2011年版小学数学课程标准解读但愿目标

合集下载

义务教育数学课程标准(2011年版) - 课程目标整理版 - 小学阶段

义务教育数学课程标准(2011年版) - 课程目标整理版 - 小学阶段

识 技
●经历图形的抽象、分类、性质探讨、运动、 位置确定等过程,掌握图形与几何的基础知识 和基本技能。
形的过程,了解一些简单几何体和常见的平面图 形;感受平移、旋转、轴对称现象;认识物体的相 对位置。掌握初步的测量、识图和画图的技能。
一些几何体和平面图形的基本特征;体验简单图形 的运动过程,能在方格纸上画出简单图形运动后的 图形,了解确定物体位置的一些基本方法;掌握测
欲。
学活动。
参与数学学习活动。
●在数学学习过程中,体验获得成功的乐趣, 2.在他人帮助下,感受数学活动中的成功,能尝 2.在他人的鼓励和引导下,体验克服困难、解决
情 锻炼克服困难的意志,建立自信心。
试克服困难。
问题的过程,相信自己能够学好数学。

●体会数学的特点,了解数学的价值。

3.了解数学可以描述生活中的一些现象,感受数 3.在运用数学知识和方法解决问题的过程中,认
问 ●获得分析问题和解决问题的一些基本方法, 2.了解分析问题和解决问题的一些基本方法,知 2.能探索分析和解决简单问题的有效方法,了解
题 体验解决问题方法的多样性,发展创新意识。 道同一个问题可以有不同的解决方法。
解决问题方法的多样性。

●学会与他人合作交流。

3.体验与他人合作交流解决问题的过程。

量、识图和画图的基本方法。
●经历在实际问题中收集和处理数据、利用数 3.经历简单的数据收集、整理、分析的过程,了 据分析问题、获取信息的过程,掌握统计与概
解简单的数据处理方法。 率的基础知识和基本技能。
3.经历数据的收集、整理和分析的过程,掌握一 些简单的数据处理技能;体验随机事件和事件发生 的等想、证明、综合实践

《义务教育数学课程标准》(2011版)解读

《义务教育数学课程标准》(2011版)解读

与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透

2011年版数学新课标解读

2011年版数学新课标解读

2011年版数学新课标解读一:从理念到行为把握操作方法最重要从理念到行为把握操作方法最重要新修订的数学课程标准到底对我们的教学会产生怎样的影响呢?我认为,准确把握标准变化特点、以案例为载体形成具体的实践操作方法、关注广义教材是三个核心环节进一步明确“学生发展为本”的教育理念,把握从“双基到四基,从两能到四能,从单一思维到复合思维、增加多个核心词”的变化特点。

修订后的课标对实验稿课标既有传承,也有发展,我学习了修订后的课标,觉得以下三点变化最为深刻。

调试数学观,明确新的数学课程观。

实验稿课标认为,“数学是人们对客观世界定性把握和定量刻画、逐步抽象概括、形成方法和理论,并进行广泛应用的过程。

”而修订后的标准将其调整为“数学是研究空间形式和数量关系的科学。

”数学是一门科学,而非过程,无论是直接来源于现实世界的,还是来源于数学世界的,只要是空间形式和数量关系,都可以构成数学的研究对象。

与此同时,将原有的“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”的数学课程观,修改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”,这样的表述方式,保留了实验稿课标所界定的数学课程观的精髓。

明确提出“四基”、“四能”和复合思维的要求。

对学生的培养目标,在注重基础知识、基本技能的前提下,增加了针对基本思想和基本活动经验的具体要求,更加凸显数学对于学生发展的特殊作用,将实验稿标准提出而尚未显性化的有关理念显性化,这是对10年改革成功经验的提纯和升华。

