高考数学总复习解题思维专题讲座(共四讲)[整理]

合集下载

高考数学专题讲座

高考数学专题讲座

导数概念
理解导数的定义,掌握导数的几何意义和物 理意义。
导数应用
利用导数研究函数的单调性、极值、最值等 问题,以及在实际问题中的应用。
三角函数与解三角形
三角函数性质
理解三角函数的定义,掌握三角函数的图像和性质, 如周期性、奇偶性、单调性等。
三角恒等变换
熟练掌握三角恒等变换公式,如和差角公式、倍角公 式等。
函数性质理解不足
包括对函数单调性、奇偶性、周期性等基本概念的理解不清晰。
导数应用问题
如极值、最值、切线等问题中,对导数概念及运算规则掌握不熟练。
三角函数变换
对三角函数的和差化积、积化和差等公式运用不熟练,导致解题困难。
数列与数学归纳法
在数列通项公式、求和公式及数学归纳法的运用中,易出现理解偏差或计算错误。
规范书写保持卷面整洁,字迹晰,步 骤完整。严谨推理
在解题过程中,保持严谨的推 理和计算,确保每一步的正确 性。
注意检查
在解答完成后,仔细检查答案 和过程,确保没有遗漏和错误 。
04 经典例题解析与 实战演练
函数与导数经典例题解析
函数性质综合应用
通过具体例题,深入剖析函数的单调性、奇 偶性、周期性等性质,并探讨它们在解题中 的综合应用。
随机变量的分布与数字特征
详细讲解离散型随机变量和连续型随机变量的分布律、概率密度函数等概念,以及数学期 望、方差等数字特征的计算和应用。
统计推断与参数估计
介绍统计推断的基本原理和方法,包括点估计和区间估计等,通过实例演示如何利用样本 数据对总体参数进行推断和估计。
05 易错知识点剖析 及纠正方法
易错知识点归纳整理
03 高考数学常见题 型及解题技巧
选择题答题技巧

高三数学专题复习:第二部分第四讲

高三数学专题复习:第二部分第四讲

平面向量与三角函数(正、余弦定理)
这是综合考查知识点, 特别是向量与三角函数的结 合是近几年高考的热门知识点.平面向量具有代数 形式与几何形式的“双重身份”,与三角函数有机地 结合起来.这一结合综合性强,创新力度大,能有 效地沟通知识之间的广泛连接.处理好题目之间的 联系,巧妙地应用向量解决三角函数问题及正余弦 定理,要求我们熟记三角函数公式,诱导公式、三 角变换公式及向量的有关计算公式.
2 2 2
栏目 导引
第二部分•应试高分策略
栏目 导引
第二部分•应试高分策略
3 ∴sin α+cos α= .两端平方,得 2sin αcos α= 4 7 - , 16 2sin α+sin 2α 7 ∴ =- . 16 1+tan α
2
栏目 导引
第二部分•应试高分策略
统计与概率
统计与概率是高考必考内容,它是以实际应用 为载体,以概率统计等知识为工具,考查古典 概型、抽样方法、样本频率计算、频率分布直 方图等主要内容.命题热点是:抽样方法、样 本的频率分布、概率计算,并将统计的数字特 征、直方图与概率相结合,更注重事件的过程 分析.
栏目 导引
第二部分•应试高分策略
(4)面对难题,讲究策略,争取得分.会做的题
目当然要力求做对、做全、得满分,而对于不
能全部完成的题目应:①缺步解答;②跳步解
答.解题过程卡在其一中间环节上时,可以承
接中间结论,往下推,或直接利用前面的结论
做下面的(2)、(3)问.
栏目 导引
第二部分•应试高分策略
解题方法例析
栏目 导引
第二部分•应试高分策略
再让考生解答,而且“题设”和“要求”的模式多
种多样.考生解答时,应把已知条件作为出发

高三数学复习专题讲座(第一讲)集合与集合思想

高三数学复习专题讲座(第一讲)集合与集合思想

第一讲、对集合的理解及集合思想应用的问题一、1、集合语言是一种特殊的符号语言,是现代数学的基本语言,所以要学好高中的数学,首先必须深层次的理解集合的概念及其内涵,跟我们生活是一样的,如果连语言都不通的话,就跟谈不上很好的交流和表达了。

2、《集合》的学习,不仅仅局限与集合里面简单的计算,而需要更深层次的理解集合思想内涵,许多同学在学习集合,在学习高中数学的时候,有种“力不从心”的感觉,总是“一看就会,一听就懂,一做就错”,很大程度上是因为没有真正理解其中的思想内涵,仅仅是停留在表面的理解。

3、集合是个原始概念,只作描述性的解释:若干个确定对象的全体,可以看作一个集合,组成集合的对象称为集合的元素。

从这个概念,至少可以看到三个研究方向:集合中元素的研究;单个集合本身的研究;若干个集合之间关系的研究(函数就是两个集合之间按照一定规则的对应关系)。

二、透过集合的描述法理解集合。

对于用描述法给出的集合{x |x ∈P }1、翻译,高中数学的学习,要注意自然语言,符号语言,图像语言……之间的相互转化。

代表元素x 可以翻译成:是什么?它所具有的性质P 可以翻译成:有多少?2、研究两个集合之间的关系,也就可以通过研究集合里面元素之间的关系来解决。

3、形式:对于性质P ,在数学语言中,代表着一种形式,也就是说,只要满足这样形式的个体x ,则可以看着是集合的元素。

在许多的数学题型中,需要对数学表达式进行变形,变成我们需要或者是熟悉的能够解决问题的形式。

如:+∈R y x ,,yx y x 21,2+=+求的最小值,这里有两种方式:1、用消元法,2、讲当成整体,y x +即:)21)((21yx y x ++=原式,这里显然方法第二种形式要简洁一些。

如:},14/{},,12/{Z k k x x B Z k k x x A ∈±==∈+==,(1)判断集合B A ,的关系 (2)证明B A ,之间的关系解析:(1)这作为一个判断题目,可以通过对集合的翻译研究他们之间的关系对集合A :1、x :数——2、奇数——3、观察,x 可以去到……-3,-2,1,3……——4、A 集合为全体奇数,同理:B 集合也是全体奇数,故:A=B(2)要证明A=B ,即需要证明A ,B 互为彼此的子集,即⎩⎨⎧∈⇒∈∀∈⇒∈∀⇔=Ax B x B x A x B A ,这里也就需要证明A 中的元素能够表示成B 中元素具有的形式P 的形式,反之亦然。

2005年高考数学总复习解题思维专题讲座之一-数学思维的变通性

2005年高考数学总复习解题思维专题讲座之一-数学思维的变通性

2005年高考数学总复习解题思维专题讲座之一数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。

根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。

观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。

要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

例如,求和)1(1431321211+++⋅+⋅+⋅n n .这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。

