核酸分子杂交技术与核酸序列测定

合集下载

核酸分子杂交名词解释

核酸分子杂交名词解释

核酸分子杂交名词解释核酸分子杂交是一种重要的分子生物学技术,用于研究核酸的结构、功能和相互作用,并在基因克隆、基因表达调控等领域具有广泛的应用。

以下是与核酸分子杂交相关的重要名词的解释:1. 核酸分子杂交(Nucleic Acid Hybridization):指将两个不同的核酸分子(DNA或RNA)通过互补的碱基配对形成双链结构的过程。

核酸分子杂交可用于分析DNA或RNA的序列、测定基因表达水平以及检测特定的核酸序列。

2. 探针(Probe):一条含有特定序列的标记化核酸分子,用于与目标序列进行杂交。

探针通常由放射性核素、荧光染料或酶等标记物标记,以便于在实验中检测其位置和数量。

3. 靶标(Target):指待被杂交的目标核酸分子,它可以是DNA或RNA,含有待检测或待分析的特定序列。

靶标可以来自于生物样品,如组织、细胞或血清等。

4. 互补序列(Complementary Sequence):两条核酸分子间相互配对的碱基序列。

在DNA分子中,腺嘌呤(A)与鸟嘌呤(G)通过双氢键相互配对,胸腺嘧啶(T)与胞嘧啶(C)相互配对;在RNA分子中,腺嘌呤(A)与尿嘧啶(U)相互配对,胸腺嘧啶(T)与胞嘧啶(C)相互配对。

5. 杂交化(Hybridization):指探针与靶标间通过互补序列形成双链结构的过程。

杂交化通常需要一定的时间和温度条件,以保证探针和靶标的互补碱基序列能够正确配对。

6. 杂交化条件(Hybridization Conditions):影响探针和靶标杂交的因素,包括温度、盐浓度、引物浓度、溶液pH值等。

不同的杂交化条件可选择性地控制互补序列的结合和分离,从而改变杂交的特异性和灵敏度。

7. 杂交化信号(Hybridization Signal):当探针与靶标杂交时,由于探针上的标记物,如放射性同位素或荧光染料的发光、发射或放射活性,而产生的信号。

通过检测杂交化信号的强度和位置,可以确定探针与靶标的结合情况,以及目标序列的存在与数量。

核酸杂交技术全解

核酸杂交技术全解

(二)Southern印迹杂交
Southern印迹杂交(Southern blot hybridization/ Southern blotting)是指DNA与 DNA分子之间的杂交。 可用于基因组DNA的定性与定量分析,重组质粒 和噬菌体的分析等。
(二)Southern印迹杂交
包括两个主要过程: 将待测定核酸分子通过一定的方法转移并结合到 一定的固相支持物(硝酸纤维素膜或尼龙膜)上, 即印迹(blotting)。 固定于膜上的核酸与同位素标记的探针在一定的 温度和离子强度下退火,即分子杂交过程。
Southern印迹
凝胶中DNA分离带
凝胶中DNA 的NaOH变

探针杂交带曝光显 影
Southern杂交的应用
应用 单基因遗传病的基因诊断
基因点突变的检测
临床应用--用于下列疾病的产前诊断 镰型细胞贫血 苯丙酮酸尿症 珠蛋白合成障碍性贫血 假肥大型肌营养不良 血友病 慢性进行型舞蹈病
(4) cDNA探针的标记 (5) 寡核苷酸探针的标记 (6) 单链DNA探针的标记 (7) RNA探针的标记
(1)DNA随机引物标记
随机引物:含有各种可 能排列顺序的寡核苷酸 片段的混合物。
DNA聚合酶ⅠKlenow片段: 保 留 5’→3’DNA 聚 合 酶 活性,弱3’→5’外切酶 活 性 , 无 5’→3’ 外 切 酶活性。
根据杂交探针标记 • 同位素杂交 • 非同位素杂交
根据杂交介质 • 液相杂交 菌落杂交
Southern印迹杂交 • 固相杂交 Northern印迹杂交
点杂交 • 原位杂交 狭缝杂交
分子杂交技术一般过程
☆ 探针制备及标记(同位素或非同位素) ☆ 待测核酸样品制备(分离,纯化) ☆ 杂交(液相,固相,原位杂交) ☆ 杂交后处理(去掉非特异杂交分子) ☆ 显示结果(显色,发光,放射自显影) ☆ 结果分析

