your energy in y our dream.On the other hand, if you found a way to release that negative belief, a great flood of energy would pour forth, greatly increasing the likelihood of your success.How much energy we are willing to invest in the various ideas, dreams, and visions we carry within is like the money people are, or are not, willing to invest in the various products available for trade on the stock market.And in both cases, belief plays a key role in determining how willing we are to get behind something.One way to open up the possibility for greater success in our inner economies is to understand that belief is not the reliable guide we sometimes think.There are other more reliable things of success that we can put our faith in, such as passion, feeling, and sense.Some of the most successful investors in the stock market are the ones that go against the grain, trusting their sense over the common opinion held by common people about what will work.In the same way, we can learn to trust our heart' s desires and our sense to guide us, questioning any belief s that stand in the way of our ability to fully invest in ourselves.As we take out energy from limiting ideas about what is possible, we free up the resources that have the power to make our inner economy prospe匚5.We can safely conclude from the first paragraph that _________ .A.our belief is not reliableB.belief is not so important in our successC.belief is an obstacle to our successD.our belief determines our success in some way6.According to the passage, if a family of origin has passion for literature, the members ofthe family will probably ________ .A.write poemsB.hate literatureC.enter the field of literatureD.teach literature7.We can put our faith in the following things of success except _________ .A. passionB. feelingC.senseD. stock market8.The purpose of the author is ________ .A.to teach us a lessonB.to give us some useful suggestionsC.to encourage us to invest in the stock marketD.to tell us common people have negative beliefs课时作业(十九)1I .单项填空1. A at ease意为“舒适,快活,自由自在”,表示“工作做完后,你会觉得好轻松”。
人教新课标版数学高二-人教A必修5检测 周练卷四
周练卷四(时间:45分钟满分:100分)【选题明细表】知识点、方法题号等差数列及其性质3、4等比数列及其性质1、2、5、7、9数列求和8、11、12综合问题6、10、11、13一、选择题(每小题6分,共36分)1.(2014德州联考)设a1,a2,a3,a4成等比数列,其公比为2,则的值为( C )(A)1 (B)(C)(D)解析:===.故选C.2.(2013年高考新课标全国卷Ⅰ)设首项为1,公比为的等比数列{a n}的前n 项和为S n,则( D )(A)S n=2a n-1 (B)S n=3a n-2(C)S n=4-3a n(D)S n=3-2a n解析:由等比数列前n项和公式S n=知S n==3-2a n.故选D.3.(2014菏泽高二期末)设等差数列{a n}的前n项和为S n,若a1=-9,a4+a6=-6,S5等于( B )(A)-36 (B)-30 (C)30 (D)20解析:∵a4+a6=-6,∴a5=-3,∴a1+a5=-12,∴S5==-30.故选B.4.(2014淄博高二期末)等差数列{a n}的前n项和S n=a1+a2+…+a n,若S10=31,S20=122,则S30等于( D )(A)153 (B)182 (C)242 (D)273解析:由等差数列的性质得S10,S20-S10,S30-S20也成等差数列,∴2×(122-31)=31+S30-122,∴S30=273.故选D.5.(2014信阳高二期末)数列{a n}为正项等比数列,若a2=1,且a n+a n+1=6a n-1(n ∈N*,n≥2),则此数列的前4项和S4等于( A )(A)(B)8 (C)12 (D)15解析:设等比数列的公比为q,由a n+a n+1=6a n-1知,当n=2时a2+a3=6a1,再由数列{a n}为正项等比数列,且a2=1,得1+q=⇒q2+q-6=0⇒q=-3或q=2.∵q>0,∴q=2,∴S4=+1+2+4=.故选A.6.(2012年高考浙江卷)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n 项和,则下列命题错误的是( C )(A)若d<0,则数列{S n}有最大项(B)若数列{S n}有最大项,则d<0(C)若数列{S n}是递增数列,则对任意n∈N*,均有S n>0(D)若对任意n∈N*,均有S n>0,则数列{S n}是递增数列解析:法一设{a n}的首项为a1,则S n=na1+n(n-1)d=n2+(a1-)n.由二次函数性质知S n有最大值时,则d<0,故选项A、B正确;因为{S n}为递增数列,则d>0,不妨设a1=-1,d=2,显然{S n}是递增数列,但S1=-1<0,故选项C错;对任意n∈N*,S n均大于0时,a1>0,d>0,{S n}必是递增数列,选项D正确.故选C.法二选项C显然是错的,举出反例:-1,0,1,2,3,…,满足数列{S n}是递增数列,但S n>0不恒成立.故选C.二、填空题(每小题6分,共24分)7.(2014景德镇高二期末)在等比数列{a n}中,若公比q=4,且前3项之和等于21,则该数列的通项公式为a n= .解析:由a1+a2+a3=21得a1+a1q+a1q2=21,∴a1=1,∴a n=a1q n-1=4n-1.答案:4n-18.(2014菏泽高二期末)已知数列{b n}的通项公式是b n=n,则++…+= .解析:++…+=++…+=×(-+-+…+-)=.答案:9.(2013年高考江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于.解析:本题是等比数列前n项和的实际应用题,设每天植树的棵数组成的数列为{a n},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.答案:610.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升.下面3节的容积共4升,则第5节的容积为升.解析:设自上而下各节容积成等差数列的公差为d,首节容积为a1,则由已知得∴解得∴第5节容积为a1+4d=(升).答案:三、解答题(共40分)11.(本小题满分13分)(2014莱州高二期末)已知数列{a n}的前n项和为S n,a1=1,a n=+n-1 (n∈N*).(1)求证:数列{}为等差数列;(2)设数列{}的前n项和为T n,求T n.(1)证明:由题意可得na n=S n+n(n-1),∴n(-S n-1)=S n+n(n-1),(n∈N*,n≥2),即(n-1)S n-nS n-1=n(n-1),∴-=1,∴数列{}为等差数列.(2)解:由(1)得=1+(n-1)×1=n,∴S n=n2,∴a n=S n-S n-1=n2-(n-1)2=2n-1,(n∈N*,n≥2),又a1=1适合上式,∴a n=2n-1.∴==(-),∴T n=(1-+-+…+-)=.12.(本小题满分13分)(2014河南开封高二期末)设数列{a n}满足:a1+2a2+3a3+…+na n=2n (n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n2a n,求数列{b n}的前n项和S n.解:(1)∵a1+2a2+3a3+…+na n=2n, ①∴n≥2时,a1+2a2+3a3+…+(n-1)a n-1=2n-1,②①-②得na n=2n-1,a n=(n≥2),在①中令n=1得a1=2,∴a n=(2)∵b n=则当n=1时,S1=2,∴当n≥2时,S n=2+2×2+3×22+…+n×2n-1,则2S n=4+2×22+3×23+…+(n-1)·2n-1+n·2n,相减得S n=n·2n-(2+22+23+…+2n-1)=(n-1)2n+2(n≥2),又S1=2,符合S n的形式,∴S n=(n-1)·2n+2(n∈N*).13.(本小题满分14分)(2014马鞍山质检)已知各项均为正数的数列{a n}中,a1=1,S n为数列{a n}的前n项和.(1)若数列{a n},{}都是等差数列,求数列{a n}的通项公式;(2)若2S n=+a n,试比较++…+与1的大小.解:(1)∵数列{a n},{}都是等差数列,设数列{a n}的公差为d,则2=+⇒2(a 1+d)2=+(a1+2d)2⇒2(1+d)2=1+(1+2d)2得2d2=0,∴d=0,∴a n=1.(2)由于2S n=+a n, ①当n≥2时,2S n-1=+a n-1,②由①-②得:a n+a n-1=-,又a n>0,∴a n-a n-1=1(n≥2,n∈N*),又a1=1,∴a n=n,∴++…+=++…+=1-<1.。
高三英语一轮配套测评卷 新人教版必修5
《金版新学案》高考总复习(新课标)配套测评卷——高三一轮[R教]英语卷(五)必修5学校:____________ 班级:___________ 某某:____________ 考号:____________第Ⅰ卷(选择题,共105分)第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)1.What can you learn about the man from the conversation?A.He’s anxious to see his siste r.B.He wrote to his sister last month.C.He’s expecting a letter from his sister.2.What did the woman say about the weather?A.It would be rainy. B.It would be windy.C.It would snow. 3.What’s the woman?A.A shop assistant. B.A cook.C.A waitress.4.Where is the man going to spend his holiday?A.At student center. B.At home.C.In his garden.5.Why isn’t Rebecca going to eat?A.She has been to the dentist’s and is in much pain.B.She has one of her teeth filled at the dentist’s.C.She doesn’t feel like eating because she isn’t hungry.第二节(共15小题;每小题1.5分,满分22.5分)听第6段对话,回答第6至8题。
人教版高中数学必修5测试题及答案全套