(2)善于联想联想是问题转化的桥梁。

稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。

由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。

(3)善于将问题进行转化数学家G .波利亚在《怎样解题》中说过:数学解题是命题的连续变换。

可思维方法。

那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。

高考数学复习专题讲座化归思想

高考数学复习专题讲座化归思想

高考数学复习专题讲座 化归思想高考要求化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想 等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法重难点归纳转化有等价转化与不等价转化 等价转化后的新问题与原问题实质是一样的 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正应用转化化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化典型题例示范讲解例1对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去现定义124)(+-=x x x f (1)若输入x 0=6549,则由数列发生器产生数列{x n },请写出{x n }的所有项; (2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; (3)若输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求x 0的取值范围命题意图 本题主要考查学生的阅读审题,综合理解及逻辑推理的能力知识依托 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键就是应用转化思想将题意条件转化为数学语言错解分析 考生易出现以下几种错因(1)审题后不能理解题意(2)题意转化不出数学关系式,如第2问(3)第3问不能进行从一般到特殊的转化技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于陌生不易理解并将文意转化为数学语言 这就要求我们慎读题意,把握主脉,体会数学转换解 (1)∵f (x )的定义域D =(–∞,–1)∪(–1,+∞)∴数列{x n }只有三项,1,51,1911321-===x x x (2)∵x x x x f =+-=124)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时n n n n x x x x =+-=+1241故当x 0=1时,x n =1,当x 0=2时,x n =2(n ∈N *) (3)解不等式124+-<x x x ,得x <–1或1<x <2 要使x 1<x 2,则x 2<–1或1<x 1<2对于函数164124)(+-=+-=x x x x f 若x 1<–1,则x 2=f (x 1)>4,x 3=f (x 2)<x 2 若1<x 1<2时,x 2=f (x 1)>x 1且1<x 2<2 依次类推可得数列{x n }的所有项均满足 x n +1>x n (n ∈N *) 综上所述,x 1∈(1,2) 由x 1=f (x 0),得x 0∈(1,2)例2设椭圆C 1的方程为12222=+b y a x (a >b >0),曲线C 2的方程为y =x1,且曲线C 1与C 2在第一象限内只有一个公共点P(1)试用a 表示点P 的坐标;(2)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;(3)记min{y 1,y 2,……,y n }为y 1,y 2,……,y n 中最小的一个 设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,试求函数f (a )=min{g (a ), S (a )}的表达式命题意图 本题考查曲线的位置关系,函数的最值等基础知识,考查推理运算能力及综合运用知识解题的能力知识依托两曲线交点个数的转化及充要条件,求函数值域、解不等式错解分析 第(1)问中将交点个数转化为方程组解的个数,考查易出现计算错误,不能借助Δ找到a 、b 的关系 第(2)问中考生易忽略a >b >0这一隐性条件 第(3)问中考生往往想不起将min{g (a ),S (a )}转化为解不等式g (a )≥S (a )技巧与方法 将难以下手的题目转化为自己熟练掌握的基本问题,是应用化归思想的灵魂 要求必须将各知识的内涵及关联做到转化有目标、转化有桥梁、转化有效果解 (1)将y =x1代入椭圆方程,得 112222=+xb a x 化简,得b 2x 4–a 2b 2x 2+a 2=0由条件,有Δ=a 4b 4–4a 2b 2=0,得ab =2 解得x =2a 或x =–2a(舍去) 故P 的坐标为(aa 2,2) (2)∵在△ABP 中,|AB |=222b a -,高为a2, ∴)41(22221)(422aa b a a S -=⋅-⋅=∵a >b >0,b =a2 ∴a >a 2,即a >2,得0<44a<1 于是0<S (a )<2,故△ABP 的面积函数S (a )的值域为(0,2) (3)g (a )=c 2=a 2–b 2=a 2–24a 解不等式g (a )≥S (a ),即a 2–24a≥)41(24a - 整理,得a 8–10a 4+24≥0,即(a 4–4)(a 4–6)≥0 解得a ≤2(舍去)或a ≥46故f (a )=min{g (a ), S (a )}⎪⎪⎩⎪⎪⎨⎧<-≤<-=)6()41(262(444422a a a a a例3一条路上共有9个路灯,为了节约用电,拟关闭其中3个,要求两端的路灯不能关闭,任意两个相邻的路灯不能同时关闭,那么关闭路灯的方法总数为解析9个灯中关闭3个等价于在6个开启的路灯中,选3个间隔(不包括两端外边的装置)插入关闭的过程故有C 35=10种答案 10例4 已知平面向量a =(3–1), a =(23,21) (1)证明a ⊥b ;(2)若存在不同时为零的实数k 和t ,使x =a +(t 2–3) b ,y =–k a +t b ,且x ⊥y ,试求函数关系式k =f (t);(3)据(2)的结论,讨论关于t 的方程f (t )–k =0的解的情况(1)证明 ∵a ·b =23)1(213⋅-+⨯=0,∴a ⊥b (2)解 ∵x ⊥y ,∴x ·y =0即[a +(t 2–3) b ]·(–k a +t b )=0,整理后得 –k a 2+[t –k (t 2–3)]a ·b +t (t 2–3)·b 2=0∵a ·b =0, a 2=4, b 2=1 ∴上式化为–4k +t (t 2–3)=0,∴k =41t (t 2–3) (3)解 讨论方程41t (t 2–3)–k =0的解的情况, 可以看作曲线f (t )=41t (t 2–3)与直线y =k 的交点个数于是f ′(t )=43(t 2–1)=43(t +1)(t –1)令f ′(t )=0,解得t =1 的变化情况如下表 t (–∞,–1)–1 (–1,1) 1 (1,+∞) f ′(t ) + 0 – 0 + f (t )↗极大值↘极小值↗当t =–1时,f (t )有极大值,f (t )极大值=2; 当t =1时,f (t )有极小值,f (t )极小值=21而f (t )=41(t 2–3)t =0时,得t =–33所以f (t )的图象大致如右于是当k >21或k <–21时,直线y =k 与曲线y =f (t )仅有一个交点,则方程有一解;当k =21或k =–21时,直线与曲线有两个交点,则方程有两解;当k =0,直线与曲线有三个交点,但k 、t 不同时为零,故此时也有两解;当–21<k <0或0<k <21时,直线与曲线有三个交点,则方程有三个解学生巩固练习1 已知两条直线l 1:y =x ,l 2:ax –y =0,其中a ∈R ,当这两条直线的夹角在(0,2π)内变动时,a 的取值范围是( )A (0,1)B (33,3) C (33,1)∪(1,3) D (1,3) 2 等差数列{a n }和{b n }的前n 项和分别用S n 和T n 表示,若534+=n n T S n n ,则nn n b a ∞→lim 的值为( )A34 B 1 C 36 D 94f(t)=14t(t 2-3)1-1-1212y=koyt3 某房间有4个人,那么至少有2人生日是同一个月的概率是 (列式表示)4 函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是5 已知f (x )=lg(x +1),g (x )=2lg(2x +t ),(t ∈R 是参数)(1)当t =–1时,解不等式f (x )≤g (x );(2)如果x ∈[0,1]时,f (x )≤g (x )恒成立,求参数t 的取值范围6 已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,n ∈N *且a 1、a 2、a 3、……、a n 构成一个数列{a n },满足f (1)=n 2(1)求数列{a n }的通项公式,并求1lim+∞→n nn a a ;(2)证明0<f (31)<1 7 设A 、B 是双曲线x 2–22y=1上的两点,点N (1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?8 直线y =a 与函数y =x 3–3x 的图象有相异三个交点,求a 的取值范围参考答案1 解析 分析直线l 2的变化特征,化数为形,已知两直线不重合,因此问题应该有两个范围即得解答案 C2 解析 化和的比为项的比∵n n n n n b n T a n a a n S )12(;)12(2)12(1212112-=-=+-=--- ∴26485)12(3)12(41212+-=+--==--n n n n T S b a n n n n ,取极限易得 答案 A3 解析 转化为先求对立事件的概率即四人生日各不相同的概率答案 441212A 1-4 解析 转化为f ′(x )=3x 2–3b 在(0,1)内与x 轴有两交点只须f ′(0)<0且f ′(1)>0答案 0<b <15 解 (1)原不等式等价于⎪⎩⎪⎨⎧>->⎪⎩⎪⎨⎧-≤+>->+05421)12(10120122x x x x x x x 即即⎪⎪⎩⎪⎪⎨⎧≥≤>45021x x x 或 ∴x ≥45∴原不等式的解集为{x |x ≥45} (2)x ∈[0,1]时,f (x )≤g (x )恒成立∴x ∈[0,1]时⎪⎩⎪⎨⎧+≤+>+>+2)2()1(0201t x x t x x 恒成立 即⎪⎩⎪⎨⎧++-≥->>+12201x x t x t x 恒成立即x ∈[0,1]时,t ≥–2x +1+x 恒成立,于是转化为求–2x +x +1,x ∈[0,1]的最大值问题 令μ=1+x ,则x =μ2–1,则μ∈[1,2]∴2x +1+x =–2(μ–41)2817 当μ=1即x =0时,–2x +1+x 有最大值1 ∴t 的取值范围是t ≥16 (1)解 {a n }的前n 项和S n =a 1+a 2+…+a n =f (1)=n 2,由a n =S n –S n –1=n 2–(n –1)2=2n –1(n ≥2),又a 1=S 1=1满足a n =2n –1故{a n }通项公式为a n =2n –1(n ∈N *) ∴11212lim lim1=+-=∞→+∞→n n a a n n n n(2)证明 ∵f (31)=1·31+3·91+…+(2n –1)n 31①∴31f (31)=1·91+3·271+…+(2n –3)n 31+(2n –1)131+n ②①–②得 32f (31)=1·31+2·91+2·271+…+2·n 31–(2n –1)·131+n∴f (31)=21+31+91+271+…+131-n –(2n –1)131+n =1n n 31+∵n n n n n n +>+>+⋅+⋅+=+=1212C 2C 1)21(3221 (n ∈N *)∴0<n n 31+<1,∴0<1–nn 31+<1,即0<f (31)<1 7 解 (1)设AB ∶y =k (x –1)+2代入x 2–22y=1整理得(2–k 2)x 2–2k (2–k )x –(2–k )2–2=0 ①设A (x 1,y 1)、B (x 2,y 2),x 1,x 2为方程①的两根 所以2–k 2≠0且x 1+x 2=22)2(2kk k -- 又N 为AB 中点, 有21(x 1+x 2)=1 ∴k (2–k )=2–k 2,解得k =1 故AB ∶y =x +1 (2)解出A (–1,0)、B (3,4)得CD 的方程为y =3–x 与双曲线方程联立 消y 有x 2+6x –11=0②记C (x 3,y 3)、D (x 4,y 4)及CD 中点M (x 0,y 0)由韦达定理可得x 0=–3,y 0=6∵|CD |=104)()(243243=-+-y y x x ∴|MC |=|MD |=21|CD |=210 又|MA |=|MB |=102)()(210210=-+-y y x x 即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆8 提示 f ′(x )=3x 2–3=3(x –1)(x +1)易确定f (–1)=2是极大值,f (1)=–2是极小值 当–2<a <2时有三个相异交点课前后备注。