对于能力培养的问题,不仅直接提出能力培养,而且增加了“发现问题、提出问题”的能力要求。

这种变化,不仅充分延续实验稿对于创新精神关注,而且有了显著发展。

在继续关注归纳、猜测等思维形式的基础上,修订后的课标明确提出“归纳思维”与“演绎思维”并举的具体要求。

在核心词上,增加了“几何直观”,将“符号感”修改为“符号意识”,将“统计观念”修改为“数据分析观念”,并对“数感”、“空间观念”的内涵作了修正。

义务教育数学课程标准(2011年版)解读(一)、(二)

义务教育数学课程标准(2011年版)解读(一)、(二)

义务教育数学课程标准(2011年版)解读(一)修订后的数学课标变了什么时间:2012-04-17 来源:中国教育报修订后的数学课标保持了实验稿的基本结构,但对理念、目标、内容等作了一些重要的修订。

对数学的意义及课程性质作了修订修订后数学意义表述为:“数学是研究数量关系和空间形式的科学。

数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。

特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展”。

数学课程的性质表述为:“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。

数学课程能使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理能力,培养学生的创新意识和实践能力,促进学生在情感、态度与价值观等方面的发展。

义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。

”重新阐述了数学课程的基本理念将实验稿6条基本理念中关于数学学习和数学教学两条合并成一条,变成5条基本理念。

关于数学课程与教学的总体要求表述为:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

提出了“四基”目标课程目标的总体设计仍然保持总体目标和学段目标的结构。

注重过程性目标和结果性目标相结合,具体分为知识技能、数学思考、问题解决、情感态度4个方面。

在课程目标中明确提出使学生“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

”梳理了10个核心概念课程标准把课程内容分为4个部分:数与代数、图形与几何、统计与概率、综合与实践。

又提出了与内容有关的10个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识,并且对每一个核心概念都给出了较为明确的解释。

2011版数学课程标准解读

2011版数学课程标准解读

2011版小学数学课程标准目录第一部分前言.一、课程性质二、课程基本理念三、课程设计思路第二部分课程目标一、总目标二、学段目标第三部分内容标准第一学段(1~3年级)一、数与代数二、图形与几何三、统计与概率四、综合与实践第二学段(4~6年级)一、数与代数二、图形与几何三、统计与概率四、综合与实践第三学段(7~9年级)一、数与代数二、图形与几何三、统计与概率四、综合与实践第四部分实施建议一、教学建议二、评价建议三、教材编写建议四、课程资源开发与利用建议附录1 有关行为动词的分类附录2 内容标准及实施建议中的实例第一部分前言数学是研究数量关系和空间形式的科学。

数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。

特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。

一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。

数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。

二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。

小学数学人教2011课标版一年级课标分析

小学数学人教2011课标版一年级课标分析

课标分析一、课标要求《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义,了解负数的意义;掌握必要的运算技能;理解估算的意义;能用方程表示简单的数量关系,能解简单的方程”“初步形成数感和空间观念,感受符号和几何直观的作用”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决”“愿意了解社会生活中与数学相关的信息,主动参与数学学习活动”“在运用数学知识和方法解决问题的过程,认识数学的价值”。

《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”中提出“了解公因数和最大公因数”“在1~100的自然数中能找出10以内自然数的所有倍数,能找出10以内两个自然数的公倍数和最小公倍数”“在1~100的自然数中,能找出一个自然数的所有因数,能找出两个自然数的公因数和最大公因数”“结合具体情境,理解小数和分数的意义”“能比较小数的大小和分数的大小。

二、课标解读(一)经历具体到抽象的学习过程,揭示分数意义的本质在分数概念教学中,要充分利用教材提供的学习材料,尽可能地联系学生的生活经验,运用各种直观因素,让学生借助充分的感性材料,发现和归结一类事物的一般和本质特征,从而辅助其建构抽象的数学概念。