[说明]核酸分子杂交及PCR技术

[说明]核酸分子杂交及PCR技术

核酸的分子杂交技术一、核酸分子杂交用标记的已知DNA或RNA片段(探针)来检测样品中未知核酸序列,通过核苷酸间碱基互补的原则发生异源性结合,再经显影或显色的方法,将结合核酸序列的位置或大小显示出来。

待测的核酸序列,可以是克隆的基因片段,也可以是未克隆化的基因组DNA和组织细胞的RNA。

二、核酸分子杂交的分类液相杂交核算分子杂交印记杂交固相杂交原位杂交1.固相杂交:将需要杂交的一条核酸链先固定在固体支持物上,另一条核酸链游离在液体中。

2.液相杂交:参与反应的两条核酸链都游离在液体中。

常用固相杂交类型:Southern印迹杂交、Northern印迹杂、菌落原位杂交、斑点杂交、狭缝杂交、组织原位杂交、夹心杂交等。

三、核酸分子杂交的基本原理1、变性:在某些理化因素的作用下,核酸双链分子碱基对的氢键断裂,疏水作用被破坏,双链螺旋或发夹结构被拆开,有规则的空间结构被破坏,形成单链分子,称为核酸的变性。

﹡引起核酸变性的因素:热、酸、碱、化学试剂(如:尿素、甲酰胺、甲醛等)。

﹡加热变性是最常用的方法,一般加热80-100℃数分钟即可使核酸分子氢键断裂,双链分开。

﹡变性的核酸分子失去了生物活性,同时理化性质也随之改变,其紫外吸收值(A260)也随之升高。

可用紫外吸收的变化来跟踪DNA的变性过程。

以A260吸收值对应温度作图,得到DNA的变性曲线或熔解曲线。

增色效应:DNA变性后对260nm紫外光收增加的现象。

DNA热变性现象双螺旋结构即发生解体,两条链分开形成无规则线团。

同时,一系列物化性质发生改变:260nm处紫外吸收值升高,粘度降低,浮力密度升高。

由于二级结构的丧失,也失去了部分或全部生物活性。

增色效应和减色效应当DNA分子加热变性后,其260nm的紫外吸收会急剧增加的现象称为增色效应。

变性DNA复性后,在260nm处的吸收值减少的现象称为减色效应。

A260值达到最大值1/2时的温度称为解链温度或熔解温度(melting temperature,Tm),此时50%的DNA分子发生了变性。

核酸分子杂交实施方案

核酸分子杂交实施方案

核酸分子杂交实施方案核酸分子杂交是一种重要的实验技术,广泛应用于生物学、医学和生物化学领域。

它通过核酸序列的互补配对来检测、定量和分析特定的核酸分子,因此在基因克隆、基因表达调控、病毒检测等方面有着重要的应用价值。

下面将介绍核酸分子杂交的实施方案,包括实验材料准备、实验步骤和结果分析等内容。

实验材料准备。

1. 核酸探针,根据实验需要设计合适的核酸探针,通常选择20-30个碱基长度的寡核苷酸序列作为探针。

2. 核酸标记物,可以选择放射性同位素标记、酶标记或荧光标记的核酸标记物。

3. 核酸杂交缓冲液,包括盐类、缓冲剂、表面活性剂等成分,用于维持核酸的稳定性和杂交反应的进行。

4. 核酸杂交膜,选择适合的膜材料,如硝酸纤维素膜、尼龙膜等,用于固定核酸样品和进行杂交反应。

5. 核酸杂交仪器,包括恒温振荡器、放射自显影仪等设备,用于控制反应条件和检测结果。

实验步骤。

1. 核酸样品制备,从细胞、组织或体液中提取核酸样品,并进行纯化和定量处理。

2. 核酸标记,将核酸样品与核酸标记物进行反应,标记核酸样品,使其具有检测信号。

3. 核酸杂交,将标记的核酸样品与核酸探针共同加入核酸杂交缓冲液中,进行恒温振荡反应,使其发生互补配对杂交。

4. 杂交膜固定,将杂交反应产物通过滤纸吸附或紫外交联的方式固定在核酸杂交膜上。

5. 杂交膜检测,利用放射自显影仪或荧光成像系统对固定的核酸杂交膜进行检测,观察杂交信号强度和位置。

结果分析。

根据核酸杂交膜的检测结果,可以分析样品中特定核酸序列的存在与否、数量的多少以及位置的分布等信息。

通过比对标准曲线或对照样品,可以定量分析目标核酸的含量,并进行统计学处理和结果解释。

总结。