高三数学复习备考讲座PPT课件

高三数学复习备考讲座PPT课件
第32页/共92页
11.空间向量: 旧考纲对立体几何有A,B两种要求,
考生可以不掌握空间向量知识,新考纲 突出了空间向量的应用,要求能用向量 语言表述线面平行、垂直关系,能用向 量方法证明线面位置关系的一些定理, 解决空间三种角的计算问题.
第33页/共92页
例(09年浙江卷理)如图,平面PAC⊥平 面ABC,△ABC是以AC为斜边的等腰直角三角 形,E,F,O分别为PA,PB,AC的中点,AC= 16,PA=PC=10.
大小分别为2和4,则F3的大小为 ( )
A. 6 B. 2
C.2 5 D.2 7
第29页/共92页
9.解三角形:
新考纲要求能运用正弦定理、余弦 定理等知识和方法解决一些与测量和 几何计算有关的实际问题,强调解三 角形的实际应用.
第30页/共92页
例(09年宁夏/海南卷)为了测量两山顶M, N间的距离,飞机沿水平方向在A,B两点进行 测量,A,B,M,N在同一个铅垂平面内,飞 机能够测量的数据有俯角和A,B间的距离, 请设计一个方案,包括:①指出需要测量的 数据(用字母表示,并在图中标出);②用 文字和公式写出计算M,N间的距离的步骤.
数y=ax(a>0且a≠1)的反函数,其图像
经过点( a, a),则f(x)=
A.log2 x B.log1 x
C.
1 2x
2
() D.x2
第21页/共92页
3.圆的方程: 新考纲要求能根据给定的两个圆的方程
判定两圆的位置关系,提高了考查圆方程的 能力要求.
例(09年江苏卷)已知圆C1:(x+3)2+(y-1)2 =4和圆C2:(x-4)2+(y-5)2=4. (1)若直线l过点A(4,0),且被圆C1截得的弦长

高考数学专题讲座ppt课件

高考数学专题讲座ppt课件

重视近五年新课程高考试题的演练。
21
1.选择、填空题的强化训练.
选择题要在速度,准确率上下功夫.定
时定量进行训练(每周1~2次),总量不少 于8次,14(理8+6、文10+4)道选择、填空 题一般用时30~50分钟,“优秀生” 要争取 有更多的时间完成解答题。做选择填空题要
重视直接解法的训练,不要过分依赖特殊解
强化训练 提炼方法
通过专题复习和综合演练(套卷,选择、填空题的专项 训练等),达到对知识的全面整合。在整套试卷的模拟 训练中,对错题所涉及到的知识点,题型方法、数学思 想等方面,自我检查,及时补救。做到“二个强化二个 重视” :
选择、填空题的强化训练.
前三个大题的强化训练。
重视初中与高中、高中与大学衔接知识的复习。
出同样的写出参数方程的要求。
8
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
高考数学专题讲座:
科学备考 迈向成功
1
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
2
第一阶段【现在~Iห้องสมุดไป่ตู้(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。