第一章 解三角形 测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( )(A)60°(B)30°(C)60°或120° (D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( )(A )45(B)35(C)920(D)5124.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( )(A)等边三角形 (B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2(C)1∶4∶9 (D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________.7.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=23,c =4,则A=________.8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形.9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B=60°,则c=________.10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________.三、解答题11.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=4,C =60°,试解△ABC.12.在△ABC中,已知AB=3,BC=4,AC=13.(1)求角B的大小;(2)若D是BC的中点,求中线AD的长.13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.14.在△ABC中,已知BC=a,AC=b,且a,b是方程x2-23x+2=0的两根,2cos(A+B)=1.(1)求角C的度数;(2)求AB的长;(3)求△ABC的面积.测试二解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π(B)3π(C)32π(D)65π2.在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③2cos 2sin C B A =+其中正确的个数是( ) (A)0(B)1(C)2(D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)8274.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8(B)6(C)4(D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( )(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B=45°,则角A =________.7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________. 10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径)Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向. 问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)? (2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值; (2)若b =13,a +c =4,求△ABC的面积.第二章 数列 测试三 数列 Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n(B)a n =4n (C)a n =94(10n -1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30(B)35(C)36(D)423.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( )(A)4(B)13(C)28(D)434.156是下列哪个数列中的一项( )(A){n 2+1}(B){n 2-1}(C){n 2+n }(D){n 2+n -1}5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( )(A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________. 7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0. 12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ;(2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +).(1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列 Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( )(A)98(B)-195(C)-201(D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( )(A)667(B)668(C)669(D)6703.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( )(A)15(B)30(C)31(D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)na b -(B)1+-n a b(C)1++n a b(D)2+-n a b5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( )(A)S 4<S 5 (B)S 4=S 5(C)S 6<S 5(D)S 6=S 5二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________. 9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________. 10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n}的前n项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{a n}是等差数列,且a1=50,d=-0.6.(1)从第几项开始a n<0;(2)写出数列的前n项和公式S n,并求S n的最大值.Ⅲ拓展训练题14.记数列{a n}的前n项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+…+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题1.数列{a n}满足:a1=3,a n+1=2a n,则a4等于( )(A)3(B)24 (C)48 (D)5482.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a 5等于( )(A)33(B)72(C)84(D)1893.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23(C)916(D)34.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( )(A)81(B)120(C)168(D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列;③{a n }是递增数列; ④{a n }可能是递减数列.其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________.9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n}中,若a2a6=36,a3+a5=15,求公比q.13.已知实数a,b,c成等差数列,a+1,b+1,c+4成等比数列,且a+b+c =15,求a,b,c.Ⅲ拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q,每列上的数从上到下都成等差数列.a ij表示位于第i行第j列的数,其中a24=1,a42=1,a54=5.(1)求q的值;(2)求a ij的计算公式.测试六数列求和Ⅰ学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( )(A)15(B)17(C)19 (D)212.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60(B)72.5(C)85(D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( )(A)100 (B)-100 (C)200 (D)-2004.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n(B)122+n n(C)24+n n(D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950二、填空题 6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________.8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________.9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.nn 21813412211⨯++⨯+⨯+⨯ =________.三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n都有f (1)=n 2成立. (1)求数列{a n }的通项a n ; (2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( )(A)3(B)2(C)-2(D)2或-22.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( )(A)5(B)10(C)15(D)203.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( )(A)a1a8>a4a5 (B)a1a8<a4a5(C)a1+a8>a4+a5(D)a1a8=a4a54.一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),则该函数的图象是( )5.已知数列{a n}满足a1=0,1331+-=+nnn aaa(n∈N*),则a20等于( )(A)0 (B)-3(C)3(D)23二、填空题6.设数列{a n}的首项a1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数nanaannn则a2=________,a3=________. 7.已知等差数列{a n}的公差为2,前20项和等于150,那么a2+a4+a6+…+a20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n}中,a1=2,a n+1=a n+3n(n∈N*),则a n=________.10.在数列{a n}和{b n}中,a1=2,且对任意正整数n等式3a n+1-a n=0成立,若b n是a n与a n+1的等差中项,则{b n}的前n项和为________.三、解答题11.数列{a n}的前n项和记为S n,已知a n=5S n-3(n∈N*).(1)求a1,a2,a3;(2)求数列{a n}的通项公式;(3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( )(A)16(B)20(C)24(D)362.在50和350间所有末位数是1的整数和( )(A)5880(B)5539(C)5208(D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )(A)0(B)1(C)2(D)不能确定4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( )(A)-2(B)2(C)-4(D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013(C)4014(D)4015二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________.8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f是直角坐标系平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).设P1(x1,y1),P2=f(P1),P3=f(P2),…,P n=f(P n-1),….如果存在一个圆,使所有的点P n(x n,y n)(n∈N*)都在这个圆内或圆上,那么称这个圆为点P n(x n,y n)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.1y).若点P(x,y)在映射f下的象为点Q(-x+1,2(1)求映射f下不动点的坐标;(2)若P1的坐标为(2,2),求证:点P n(x n,y n)(n∈N*)存在一个半径为2的收敛圆.第三章 不等式 测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( )(A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2(D)a >b ⇒ac 2>bc 22.若-1<<<1,则-的取值范围是( )(A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0)3.设a >2,b >2,则ab 与a +b 的大小关系是( )(A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定 4.使不等式a >b 和ba11>同时成立的条件是( )(A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a5.设1<x <10,则下列不等关系正确的是( )(A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x )(D)lg x 2>lg(lg x )>lg 2x二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号:(1)(a -2)c ________(b -2)c ; (2)ac ________bc ; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________.8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba 的取值范围是________.9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cb ca >;④a -c >b-c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号). 