核酸分子杂交是一种重要的实验技术,通过合理的实施方案和严格的实验操作,可以获得准确、可靠的实验结果。

在实验中需要注意核酸样品的处理和标记、杂交条件的控制、杂交反应产物的固定和检测等关键步骤,以确保实验的成功进行和结果的可靠性。

分子诊断学知识点总结

分子诊断学知识点总结

分子诊断学知识点总结分子诊断学是指利用分子生物学的技术和方法,对生物体内的DNA、RNA、蛋白质等分子水平进行诊断和检测的一门学科。

随着分子生物学技术的不断发展和进步,分子诊断学在临床诊断、疾病预防和治疗等方面发挥着越来越重要的作用。

下面将对分子诊断学的基本原理、常见技术和应用进行概述。

一、基本概念1. DNA、RNA和蛋白质的基本结构和功能DNA是生物体内的遗传物质,包含了细胞的遗传信息,主要存在于细胞核中。

RNA是一种中间体分子,可以将DNA中的遗传信息转录成蛋白质。

蛋白质是生物体内的重要分子,是细胞结构和功能的基本单位。

2. 基因突变与疾病基因是决定生物性状的遗传信息的单位,基因突变是指基因序列发生了变化,可能导致蛋白质功能异常,甚至引发疾病。

3. 分子诊断学的基本原理分子诊断学利用分子生物学技术对生物体内的分子进行检测和分析,从而实现疾病的诊断、预防和治疗。

二、常见技术1. 聚合酶链式反应(PCR)PCR是一种在体外扩增DNA片段的技术,可以从少量的DNA样本中扩增出大量的DNA片段,是分子诊断学中常用的技术手段。

2. 核酸杂交技术核酸杂交技术是一种通过DNA或RNA的互补配对进行检测的方法,可以用于寻找特定基因或病毒的存在。

3. 蛋白质质谱分析蛋白质质谱分析是一种通过蛋白质的质量和结构来对蛋白质进行分析和检测的技术。

4. 基因测序技术基因测序技术是一种对DNA序列进行测定和分析的技术,可以帮助人们了解基因的结构和功能。

5. 基因芯片技术基因芯片技术是一种可以在一个芯片上同时检测多个基因的技术,可以用于疾病的诊断和预测。

三、应用领域1. 临床诊断分子诊断学在临床诊断中可以对各种疾病进行快速和精准的诊断,如肿瘤、遗传病、感染病等。

2. 疾病预防分子诊断学可以通过对病原体的检测和分析,帮助人们预防感染性疾病的发生和传播。

3. 个体化治疗分子诊断学可以根据个体的基因信息,为患者提供个性化的治疗方案,提高治疗的效果和减少副作用。

核酸分子杂交

核酸分子杂交

RNA提取
RNA变性电泳 印迹转移 预杂交 杂交
RNase 具有活性高,不 易灭活 抑制RNase活 性
所有的试剂和器皿都 必须进去除RNase 处理!!
变性处理:甲醛、乙二醛
破坏RNA二级结构
洗膜
放射自显影或化学显色
基本步骤
1. RNA经变性电泳完毕后,可立即将RNA转 移至硝酸纤维素滤膜上。 2. 将该杂交膜夹于两张滤纸中间,用真空烤箱 于80℃干燥0.5-2小时。 3. 预杂交,时间为1-2小时。 4. 杂交 过夜 5. 洗膜 6. 用X光片进行放射自显影,附加增感屏于70℃曝光24-48小时。

Northern 杂交与Southern 杂交很相似。主 要区别是被检测对象为RNA,其电泳在变 性条件下进行,以去除RNA 中的二级结构, 保证RNA 完全按分子大小分离。

变性电泳主要有3 种:
甲醛变性电泳 乙二醛变性电泳
羟甲基汞变性电泳

电泳后的琼脂糖凝胶用与Southern 转移相 同的方法将RNA 转移到硝酸纤维素滤膜上, 然后与探针杂交。
3. 屏蔽防护:利用射线通过物质时,与物 质相互作用使其能量被物质吸收而逐渐 减弱的原理,可以设置一定的屏障物来 进行防护。常用的材料有水、砖、大理 石、混凝土、重金属铅等。
32P
有机玻璃版 铅衣
4. 利用衰变:可利用放射性物质存在自发 衰变,其活性随之减少的原理进行外照 射防护。如:半衰期小于15天的放射性 废物,允许放置10个半衰期后作一般废 物处理。
注意事项 1. DNase I的量 2. dNTP a-P 3. 温度4-16℃
Pol I DNase I
两条链都可 被标记
随机引物合成法