《高考数学专题讲座》课件

《高考数学专题讲座》课件

平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理

2024届高考数学复习策略讲座

2024届高考数学复习策略讲座

从高考数学命题改革看高三数学备考方略-以全国新高考数学一卷为例2024届高考数学复习专题交流的话题二轮复习进度安排2 备课组复习备考的具体第暗01二论复习进度安5月10日~6月02日 继续提高解题能力,完 成各地市质检为主的训 练,结合各地质检查缺 补漏。

训练能力为主的综合训 练 ;2月1日~4月15日完成以主干知识为主的专题复 习,巩固第一轮复习成果;第二阶段:综合演练4月15日~5月10日 完善知识体系,完成以基础知识全面深入(上课)训练要限时二轮复习错题要循环提前安排平行班复习进度安排提前班依据学情稳中求进第二学明教学进度词划02备课组复习备考的具体策路教 研 活 动1周教研集体教研日教研座位统— 随时交流研讨分享收集问题学习教研集体备课学习教研蓝皮书、新高考研讨会课件等集体资料。

每周一上年时间 一周二周三周四周五 时间 第一套 第二套 第三套第一节 第一节 第二节 第二节 第三节第三节 第四节第四节 午休第五节第五节 午休第六节 第六节 第七节 第七节 晚读第八节 晚饭第九节晚自习集体备课(一人主讲,二次教研,全体发言。

每周西19.00-20.100:00( 周周生题发言安排表沙县第一中学高 年段 学科集体备课活动提纲集体备课时间: 年 月 日 主讲人:课程章节:计划授课时间: 年 月 日至 年 月 日共 课时 授课计划:第1课时:【教学重难点】 【学生易错点分析】【教师必讲、学生必会知识归纳】【教材处理建议】结合教材教辅中的内容,提出教学建议,哪些课上讲、 哪些学生课后看、哪些内容精讲、哪些内容平行班讲、哪些内容提前班讲、哪些考试内容教辅中有缺漏需补 充、补充习题精选等. 【学生练习】如:(课后必做练习、提高练习等分层次作业、校本作业、周测等作业安排) 【作业落实策略】(如上交批改、课堂检测、小组检查等)第2课时: . …二次备课教后反思:(时间安排、难度把握、学生反馈、作业落实等总结反思)集体教研内容下周复习研讨试卷的分析工作安排2、考试安排考试周测月考质检考时间一周二周三周四周五第一节第二节第三节第四节午休第五节第六节第七节晚读晚饭晚自习18:B0-2000周个册实现精准教学讲评课四个侧重侧重错误原因分析侧重思想方法的建立侧重解题总路的优化侧重解题过程的连确性和规范性3作业选择结合每天复习进度,对应选择作业,重在巩固小题练各地模考卷试卷作业类型保分练教师自组卷培优练4、因材施教尖子生辅导学生辅导边缘生辅导以上就是我们备课组针对本学期复习备考的具体做法,有什么不足之处希望各位老师多提宝贵意见,谢家赶考,是植根于中华民族文化基因的求学之路的神圣使命。

高考数学专题讲座 第4讲 解题思想方法之归纳思想探讨

高考数学专题讲座 第4讲 解题思想方法之归纳思想探讨

第4讲:数学思想方法之归纳思想探讨数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。

通常混称为“数学思想方法”。

常见的数学思想有:建模思想、归纳思想,分类思想、化归思想、整体思想、数形结合思想等。

数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。

归纳规律题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律。

它体现了“特殊到一般(再到特殊)”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力。

结合2012年全国各地高考的实例,我们从下面五方面探讨归纳规律性问题的解法:(1)根据数(式)的排列或运算规律归纳;(2)根据图形的排列或运算规律归纳;(3)根据寻找的循环规律归纳;(4)根据一、二阶递推规律归纳;(5)数学归纳法的应用。

一、根据数(式)的排列或运算规律归纳: 典型例题:例1. (2012年江西省理5分)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=【 】A .28B .76C .123D .199 【答案】C 。

【考点】归纳推理的思想方法。

【解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…,故1010123a b +=。

故选C 。

例2. (2012年陕西省理5分) 观察下列不等式213122+< 231151233++<,222111712344+++<……照此规律,第五个...不等式为 ▲ . 【答案】2222211111111234566+++++<。

高考数学专题讲座(四)

高考数学专题讲座(四)

2008年高考数学专题讲座(四)——化归与转化谢金怀(浙江省上虞市上虞中学 312300)解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。

化归与转化思想的实质是揭示联系,实现转化。

一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

转化有等价转化和非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

在不得已的情况下,进行非等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证,它能带来思维的闪光点,找到解决问题的突破口。

我们结合几个例子来谈谈化归与转化的思想方法在解题中的重要作用。

例1.设集合22{(,)|1|}M x y x y x R y R =+=∈∈,,,N x y x y x R y R =-=∈∈{(,)||}20,,,则集合M N 中元素的个数为( )A .1B .2C .3D .4(2)设A 、B 、I 均为非空集合,且满足A B I ⊆⊆,则下列各式中错误的是( ) A C A B IB C A C B I C A C B D C A C B C B I I I I I I I .().()().().()() ====φ解析:(1)将集合M N 中元素个数的符号语言转化为与之等价的文字语言:圆x y 221+=与抛物线x y 20-=交点的个数。

江苏省苏州市2024届高考数学冲刺线上专题讲座:平面解析几何“有解”思维→“优解”思路课件

江苏省苏州市2024届高考数学冲刺线上专题讲座:平面解析几何“有解”思维→“优解”思路课件

苏州市2024届高考冲刺线上专题讲座
【知识链接】椭圆焦点三角形的性质
1.椭圆焦点三角形中的最大张角定理:
已知
P(x0,y0)为椭圆
C:x2 a2
y2
b2
1(a b 0) 上一点,F1,F2 为两焦点,设∠F1PF2 = θ,用 x0 表示出 cos
=______.
解析 记 PF1 a ex0 m , PF2 a ex0 n .
【解析】 e1
a2 a
1

e2
3 2
,由 e2
3e1 可得
3 2
3
a2 1 ,解得 a 2 3 .故选 A.
a
3
苏州市2024届高考冲刺线上专题讲座
考情反馈
试题精讲
学习建议
追踪巩固
【点评】 本题属于课程学习情境,本题离心率的定义,考查学生逻辑思维能力 和运算求解能力.
苏州市2024届高考冲刺线上专题讲座
则代入椭圆方程得
xP 2
9 ,因此 2
OP
xP2 yP2
30 .故选 B. 2
追踪巩固
2
苏州市2024届高考冲刺线上专题讲座
考情反馈
试题精讲
解法二(几何性质+定义):
因为 PF1 PF2 2a 6 ①,
学习建议
PF1 2 PF2 2 2 PF1 PF2 cosF1PF F1F2 2 ,
C
的离心率为
.
【分析】求解离心率问题,根据题中信息,分析几何关系,列出代数关系,即从几何法和代数法入手求解。
苏州市2024届高考冲刺线上专题讲座
考情反馈
试题精讲
学习建议
【解析】解法一:建立如图所示的平面直角坐标系,设 F1 c,0, F2 c,0, B0,t ,