例如在分数的意义教学中,首先,可以用正方形、长方形、三角形等图形表示,去除图形的形状、大小等因素,提炼出“把一个图形平均分成4份,其中的1份用表示”;接着应用范围从一个图形拓展到把若干个物体看成的一个整体,去除整体的个数、部分的个数等因素,提炼出“把一个整体平均分成4份,其中的1份用分数表示”;最后,提供丰富的生活素材,通过整体(单位“1”)与部分(取得份数)不变,而等分的份数不同,分数大小相应在发生变化;或者通过整体不变,等分的份数以及取得份数不同,得到不同的分数等练习,以进一步揭示概括分数的意义。

2011版数学课标基本理念

2011版数学课标基本理念

解读《义务教务阶段数学课程标准(2011年版)》课程标准的理念和目标,是非常重要的两部分内容,课程标准的理念,从五个方面来阐述,分别从数学教育,课程内容,教学方式,评价还有新技术,这几个方面来阐述。

(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

课程标准基本理念的第一条,是一个总的论述。

这一条是对义务教育阶段数学教育做了总体的阐述,就是义务教育的阶段的数学,在这个阶段的数学教育使学生获得一个什么样的数学教育,使他在数学方面,获得什么样的发展,这里边强调的要根据义务教育阶段的培养目标,义务教育阶段的学生的成长,是整个人发展的一个重要阶段,是它为学生打基础的阶段,在打基础的阶段,要面向全体学生,使学生在各个方面打好基础,而数学是学生应该掌握基础知识、基本能力和基本素养的非常重要组成部分。

正因为是义务教育,所以强调要面向全体学生,义务教育阶段是面向所有学生发展的阶段。

这里强调两个要点,第一,人人都能获得良好的数学教育,面向全体学生,使每一个学生都接受良好的数学教育。

每个学生都要提高数学素养,进而提高学生的公民素养,数学素养是学生公民素养的一个重要组成部分。

义务教育重要的任务就是使学生将来能够成为一个社会需要的、具有良好的素养、各方面能够健康发展的公民。

他们有良好的数学素养是非常重要,所以良好的数学教育就是让每一个学生获得他所需要的良好的数学素养。

第二,不同的人在数学上得到不同的发展,这个是针对学生的差异,因为每一个学生都要接受义务教育,而在学生的发展和学生原有的基础存在很大的差异。

良好的数学教育,使每一个学生都得到一样的教育,得到一样的机会,但最后的发展可能是有差别的。

根据学生的智力的差异,根据兴趣的不同,标准特别强调要照顾到学生的个别差异,使每一个学生都能获得他所应该得到的发展。

在任何国家,数学教育都是一个具有基础性、发展性的一个学科,一般在很多国家都把它叫做核心课程,或者说它在某种意义上,和语文、外语等成为一个人发展的非常重要的一个基础。

小学数学课程标准(2011年版)解读

小学数学课程标准(2011年版)解读

二、第一部分,前言内容作了较大调整
在“前言”部分除修改了对数学的意义与 价值、数学教育的功能、数学课程的基本 理念以及数学课程设计思路的表述外,还 增加了“数学课程的性质”。
1.修改了 “数学”的定义
实验稿: 数学是人们对客观世界定性把握和定量刻
画、逐渐抽象概括、形成方法和理论,并 进行广泛应用的过程。 修订稿(标准P1): 数学是研究数量关系和空间形式的科学
(8)注意信息技术与课程内容的整合。
注意信息技术与课程内容的整合,注重实效。(标 准P3)
7.重新修订了课程设计思路:
(1)学段划分保持不变;(标准P4) 将九年的学习时间划分为三个学段: 第一学段(1-3年级) 第二学段(4-6年级) 第三学段(7-9年级)
(2)关于课程目标的调整(标准P4)
对课程目标动词及水平要求的设计基本保 持不变,增加了目标动词的同义词;
义务教育阶段数学课程目标分为总目标和 学段目标,从知识技能、数学思考、问题 解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。 结果目标使用“了解、理解、掌握、运用” 等行为动词表述,过程目标使用“经历、 体验、探索”等行为动词表。
2.修改了数学观
实验稿: 数学是人们生活、劳动和学习必不可少的工具。 数学为其他科学提供了语言、思想和方法; 数学是人类的一种文化,它的内容、思想、方法
和语言是现代文明的重要组成部分。 数学在提高人的推理能力、抽象能力、想象力和
创造力等方面有着独特的作用;
修订稿(标准P1): 数学更加广泛应用于社会生产和日常生活
实验稿:
“符号感”主要表现在:能从具体情境中抽象出 数量关系和变化规律,并用符号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间 的转换;能选择适当的程序和方法解决用符号所 表达的问题。”