核酸分子杂交的种类及应用

核酸分子杂交的种类及应用

核酸分子杂交摘要:核酸分子杂交技术就是基因工程中重要的研究手段,就是目前生物化学、分子生物学、与细胞生物学研究中应用最广泛的技术之一。

也就是现阶段定性、定量与定位检测DNA与RNA序列片段必须掌握的基本技术与方法。

本文主要介绍了核酸分子的原理,分类以及它的相关应用。

关键词:核酸分子;分类;应用;1、核酸杂交技术的原理核酸分子(DNA、RNA)就是由许多单核苷酸分子通过3,5磷酸二酯键相互连接所形成的生物大分子。

DNA分子双链的形成,DNA的复制,以及RNA的转录等都遵循碱基互补配对原则。

DNA就是由两条互补配对的单核苷酸链通过氢键连接的双链分子。

双链结构的核酸分子在加热、偏碱环境或受尿素、甲酰胺等氢键解离剂的作用,则形成单链分子,称为核酸“变性”。

两条单链核甘酸若有同源顺序,则在一定条件下,她们的碱基互补配对,从而形成双链分子,称为核酸“复性”或核酸“杂交”[1]。

核酸分子杂交就是用核酸分子的变性,复性等理化性质而设计的一种常用技术。

通常利用一种顺序已知,并被放射性同位素标记的核酸片段瞧作为探针,与未知样品的核酸进行分子杂交,如果样品中的核酸与探针有碱基互补顺序就能形成杂交分子。

此时标有同位素或生物素的探针则固定在标本上,用放射性自显影法或免疫组化法可显示出探针[2]。

核酸分子杂交可分为液相杂交、固相杂交与原位杂交[3]。

2、固相分子杂交:将待测的靶核甘酸链预先固定在固体支持物(硝酸纤维素膜或尼龙膜)上,而标记的探针则游离在溶液中,进行杂交反应后,使杂交分子留在支持物上,然后再进行检测与计算。

固相分子杂交又可分为:Southern印迹杂交、Northern印迹杂交、Western印迹杂交、斑点杂交、菌落原位杂交等。

2、1 Southern印迹杂交1975年建立的一种DNA转移方法。

该法利用硝酸纤维素膜(或经特殊处理的滤纸或尼龙膜)具有吸附DNA的功能。

首先用酚提法从待检测组织中提取DNA,然后以限制性内切酶消化待测的DNA片段,接着进行琼脂糖凝胶电泳使DNA按分子量大小分离,电泳完毕后,将凝胶放入碱性溶液中使DNA变性,解离为两条单链。

核酸杂交

核酸杂交

•第一节 核酸分子杂交的基本原理 •第二节 核酸探针 •第三节 核酸分子杂交技术
第一节
核酸分子杂交的基本原理
DNA和DNA链、RNA与DNA链或两条RNA链之间, 只要具有一定的互补序列均可在适当的条件下发生杂 交。常用已知的 DNA 或 RNA 的片段作为探针,包括 特异的DNA序列,或转录的RNA序列或cDNA序列, 或人工合成的寡核苷酸片段。
(4)
与核酸分子的结合稳定牢固,
非特异性吸附少。
(5)
具有良好的机械性能。
下面介绍几种常用的固相支持物:
(1) 硝酸纤维素膜:特别适用于蛋白质(如抗体和酶等) 的非放射性标记探针的杂交体系。 (2) 尼龙膜(nylon membrane):尼龙膜结合单链及双链 DNA和RNA的能力较硝酸纤维素膜更强,耐碱处理适 合于一步法的菌落原位印迹法。 尼龙膜的缺点是不宜使用非同位素探针,即使用各种 蛋白 ( 如 BSA 、牛奶等 ) 进行预杂交,产生的杂交信号 本底较高,与非特异吸附有关。 PVDF膜:比尼龙膜结合力更强,且在预杂交中很容 易被封闭,使用同位素和非同位素探针都可产生较浅 的本底,而且结实耐用,可以多次杂交。
同源样品杂交后,阳性结果产生斑点,故称斑点杂
交。
4.反向斑点杂交(reverse dot hybridization):直接将不 同的探针点印并固定在膜上,再将待测的DNA样品与 之杂交,这样一次杂交反应就可以判断待测 DNA是否 含有这些探针的同源序列。
5.菌落或噬菌斑杂交(图7-13)。
二、核酸原位杂交
⒊电转法如图7-11所示。
㈣ 印迹类型
Southern印迹杂交法(Southern blot hybridization)(图 7-12)。