高考解题指导讲座课件

高考解题指导讲座课件
模拟考试
定期进行模拟考试,提高答题速度和应试技 巧。
制定计划
制定合理的复习计划,分配时间给各科目, 确保全面复习。
调整作息
调整作息时间,确保考试当天状态最佳。
考试期间注意事项
时间管理
合理分配时间,先易后难,避免因一 道题目而耽误过多时间。
审题仔细
仔细阅读题目,理解题意,避免因误 解而答错。
保持冷静
高考解题指导讲座课 件
• 高考备考策略 • 各类题型解析 • 解题思路与方法 • 高考注意事项 • 高考改革与趋势 • 学生经验分享与交流
目录
01
高考备考策略
制定复习计划
确定复习目标
制定周计划和月计划
根据个人学习情况,制定具体的复习 目标,如提高分数、掌握特定知识点 等。
将复习计划细化到每周和每月,确保 按计划进行,避免临时抱佛脚。
语文解题思路与方法
拓展思维,发挥想象
语文题目中往往涉及到对文章内容的 理解和拓展,需要发挥想象力和创造 力。在回答问题时,要结合自己的生 活经验和知识储备,拓展思维,提出 有创意的见解和观点。
英语解题思路与方法
积累词汇,打好基础
英语解题的基础是词汇的掌握。因此,要不 断积累英语词汇和短语,打好语言基础。通 过阅读、写作等方式加深对词汇的理解和应
06
学生经验分享与交流
优秀学生备考经验分享
总结词:备考策略
01
注重基础知识的学习,打好扎实的基础。
03
02
制定合理的学习计划,分阶段完成学习任务 。
04
善于总结归纳,形成自己的知识体系。
积极参与课堂讨论,提高自己的思维能力 。
05
06
保持良好的心态,正确对待考试压力。

2024届高考数学一轮总复习第二章函数导数及其应用第四讲幂函数与二次函数课件

2024届高考数学一轮总复习第二章函数导数及其应用第四讲幂函数与二次函数课件
解析:由题意可知,f(x)=2ax2+2x-3<0 在[-1,1]上恒成 立.
当 x=0 时,-3<0,符合题意;
当 x≠0 时,a<321x-312-61,
易得1x∈(-∞,-1]∪[1,+∞),所以当 x=1 时,右边取得 最小值12,所以 a<12.
综上,实数 a 的取值范围是-∞,21. 答案:-∞,21
答案:B
考向 2 二次函数的单调性 通性通法:处理函数的单调性问题要注意数形结合思想的应 用,尤其是求给定区间上的二次函数最值的问题,要先“定性” (作草图),再“定量”(看图求解).
[例 2](多选题)若函数 f(x)=(x-1)·|x+a|在区间(1,2)上单调递
增,则满足条件的实数 a 的值可能是( )
方法二(分离参数):当 x∈[1,3]时,f(x)<-m+5 恒成立, 即当 x∈[1,3]时,m(x2-x+1)-6<0 恒成立. ∵x2-x+1=x-122+34>0, 又 m(x2-x+1)-6<0, ∴m<x2-6x+1.
∵函数 y=x2-6x+1=x-1262+34在[1,3]上的最小值为67, ∴只需 m<67即可. 综上所述,m 的取值范围是-∞,67.
公共点
在(-∞,0]上单 在 R 上 在[0, 在(-∞,0)
调递减;在[0, 单调递 +∞)上 和(0,+∞)
+∞)上单调递增 增
单调递增 上单调递减
(1,1)
【名师点睛】巧记幂函数 y=xα的图象 五个幂函数在第一象限内的图象的大致情况可以归纳为“正 抛负双,大竖小横”,即α>0(α≠1)时的图象是抛物线型(α>1 时 的图象是竖直抛物线型,0<α<1 时的图象是横卧抛物线型), α<0 时的图象是双曲线型.K