10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断ab 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b b a p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式 Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值212.若a >0,b >0,且a ≠b ,则( )(A)2222b a ab ba +<<+ (B)2222b a b a ab +<+<(C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a(B)2a(C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( )(A)22(B)4 (C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )(A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________.7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________.三、解答题11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2d a +和bc的大小关系并加以证明.12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa (a >0)在(0,+∞)上的单调性;(2)设函数f (x )=x +xa (a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式.测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( )(A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( )(A){x |x >1,或x <-2} (B){x |-2<x <1}(C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( )(A){x |x >±a } (B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a }4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( )(A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0)二、填空题6.不等式x 2+x -12<0的解集是________. 7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________.10.已知关于x 的不等式x 2-(a +a1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________. 三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集. 12.k在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B ); (2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2} (B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70(D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8(D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )(A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M(D)2∉M ,0∈M二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x2+ax+2>0的解集是R,则实数a的取值范围是________.7.已知函数f(x)=x|x-2|,则不等式f(x)<3的解集为________.8.若不等式|x+1|≥kx对任意x∈R均成立,则k的取值范围是________.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问交通事故的主要责任方是谁?Ⅲ拓展训练题11.当x∈[-1,3]时,不等式-x2+2x+a>0恒成立,求实数a的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm的空白,上下留有都为6cm的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( )(A)A ,B 都在l 上方(B)A ,B 都在l 下方(C)A 在l 上方,B 在l 下方(D)A 在l 下方,B 在l 上方2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为()(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y (B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y (C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y (D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6(B)-10 (C)5(D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种(B)6种(C)7种(D)8种二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2(B)ba11(C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23(B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 24.设函数f (x )=222xx x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1 (C)a >22-1 (D)a >1-225.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( )(A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________.7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________. 8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+a ax x 的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________.三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题 1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2](D)(-∞,-2]∪[2,+∞)2.设a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0<ba <1(C)ab <2ba +(D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( ) (A))31,21((B))31,21(-(C))31,21(--(D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( )(A)a 1+a 3>0 (B)a 1a 3>0(C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) (A)1∶3∶2(B)1∶2∶3 (C)2∶3∶1 (D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( )(A)31(B)34(C)68(D)707.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( )(A)-4(B)4(C)-2(D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A点行驶到B点所用的时间为3s,则此车的速度介于( )(A)60~70km/h (B)70~80km/h(C)80~90km/h (D)90~100km/h二、填空题9.不等式x(x-1)<2的解集为________.10.在△ABC中,三个内角A,B,C成等差数列,则cos(A+C)的值为________. 11.已知{a n}是公差为-2的等差数列,其前5项的和S5=0,那么a1等于________.12.在△ABC中,BC=1,角C=120°,cos A=32,则AB=________.13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥342,0yxyxyx,所表示的平面区域的面积是________;变量z=x+3y的最大值是________.14.如图,n2(n≥4)个正数排成n行n列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=21,a24=1,a32=41,则q=________;a ij=________.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34cos cos ==ab BA .(1)证明角C =90°; (2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,使得该厂日产值最大?19.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A C B 2cos 2sin 2++的值;(2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式; (2)求证:⋅<++++531111321n a a a a参考答案 第一章 解三角形 测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°,当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理CcB b A a sin sin sin ===k ,得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2.二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C .9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABCB AC sin sin =,得AC =425.三、解答题 11.c =23,A =30°,B =90°.12.(1)60°;(2)AD =7.13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA ,∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°. (2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10.所以AB =10.(3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C , 即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C .故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392.12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°; (2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7, 故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA ,同理得232,145==AB OB .由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A 所以A =45°. 故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29.14.由正弦定理R CcB b A a 2sin sin sin ===, 得C RcB R b A R a sin 2,sin 2,sin 2===.因为sin 2A +sin 2B >sin 2C , 所以222)2()2()2(RcR b R a >+, 即a 2+b 2>c 2. 所以cos C =abc b a 2222-+>0,由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合.故当t ∈[0,43]时,|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.故得|PQ |=724482+-t t (t ≥0).(2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km.16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b CB +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=,2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°,即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列 测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4 提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项.13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m-1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2, 即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *). 所以数列{a 2m }是等差数列. 故S 10=5a 1+5a 2+2)15(5-⨯×2=35.三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.。
