七年级数学上册 第四章 几何图形初步 43 角 433 余角和补角习题课件 新版新人教版
《余角和补角》图形初步认识PPT课件
探究新知
已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4
相等吗?为什么?
1
2
3 4
由∠1与∠2互补,得∠1+∠2=180º,所以 ∠2=180º-∠1.
由∠3与∠4互补,得∠3+∠4=180º,所以∠4=180º-∠3. 又因为∠1=∠3,所以180º-∠1=180º-∠3, 所以∠2=∠4.
北 A
30°
C
60°
西
东
O
25°
B 南
课堂小结
1.余角的定义: 一般地,如果两个角的和等于90°(直角),就说这两个角互为余角, 即其中每一个角是另一个角的余角. 2.补角的定义: 如果两个角的和等于180°(平角),就说这两个角互为补角,即其 中一个角是另一个角的补角. 3.余角与补角的性质: 同角(等角)的补角相等; 同角(等角)的余角相等. 4.方位角
又因为∠1+∠ADC=∠CDE=90°,
且∠1=∠2,
所以∠ADC=∠BDC.
课堂练习
(2)∠ADF=∠BDE.
理由:因为∠ADF=180°-∠1,∠BDE=180°-∠2,
又因为∠1=∠2,
所以∠ADF=∠BDE.
C
A
B
E
1
2
D
F
课堂练习
6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α 与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中 ∠α与∠β相等?
课堂小结
本图片资源介绍了两角互余与互补的概念及余(补)角 的性质,适用于余角和补角的教学.若需使用,请插入 图片【知识点解析】互余与互补.
第四章多姿多彩的几何图形4.3.3_余角和补角
x
若一个角的补角等于它的余角的 4 倍,求这个角的度数。
解: 设这个角是x °,
则它的补角是(180-x)°,
余角是(90-x) °
由题意得:
(180-x)= 4 (90-x) x =60 答:这个角的度数是60 °
10
如图,已知AOB是一直线,OC是
∠ AOB的平分线, ∠ DOE是直角, 图中哪些角互余?哪些角互补?哪些
角相等?
C
D
E
4
3
1
2
O
A
B
11
由题意得:
90-x=2 x x=30 答:∠ 的度数为30度。
12
(2)如果∠1的补角是∠1的3倍,求∠1的度数。
解:设∠1的度数为x度, ∠1的补角(180-x)度。 由题意得: 180-x=3x
-4x=-180
x=45 答:∠1为45°.
13
14
已知:两个角互为补角,它们的差
余角等于 62°12’
7
图中给出的各角,那些互为补角?
10
o
30o
60
o
80o
100o
120
o
150
o
170
o
8
我来试一试:
∠α
5° 32°
∠α的余角
85° 58° 45° 13° 27°37′ (90 x)
∠α的补角
175° 148° 135° 103° 117°37′ (180 x)
∠2+∠3=90°,那么
╳ ∠1、∠2、∠3互为余角( )
28
如图,两直线相交形成的四个角中 ∠1=30°,那么∠2、∠3和∠4各等于 多少度?
中山市六中七年级数学上册 第4章 图形的初步认识4.6 角 3余角和补角课件 新版华东师大版
样的位置关系和数量关系 ?
邻补角
対顶角
互补
A
CHale Waihona Puke 2 31O 4
B
相等
D
〔3〕什么是点到直线的距离 ?你会度量吗 ? 请举例说明.
点到直线的距离 : 直线外一点到这条直线的垂线 段的长度 , 叫点到直线的距离.
〔4〕怎样判定两条直线是否平行 ?平行线有 什么性质 ?対比平行线的性质和直线平行的判定 方式 , 它们有什么异同 ?
随堂演练
1. 计算 3x3·(– 2x2) 的结果是〔A 〕 A. – 6x5 B. – 6x6 C. – x5 D. x5 2. 计算 : 2a·a2 = __2_a_3__ .
3.〔1〕3a2b3·2a2b ; 〔2〕(– 5a4)·(– 8ab2) ;
解 : 原式 = 6a4b4
解 : 原式 = 40a5b2
•补角性质 : •同角或等角的补角相等。
•余角性质 : •同角或等角的余角相等。
A
D
1
O
2
如下图∠AOB = 90 °
B
∠COD = 90 °
那么∠1与∠2是什么关系 ?
C
答 : ∠1 = ∠2
因为∠1+ ∠BOD = 90 °
∠2+ ∠BOD = 90 °
所以∠1 = ∠2 〔同角的余角相等)
∠2+ ∠BOD = 90 °
所以∠1 = ∠2 〔等角的余角相等)
互余
数量 关系
∠1+∠2=90°
互补
∠1+∠2=180°
对
应
图
形
21
21
性
等角的余角相等 等角的补角相等.
人教版七年级数学上册第四章4.3《角》例题与讲解
4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。
第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)
″
=17°+6.6′
6.6
°
60
=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,
人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)
1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α
5°
∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O
余角和补角_课件
∠1和∠2互补,即: ∠1是∠2的余角 ∠2是∠1的余角
注意事项
1.定义中的“互为”是什么意思?