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

1题目高中数学复习专题讲座运用向量法解题高考要求平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题重难点归纳1解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识二是向量的坐标运算体现了数与形互相转化和密切结合的思想2向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题3用空间向量解决立体几何问题一般可按以下过程进行思考(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?典型题例示范讲解例1如图,已知平行六面体ABCD—A1B1C1D1的底面 ABCD是菱形,且∠C1CB=∠C1CD=∠BCD(1)求证C1C⊥BD(2)当1CCCD的值为多少时,能使A1C⊥平面C1BD?请给出证明命题意图本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力知识依托解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单错解分析本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系技巧与方法利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可(1)证明 设C B =a , C D =b ,1C C c = ,依题意,|a|=|b |,C D 、C B 、1C C中两两所成夹角为θ,于是DB =a -b ,1CC BD =c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c|·|b |cos θ=0,∴C 1C ⊥BD(2)解 若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由1111()()CA C D CA AA CD CC ⋅=+⋅-=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c|2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c|·cos θ=0,得 当|a =|c |时,A 1C ⊥DC 1,同理可证当|a |=|c|时,A 1C ⊥BD ,∴1CC CD =1时,A 1C ⊥平面C 1BD例2如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点(1)求B N的长;(2)求cos<11,BA CB>的值;(3)求证 A 1B ⊥C 1M 命题意图 本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题知识依托 解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标错解分析 本题的难点是建系后,考生不能正确找到点的坐标技巧与方法 可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标(1)解 如图,以C 为原点建立空间直角坐标系O -xyz 依题意得 B (0,1,0),N (1,0,1)∴|B N|=)01()10()01(222=-+-+-(2)解 依题意得 A 1(1,0,2),C (0,0,0),B 1(0,1,2) ∴1BA =1(1,1,2),CB -=(0,1,2)11BA CB ⋅=1×0+(-1)×1+2×2=3 |1BA|=6)02()10()01(222=-+-+-1||CB == 111111cos ,10||||BA CB BA CB BC CB ⋅∴<>===⋅(3)证明 依题意得 C 1(0,0,2),M (2,21,21)1111(,,0),(1,1,2)22C M A B ==--∴111111(1)1(2)00,,22A B C M A B C M ⋅=-⨯+⨯+-⨯=∴⊥∴A 1B ⊥C 1M例3三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求 (1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值解 (1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+-||2AM ∴==(2)||10,||5AB AC ====D 点分BC 的比为2∴x D =31121227,3121121=+⨯+==+⨯+-D y||AD ==(3)∠ABC 是BA 与B C 的夹角,而BA=(6,8),B C =(2,-5)2629cos 145||||BA BC ABC BA BC ⋅∴====⋅学生巩固练习1 设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A 正方形B 矩形C 菱形D 平行四边形2 已知△ABC 中, AB =a ,A C =b ,a ·b <0,S △ABC =415,|a|=3,|b |=5,则a与b 的夹角是( )A 30°B -150°C 150°D 30°或150°3 将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x-5的图象只有一个公共点(3,1),则向量a=_________4 等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的两个平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________5 如图,在△ABC 中,设AB =a ,A C =b ,AP =c , AD =λa,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c6 正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角7 已知两点M (-1,0),N (1,0),且点P 使,,M P M N PM PN N M N P⋅⋅⋅成公差小于零的等差数列(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与P N的夹角,求tan θ8 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的 中点(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明 BD ∥平面EFGH ; (3)设M 是EG 和FH 的交点,求证 对空间任一点O ,有1(4O M O A O B O C O D =+++参考答案1 解析 AB =(1,2),D C =(1,2),∴AB =D C ,∴AB∥D C ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB|=5,A C =(5,3),|A C |=34,∴|AB|≠|A C },∴ ABCD 不是菱形,更不是正方形; 又B C =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于B C ,∴ABCD 也不是矩形,故选D 答案 D2 解析 ∵21415=·3·5sin α得sin α=21,则α=30°或α=150°又∵a·b <0,∴α=150°答案 C3 (2,0)4 13 cm5 解 ∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb-a ),∴AP =AB +BP =a +m (μb -a )=(1-m ) a+m μb ①又C P 与C D 共线,∴C P =n C D =n (AD -A C )=n (λa-b ), ∴AP =A C +C P =b +n (λa -b )=n λa+(1-n ) b ② 由①②,得(1-m )a +μm b =λn a+(1-n ) b∵a与b 不共线,∴110110m a n m m n n m λλμμ-=+-=⎧⎧⎨⎨=-+-=⎩⎩即 ③解方程组③得 m =λμμλμλ--=--11,11n代入①式得c =(1-m ) a+m μb =πμ-11[λ(1-μ) a+μ(1-λ)b ]6 解 (1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a )(2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1M C =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,02a )由于1M C ·AB=0,1M C ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角∵1AC=(,),(0,,),222a a a A M -=22190244a AC AM a a ∴⋅=++=13||,||2AC AM a ====而2194cos ,322aAC AM a∴<>==⨯所以1AC AM与所成的角,即AC 1与侧面ABB 1A 1所成的角为30°7 解 (1)设P (x ,y ),由M (-1,0),N (1,0)得, PM =-M P=(-1-x ,-y ),PN N P =-=(1-x ,-y ), M N =-N M=(2,0),∴M P ·M N =2(1+x ), PM ·P N=x 2+y 2-1,N M N P ⋅ =2(1-x )于是,,,M P M N PM PN N M N P ⋅⋅⋅是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆(2)点P 的坐标为(x 0,y 0)220012,||||PM PN x y PM PN ⋅=+-=⋅===cos ||PM PN PM PNθ⋅∴==⋅010cos 1,0,23x πθθ<≤∴<≤≤<||3cos sin tan ,411cos 1sin 0222y x x =-==∴--=-=∴θθθθθ8 证明 (1)连结BG ,则 1()2EG EB BG EB BC BD EB BF EH EF EH =+=++=++=+由共面向量定理的推论知 E 、F 、G 、H 四点共面,(其中21BD=EH )(2)因为1111()2222EH AH AE AD AB AD AB BD =-=-=-=所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知12EH BD =,同理12FG BD = ,所以EH FG = ,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以 1111111()[()][()]2222222OM OE OG OE OG OA OB OC OD =+=+=+++ 1().4O A O B O C O D=+++课前后备注。