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标一.《义务教育阶段数学课程标准(修订稿)》中十个核心概念在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2、符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。

3、空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4、几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

5、数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

6、运算能力是指能够根据法则和运算正确的进行运算的能力。

培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。

7、推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。

课程标准(2011年版)》的理念及总体目标

课程标准(2011年版)》的理念及总体目标

专题讲座《义务教务阶段数学课程标准(2011年版)》的理念及总体目标王尚志(首都师范大学教授)马云鹏(东北师范大学教授)刘晓玫(首都师范大学教授)话题一、课程标准的基本理念课程标准的理念和目标,是非常重要的两部分内容,课程标准的理念,从五个方面来阐述,分别从数学教育,课程内容,教学方式,评价还有新技术,这几个方面来阐述。

(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

课程标准基本理念的第一条,是一个总的论述。

这一条是对义务教育阶段数学教育做了总体的阐述,就是义务教育的阶段的数学,在这个阶段的数学教育使学生获得一个什么样的数学教育,使他在数学方面,获得什么样的发展,这里边强调的要根据义务教育阶段的培养目标,义务教育阶段的学生的成长,是整个人发展的一个重要阶段,是它为学生打基础的阶段,在打基础的阶段,要面向全体学生,使学生在各个方面打好基础,而数学是学生应该掌握基础知识、基本能力和基本素养的非常重要组成部分。

正因为是义务教育,所以强调要面向全体学生,义务教育阶段是面向所有学生发展的阶段。

这里强调两个要点,第一,人人都能获得良好的数学教育,面向全体学生,使每一个学生都接受良好的数学教育。

每个学生都要提高数学素养,进而提高学生的公民素养,数学素养是学生公民素养的一个重要组成部分。

义务教育重要的任务就是使学生将来能够成为一个社会需要的、具有良好的素养、各方面能够健康发展的公民。

他们有良好的数学素养是非常重要,所以良好的数学教育就是让每一个学生获得他所需要的良好的数学素养。

第二,不同的人在数学上得到不同的发展,这个是针对学生的差异,因为每一个学生都要接受义务教育,而在学生的发展和学生原有的基础存在很大的差异。

良好的数学教育,使每一个学生都得到一样的教育,得到一样的机会,但最后的发展可能是有差别的。

根据学生的智力的差异,根据兴趣的不同,标准特别强调要照顾到学生的个别差异,使每一个学生都能获得他所应该得到的发展。

2011版小学数学新课程标准解读

2011版小学数学新课程标准解读
过于依赖量,过于特殊的量
一、数感
数感主要是指关于数与数量、数量关系、运算结果
估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解
或表述具体情境中的数量关系。
简单、通俗地说,数感就是数的感觉。
3000006000 三十亿零六千
读出数感!
30600, 30060, 30006
三万零六百 三万零六十 三万零六
“多样化”旨在“各取所需”, 乙湖
()
适应不同学生!
水深 60米
海平面0米 甲湖 水深 20米
20 米
甲湖水面高度记作0米,甲湖水底高度记作( -20)米;乙湖是堰
塞湖,水底高度记作( +20)米,水面高度记作( +80)米。
2.你知道全校做早操,操场上有多少人吗? 大约1000人,
想一想,( )个这样学校的学生集中在一起,约一万人.
数学课程标准解读
目录
第一部分 前言 第二部分 课程目标
一、总目标 二、学段目标 第三部分 课程内容 第四部分 实施建议 附录
第一部分 前言 一、课程性质
义务教育阶段的数学课程是培养公民素质 的基础课程,具有基础性、普及性和发展性。 数学课程能使学生掌握必备的基础知识和基本 技能;培养学生的抽象思维和推理能力;培养 学生的创新意识和实践能力;促进学生在情感、 态度与价值观等方面的发展。义务教育的数学 课程能为学生未来生活、工作和学习奠定重要 的基础。
2/3小时行6km 即3份中的2份是6 3份是9
1小时行
小学数学历来重视数感培养,从“自发”走向了“自觉”
一、数感
3.在解决实际问题中展现数感