河南省漯河市(新版)2024高考数学人教版质量检测(评估卷)完整试卷
河南省漯河市(新版)2024高考数学人教版质量检测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数满足,且,则()A.1B.C.D.第(2)题已知函数,下列命题中,是假命题的为()A.若在上单调递减,则B.若是函数的极值点,则在上的最小值为C.若是函数的极值点,则D.若在上恒成立,则第(3)题据中国古代数学名著《周髀算经》记截:“勾股各自乘,并而开方除之(得弦).”意即“勾”、“股”与“弦”之间的关系为(其中).当时,有如下勾股弦数组序列:,,则在这个序列中,第10个勾股弦数组中的“弦”等于()A.145B.181C.221D.265第(4)题设正数满足,当时,恒有,则乘积的最小值是()A.B.2C.D.第(5)题已知集合,则()A.B.C.D.第(6)题已知函数且在区间上单调递减,则的取值范围是()A.B.C.D.第(7)题已知全集集合,则()A.B.C.D.第(8)题已知集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆的离心率为,左,右焦点分别为,,过且倾斜角为的直线与椭圆C交于A,B两点(点A在第一象限),P是椭圆C上任意一点,则()A.a,b满足B.的最大值为C.存在点P,使得D.第(2)题直线与抛物线相交于,两点,过,两点分别作该抛物线的切线,与直线均交于点,则下列选项正确的是()A.直线过定点B.,两点的纵坐标之和的最小值为C.存在某一条直线,使得为直角D.设点在直线上的射影为,则直线斜率的取值范围是第(3)题关于函数的图象和性质,下列说法正确的是()A.是函数的一条对称轴B.是函数的一个对称中心C.将曲线向左平移个单位可得到曲线D.函数在的值域为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为_________.第(2)题若(ax2+)3的展开式中x3的系数是—80,则实数a=_______.第(3)题在中,,D是边AC的中点,E是边AB上的动点(不与A,B重合),过点E作AC的平行线交BC于点F,将沿EF折起,点B折起后的位置记为点P,得到四棱锥.如图所示.给出下列四个结论:①平面PEF;②不可能为等腰三角形;③存在点E,P,使得;④当四棱锥的体积最大时,.其中所有正确结论的序号是_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知定义在上的函数的表达式为,其所有的零点按从小到大的顺序组成数列().(1)求函数在区间上的值域;(2)求证:函数在区间()上有且仅有一个零点;(3)求证:.第(2)题设函数,.(1)若函数图象恰与函数图象相切,求实数的值;(2)若函数有两个极值点,,设点,,证明:、两点连线的斜率.第(3)题已知函数,.(1)若,求函数的单调区间;(2)若有且只有2个不同的零点,求的取值范围.第(4)题已知函数,.(1)求证:;(2)若函数有三个不同的零点,,.(ⅰ)求a的取值范围;(ⅱ)求证:.第(5)题已知函数,在其定义域内有两个不同的极值点.(1)求的取值范围;(2)记两个极值点为,且,证明:.。
人教版高中数学必修5测试题及答案全套
第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形 . Ⅱ基础训练题一、选择题1.在△ ABC 中,若BC=2, AC= 2,B= 45°,则角 A 等于()(A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 3,cosC=-1 ,则c 等于 () 4(A)2(B)3(C)4(D)53.在△ ABC 中,已知cos B 3,sin C2, AC= 2,那么边AB等于() 53(A) 5(B) 5(C) 20(D) 1243954.在△ ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B= 30°, c= 150,b= 50 3 ,那么这个三角形是()(A)等边三角形(C)直角三角形5.在△ ABC 中,三个内角A, B, C 的对边分别是(B)等腰三角形(D)等腰三角形或直角三角形a, b, c,假如 A∶ B∶ C= 1∶ 2∶3 ,那么a∶ b∶c 等于 ()(A)1∶ 2∶3(B)1∶ 3 ∶2(C)1∶ 4∶ 9(D)1∶2∶3二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, B= 45°, C=75°,则b=________.7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 2 3 ,c=4,则A= ________.8.在△ ABC 中,三个内角A, B,C 的对边分别是a,b, c,若2cosBcosC= 1-cosA,则△ ABC形状是________三角形 .9.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 3, b= 4,B= 60°,则c= ________.10.在△ ABC中,若tanA= 2, B= 45°, BC= 5 ,则AC=________.三、解答题11.在△ ABC中,三个内角A,B, C 的对边分别是a, b, c,若a= 2, b= 4,C=60°,试解△ABC.12.在△ ABC中,已知AB= 3, BC= 4,AC=13 .(1)求角 B 的大小;(2)若 D 是 BC的中点,求中线AD 的长 .13.如图,△ OAB 的极点为 O(0, 0), A(5, 2)和 B(- 9, 8),求角 A 的大小 .14.在△ ABC中,已知BC= a, AC= b,且 a,b 是方程 x2- 2 3 x+2=0的两根,2cos(A+B)=1.(1)求角 C的度数;(2)求 AB 的长;(3)求△ ABC的面积 .测试二解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 b2+c2- a2= bc,则角 A 等于 ()ππ2π5π(A)(B)(C)(D)63362.在△ ABC 中,给出以下关系式:① sin(A+ B)= sinC②cos(A+ B)= cosCA B C③ sin cos22此中正确的个数是 ()(A)0(B)1(C)2(D)3 3.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c.若 a= 3, sinA=2, sin(A+ C)=3,则 b 等于 () 34(A)4(B) 8(C)6(D)27384.在△ ABC中,三个内角A, B,C 的对边分别是a, b,c,若 a= 3,b= 4,sinC=2,则此三角形的面积是 () 3(A)8(B)6(C)4(D)35.在△ ABC 中,三个内角A, B, C 的对边分别是a,b, c,若 (a+ b+ c)(b+ c- a)= 3bc,且 sinA= 2sinBcosC,则此三角形的形状是 ()(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形(D)等腰直角三角形二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a=2, b= 2, B= 45°,则角 A= ________. 7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a= 2, b= 3,c=19 ,则角C=________.8.在△ ABC中,三个内角A,B,C 的对边分别是a,b,c,若 b= 3,c=4,cosA=3,则此三角形的面积为 ________. 59.已知△ ABC的极点 A(1,0), B(0, 2), C(4, 4),则 cosA= ________.10.已知△ ABC的三个内角A,B, C 知足 2B= A+ C,且 AB= 1,BC= 4,那么边 BC上的中线AD 的长为 ________.三、解答题11.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且a= 3, b=4, C= 60° .(1)求 c;(2)求 sinB.12.设向量 a, b 知足 a· b= 3, | a| = 3, | b| =2.(1)求〈 a, b 〉;(2)求| a- b|.13.设△ OAB 的极点为O(0,0), A(5, 2)和 B(- 9, 8),若 BD⊥ OA 于 D.(1)求高线 BD 的长;(2)求△ OAB 的面积 .14.在△ ABC中,若 sin2A+ sin2B> sin2C,求证: C 为锐角 .(提示:利用正弦定理a b csin A sin B 2R ,此中 R 为△ ABC外接圆半径 )sin CⅡ拓展训练题15.如图,两条直路 OX与 OY 订交于 O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的 A、B 两点, | OA | = 3km ,| OB | = 1km,两人同时都以4km/h 的速度行走,甲沿XO方向,乙沿OY方向 .问: (1)经过 t 小时后,两人距离是多少(表示为 t的函数 )(2)何时两人距离近来cosB b16.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且.cosC2a c(1)求角 B 的值;(2)若 b=13 ,a+c=4,求△ABC的面积.第二章数列测试三数列Ⅰ学 目1.认识数列的观点和几种 的表示方法(列表、 象、通 公式),认识数列是一种特别的函数.2.理解数列的通 公式的含 ,由通 公式写出数列各.3.认识 推公式是 出数列的一种方法,能依据 推公式写出数列的前几.Ⅱ 基一、1.数列 {a }的前四 挨次是: 4, 44, 444, 4444 ,⋯ 数列 {a }的通 公式能够是 ()nn (A)a = 4n(B)a = 4 nnn4 (10 n -1)(D)an(C)a =n =4×1192.在有必定 律的数列0, 3, 8,15, 24, x ,48, 63,⋯⋯中, x 的 是 ()(A)30(B)35(C)36(D)423.数列 {a n } 足: a 1= 1,a n = a n -1 +3n , a 4 等于 ()(A)4(B)13(C)28(D)434.156 是以下哪个数列中的一()(A){n 2+ 1}(B){n 2- 1} (C){n 2+ n}(D){n 2+ n -1}5.若数列 {a }的通 公式 a = 5-3n , 数列 {a }是 ()n nn(A) 增数列 (B) 减数列(C)先减后增数列(D)以上都不二、填空6.数列的前 5 以下, 写出各数列的一个通 公式:2 1 2 1 = ________;(1) 1, , , , , , a n3 2 5 3(2)0, 1, 0, 1, 0,⋯, a n = ________.n 21 .7.一个数列的通 公式是 a n =n 2(1)它的前五 挨次是________;(2)是此中的第 ________ .8.在数列 {a n }中, a 1= 2,a n + 1= 3a n +1 , a 4= ________.9.数列 {a }的通 公式 a n1* ), a =________.(n ∈Nn1 23( 2n 1)3nn2- 15n + 3, 它的最小 是第________ .10.数列 {a }的通 公式 a = 2n三、解答11.已知数列 {a n }的通 公式a n =14- 3n.(1)写出数列 {a n }的前 6 ; (2)当 n ≥ 5 , 明a n <0.nnn 2n 1 *).12.在数列 {a }中,已知a =3(n ∈ N(1)写出 a 10, a n + 1, a n 2 ;(2)79 2是不是此数列中的 假如,是第几313.已知函数1 n +).f ( x) x, a = f(n)(n ∈ Nx(1)写出数列 {a n }的前 4 ;(2)数列 {a n }是 增数列 是 减数列 什么测试四 等差数列Ⅰ 学 目1.理解等差数列的观点,掌握等差数列的通 公式,并能解决一些 .2.掌握等差数列的前n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等差关系,并能领会等差数列与一次函数的关系.Ⅱ基 一、1.数列 {a } 足: a = 3,a= a -2, a等于 ()n1n + 1n100(A)98(B)- 195 (C)- 201 (D)- 1982.数列 {a n }是首 a 1= 1,公差 d = 3 的等差数列,假如 a n = 2008 ,那么 n 等于 ( )(A)667(B)668 (C)669(D)6703.在等差数列 {a } 中,若 a + a = 16, a = 1, a12的 是()n794(A)15(B)30(C)31(D)644.在 a 和 b(a ≠ b)之 插入 n 个数,使它 与a ,b 成等差数列, 数列的公差()(A)b a(B)ba (C)ba (D)ba nn 1n 1n25. 数列 {a n }是等差数列,且a 2 =- 6, a 8= 6, S n 是数列 {a n }的前 n 和, ()(A)S < S(B)S = S(C)S < S(D)S = S45456565二、填空6.在等差数列 {a n } 中, a 2 与 a 6 的等差中 是 ________.7.在等差数列 {a n } 中,已知 a 1+ a 2= 5, a 3+ a 4= 9,那么 a 5+ a 6= ________.8. 等差数列 {a } 的前 n 和是 S ,若 S = 102, a = ________.nn 1799.