高考数学解题技巧讲义194页

高考数学解题技巧讲义194页

高考数学解题技巧讲义194页一、概述高考数学考试一直是考生们最为担心的科目之一。

而数学解题技巧的掌握则是高考数学考试中取得好成绩的关键之一。

为了帮助广大考生更好地备战高考数学考试,我们特意整理归纳了一些高考数学解题技巧,以讲义的形式呈现,希望对考生们有所帮助。

二、基本技巧1. 熟练掌握基础知识在备战高考数学考试时,首先要做的就是熟练掌握基础知识。

只有基础知识扎实,才能在解题过程中游刃有余,避免在基础问题上出现失误。

建议考生们在平时多加强基础知识的学习,做到熟练掌握。

2. 注重思维训练在解题过程中,良好的思维能力是至关重要的。

建议考生们注重思维训练,可以通过做一些思维训练题来提高自己的解题能力,培养良好的解题思路。

3. 熟练运用解题方法掌握多种解题方法,并且能够熟练运用这些方法是高考数学考试成功的关键之一。

建议考生们在平时的学习中多多尝试不同的解题方法,培养自己的解题技巧,提高解题效率。

三、具体技巧1. 代入法在解决一些复杂的数学题目时,代入法是一种常用的解题方法。

通过将已知数值代入到方程中进行计算,可以帮助考生们更好地理解问题,并得出正确的答案。

2. 勾股定理的应用勾股定理在高考数学中出现的频率较高,考生们要熟练掌握勾股定理的应用方法,能够灵活运用在解题过程中,这对于提高解题效率和得分具有重要意义。

3. 几何图形分析法对于一些几何题目,采用几何图形分析法是一种比较常见的解题方法。

通过画图、分析图形的性质,可以帮助考生们更好地理解问题,找到解题的突破口。

4. 利用比值解题在解决一些比例题目时,可以灵活运用比值的概念,通过设立方程,建立比例关系,从而解题。

考生们要熟练掌握比值的运用方法,能够灵活运用在解题过程中。

四、总结通过本文的讲义,我们向考生们介绍了一些高考数学解题的基本技巧和具体方法。

通过不断地训练和实践,相信考生们在备战高考数学考试时能够熟练掌握各种解题方法,取得优异的成绩。

希望广大考生们能够在备战高考数学考试时,根据本文提供的解题技巧进行实践,相信一定能够取得理想的成绩。

高考数学总复习第四讲:参数问题

高考数学总复习第四讲:参数问题

高考数学总复习第四讲:参数问题一、专题概述:什么是参数数学中的常量和变量相互依存,并在一定条件下相互转化.而参数(也叫参变量)是介于常量和变量之间的具有中间性质的量,它的本质是变量,但又可视为常数,正是由于参数的这种两重性和灵活性,在分析和解决问题的过程中,引进参数就能表现出较大的能动作用和活力,―引参求变‖是一种重要的思维策略,是解决各类数学问题的有力武器.参数广泛地存在于中学的数学问题中,比如:代数中、函数的解析式,数列的通项公式;含参数的方程或不等式;解析几何中含参数的曲线方程和曲线的参数方程等等.参数是数学中的活泼―元素‖,特别是一个数学问题中条件与结论涉及的因素较多,转换过程较长时,参数的设定和处理的作用尤为突出,合理选用参数,并处理好参数与常数及变数的联系与转换,在某些问题的求解过程中起到了十分关键的作用.二、例题分析1.待定系数法待定系数法是指利用已知条件确定一个解析式或某一数学表达式中的待定参数的值,从而得到预期结果的方法.待定系数法是解决数学问题时常用的数学方法之一.要判断一个数学问题能否使用待定系数法求解,关键是要看所求数学问题的结果是否具有某种确定的数学表达式,如果具有确定的数学表达式,就可以使用待定系数法求解.(1)用待定系数法求函数的解析式或数列的通项公式例1.,当x ∈(-2,6)时,f(x)>0当时,f(x)<0求a、b及f(x)解当a=0时,显然不符合题设条件,故a≠0,于是可由题设条件画出f(x)的草图.如图所示由图知,x=-2和x=6是方程的两根,a<0利用一元二次方程的根与系数的关系,得:解得∴例2.已知函数是奇函数,当x>0时,f(x)有最小值2,并且x>0时,f(x)的递增区间求函数f(x)的解析式.解∵f(x)是奇函数,∴f(-x)=-f(x)即,从而求得c=0∵a>0,b>0,当x>0时,当且仅当,即时取等号.即当时,f(x)取最小值,得a=b2∵x>0时,f(x)的递增区间是,故时,f(x)取得最小值∴,故a=4,从而b=2∴.注:本题给出函数f(x)的表达形式,欲求f(x)的解析式,就是利用待定系数法,根据题设条件求出a、b、c的值,例3.已知数列{a n}的通项,是否存在等差数列{b n},使,对一切自然数n都成立,并说明理由.分析题目给出的条件是等式,等差数列{b n}具有确定的形式,可设b n=a1+(n-1)d或b n=pn+q,这两者是等价的,可利用待定系数法,根据题设条件看参数a1,d或p,q的值是否存在.解法一:假设存在等差数列{b n},使对一切自然数n都成立.设(p,q为待定系数),则令n=1,得p+q=4 ①令n=2,得5p+3q=18 ②由①②联立,解得p=3,q=1故b n=3n+1,但这样得到的{b n}只是必要条件,也就是还必须证明其充分性,需用数学归纳法证明:对一切自然数n,等式:成立(证明略)解法二:可设,请同学们自行完成.(2)用待定系数法求曲线方程含参数的曲线方程中,参数值确定,方程随之确定,这就为求曲线方程提供了一种有效方法——待定系数法,这是平面解析几何的重要内容.例4.已知抛物线的对称轴与y轴平行,顶点到原点的距离为5;若将抛物线向上移3个单位,则在x轴上截得的线段为原抛物线在x轴上截得线段的一半;若将抛物线向左平移1个单位,则抛物线过原点,求抛物线的方程.解根据题设可设所求的抛物线方程为:其中h,a,k为待定系数,因此,必须建立关于h,a,k的三个独立等式.由顶点到原点的距离为5,知①由抛物线(*)向上平移3个单位后的方程为:令y=0,得方程:,设其二根为x1,x2,则在x轴上截得线段长为:在原抛物线(*)中,令y=0,得设其二根式为x3,x4,则在x轴上截得的线段长为:依题意有:②又由抛物线(*)向左平移1个单位后的方程:过原点,得③由①②③联立,解方程组得:故所求抛物线方程为:例5.若双曲线C满足下列三个条件:①C的实轴在y轴上;②渐近线方程为:;③当A(5,2)到此双曲线上动点P的最小距离为3.求双曲线C的方程.解由故所求双曲线的中心为(0,2),又实轴在y轴上,故设双曲线方程为 (*)由渐近线的斜率知:即b=2a故所求方程(*)化简为:设双曲线上点P(x,y)到点A(5,2)的距离为d,则=时,d2最小值5+a2依题意有:5+a2=9,∴a2=4故所求双曲线C的方程为:说明引入含参数的曲线方程,用以表示具有某种共同性质的曲线系,再利用题设条件确定参数的值,从而求得曲线的方程,这种待定系数法,体现了引参求变,变中求定的思维策略.2.含参数的方程与不等式例6.设a ∈R,且a≥0,在复数集C内解关于z的方程:.解由原方程可得,可知z为实数或纯虚数.若z ∈R,则,由原方程化为由于a ≥0,判别式Δ=4+4a>0恒成立.解得故若z为纯虚数,设,原方程化为判断式Δ=4(1-a),当时,此时,当a>0时,△<0,方程无实根,原方程无解,综上,当时,原方程的解是;当a>0时,原方程的解是例7.已知a∈R,解不等式解若a=0,则不等式等价于两个不等式组:(Ⅰ)(Ⅱ)当a<0时,(Ⅰ)(Ⅱ)当a>0时(Ⅰ)解集为φ(Ⅱ)综上:当a<0时,解集为;当a=0时,解集为φ;当a>0时,解集为.说明通过这一组含参数的方程与不等式的问题的分析研究可以看出,方程或不等式的解集与各项系数之间有着相互确定的密切关系,引入参数的思想方法,可深化对这种关系的认识提高相互转化的能力.3.含参数的曲线方程与曲线的参数方程.(1)含参数的曲线方程的应用.例8.已知函数(m为参数)求证(Ⅰ)不论m取何值,此抛物线的顶点总在同一直线L上,(Ⅱ)任意一条平行于L且与抛物线相交的直线被各抛物线截得的线段长都相等.解将解析式变形为:可知抛物线的顶点坐标是即顶点轨迹的参数方程是消去参数m,得,说明不论m取何值,顶点均在直线L:上.(Ⅱ)设平行于L的直线L的方程为y=x+b,代入抛物线方程,得当,即时,直线L与抛物线有两个交点A和B.=与m无关说明直线L被各抛物线截得的线段长都相等.(2)曲线的参数方程的应用例9.点P(x,y)在椭圆上移动时,求函数的最大值.解析显然,要设法将二元函数的最值问题转化为求一元函数的最值问题,因此选用该椭圆的参数方程.由于代入函数解析式中,于是==令∴于是当即时,u有最大值.∴时,u的最大值为.三、解题训练1.函数在一个周期内,当时,y有最大值1,当时,y有最小值–3,求函数解析式.2.已知二次函数,满足,,求f(-2)的取值范围.3.是否存在常数a,b,c使得等式对于一切自然数n都成立?并证明.4.已知,试求a的取值范围,使.5.已知关于x的二次函数在区间内单调递增,求a 的取值范围.6.已知两点P(-2,2),Q(0,2)以及直线L∶y=x,设弦长为的线段AB在直线L上移动,求直线PA和QB的交点M的轨迹方程.7.已知两定点A(-1,0)、B(1,0),P是圆C:上任意一点,求使的最小值及相应的点P坐标.8.过椭圆的一个焦点F1作一直线交椭圆于M,N两点,设,问α取何值时,|MN|等于椭圆短轴的长.四、练习答案1.2.3.存在常数a=3,b=11,c=104.5.6.7.选用圆的参数方程:最小值为20,此时点P坐标为 8.。