1080稍大于1000;

2011年版数学课程标准

2011年版数学课程标准

《2011年版数学课程标准》概况及解读一、《2011年版数学课程标准》颁布的意义和背景1.坚持改革不动摇,新课标的颁布是对10年课改的肯定和坚持2001年数学课程标准(实验稿)(约15万字)问世,取代了使用近五十年〈数学大纲〉,实验稿数学课程标准从2001年开始进入实验区,对中小学数学教育的影响是积极和明显的。

10年的课改实验,首先是转变了教师的教育观念、改变了传统教育理念,我们的基础教育过去非常强调“双基”,要求基础知识扎实、基本技能熟练。

但只要求这一点对学生的创造性思维不利。

实验稿课标提出了三维目标,从关心教师如何教到关心学生如何学,教学方法上改变了过去教师单一讲授、学生被动听讲的状况,更加关注学生的学,确立了学生学习的主体地位。

从教学评价来说,除了知识以外,还提出了教育过程的循序渐进,关注态度、情感、价值观方面的评价。

与教学大纲相比,课程标准更加重视学生能力的培养和素养的提高。

而(2011年版)课程标准的颁布是对10年课改的发扬,也传达国家、教委对课改不动摇的决心。

2.充分吸纳了10年义务教育课改实验的经验与教训但是,由于实验稿课标在制订过程中的一些局限性,比如时间比较仓促等,内容上有些地方系统性不够,同时,对教育价值的表述也不够清晰。

一是目标不够清晰,可操作性不强。

比如:实验稿只提出通过数学学习让学生分析问题和解决问题,其实发现问题与提出问题也很重要(但是我省普教室研究、福建省教育学会小学数学教学委员会的一数学教研专题:问题解决,5月8-11日在福州举行第十七届小学数学“问题解决”课题研究现场教学观摩研讨会,我省已经开始重视这方面的问题了)。

让学生亲身参与活动很好,但仅有活动是不够的,应该追问活动为了什么?活动是否脱离了数学本质,活动如何突出数学特点?三维目标如何鉴定?如何操作?等系列问题摆在教师面前,二是对数学实质的表述不清楚,比如计算的本质是什么,符号的本质是什么,等等。

这样,在教师中就会造成两大问题:一是对所教的内容从数学角度吃得不透,数学意义不清楚。

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)解读——小学数学2011年12月28日,教育部正式公布了《义务教育阶段数学课程标准(2011年版)》(以下简称《标准》),并于2012年秋季开始执行。

这意味着2001年公布的义务教育阶段数学课程标准(实验稿)将完成它的历史使命,随之而来的,就是教材的改革,数学课程改革也必将进入一个新的发展阶段。

对修订版数学课程标准的学习和研究也将成为数学教育工作者们当前的头等大事。

经过几年来对数学课程标准修订情况的跟踪研究以及对数学课程标准(2011年版)的深入研读,我认为修订版是对实验稿的继承和发扬,改进与完善,但又不乏创新之举,让人读来眼前一亮,对数学与数学教育的意义与价值的定位更准确,对学生思维能力和创新能力的培养目标的要求更明晰,对学习方式、教学方式等教学策略与手段的指导更明确,对课程内容的调整更合理。

与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化为如下几个方面:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6 条”改“5条”2001年版“三句话”:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011版小学数学新课标解读