假如一个数列的前n2 +2n ,那么它的第n a nn 和 S = 3n= ________.10.在数列 {a n }中,若 a 1 =1, a 2= 2, a n + 2- a n = 1+ (-1)n (n ∈ N *), {a n }的前 n 和是 S n , S 10= ________.三、解答11.已知数列 {a n }是等差数列,其前n 和 S n ,a 3= 7, S 4=24.求数列 {a n }的通 公式 .12.等差数列 {a n }的前 n 和 S n ,已知 a 10= 30, a 20= 50.(1)求通 a n ;(2)若 S n = 242,求 n.13.数列 {a n }是等差数列,且a 1= 50,d =-.(1)从第几 开始a n <0;(2)写出数列的前 n 和公式S n ,并求 S n 的最大 .Ⅲ 拓展14. 数列 {a n }的前 n 和 S n ,若 3a n + 1=3a n + 2(n ∈ N * ), a 1+ a 3+ a 5+⋯+ a 99= 90,求 S 100.测试五 等比数列Ⅰ 学 目1.理解等比数列的观点,掌握等比数列的通 公式,并能解决一些.2.掌握等比数列的前 n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等比关系,并能领会等比数列与指数函数的关系.Ⅱ 基 一、1.数列 {a } 足: a = 3,a= 2an, a 等于 ()n1n + 14(A)3(B)24(C)48(D)5482.在各 都 正数的等比数列{a n }中,首 a 1= 3,前三 和 21, a 3+ a 4+ a 5 等于 () (A)33(B)72(C)84(D)1893.在等比数列 {a n } 中,假如 a 6= 6,a 9= 9,那么 a 3 等于 ()(A)4 (B) 316(D)32(C)94.在等比数列 {a } 中,若 a = 9, a = 243, {a}的前四 和 ()n 2 5n(A)81(B)120(C)168(D)1925.若数列 n n1 n -1{a } 足 a= a q (q > 1), 出以下四个 :① {a n }是等比数列;② {a n }可能是等差数列也可能是等比数列;③ {a n }是 增数列;④ {a n }可能是 减数列 .此中正确的 是 ( )(A)①③ (B)①④(C)②③(D)②④二、填空6.在等比数列 {a n } 中,a 1,a 10 是方程 3x 2+ 7x -9 =0 的两根, a 4a 7= ________.7.在等比数列 {a } 中,已知 a + a = 3, a + a = 6,那么 a + a= ________.n1 23 4 568.在等比数列 {a n } 中,若 a 5= 9, q =1, {a n }的前 5 和 ________.29.在 8 和27之 插入三个数,使 五个数成等比数列, 插入的三个数的乘 ________.3210. 等比数列 {a n }的公比 q ,前 n 和 S n ,若 S n + 1, S n ,S n + 2 成等差数列, q = ________.三、解答11.已知数列 {a}是等比数列, a =6, a =162. 数列 {a }的前 n 和 S .n25nn(1)求数列 {a n }的通 公式; (2)若 S n = 242,求 n.12.在等比数列 {a n }中,若 a 2a 6= 36, a 3+ a 5= 15,求公比q.13.已知 数 a , b , c 成等差数列, a + 1, b + 1,c + 4 成等比数列,且a +b +c = 15,求 a , b ,c.Ⅲ 拓展14.在以下由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列 .a ij 表示位于第 i 行第 j 列的数,此中241, a 4254 5a == 1 a=816a 11 a 12 a 13 a 14 a 15 ⋯ a 1j ⋯ a 21 a 22 a 23 a 24a 25⋯a 2j ⋯ a31 a 32aaa⋯a3j ⋯33 34 35 a41a42a a a ⋯ a 4j⋯434445⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯a i1 a i2a i3 a i4 a i5a ij⋯⋯⋯⋯⋯⋯⋯⋯(1)求 q 的 ;(2)求 a ij 的 算公式 .测试六 数列乞降Ⅰ 学 目1.会求等差、等比数列的和,以及求等差、等比数列中的部分 的和 .2.会使用裂 相消法、 位相减法求数列的和.Ⅱ 基一、1.已知等比数列的公比2,且前 4 的和1,那么前 8 的和等于 ()(A)15(B)17(C)19(D)21n1的等差数列,它的前100 和 145, a 1 3599的 ()2.若数列 {a }是公差2+ a + a +⋯+ a(A)60(B)(C)85(D)120nn n -1 *n100· 2n(n ∈ N等于 ()3.数列 {a }的通 公式a = (- 1)), 其前 n 和 S ,S (A)100(B)- 100(C)200 (D)- 2001 4.数列(2n1)(2n1)的前 n 和 ()(A)n (B)2n(C)n (D)2n2n 12n 14n 2n 15. 数列 {a }的前 n 和 S , a = 1, a = 2,且 a=a n + 3(n = 1, 2, 3,⋯ ), S 等于 ()nn12n +2100(A)7000 (B)7250(C)7500(D)14950二、填空6.1111= ________.213 243n 1n17.数列 {n +2n }的前 n 和 ________.8.数列 {a n } 足: a 1= 1,a n + 1= 2a n , a 12 + a 22 +⋯+ a n 2 =________.9. n ∈ N * , a ∈ R , 1+ a + a 2+⋯+ a n = ________. 10. 11 2 1 31n1 = ________.2 482n三、解答11.在数列 {a n }中, a 1=- 11, a n +1= a n +2(n ∈ N * ),求数列 {| a n |} 的前 n 和 S n .12.已知函数 f(x)= a 1x + a 2x 2+ a 3 x 3+⋯+ a n x n (n ∈ N * , x ∈ R),且 全部正整数n 都有 f(1)= n 2 建立 .(1)求数列 {a }的通 a ;nn(2)求11 1.a 2a 3a nan 1a 1a 21 11n 和 S n .13.在数列 {a n }中, a 1= 1,当 n ≥ 2 , a n = 142n 1 ,求数列的前2Ⅲ拓展14.已知数列 {a n }是等差数列,且a 1= 2, a 1+ a 2+ a 3= 12.(1)求数列 {a }的通 公式;n(2)令 b n n nn }的前 n 和公式 .= a x (x ∈ R),求数列{b测试七数列综合问题Ⅰ基一、1.等差数列 {a n }中, a 1 =1,公差 d ≠0,假如 a 1, a 2, a 5 成等比数列,那么 d 等于 ( )(A)3(B)2(C)- 2(D)2 或- 22.等比数列 {a n}中, a n> 0,且 a2a 4+ 2a3a5+ a4 a6= 25, a3+ a5等于 ()(A)5(B)10(C)15(D)203.假如 a , a , a,⋯, a各都是正数的等差数列,公差d≠ 0, ()1238(A)a1a8> a4a5(B)a1a8< a4 a5(C)a1+ a8> a4+ a5(D)a1a8= a4a54.一定函数y=f(x)的象在以下中,并且随意a1∈ (0,1),由关系式a n+1= f(a n)获取的数列 {a n}足 a n+1>a n(n ∈N* ),函数的象是()5.已知数列 {a n}足 a1=0,a n 1a n3) 3a n(n∈ N* ), a20等于 (1(A)0(B)-3(C) 33 (D)2二、填空11a n ,n为偶数,2a2=________, a3= ________.6.数列 {a n}的首 a1=,且 a n 14a n 1,n为奇数 . 47.已知等差数列 {a n}的公差2,前 20 和等于150,那么 a2+ a4+ a6+⋯+ a20= ________.8.某种菌的培育程中,每20分分裂一次 (一个分裂两个 ), 3 个小,种菌能够由1个生殖成________个 .9.在数列 {a n}中, a1= 2,a n+1= a n+3n(n∈ N* ), a n= ________.10.在数列 {a n}和 {b n}中, a1= 2,且随意正整数n 等式 3a n+1-a n= 0建立,若 b n是 a n与 a n+1的等差中, {b n}的前 n 和 ________.三、解答11.数列 {a n}的前 n 和 S n,已知 a n= 5S n- 3(n∈ N* ).(1)求 a , a , a ;123(2)求数列 {a }的通公式;n(3)求 a 1+ a3+⋯+ a2n-1的和 .12.已知函数 f(x)=x22(x> 0), a1= 1, a n21· f(a n)= 2(n∈ N* ),求数列 {a n}的通公式 . 413.等差数列 {a }的前 n 和 S ,已知 a = 12, S>0, S< 0.n n31213(1)求公差 d 的范;(2)指出 S1, S2,⋯, S12中哪个最大,并明原因 .Ⅲ拓展14.甲、乙两物体分从相距70m 的两地同相向运.甲第 1 分走2m,此后每分比前 1 分多走1m,乙每分走 5m.(1)甲、乙开始运后几分相遇(2)假如甲、乙抵达方起点后立刻折返,甲每分比前 1 分多走 1m ,乙每分走5m ,那么开始运几分 后第二次相遇15.在数列 {a n }中,若 a 1 ,a 2 是正整数,且a n = | a n -1- a n -2| , n = 3, 4, 5,⋯ 称 {a n } “ 差数列”.(1) 出一个前五 不 零的“ 差数列” (只需求写出前十);(2)若“ 差数列”{a n }中, a 1= 3, a 2= 0, 求出通a n ;(3)* 明:任何“ 差数列”中 含有无 多个 零的.测试八 数列全章综合练习Ⅰ基一、1.在等差数列 {a } 中,已知 a + a = 4, a + a = 12,那么 a + a 等于 ()n12 345 6(A)16(B)20(C)24 (D)362.在 50 和 350 所有末位数是1 的整数和 ()(A)5880(B)5539(C)5208(D)48773.若 a , b , c 成等比数列, 函数y = ax 2+ bx + c 的 象与 x 的交点个数 ()(A)0 (B)1(C)2(D)不可以确立4.在等差数列 {a } 中,假如前 5 的和S =20,那么 a等于 ()n53(A)- 2(B)2(C)- 4(D)45.若 {a n }是等差数列, 首 a 1> 0,a 2007+ a 2008> 0,a 2007·a 2008< 0, 使前 n 和 S n > 0 建立的最大自然数n 是 ( )(A)4012 (B)4013 (C)4014(D)4015二、填空6.已知等比数列 {a n }中, a 3= 3, a 10= 384, 数列的通a n =________.7.等差数列 {a n }中, a 1 + a 2 + a 3=- 24, a 18+ a 19+ a 20= 78, 此数列前 20和 S 20= ________.n n n2-3n + 1, a n = ________.8.数列 {a }的前 n 和 S ,若 S = n9.等差数列 {a n }中,公差 d ≠ 0,且 a 1,a 3, a 9 成等比数列,a 3 a 6 a 9 = ________.a 4a 7a1010. 数列 {a n }是首 1 的正数数列,且 (n + 1)a n 2 1 -na n 2 + a n + 1a n = 0(n ∈N * ), 它的通 公式a n = ________.三、解答11. 等差数列 {a n }的前 n 和 S n ,且 a 3 + a 7- a 10= 8, a 11- a 4 =4 ,求 S 13. 12.已知数列 {a}中, a=1,点 (a , a* )在函数 f(x)= 2x + 1 的 象上 .n1nn + 1(1)求数列 {a n }的通 公式;(2)求数列 {a }的前 n 和 S ;nn(3) c = S ,求数列 {cn }的前 n 和 T .nnn13.已知数列 {a }的前 n 和 S 足条件S = 3a +2.nnn n (1)求 :数列 {a n }成等比数列; (2)求通 公式 a n .14.某 企业今年初用98 万元 一艘 船,用于捕 ,第一年需各样 用12 万元,从第二年开始包含 修 在内,每年所需 用均比上一年增添 4 万元, 船每年捕 的 收入 50 万元.(1)写出 船前四年每年所需的 用(不包含 用 );(2) 船捕 几年开始盈余(即 收入减去成本及所有 用 正)(3)若当盈余 达到最大 , 船以8 万元 出,那么 船 企业 来的利润是多少万元Ⅱ 拓展15.已知函数 f(x)=1(x<- 2),数列 {a n}足 a1= 1, a n= f(-1)(n∈ N* ).x24a n1(1)求 a n;2 1+ a22+⋯+ a2,能否存在最小正整数m,使随意 n∈ N*有 b m(2) b n= a n n 2 n 1n<25建立若存在,求出 m 的,若不存在,明原因.16.已知 f 是直角坐系平面 xOy 到自己的一个映照,点P 在映照 f 下的象点 Q,作 Q= f(P).P1(x1, y1), P2= f(P1), P3= f(P2),⋯, P n=f(P n-1),⋯ .假如存在一个,使所有的点P n(x n, y n )(n∈ N* )都在个内或上,那么称个点P n (x n,y n )的一个收 .特地,当 P1= f(P1),称点P1映照 f 下的不点 .若点 P(x, y)在映照 f 下的象点 Q(-x+ 1,1y).2(1)求映照 f 下不点的坐;(2)若 P 的坐 (2, 2),求:点*)存在一个半径 2 的收 .P (x , y )(n∈ N1n nn第三章 不等式测试九 不等式的观点与性质Ⅰ 学习目标1.认识平时生活中的不等关系和不等式(组 )的实质背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基天性质及其证明 .Ⅱ基础训练题一、选择题1.设 a , b , c ∈ R ,则以下命题为真命题的是( )(A)a > b a - c > b - c (B)a > b ac > bc(C)a > ba 2>b 2(D)a > bac 2> bc 22.