《高考数学专题讲座》课件

《高考数学专题讲座》课件

提供大量习题和训练材料,帮助 学生巩固基础知识和提高解题速 度。
问题解决
引导学生进行实际问题的解决, 培养数学思维和创新能力。
数学在科学、工程和金融中的实际应用
1
科学研究
数学在科学研究中起到关键的作用,帮助解决实际问题。
2
工程设计
工程师需要数学来优化设计,确保工程的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决策和风险管理。
数学教育中的常见误解及应对策略
数学难度
解释数学难度的原因,鼓励学生从容面对挑战。
数学应用
展示数学在日常生活中的实际应用,并消除对数学的误解。
数学智力
解释数学智力的不同表现形式,并鼓励每个人发挥自己的潜力。
不同类型的数学问题及解题方法
代数问题
介绍解决代数问题的关键方法,如方程求解和代数 运算。
几何问题
数据分析
学习统计学知识,掌握数据分析 方法和技巧。
数据可视化
掌握数据可视化工具和技术,将 数据转化为直观的图形呈现。
现代社会中数学素养的重要性

科学研究
数学在科学研究中起到关键的作用,帮
工程设计
2
助解决实际问题。
工程师需要数学来优化设计,确保工程
的可靠性和性能。
3
金融投资
数学在金融领域中的应用有助于投资决 策和风险管理。
《高考数学专题讲座》 PPT课件
介绍高中数学课程和考试格式,让学生了解高考数学的重要性和挑战。
代数和几何的关键概念和技能
代数知识
包括方程、不等式、函数和图形等数学运算。
几何概念
涵盖点、线、面和空间的属性、关系以及常见几何图形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习 解题思维专题讲座之一数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。

根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。

观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。

要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

例如,求和)1(1431321211+++⋅+⋅+⋅n n .这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。

(2)善于联想联想是问题转化的桥梁。

稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。

由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。

(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。

可见,解题过程是通过问题的转化才能完成的。

转化是解数学题的一种十分重要的思维方法。

那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。

例如,已知cb ac b a ++=++1111,)0,0(≠++≠c b a abc , 求证a 、b 、c 三数中必有两个互为相反数。

恰当的转化使问题变得熟悉、简单。

要证的结论,可以转化为:0))()((=+++a c c b b a思维变通性的对立面是思维的保守性,即思维定势。

思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。

它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。

综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。

要想提高思维变通性,必须作相应的思维训练。

二、思维训练实例(1) 观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。

所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。

例1 已知d c b a ,,,都是实数,求证.)()(222222d b c a d c b a -+-≥+++思路分析 从题目的外表形式观察到,要证的 结论的右端与平面上两点间的距离公式很相似,而 左端可看作是点到原点的距离公式。

根据其特点, 可采用下面巧妙而简捷的证法,这正是思维变通的体现。

证明 不妨设),(),,(d c B b a A 如图1-2-1所示,则.)()(22d b c a AB -+-=,,2222d c OB b a OA +=+=在OAB ∆中,由三角形三边之间的关系知:AB OB OA ≥+ 当且仅当O 在AB 上时,等号成立。

因此,.)()(222222d b c a d c b a -+-≥+++思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。

学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。

因此,平时应多注意数学公式、定理的运用练习。

例2已知x y x62322=+,试求22y x +的最大值。

解 由 x y x62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--思路分析 要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值。

上述解法观察到了隐蔽条件,体现了思维的变通性。

思维障碍 大部分学生的作法如下:由 x y x62322=+得 ,32322x x y +-=,29)3(2132322222+--=+-=+∴x x x x y x∴当3=x 时,22y x +取最大值,最大值为29这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误。

因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件, 又要注意次要条件,这样,才能正确地解题,提高思维的变通性。

有些问题的观察要从相应的图像着手。

例3已知二次函数),0(0)(2>=++=a c bx ax x f 满足关系)2()2(x f x f -=+,试比较)5.0(f 与)(πf 的大小。

思路分析 由已知条件)2()2(x f x f -=+可知,在与2=x 左右等距离的点的函数值相等,说明该函数的图像关于直线2=x 对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。

解 (如图1-2-2)由)2()2(x f x f -=+,知)(x f 是以直线2=x 为对称轴,开口向上的抛物线它与2=x 距离越近的点,函数值越小。

)()5.0(25.02ππf f >∴->-思维障碍 有些同学对比较)5.0(f 与)(πf 的大小,只想到求出它们的值。

而此题函数)(x f 的表达式不确定无法代值,所以无法比较。

出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。

提高思维的变通性。

(2) 联想能力的训练 例4在ABC ∆中,若C ∠为钝角,则tgB tgA ⋅的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定思路分析 此题是在ABC ∆中确定三角函数tgB tgA ⋅的值。

因此,联想到三角函数正切的两角和公式tgBtgA tgBtgA B A tg ⋅-+=+1)(可得下面解法。

解 C ∠ 为钝角,0<∴tgC .在ABC ∆中)(B A C C B A +-=∴=++ππ且均为锐角,、B A[].1.01,0,0.01)()(<⋅>⋅-∴>><⋅-+-=+-=+-=∴tgB tgA tgB tgA tgB tgA tgB tgA tgBtgA B A tg B A tg tgC 即 π故应选择(B )思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。

例5若.2,0))((4)(2z x y z y y x x z+==----证明:思路分析 此题一般是通过因式分解来证。

但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。

于是,我们联想到借助一元二次方程的知识来证题。

证明 当0≠-y x 时,等式 0))((4)(2=----z y y x x z可看作是关于t 的一元二次方程0)()()(2=-+-+-z y t x z t y x 有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有:1=--yx zy 即 z x y +=2若0=-y x ,由已知条件易得 ,0=-x z 即z y x ==,显然也有z x y +=2.例6 已知c b a 、、均为正实数,满足关系式222c b a=+,又n 为不小于3的自然数,求证:.n n nc b a<+思路分析 由条件222c b a=+联想到勾股定理,c b a 、、可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。

证明 设c b a 、、所对的角分别为A 、B 、.C 则C 是直角,A 为锐角,于是,cos ,sin cbA c a A ==且,1cos 0,1sin 0<<<<A A 当3≥n时,有A A A A n n 22cos cos ,sin sin <<于是有1cos sin cos sin 22=+<+A A A A n n即 ,1)()(<+nn cb c a 从而就有 .n n nc b a<+思维阻碍 由于这是一个关于自然数n 的命题,一些学生都会想到用数学归纳法来证明,难以进行数与形的联想,原因是平时不注意代数与几何之间的联系,单纯学代数,学几何,因而不能将题目条件的数字或式子特征与直观图形联想起来。

(3) 问题转化的训练我们所遇见的数学题大都是生疏的、复杂的。

在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。

恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。

○1 转化成容易解决的明显题目 例11 已知,1111=++=++cb a cb a 求证a 、b 、c 中至少有一个等于1。

思路分析 结论没有用数学式子表示,很难直接证明。

首先将结论用数学式子表示,转化成我们熟悉的形式。

a 、b 、c 中至少有一个为1,也就是说111---c b a 、、中至少有一个为零,这样,问题就容易解决了。

证明 .,1111abc ab ac bc cb a =++∴=++于是 .0)()1()1)(1)(1(=+++-++-=---c b a bc ac ab abc c b a∴ 111---c b a 、、中至少有一个为零,即a 、b 、c 中至少有一个为1。

思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。

因此,多练习这种“翻译”,是提高转化能力的一种有效手段。

相关文档
最新文档