2011版小学数学新课标解读

2011版小学数学新课标解读2011版小学数学新课标解读与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加确凿、规范、明了和全面。

详尽变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广博应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的严重组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,例外的人在数学上得到例外的发展。

2011年版“两句话”:人人都能获得优良的数学教育,例外的人在数学上得到例外的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

四、理念中新增加了一些提法要处理好四个关系,数学课程基本理念(两句话),数学教学活动的本质要求,培养优良的数学学习习惯,注重启发式,正确看待教师的主导作用,处理好评价中的关系,注意信息技术与课程内容的整合。

五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。

六、四个领域名称的变化2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

义务教育小学数学课程标准(2011年版)

义务教育小学数学课程标准(2011年版)

义务教育小学数学课程标准(2011年版)目录第一部分前言. 1一、课程性质. 1二、课程基本理念. 2三、课程设计思路. 4第二部分课程目标. 9一、总目标. 9二、学段目标. 10第三部分内容标准. 16第一学段(1~3年级). 16一、数与代数. 16二、图形与几何. 18三、统计与概率. 19四、综合与实践. 20第二学段(4~6年级). 20一、数与代数. 20二、图形与几何. 23三、统计与概率. 25四、综合与实践. 26第三学段(7~9年级). 26一、数与代数. 26二、图形与几何. 31三、统计与概率. 40四、综合与实践. 42第四部分实施建议. 43一、教学建议. 43二、评价建议. 54三、教材编写建议. 62四、课程资源开发与利用建议. 70附录. 75附录1 有关行为动词的分类. 75附录2 内容标准及实施建议中的实例. 78第一部分前言数学是研究数量关系和空间形式的科学。

数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。

特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。

一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。

数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

《义务教育数学课程标准》(2011年版)解读

《义务教育数学课程标准》(2011年版)解读

《义务教育数学课程标准》(2011年版)解读——小学数学浙江省教育厅教研室斯苗儿与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、.理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。

《义务教育数学课程标准(2011年版)-》解读

《义务教育数学课程标准(2011年版)-》解读

《义务教育数学课程标准(2011年版)》解读主讲内容一、修订课程标准的基本过程二、修订课程标准的基本原则三、修订课程标准的主要内容四、几点建议一、修订课程标准的基本过程(1)•2002年推出义务教育数学课程标准2001实验版(蓝皮本)•2005年开始修改数学课程标准•2007年推出义务教育数学课程标准2007修改稿(已经有很好的修订过程的内容变化批注)•2011年完善数学课程标准修改•2011年九月推出数学课程标准解读•2011年十月开始课程标准培训•2012年实施义务教育数学课程标准2011版(黄皮本)一、修订课程标准的基本过程(2)1.进行广泛深入的实施状况调查研究(12个省,问卷3768份)2. 组织全面认真的修改研讨(12次修改研讨会3. 采用多种形式广泛征求各方面意见2006年6月,向全国30多位专家、学者和第一线教师征求意见。

2007年7月,教育部基础教育司将征求意见稿发放全国10个省教研室、10个国家级和省级实验区,以及40名专家征求意见。

此外,还通过不同形式,向项武义教授、张奠宙教授,以及部分数学家、数学教育专家和中小学教育工作者征求意见。

二、修订课程标准的基本原则坚持体现国家利益,坚持基础教育课程改革的大方向,以课程改革的实践和调查研究的结果为基础,针对实施过程中出现的问题和各方面提出的建议进行修改,力求《标准》更加完善:使《标准》表述更加准确、规范、明了、全面;使《标准》结构更加合理、思路更加清晰;进一步增加《标准》的可操作性,更适合教材编写、教师教学和学习评价。

处理好四个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是关注生活情境和知识系统性的关系。

“空间与图形”改为“图形与几何”:正如“数与代数”一样,“图形与几何”代表了第一、二学段和第三学段的侧重点:在第一、二学段中主要是通过观察、操作等直观、整体认识图形及其某些特征,并通过操作等加以确认;第三学段,则主要是从数学上细致刻画基本图形的基本性质,并通过逻辑推理加以证明,也就是“几何”,过去提的“空间与图形”的名称没有体现这一点。