若- 1<<< 1,则-的取值范围是 ()(A)(-2, 2)(B)(-2,- 1)(C)(- 1, 0)(D)(- 2, 0) 3.设 a > 2, b >2,则 ab 与 a + b 的大小关系是 ()(A)ab > a + b(B)ab < a + b(C)ab =a +b(D)不可以确立4.使不等式 a > b 和11同时建立的条件是 ()ab(A)a > b > 0 (B)a > 0>b(C)b > a > 0(D)b > 0> a5.设 1< x <10,则以下不等关系正确的选项是()(A)lg 2x > lgx 2> lg(lgx)(B)lg 2x > lg(lgx)> lgx 2 (C)lgx 2> lg 2x > 1g(lgx) (D)lgx 2> lg(lgx)> lg 2x二、填空题6.已知 a < b <0 ,c < 0,在以下空白处填上合适不等号或等号:(1)(a -2)c________(b - 2)c ;(2) c ________ c;(3)b - a________| a| - | b|.a b7.已知 a < 0,- 1< b < 0,那么 a 、 ab 、 ab 2 按从小到大摆列为 ________.8.已知 60< a <84, 28< b < 33,则 a - b 的取值范围是 ________; a的取值范围是 ________.b9.已知 a ,b ,c ∈ R ,给出四个论断:① a > b ;② ac 2> bc 2;③ a b;④ a - c >b - c.以此中一个论断作条件,另一c c个论断作结论,写出你以为正确的两个命题是 ________ ________;________________.(在“”的双侧填 上论断序号 ).a32 与Qb ( a1)( a 2)10.设 a > 0, 0<b < 1,则 P = b的大小关系是 ________.三、解答题11.若 a > b > 0,m > 0,判断 b 与bm的大小关系并加以证明 .aa ma 2b 212.设 a > 0, b >0,且 a ≠ b , p b a , q a b .证明: p > q.注:解题时可参照公式 x 3+y 3= (x + y)(x 2 - xy + y 2).Ⅲ 拓展训练题13.已知 a > 0,且 a ≠ 1,设 M = log a (a 3-a + 1), N =log a (a 2- a + 1).求证: M > N.14.在等比数列 {a n }和等差数列 {b n }中,a 1= b 1> 0,a 3= b 3> 0, a 1≠ a 3,试比较 a 5 和 b 5 的大小 .测试十 均值不等式Ⅰ学习目标1 .认识基本不等式的证明过程 .2 .会用基本不等式解决简单的最大(小 )值问题 .Ⅱ 基础训练题一、选择题1.已知正数 a , b 知足 a + b =1,则 ab()(A)有最小值1(B)有最小值1(C)有最大值1(D)有最大值142 422.若 a > 0, b >0,且 a ≠ b ,则 ()a ba 2b 2(B)aba ba 2b 2(A)ab2222(C)a 2b 2a b(D)a 2b 2aba b ab2 2223.若矩形的面积为 a 2(a > 0),则其周长的最小值为 ()(A)a(B)2a (C)3a(D)4a4.设 a , b ∈ R ,且 2a + b - 2=0,则 4a + 2b 的最小值是 ( )(A) 22(B)4(C) 4 2(D)85.假如正数 a , b , c ,d 知足 (A)ab ≤ c + d ,且等号建即刻 (B)ab ≥ c + d ,且等号建即刻 (C)ab ≤ c +d ,且等号建即刻(D)ab ≥c + d ,且等号建即刻二、填空题a +b = cd = 4,那么 ( )a ,b ,c ,d 的取值独一a ,b ,c ,d 的取值独一 a , b ,c , d 的取值不独一a ,b ,c ,d 的取值不独一6.若 x > 0,则变量 x9的最小值是 ________;取到最小值时, x = ________.x4x 7.函数 y = (x > 0)的最大值是 ________;取到最大值时, x = ________.x 218.已知 a < 0,则 a16 的最大值是 ________. a 39.函数 f(x)= 2log 2(x + 2)- log 2 x 的最小值是 ________.10 .已知 a , b , c ∈ R , a + b + c =3 ,且 a , b ,c 成等比数列,则 b 的取值范围是 ________. 三、解答题 11 .四个互不相等的正数a ,b ,c ,d 成等比数列,判断a d 和 bc 的大小关系并加以证明 .212 .已知 a > 0,a ≠ 1, t > 0,试比较1log a t 与log at 1的大小 .2 2Ⅲ拓展训练题13.若正数 x , y 知足 x + y = 1,且不等式xy a 恒建立,求 a 的取值范围 .a 14.(1)用函数单一性的定义议论函数f(x)= x +(a > 0)在 (0,+∞ )上的单一性;xa (2)设函数 f(x)= x +(a > 0)在(0, 2]上的最小值为g(a),求 g(a)的分析式 .x测试十一 一元二次不等式及其解法Ⅰ 学习目标1.经过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系 .2.会解简单的一元二次不等式 .Ⅱ基础训练题一、选择题1.不等式 5x + 4>- x 2 的解集是 ()(A){x| x >- 1,或 x <- 4}(B){x| -4< x <- 1 }(C){x| x > 4,或 x < 1 }(D){x|1 < x < 4}2.不等式- x 2 +x - 2>0 的解集是 ()(A){x| x >1 ,或 x <- 2 } (B){x| -2< x < 1} (C)R(D)3.不等式 x 2 >a 2(a <0)的解集为 ()(A){x| x >± a}(B){x| - a < x < a }(C){x| x >- a ,或 x < a }(D){x| x >a ,或 x <- a}4.已知不等式 ax 2+ bx + c > 0 的解集为 { x| 1 2} ,则不等式 cx 2+ bx + a < 0 的解集是 ()x3(A){x| - 3< x < 1 }(B){x| x <- 3,或 x >1 }22 1}(D){x| x <- 2,或 x >1(C){x - 2<x <}335.若函数 y =px 2- px -1(p ∈ R)的图象永久在 x 轴的下方,则 p 的取值范围是 ()(A)(-∞, 0) (B)(-4, 0](C)(-∞,- 4)(D)[- 4, 0)二、填空题6.不等式 x 2 +x - 12< 0 的解集是 ________. 7.不等式3x1 0 的解集是 ________.2 x58.不等式 | x 2- 1| < 1 的解集是 ________.9.不等式 0< x 2- 3x < 4 的解集是 ________.10.已知对于 x 的不等式 x 2- (a +1)x + 1< 0 的解集为非空会合{ x| a < x <1 },则实数 a 的取值范围是 ________.aa三、解答题11.求不等式 x 2- 2ax -3a 2<0(a ∈ R)的解集 .12.k 在什么范围内取值时,方程组 x 2 y 2 2x 03x 4y k 有两组不一样的实数解Ⅲ 拓展训练题13.已知全集 U = R ,会合 A = {x| x 2- x - 6< 0}, B = {x| x 2+ 2x - 8>0}, C = {x| x 2- 4ax + 3a 2< 0}.(1)务实数 a 的取值范围,使C (A ∩ B); (2)务实数 a 的取值范围,使C( U A)∩ ( U B).14.设 a ∈ R ,解对于 x 的不等式 ax 2- 2x + 1< 0.测试十二 不等式的实质应用Ⅰ 学习目标会使用不等式的有关知识解决简单的实质应用问题.Ⅱ基础训练题一、选择题1的定义域是 ()1.函数y4 x2(A){x| - 2< x< 2 }(B){x| -2≤ x≤ 2}(C){x| x> 2,或 x<- 2 }(D){x| x≥2,或 x≤- 2 }2.某村办服饰厂生产某种风衣,月销售量x(件 )与售价 p(元 / 件 )的关系为 p =300- 2x,生产 x 件的成本r= 500+30x(元),为使月赢利许多于 8600 元,则月产量 x 知足 ()(A)55≤ x≤ 60(B)60≤x≤ 65(C)65≤ x≤70(D)70≤x≤ 753.国家为了增强对烟酒生产管理,推行征收附带税政策.现知某种酒每瓶 70元,不征收附带税时,每年大概产销100 万瓶;若政府征收附带税,每销售100 元收税 r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附带税许多于 112万元,那么 r 的取值范围为 ()(A)2≤ r≤ 10(B)8≤ r≤10(C)2≤ r≤ 8(D)0≤ r≤ 84.若对于 x 的不等式 (1+ k2)x≤ k4+ 4 的解集是 M ,则对随意实常数k,总有 ()(A)2∈ M, 0∈ M(B)2M , 0M(C)2∈M,0 M(D)2M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为 ________.6.不等式 2x2+ ax+ 2>0 的解集是 R,则实数 a 的取值范围是 ________.7.已知函数 f(x)= x| x- 2| ,则不等式f(x)< 3 的解集为 ________.8.若不等式 | x+1| ≥ kx 对随意 x∈ R 均建立,则 k 的取值范围是 ________.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车内行驶过程中,因为惯性作用,刹车后还要持续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是剖析事故的一个主要要素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现状况不对同时刹车,但仍是相撞了,过后现场测得甲车刹车的距离略超出12m ,乙车的刹车距离略超出10m. 已知甲乙两种车型的刹车距离s(km)与车速 x(km/h) 之间分别有以下关系:s 甲=+, s 乙=+.问交通事故的主要责任方是谁Ⅲ拓展训练题11.当 x∈ [- 1, 3]时,不等式- x2+ 2x+ a> 0 恒建立,务实数 a 的取值范围 .12.某大学印一份招生广告,所用纸张(矩形 )的左右两边留有宽为 4cm 的空白,上下留有都为 6cm 的空白,中间排版面积为2400cm2 .怎样选择纸张的尺寸,才能使纸的用量最小测试十三二元一次不等式 (组)与简单的线性规划问题Ⅰ学习目标1.认识二元一次不等式的几何意义,能用平面地区表示二元一次不等式组.2.会从实质情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ基础训练题一、选择题1.已知点 A(2, 0), B(- 1, 3)及直线 l: x-2y=0,那么 ()(A)A, B 都在 l 上方(B)A, B 都在 l 下方(C)A 在 l 上方, B 在 l 下方(D)A 在 l 下方, B 在 l 上方x0,2.在平面直角坐标系中,不等式组y0,所表示的平面地区的面积为()x y2(A)1(B)2(C)3(D)43.三条直线 y= x, y=- x, y=2围成一个三角形地区,表示该地区的不等式组是()y x,y x,y x,y x,(A) y x,(B) y x,(C) y x,(D)y x,y 2.y 2.y 2.y 2.x y 5 0,4.若 x, y 知足拘束条件x y0,则 z= 2x+ 4y 的最小值是 ()x3,(A)- 6(B)- 10(C)5(D)105.某电脑用户计划使用不超出500 元的资本购置单价分别为60 元, 70元的单片软件和盒装磁盘.依据需要,软件起码买 3 片,磁盘起码买2 盒,则不一样的选购方式共有()(A)5 种(B)6 种(C)7 种(D)8 种二、填空题6.在平面直角坐标系中,不等式组x0 所表示的平面地区内的点位于第________象限 .y07.若不等式 |2 x+ y+ m| <3表示的平面地区包含原点和点(- 1, 1),则 m 的取值范围是 ________.x1,8.已知点 P(x, y)的坐标知足条件y3,那么 z= x- y 的取值范围是 ________.3 x y30,x1,那么y的取值范围是 ________.9.已知点 P(x, y)的坐标知足条件y2,2 x y2x 0,10.方程 | x| + | y| ≤ 1 所确立的曲线围成关闭图形的面积是________.三、解答题11.画出以下不等式 (组 )表示的平面地区:x1,(1)3x+ 2y+ 6> 0(2)y2,x y 10.12.某实验室需购某种化工原料106kg,此刻市场上该原料有两种包装,一种是每袋35kg,价钱为 140 元;另一种是每袋 24kg,价钱为120 元.在知足需要的前提下,最少需要花销多少元Ⅲ拓展训练题13.商铺现有75 公斤奶糖和120 公斤硬糖,准备混淆在一同装成每袋装 250 克奶糖和750 克硬糖,每袋可盈余元;第二种每袋装500种应装多少袋,使所赢利润最大最大利润是多少1 公斤销售,有两种混淆方法:第一种每袋克奶糖和500 克硬糖,每袋可盈余元.问每一14.甲、乙两个粮库要向A, B 两镇运送大米,已知甲库可调出100 吨,乙库可调出80 吨,而 A 镇需大米70 吨,B 镇需大米110 吨,两个粮库到两镇的行程和运费以下表:行程 (千米 )运费 (元 /吨·千米)甲库乙库甲库乙库A 镇20151212B 镇2520108问: (1)这两个粮库各运往A、 B 两镇多少吨大米,才能使总运费最省此时总运费是多少(2)最不合理的调运方案是什么它给国家造成不应有的损失是多少测试十四不等式全章综合练习Ⅰ基础训练题一、选择题1.设a, b, c∈ R, a> b,则以下不等式中必定正确的选项是()(A)ac2> bc2(B) 11(C)a- c> b-c(D)| a| > | b|a bx y40,2.在平面直角坐标系中,不等式组2x y40, 表示的平面地区的面积是()y2(A) 3(B)3(C)4(D)6 23.某房地产企业要在一块圆形的土地上,设计一个矩形的泊车场.若圆的半径为10m,则这个矩形的面积最大值是()(A)50m 2(B)100m2(C)200m2(D)250m 2x 2x 2,若对 x> 0 恒有 xf(x)+ a> 0建立,则实数 a 的取值范围是 ()4.设函数 f(x)=x2(A)a< 1-2 2(B)a< 2 2 -1(C)a> 2 2 -1(D)a> 1- 225.