核酸分子杂交概念解释

核酸分子杂交概念解释

核酸分子杂交概念解释
核酸分子杂交是指两条核酸链(通常是DNA或RNA链)通过互相结合,形成一个稳定的双螺旋结构的过程。

这种结合是通过碱基间的氢键形成的,碱基之间的配对是高度选择性的。

DNA分子的碱基配对规则是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。

核酸分子杂交在生物学和分子生物学中有许多应用,其中最为著名的是分子杂交技术(molecular hybridization technique)。

这一技术可用于检测和分析DNA或RNA 的序列相似性,以及研究基因表达、基因组结构等方面。

以下是核酸分子杂交的一些关键概念:
1. 碱基配对:核酸分子的稳定性来自于两条链之间的碱基配对。

在DNA中,A与T 形成两个氢键,G与C形成三个氢键。

RNA中的规则类似,但是T被替换为尿嘧啶(U)。

2. 选择性:核酸分子杂交的过程是高度选择性的,只有符合碱基配对规则的两条链能够结合。

这种选择性是生物体内DNA复制和RNA转录的基础。

3. 热力学稳定性:杂交的稳定性受到环境条件的影响,尤其是温度。

高温通常会导致核酸分子的解离,而低温则有助于形成更稳定的双链结构。

4. 杂交实验:分子生物学中的分子杂交实验利用了核酸分子的互补配对性质。

例如,通过将待测的DNA或RNA与已知序列的标记分子杂交,可以用于检测目标序列的存在、测定相对丰度等。

5. 应用领域:核酸分子杂交技术在基因克隆、基因检测、DNA指纹分析等方面有广泛应用,为研究生物学和遗传学提供了重要工具。

分子生物学 常用分子生物学技术的原理及应用

分子生物学 常用分子生物学技术的原理及应用

(三)基因突变
利用PCR技术可以随意设计引物在体外对目的 基因片段进行嵌和、缺失、点突变等改造。
T G C
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工 作大为简化,也提高了测序的速度;
待测DNA片段既可克隆到特定的载体后进 行序列测定,也可直接测定。
(五)基因突变分析
PCR与其他技术的结合可以大大提高基 因突变检测的敏感性 。
▪ 分子杂交: 不同来源的单链核苷酸链根据碱基互补原则形成
杂种双链的过程。
▪ 分子杂交的目的: 检测DNA和RNA
▪ 探针: 分子杂交中和待测核苷酸链碱基互补的被标记的
核苷酸链。
待测DNA或RNA
探针
碱基对间氢键
增色效应: DNA变性伴随260nm吸收值增高
减色效应: DNA复性伴随260nm吸收值降低
Taq
5’
Taq
5’
R
R
R Taq
R
Taq
R
l
R
3’
Extension Step
1. Strand Displacement
3’
5’
2. Cleavage
3’
5’ 3. Polymerization
3’
Complete
4. Detection
5’ 3’
PCR衍生技术
▪ 反向PCR ▪ 逆转录PCR ▪ 原位PCR ▪ 重组PCR ▪ 不对称PCR ▪ 多重PCR
酵母双杂交系统的建立基于对真核生物转录激 活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
BD
AD
组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响

常用分子生物学和细胞生物学实验技能技术总结介绍

常用分子生物学和细胞生物学实验技能技术总结介绍

精心整理常用分子生物学和细胞生物学实验技术介绍(2011-04-2311:01:29)转载▼标签:分子生物学细胞生物学常用实用技术基本实验室技术生物学实验教育常用的分子生物学基本技术核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。

其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。

杂交的双方是待测核酸序列及探针(probe ),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA 和细胞总RNA 的已知 固相杂交Southern DNA 片段Northern 复杂的盐酸核生物(如人),则因工作量太大,表达的序列所占百分比较低(仅5%左右),价值不大。

cDNA 微点隈杂交(cDNAmicroarrayhybridization )是指将cDNA 克隆或cDNA 的PCR 产物以高度的列阵形式排布并结合于固相支持物上(如:尼龙膜或活化的载玻片)以微点阵,然后用混合的不同DNA 探针与微点阵上的DNA 进行杂交。

再利用荧光、化学发光、共聚焦显微镜等技术扫描微点阵上的杂交信息。

它比差异杂交技术的效率高、速度快、成本低,适用于大规模的分析。

已成商品问世。

其缺点是无法克服保守的同源序列及重序对杂交信息的干扰。

寡核苷酸微点隈杂交(oligonucleotidemicroarrayhybridization )是在特殊的固相支持物上原位合成寡核苷酸,使它共价结合于支持物表面,与平均长度为20-50nt 的混合RNA 或cDNA 探针进行杂交,以提高杂交的特异性和灵敏度。