标准2011年版解析

标准2011年版解析
第一学段。总体修改不大,数与代数内容略有 增加,统计与概率内容明显减少,增删内容大 致相当。
第二学段。课程内容总量没有变化,但具体的 内容做了一些重要的调整。
三、取得的主要成绩与讨论
(一)主要成绩 教学观念 教师角色 教学方式 评价方式 教材研究 课程资源 一标多本、多标多本 等等
二、《标准(2011年版)》内容分析
(一)体例与结构的调整 (二)数学的意义与价值、数学教育的作用 (三)数学课程的基本属性 ——义务教育阶段的数学课程是培养公民素质的基础
课程 ,具有基础性、普及性和发展性。
(四)数学课程的基本理念 ——将原来的6个核心理念修改为:数学课程、课程
内容、教学活动、学习评价、信息技术这5个核心理念
三、课程改革取得的主要成绩与讨论
(二)讨论的问题 1、课程体系的创新与继承 2、联系实际,注重实用 3、“重教轻学”与“儿童中心”两种倾向 4、教学方式的多样化与教学过程的形式化 5、减轻学生负担与保证学生学习质量 6、课程资源开发与教学内容泛化 7、加强研究,聚焦一些重要的理论问题 8、学生核心素养研究
初步探索; “文革” 期间,倡导开门办学,开放实践。
四、我国小学数学课程改革的特点
第二阶段是改革开放初期到20世纪末,可分为两个 小的阶段(改革开放以来的大纲阶段) 1976-1986年,“文革”结束后教学秩序恢复正常,我
国基础教育课程体系初步建立。 1986年-20世纪末,实施九年义务教育,实行“一纲多
二、《标准(2011年版)》内容分析
数学基本活动经验是指: 学习主体通过亲身经历数学活动过程所获得的
具有个性特征的经验。(属于学生主观性知识 范畴) 包括:直接的活动经验;间接的活动经验;设 计的活动经验;思考的活动经验。 数学基本活动经验的进一步思考
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年版小学数学课程标准解读2011年版小学数学课程标准充分体现了德育为先,能力为重,创新方法,力求减负等特点。

与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化“三句”变“两句”、“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、课程理念中新增加了一些提法要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

五、“双基”变“四基”2001年版的“双基”:基础知识、基本技能。

2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。

并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

六、四个领域名称的变化2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化更加注意内容的系统性和逻辑性。

强化“德育为先”教材中将《九章算术》列为教学内容,如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。

综合与实践领域的要求更加明确和具有可操作性。

财时容量得到了有效控制,并降低了一些知识点的学习要示,从“认识”和“理解”调整为“了解”。

八、实施建议的变化实施建议的变化不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。

在强调学生主体作用的同时,明确提出教师的组织和引导作用。

解读《2011版数学课程标准》领会数学课标新精神认真学习《2011版数学课程标准》,进一步认识到数学课程改革已经从课程基本理念、课程设计思路、课程目标、课程内容等方面进行了修订。

一、“课程基本理念”的修改《2011版数学课程标准》将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

这个理念能让我认识到义务教育是“普及教育”,不同于“精英教育”。

《2011版数学课程标准》将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。

表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

”2011版《数学课程标准》重新提及“教师要发挥主导作用”,并指出:“学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者”。

这里从整体上阐述数学教学过程的特征,教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。

二、“课程设计思路”的修改《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

《2011版数学课程标准》将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。

为了更加突出课程内容的本质,课程标准又提出了与内容有关的十个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