设 a, b∈ R,且 b(a+ b+ 1)< 0, b(a+ b-1)< 0,则 ()(A)a> 1(B)a<- 1(C)- 1< a< 1(D)| a| > 1二、填空题6.已知 1< a<3, 2< b< 4,那么 2a- b 的取值范围是 ________,a的取值范围是 ________. b7.若不等式 x2- ax- b<0的解集为 {x|2 < x< 3},则 a+ b= ________.+,且 x+4y= 1,则 xy 的最大值为 ________.8.已知 x,y∈ R9.若函数 f(x)=2x22ax a1的定义域为 R,则 a 的取值范围为 ________.10.三个同学对问题“对于x 的不等式 x2+ 25+| x3- 5x2| ≥ ax 在[1,12] 上恒建立,务实数 a 的取值范围”提出各自的解题思路 .甲说:“只须不等式左侧的最小值不小于右侧的最大值.”乙:“把不等式形左含量x 的函数,右含常数,求函数的最.”丙:“把不等式两当作对于x 的函数,作出函数象.”参照上述解思路,你他所的的正确,即 a 的取范是 ________.三、解答11.已知全集 U= R,会合 A= {x| | x-1| <6 }, B= {x| x8> 0}.2x1(1)求 A∩ B;(2)求( U A)∪ B.12.某工厂用两种不一样原料生同一品,若采纳甲种原料,每吨成本1000 元,运500 元,可得品90 千克;若采纳乙种原料,每吨成本1500 元,运400 元,可得品100 千克 .今算每天原料成本不得超6000元,运不得超2000 元,此工厂每天采纳甲、乙两种原料各多少千克,才能使品的日量最大Ⅱ拓展12n12n i ja j两13.已知数集 A= {a a,⋯, a }(1 a< a <⋯< a n 2)拥有性 P随意的 j(1 n) a a与a i数中起码有一个属于 A.(1)分判断数集 {1, 3, 4}与{1, 2, 3, 6}能否拥有性 P,并明原因;1a1a2a na n.(2)明: a = 1,且a11a21a n1测试十五必修 5 模块自我检测题一、选择题1.函数y x2 4 的定义域是()(A)(-2, 2)(B)(-∞,- 2)∪ (2,+∞ )(C)[- 2,2](D)(-∞,- 2]∪ [2,+∞ )2.设 a> b> 0,则以下不等式中必定建立的是()(A)a- b< 0(B)0<a< 1 b(C)ab<a b(D)ab> a+ b 2x1,3.设不等式组y0, 所表示的平面地区是W,则以下各点中,在地区W 内的点是 () x y 0(A) (1,1)(B) (1,1)2323(C) (11)(D) (11) ,3,3 224.设等比数列 {a n} 的前 n 项和为 S n,则以下不等式中必定建立的是()(A)a1+ a3> 0(B)a1a3> 0(C)S1+ S3< 0(D)S1S3< 05.在△ ABC 中,三个内角 A, B, C 的对边分别为 a, b, c,若 A∶ B∶ C= 1∶ 2∶ 3,则 a∶ b∶ c 等于 ()(A)1∶ 3 ∶2(B)1∶ 2∶ 3(C)2∶ 3 ∶1(D)3∶ 2∶ 16.已知等差数列 {a n}的前 20 项和 S20= 340,则 a6+a9+ a11+ a16等于 ()(A)31(B)34(C)68(D)707.已知正数 x、 y 知足 x+ y= 4,则 log x+log y 的最大值是 ()22(A)- 4(B)4(C)- 2(D)28.如图,在限速为 90km/h 的公路 AB 旁有一测速站P,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点B 的距离为0.05 km,且∠ APB= 60° .现测得某辆汽车从 A 点行驶到 B 点所用的时间为3s,则此车的速度介于 ()(A)60~ 70km/h(B)70~ 80km/h(C)80~ 90km/h(D)90~100km/h二、填空题9.不等式 x(x- 1)< 2 的解集为 ________.10.在△ ABC中,三个内角 A,B, C 成等差数列,则 cos(A+ C)的值为 ________.11.已知 {a }是公差为- 2 的等差数列,其前 5 项的和 S =0 ,那么 a 等于 ________.n5112.在△ ABC中, BC= 1,角 C=120°, cosA=2,则 AB=________.3x0, y013.在平面直角坐标系中,不等式组2x y 4 0 ,所表示的平面地区的面积是________;变量 z=x+ 3y 的最大x y 30值是 ________.2a (1≤i ≤ n ,1≤ j ≤ n , i , j ∈ N)表示位于第 i 行第 j 列的正数 .已14.如 , n (n ≥ 4)个正数排成 n 行 n 列方 ,符号ij知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若 a 11=1,a 24= 1, a 32= 1 ,2 4q = ________; a ij = ________.三、解答15.已知函数f(x)= x 2+ ax +6.(1)当 a = 5 ,解不等式 f(x)< 0;(2)若不等式 f(x)> 0 的解集R ,求 数a 的取 范 .16.已知 {a n }是等差数列,a 2= 5, a 5= 14.(1)求{a n }的通 公式;n}的前 n n(2) {a 和 S = 155,求 n 的 .17.在△ ABC 中, a , b , c 分 是角 A ,B , C 的 , A , B 是 角, c = 10,且cos Ab4 .cos B a3(1) 明角 C = 90°; (2)求△ ABC 的面 .18.某厂生 甲、乙两种 品,生 两种 品每吨所需要的煤、 以及每吨 品的 以下表所示.若每天配厂的煤至多 56 吨,供 至多 45 千瓦, 厂怎样安排生 ,使得 厂日 最大用煤 (吨)用 (千瓦 )(万元 )甲种 品 7 2 8 乙种 品351119.在△ ABC 中, a , b , c 分 是角 A , B , C 的 ,且 cosA =1.3(1)求 sin 2 B C cos 2 A 的 ;2 (2)若 a =3 ,求 bc 的最大 .20.数列 {a n }的前 n 和是 S n ,a 1= 5,且 a n = S n - 1(n = 2, 3, 4,⋯ ).(1)求数列 {a n }的通 公式;1 1 11 3(2)求 :a 2 a 3 a na 1 5参照答案第一章解三角形测试一正弦定理和余弦定理一、选择题1.B2.C3. B4. D5. B提示:4.由正弦定理,得sinC=3,所以C=60°或C= 120°,2当 C= 60°时,∵ B= 30°,∴ A=90°,△ ABC是直角三角形;当 C= 120°时,∵ B= 30°,∴ A= 30°,△ ABC是等腰三角形 . 5.因为 A∶ B∶ C= 1∶ 2∶3,所以 A= 30°, B=60°, C= 90°,由正弦定理a b c=k,sin A sin B sin C得 a= k· sin30°=1k, b=k·sin60 °=3k, c= k· sin90°= k,22所以 a∶ b∶c= 1∶3∶2.二、填空题6. 2 67. 30°8.等腰三角形9.33710. 5 2 324提示:8.∵ A+ B+C=π,∴- cosA= cos(B+C).∴ 2cosBcosC= 1- cosA= cos(B+ C)+ 1,∴2cosBcosC= cosBcosC- sinBsinC+ 1,∴ cos(B-C)= 1,∴ B- C= 0,即 B = C. 9.利用余弦定理 b2= a2+ c2- 2accosB.2AC BC 5 2 10.由 tan A= 2,得 sin A 5,依据正弦定理,得sin B sin A,得 AC= 4 .三、解答题11.c= 2 3, A= 30°, B= 90° .12.(1)60°; (2)AD=7 .13.如右图,由两点间距离公式,得 OA= (50) 2( 20)229 ,同理得 OB145, AB232 .由余弦定理,得cosA= OA2AB 2OB2 2 ,2OAAB2∴A=45°.14.(1)因为 2cos(A+ B)= 1,所以 A+ B=60°,故 C= 120°.(2)由题意,得 a + b = 2 3 , ab = 2,又 AB 2=c 2= a 2+ b 2 -2abcosC = (a + b)2- 2ab - 2abcosC= 12- 4-4× ( 1)= 10.2所以 AB =10 .△ABC1 1·2·3 = 3(3)S=absi nC =2222测试二 解三角形全章综合练习1.B2.C3.D4.C5.B提示:5.化简 (a + b +c)(b + c - a)= 3bc ,得 b 2+ c 2- a 2=bc ,由余弦定理,得 cosA = b2c 2 a 21,所以∠ A = 60° .2bc 2 因为 sinA = 2sinBcosC , A + B + C =180°,所以 sin(B + C)= 2sinBcosC ,即 sinBcosC + cosBsinC = 2sinBcosC. 所以 sin(B - C)= 0,故 B =C. 故△ ABC 是正三角形 .二、填空题6.30°7. 120° 8. 249.510. 355三、解答题11.(1)由余弦定理,得c = 13 ;(2)由正弦定理,得 sinB =239.1312.(1)由 a · b = | a| ·| b| · cos 〈 a , b 〉,得〈 a , b 〉= 60°;(2)由向量减法几何意义,知 | a| ,| b| , | a - b| 能够构成三角形,所以 | a - b| 2=| a| 2+ | b| 2- 2| a| · | b| ·cos 〈a , b 〉= 7,故 | a - b| = 7 .13.(1)如右图,由两点间距离公式,得OA(50) 2 (2 0)229 ,同理得 OB145 , AB232 .由余弦定理,得OA 2 AB 2 OB 22 cos A 2OAAB,2所以 A = 45° .故 BD = AB × sinA = 2 29 .△OAB1·OA · BD = 1· 29 ·2 29 =29. (2)S=2214.由正弦定理a b csin A sin B2R ,sin C得 asin A, b sin B, c sin C .2R2R 2R 因为 sin 2A + sin 2B > sin 2C , 所以 ( a)2( b ) 2( c) 2 , 2R2R2R即 a 2+ b 2> c 2.所以 cosC = a 2 b 2 c 22ab> 0,由 C ∈ (0,π ),得角 C 为锐角 .15.(1)设 t 小时后甲、乙分别抵达P 、 Q 点,如图,则 | AP| = 4t ,| BQ| =4t ,因为 | OA| = 3,所以 t = h 时, P 与 O 重合 .4故当 t ∈ [0,]时,4| PQ| 2= (3- 4t)2+ (1+ 4t)2 -2× (3- 4t)×(1+ 4t)× cos60°;当 t >h 时, | PQ| 2= (4t -3)2+ (1+ 4t)2- 2× (4t - 3)× (1+4t )× cos120° .4故得| PQ|=48 224 t7(t ≥ 0).t(2)当 t =241h 时,两人距离近来,近来距离为 2km.2 48 416.(1)由正弦定理abcsin A sin B2 R ,sin C得 a =2RsinA , b = 2RsinB , c = 2RsinC. 所以等式cos Bb 可化为 cos B2 Rsin B,cos C2a ccosC2 2R sin A 2R sin C即 cos B sin B, cosC 2 sin A sin C2sinAcosB +sinCcosB =- cosC · sinB ,故 2sinAcosB =- cosCsinB -sinCcosB =- sin(B + C),因为 A + B + C =π,所以 sinA =sin(B + C), 故 cosB =- 1,2所以 B = 120°.(2)由余弦定理,得 b 2= 13= a 2+ c 2- 2ac × cos120°,即 a 2+ c 2 + ac = 13又 a +c = 4,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5 Unit4课时作业(二十四)Making the news制作新闻Ⅰ.单项填空1.I don’t________of y our sending your daughter to Britain to study,because she is too young.A.agree B.approveC.supp ort D.assess2.—Are you________me of lying to the headmaster?—I’m sure you did.A.accusing B.scoldingC.reminding D.telling3.________read newspapers for pleasure,but also to improve their minds.A.Not only old men B.Not only old men doC.Not only do old men D.Old men not only do4.I think Tom,________you,is to blame for the broken window.A.other than B.rather thanC.more than D.ex cept for5.With the________of making a fortune,many people went to Australia in the 19th century to wash sand for gold.A.task B.intentionC.trade D.appointment6.If we become more________in predicting earthquakes,we’ll reduce loss.A.exactly B.correctC.accurate D.conscious7.Of course,we must work hard.________,we should learn to take good care of ourselves.A.Therefore B.In a wordC.As a result D.Meanwhile8.There is so much noise in the yard that I can’t ________ my attention on my work.A.attract B.payC.absorb D.concentrate9.At last the boy had no choice but ________ the bread from the supermarket.A.admit to have stolenB.admit having stolenC.to admit to have stolenD.to admit having stolen10.