应用共聚焦显微镜可检测跨越三个数量级的杂交信息。

适用于低丰度mRNA的检测,以区分基因家族不同成员的差异表达特征,或鉴定同一转录在不同组织和细胞中的选择性剪接。

常用的分子生物学基本技术核酸分子杂交技术

常用的分子生物学基本技术核酸分子杂交技术

常用的分子生物学基本技术核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。

其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。

杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。

核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。

根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。

固相杂交固相杂交(solid-phasehybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。

斑步杂交(dot hybridization)是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。

该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。

该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。

印迹杂交(blotting hybridization)Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显色,检测特定大小分子的含量。

可进行克隆基因的酶切图谱分析、基因组基因的定性及定量分析、基因突变分析及限制性长度多态性分析(RELP)等。

Northern印迹杂交:由Southerm印杂交法演变而来,其被测样品是RNA。

Southern杂交技术

Southern杂交技术

一、核酸分子杂交技术
2、核酸分子杂交的分类:
②固相杂交:将参加反应的一条核酸链先 固定在固体支持物上,另一条游离在溶 液中。固体支持物有硝酸纤维素滤膜、 尼龙膜、乳胶颗粒、磁珠和微孔板等。 固相杂交时,未杂交的游离片段可容易 地漂洗除去,膜上的杂交物容易检测和 能防止靶DNA自我复性等优点,故该法最 为常用。
8、杂交结果的检测
② 非放射性核素探针的检测
显色反应:通过连接在抗体或抗生物素蛋白上的显色物质(如酶、荧光 素等)进行杂交信号的检测。常用的检测物质与方法有以下几类:
– 酶法检测:这是最常用的检测方法。通过酶促反应使其底物形成有 色反应产物。最常用的酶是碱性磷酸酶和辣根过氧化物酶。
– 荧光检测法:荧光检测法主要用于非放射性探针的原位杂交检测。 – 化学发光法:化学发光是指在化学反应过程中伴随的发光反应。 – 电子密度标记:利用重金属的高电子密度,在电子显微镜下进行检
二、Southern杂交的基本原理
• 利用Southern印迹法可进行克隆基因的酶切 、图谱分析、基因组中某一基因的定性及定 量分析、基因突变分析及限制性片断长度多 态性分析(RFLP)等。
三、Southern 杂交的主要步骤
1、待测DNA样品的制备、酶切 2、待测DNA 样品的电泳分离:琼脂糖

三、Southern 杂交的主要步骤
5、探针的制备
⑥探针标记 –随机引物法 –缺口平移法 (DNaseI and DNA聚合酶I) –末端标记法 • 碱性磷酸酶-T4多核苷酸激酶 [γ-32p]-ATP标记 DNA/RNA-5′ • 末端转移酶(poly(N*)n) • T4DNA聚合酶/Klenow片断 (粘末端补平)
同源性比较,与非靶区域的同源性不应超过70%或有连 续8个或更多的碱基同源。

核酸分子杂交的方法及其在医学检验中的应用

核酸分子杂交的方法及其在医学检验中的应用

核酸分子杂交的方法及其在医学检验中的应用核酸分子杂交技术及其在医学检验中的应用核酸分子杂交技术是一种技术,可以用来检测和识别特定的基因,查明个体与被研究物之间的关系。

在过去的几十年里,它已经被广泛应用于疾病诊断、环境检测和发现新基因等领域,基本上都要求快速、灵敏和特异性的检测结果,以及定性和定量的研究结果,而这一切都可以通过核酸分子杂交技术来实现。

本文综述其基本原理、步骤、优缺点以及在医学检验中的应用。

一、核酸分子杂交的基本原理核酸分子杂交技术(in situ hybridization, ISH)是一种用来识别和检测特定的基因序列的分子生物学技术,通常用于染色体分析,可以发现特定基因所在的细胞和组织。