并给出具体描述。

并专门阐述了“应用意识”和“创新意识”。

这十个核心概念虽然与四个部分内容没有明确的隶属关系,但与内容之间是有侧重的。

三、“课程目标”的修改数学课程标准修改前后的第二部分课程目标都是两个方面的内容:一、总目标,二、学段目标。

总目标由原来的四条变为现在的三条,总目标由原来三个方面(知识技能,过程方法、情感态度)的具体阐述变为现在的四个方面(知识技能,数学思考、解决问题、情感态度)具体阐述。

《2011版数学课程标准》在原有“双基”的基础上,进一步明确提出了“基本思想”和“基本活动经验”的要求。

,即“四基”基础知识、基本技能、基本思想和基本活动经验。

这里的基本思想是指支撑数学科学发展的思想,核心在于数学推理、数学建模。

如何让学生获得数学思想,关键要让学生经历概念的抽象过程。

这里的基本活动经验,对学生而言,所谓数学的基本活动经验是指围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。

这里的数学基本活动经验是指基本的数学归纳的经验,类比的经验,思考的经验,发现问题、提出问题、解决问题的经验等等。

数学基本活动经验在每个领域中表现不一样,在代数中强调代数建模;就是让学生在学会数学化的过程中积淀下来的数学直观。

《2011版数学课程标准》把原有“两能”转化成“四能”。

在原有分析问题的能力和解决问题的能力基础上,进一步提出培养学生“发现问题的能力”和“提出问题的能力”。

数学思想的感悟和经验的积累仅靠老师的讲解是不行的,更主要的是依赖学生亲自参与其中的数学活动,依赖于学生的独立思考,在注重结果性目标的基础上,进一步强调了更要注重过程性目标。

这里的发现问题的能力强调的是发现困惑。

灾难性的作业是简单的重复,不是学生自己的问题。

发现问题是指发现课本上没有的新问题,新方法。

在发现问题的基础上可以选择某些问题用数学问题展示出来。

要把貌似生活中的问题抽象成数学问题。

经过数学的学习获得抽象的思维方式。

提出问题的关键是能够认清问题,撇开无关要素,能够用概括的语言描述出来。

就是现实问题数学化;数学内部规律化;数学内容现实化。

分析问题的能力:运用数学思想寻找条件与结论之间的逻辑关联。

让学生经历发现、困惑的阶段。

就是让学生会质疑,敢质疑。

解决问题的能力:运用数学模型,既符合数学模型的结构、规律,又符合问题的实际意义。

既要寻找数学问题的数学解,也要检验教学解与现实问题的吻合程度。

《2011版数学课程标准》完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

《2011版数学课程标准》规范了课程目标的若干术语。

并在学段目标叙述中使用这些术语。

四、“课程内容”(原“内容标准”)的修改《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

《2011版数学课程标准》从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。

“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

《2011版数学课程标准》四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容▲在“数与代数”领域,删除了一些内容,例如:①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)②对有效数字的要求——“了解有效数字的概念”(实验稿P32)③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:①关于等腰梯形的相关要求(实验稿P39、P43)②探索并了解圆与圆的位置关系(实验稿P39)③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)④关于镜面对称的要求(实验稿P41)▲“统计与概率”部分删除的内容极差、频数折线图等内容(2)新增加的内容▲“数与代数”中既有必学的内容,也有选学的内容①知道|a|的含义(这里a表示有理数)②最简二次根式和最简分式的概念③能进行简单的整式乘法运算中增加了一次式与二次式相乘④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等⑤会利用待定系数法确定一次函数的解析表达式以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:*⑥解简单的三元一次方程组*⑦了解一元二次方程的根与系数的关系*⑧知道给定不共线三点的坐标可以确定一个二次函数▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义②了解平行于同一条直线的两条直线平行③会按照边长的关系和角的大小对三角形进行分类④了解并证明圆内接四边形的对角互补⑤了解正多边形的概念及正多边形与圆的关系⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形下面的要求是选学内容:*⑦了解平行线性质定理的证明*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等*⑩了解相似三角形判定定理的证明(3)在要求上有变化的内容(略)4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。

相关文档
最新文档