________with what the students had done,the teacher praised them highly.A.Delight B.DelightingC.Delighted D.Being delighting11.She must be looking forward as much to his return as he himself is to________her.A.see B.have seenC.seeing D.be seeing12.In such a fierce competition,a person has to make every effort if he________.A.has succeeded B.is to succeedC.would succeed D.will succeed13.At the conference,political leaders from many countries promised to work together to defend the world ________ terrorism and other threats.A.for B.withoutC.beyond D.against14.A large number of journalists from both home and abroad gathered in Beijingto________the 2008 Summer Olympic Games.A.interview B.coverC.approve D.compete15.—You________have finished your composition.—I had meant to,but before I could,the bell rang and we had to hand in our test papers.A.were supposed to B.were able toC.had to D.were determined toⅡ.阅读理解(2009年合肥第二次检测) Children become more generous as they get older,learning the principles of equality by the age of eight.That may not be too surprising to anyone who has kids.Humans are born with a sense of fairness that most other animals seem not to share,but it’s not been clear exactly when this concept starts to develop.Dr.Alva Zhao and her colleagues conducted a series of tests to measure just how much children care about equality at different ages.In three different versions of a game,children were asked to choose between two ways of sharing a number of sweets with themselves and an unfamiliar partner.They could choose,for example,between one for me and one for you,or just ha v ing one for themsel v es.At the age of three,children were “almost completely selfish”,says Zhao.They refused t o give sweets away even if it made no difference to themselves.But by the age of eight,children generally preferred the fair option,sharing a prize equally rather than keeping it all to themselv es.Several other factors influenced how fair the children were.The team found that children without brothers or sisters were 28% more likely to share than children with brothers or sisters.On the other hand,the youngest children in a family were 17% less willing to share than children who had only younger brother or sister.In addition,if children knew that their partner was from the same playgroup or school,they were more concerned about being fair.This suggests that being nice to people you know is something that develops a sense of equality.1.The main idea of the first paragraph is________.A.parents know clearly when their kids are more willing to shareB.the kids’ willingness of sharing is learned from their familyC.the older the kids are,the more selfish they will becomeD.kids become more generous when they reach a cert ain age2.The tests conducted by Dr.Alva Zhao and her colleagues were aimed at________.A.how kids develop a quality of fairness in gamesB.children’s awareness of equality at different agesC.the reasons why children care about equalityD.children’s attitudes towards other partners3.Which of the following is NOT true according to the passage?A.Children under three know little about being fair.B.Children above eight years old become less selfish.C.Children with brothers or sisters tend to be more generous.D.The youngest child in a family tends to be less generous.4.We can learn that children care more about equality while with________.A.unknown people B.nice peopleC.familiar people D.fair people(2009年宜昌第一次调研,A) The United Nations says more than 900 million people worldwide do not have enough to eat.Officials say 100 million more could go hungry this year because of the food and financial crises.To deal with the situation,the UN World Food Program has started a project to help small farmers.These farmers are mainly women.Many cannot produce enough food even to feed and support their own families.The new effort is called Purchase for Progress,or P4P.It aims to connect local farmers with dependable markets.That way,they could get a chance to sell their surplus (剩余) at competitive prices.P4P will be tested in as many as 21 countries during t he next five years.The biggest contributor to the project is Bill Gates,through the Bill and Melinda Gates Foundation.Another donor (捐款者) is the Howard Buffett Foundation,led by a son of the American investor Warren Buffett.The government of Belgium is also supporting the project in a former colony (殖民地),now the Democratic Republic of Congo.Together these donors have provided more than 76 million dollars for projects in Africa and Central America.Purchase for Progress will work with United Nations agencies,governments and non-governmental organizations to help increase crop production.The World Bank Group and other partners are to help train farmers in better crop management and marketing skills.The World Food Program says it expects to buy 40,000 tons of food in the first year using methods carried out by the project.That will be enough to feed 250,000 people.P4P is expected to develop food cooperatives and long-term agreements for buying corn,wheat and other food crops.About 350,000 farmers could be assisted.Officials say the project will change the way the World Food Program buys food in developing countries.Executive Director Josette Sheeran says this is the first time her agency will buy a large amount of food from small farmers.The agency has traditionally bought most of its food from developing countries,but through larger trading organizations.5.From the passage,we know that________.A.in all 900 million people worldwide lack foodB.a project has been started to help women farmersC.there are only two donors to help the projectD.some farmers still cannot support their families6.According to the passage,________will work hard to deal with the situation.A.the United NationsB.the combined effortsC.some governmentsD.some non-governmental organizations7.Which of the following will NOT be done to help small farmers?A.To donate money.B.To reform the way of food purchase.C.To provide them with food.D.To buy a large amount of food from them.8.What’s the best title for this passage?A.Project to Help Small FarmersB.Contribution to Small FarmersC.Food ProblemsD.P4P Is Being Carried Out课时作业(二十四)Ⅰ.单项填空1.B考查动词辨析。