即每一个角都是另一个角的余角并多次变换位置,如图,这
两角还是互为补角吗?
还是补角
补角和余角都是表示角度的 大小关系,与位置无关.
练习
1.若∠1与∠2互补,则∠1+∠2=_1_8__0_°__. 2.∠1=90º-∠2,则∠1与∠2的关系为互__余_____.
解得: x =60 答:这个角的度数是60 °.
总结:直接求解有困难,就要想到列方程.
余角和补角之列方程
如何利用列方程的技巧解决与余角和补角有关的角度计 算问题?
练习 ∠α 的余角是它的3倍,∠α 是多少度? 答案:22.5°.
练习
一个角的余角比这个角的补角的 还小10°,求这个角的余 角及这个角的补角的度数. 答案:这个角是60°,它的余角是30°,补角是120°.
探究
(1)已知∠1与∠2,∠3都互为补角.那么∠2和∠3的大小有什么关系 ? 由∠1与∠2和∠3都互为补角,那么∠2=180º-∠1, ∠3=180º- ∠1, 所以∠2=∠3.
探究
(2)已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和 ∠4 相等吗?为什么? 由∠1与∠2互补,得∠1+∠2=180°,所以∠2=180º-∠1. 由∠3与∠4互补,得∠3+∠4=180º, 所以∠4=180º-∠3. 又因为∠1=∠3,180º-∠1=180º-∠3, 所以∠2=∠4.
第4章 图形的认识 小结与复习课件(共37张PPT) 湘教版七年级数学上册
由 (1) 知,∠AOC 和∠BOD 都与∠AOD 互补,
所以∠BOD =∠AOC = 30° (同角的补角相等).
例9 已知∠AOB = 90°,∠COD = 90°,画出示意图,
并探究∠AOC 与∠BOD 的关系. A C 解:如图①,因为∠AOB = 90°,
∠COD = 90°,
所以∠AOC = 90°-∠BOC, O
4. 线段的中点 应用格式:
A
C
B
因为 C 是线段 AB 的中点,
所以 AC=BC= 1 AB,AB=2AC=2BC. 2
5. 有关线段的基本事实 两点之间,线段最短.
6. 连接两点的线段的长度,叫做这两点间的距离.
三、角 1. 角的定义 (1) 有公共端点的两条射线组成的图形,叫做角; (2) 角也可以看作一条射线绕着它的端点从一个 位置旋转到另一位置时所成的图形.
解:有两种情况:
CB
如图①所示:∠AOC =∠AOB +∠BOC
= 50° + 10° = 60°; O
如图②所示:∠AOC =∠AOB-∠BOC = 50°-10° = 40°.
图① A BC
综上所述,∠AOC 为 60° 或 40°.
O 图② A
考点五 余角和补角
例7 已知∠α 和∠β 互为补角,并且∠β 的一半比∠α 小 30°,求∠α,∠β. 提示:此题和差倍分关系较复杂,可列方程解答.
度吗?请画出图形,并说明理由.
猜想:MN =
1 2 b cm.
A
MB N C
理由:根据题意画出图形,由图可得
MN = MC-NC = 1 AC- 1 BC
2
2
= 1 (AC-BC) = 1 b (cm).
人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件
理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
人教版数学七年级上册 4.余角与补角课件(24张)
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
人教七年级数学上册《几何图形初步》课件(共42张PPT)
如下图:OC是∠AOB的平分线,则有 ∠AOC=∠BOC= ∠AOB ∠AOB=2 ∠AOC= 2∠BOC
类似地,还有角的三等分线等。 通过折纸作角的平分线
4.余角和补角
(1)概念 如果两个角的和等于90°(直角),就说这两个角
互为余角。如∠3=35°,∠4=55°,那么∠3和∠4互为余角
。
如果两个角的和等于180°(平角),就说这两个角互 为补角。如下图∠1+∠2=180°,则∠1和∠2互为补角
同理分别规定出“西北” 、“西南”方向。
(1)方位角的表示 ----------通常先写北或南,再写偏东还是偏西 。例如:“北偏东35°”;“ 南偏西60°”等。
(2)方位角的应用
经常用于航空、航海、测绘中,领航员常用地图和罗盘进 行方位角的测定。
在下图中,射线OA、射线OB、射线OC、射线OD分别表示
3.角的四种表示方法
表示方法
图标
用三个大写的字母
A
表示
B
C
用一个顶点的字母 表示
o
用希腊字母表示
α
用一个数字表示
1
记法
注意事项
ABC 顶点字母在中间
o
顶点处只有 一个角时
α 在靠近顶点处
画弧线, 注上数字 或希腊字母 1
4.角的符号 用“ ” 表示 5.角的分类
小于号是“< ”
锐角: 大于0度而小于90度的角
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC
人教七年级数学上册4.3.3《余角和补角》课件
知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.