它是根据两种相互作用的核酸分子之间结合的原理工作,即“杂交”。

在杂交反应中,一条条的核酸分子(DNA或RNA)互相结合,形成特定的结构,从而在某些非常特异的情况下进行识别。

另外,通过应用适当的荧光技术,可以直观地观察和显示杂交反应。

二、核酸分子杂交技术的步骤核酸分子杂交技术包括以下几个步骤:(1)样本准备。

样本准备是研究时的第一步,在这一步骤中研究者根据自己的研究需求,选择合适的样本。

(2)核酸分离。

在核酸分离步骤中,由于核酸是微小的,因此需要采用特殊的技术来从样本中分离出核酸,而这些技术通常是PCR,即聚合酶链反应,用于提高核酸的灵敏度。

(3)核酸杂交。

在核酸杂交的步骤中,首先,将抗体结合到探针中,然后将探针与样本中的核酸结合起来,形成双螺旋构型,从而实现特异性识别。

(4)信号分析。

在信号分析步骤中,需要对样本中的核酸进行鉴定,以及检测所测试的核酸是否核苷酸序列正确的特定目的。

最常见的技术是利用基因组芯片,通过它们可以对大量的基因进行组合扩增,从而识别、分析和检测出特定基因。

三、核酸分子杂交技术的优缺点(1)优点核酸分子杂交技术有很多优点,如:(1)操作简单,容易实现自动化,可以提高生产效率;(2)能够检测出对特定基因的非常特异性的序列;(3)可以测定大量基因,使得研究者可以更容易地进行基因组学研究;(4)技术可以检测出胞内和蛋白质的体外表达;(5)核酸分子杂交技术的发展使得药物研发有了新的思路和突破,可以更加准确高效地展开新药的研发。

核酸印迹与分子杂交

核酸印迹与分子杂交
核酸印迹与分子杂交
• 核酸印迹技术简介 • 分子杂交技术简介 • 核酸印迹与分子杂交实验流程 • 实验注意事项与难点 • 实验结果分析 • 实验案例展示
01
核酸印迹技术简介
定义与原理
定义
核酸印迹技术是一种将核酸分子 从凝胶中转移到固相支持物上, 再利用探针进行分子杂交,从而 检测特定核酸序列的方法。
核酸定量
测定提取的核酸浓度,确 保其质量和数量满足后续 实验需求。
核酸变性
高温处理
将核酸加热至一定温度, 使其双螺旋结构解开,形 成单链。
调节pH值
通过调节溶液的pH值,促 使核酸完全变性。
维持变性状态
确保核酸在后续实验中保 持单链状态。
杂交反应
标记探针
将特定的核酸片段标记上荧光或其他可检测 的标记物。
THANKS
感谢观看
总结词
杂交温度与时间是影响分子杂交实验结果的重要参数。
详细描述
杂交温度与时间的选择对于确保探针与靶序列的有效结合至关重要。温度过高可能导致探针与靶序列 的结合不牢固,而温度过低则可能导致非特异性结合增多。因此,需要根据探针和靶序列的性质,通 过预实验确定最佳的杂交温度与时间。
洗膜条件与显色方法
要点一
04
实验注意事项与难点
核酸质量与纯度
总结词
核酸质量与纯度是影响分子杂交实验结果的关键因素。
详细描述
高质量的核酸是保证分子杂交实验成功的关键,因此需要确保所使用的核酸样品无降解、无污染,且纯度较高。 在提取和纯化过程中,应采取有效的措施,如使用高纯度试剂、避免反复冻融等,以保持核酸的完整性。
杂交温度与时间
案例三:病毒基因组分析
总结词
详细描述

分子生物学常用技术下

分子生物学常用技术下

标记方法
内标记
切口平移法 随机引物法 单链DNA探针 cRNA探针标记
末端标记
切口平移法:dsDNA,掺入率高,最常用
37℃ 15min 限速步骤 37℃ 2~3h
[α-32P]dATP
随机引物法:dsDNA,掺入率高,常用
dsDNA+随机引物
变性:沸水3min
冰浴:1min [α-32P]dATP
pERV3和pEGSH诱导体系
宿主细胞:CHO、COS、BHK、SP2/0、NIH3T3 、HEK293等
优点:产品的抗原性、免疫原性和功能与天然蛋白质最接近, 糖基化等翻译后加工最准确。
缺点:表达水平低,发酵液中目的产物我国为0.2~1g/L, 国际上多在1~2g/L以上。
2007年,全球销售额最高的6大类生物技术药物中, 有五类(肿瘤治疗药物、anti-TNF α药物、EPO、胰岛素和 凝血因子)都是经哺乳动物细胞表达生产的。 动物细胞大规模培养是当前生物药物生产的主流方式。
方法2:3’端填充标记法
T4噬菌体DNA聚合酶、T7噬菌体DNA聚合酶、Klenow片段
-
dNTP : 3’ 切酶
dNTP+: 5’
合酶
5’外 3’聚
5’末端:T4多核苷酸激酶(T4PNK),DNA、
RNA 5’-OH末端寡核苷酸的磷酸化 磷酸基团的交换
[γ-32P] dATP
纯化
凝胶过滤层析: Sephadex G-50 乙醇沉淀法
缺点:表达的蛋白质产物不能进行翻译后修饰、 高表达时容易发生折叠错误、 E coli本身内毒素和毒性蛋白可能混杂在终产物中。
成功例子:β-干扰素
组成
表达载体
启动子:lac、trp、tac、PL启动子 目的基因编码序列 终止子:

分子杂交的基本方法

分子杂交的基本方法

分子杂交的基本方法分子杂交是基因工程领域中常用的方法,可以用来将两个不同物种的DNA分子进行结合,产生新的DNA分子,用来获得物种间的新特性。

以下将详细介绍分子杂交的基本原理和方法。

1.原理:分子杂交的基本原理是利用DNA的互补碱基配对规律来进行DNA分子的结合。

DNA的碱基配对规律是A-T,C-G,即腺嘌呤配对胸腺嘧啶,胞嘧啶配对鸟嘌呤。

根据这个原理,可以将两个不同物种的DNA分子进行部分或完全的配对,形成新的DNA分子。

2.方法:(1)杂交DNA的制备:首先需要获得两个源DNA,分别来自于不同物种。

源DNA可以通过基因克隆、基因合成或者分离纯化的方法获得。

将这两个源DNA进行处理,包括DNA的纯化、限制性酶切、PCR扩增等。

(2)DNA杂交:将处理完的两个源DNA混合在一起,在适当的条件下进行杂交。

在实验室中,一般将这两个源DNA放入一个反应管中,然后加入缓冲液和杂交试剂。

杂交试剂可以是盐溶液、有机溶剂或者其他适当的试剂,可以提高DNA的互补配对速度和稳定性。

(3)杂交条件的控制:在进行DNA杂交的过程中,需要注意控制一些条件,以确保杂交成功。

例如,温度、时间、pH值和离子浓度等。

不同的DNA杂交反应需要不同的条件控制,这些条件可以通过实验的多次优化来确定。

(4)杂交DNA的检测:测定杂交DNA的方法有很多,常见的方法包括:-凝胶电泳:通过电极的作用,将DNA样品分离出来,并通过染色剂、荧光探针等方法观察杂交DNA在凝胶上的迁移位置,以判断分子杂交的成功与否。

-核酸杂交:将已知序列的DNA序列化学标记,然后与杂交DNA进行杂交,通过探针与目标DNA结合的结果来判断分子杂交的结果。

-PCR扩增:通过合成引物和DNA多聚酶的作用,可以通过PCR扩增的方法来检测分子杂交的结果。

-表型观察:通过观察转基因生物的表型特征来判断分子杂交的成功与否。

3.应用:分子杂交技术可以应用于多个领域,例如基因工程、转基因植物、医学研究等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 利用基因克隆的方法可获得cDNA • 优点:cDNA探针不含有内含子序列,尤其
适用于基因表达的检测。
RNA探针
• RNA是单链分子,所以它与靶序列的杂交 反应效率极高
• 早期采用的RNA探针是细胞mRNA探针和 病毒RNA探针。利用mRNA与基因的 DNA 杂交,可以反映出基因的转录状态。
人工合成的寡核苷酸探针
复性
RNA
DNA
1. 原理 DNA的变性与复性
2. 常见条件:加热 S形曲线 解链温度(Tm) A260增高的原因
3. 分子杂交的目的
应 用: (1)检测特定生物有机体之间是否存在
亲缘关系; (2)用来揭示核酸片段中某一特定基因
的存在与否、拷贝数及表达丰度。
Home
DNA变性的本质是双链间氢键的断裂
Content of Table
前言 1 核酸分子杂交技术的原理 2 核酸探针的制备 3 核酸探针的标记 4 核酸分子杂交技术
前言
核酸分子杂交
把亲源关系较近的,不同生物个体来源的 变性DNA或RNA单链,经退火处理形成DNA-DNA 或DNA-RNA这一过程叫分子杂交。
第一节 核酸分子杂交的
基本原理
二、探针的标记
• 探针标记方法: 放射性和非放射性两种
放射性核素: 32P、35S和3H 非放射性标记物: 1)半抗原:生物素、地高辛素 抗原-抗体反应 2)配体:生物素-亲和素反应 3)荧光素 (FITC、罗丹明) 4)化学发光探针
探针标记方法
• 核酸分子杂交所用的探针几乎都用体外标记法标 记,分为化学法和酶法
例:变性引起紫外吸收值的改变
DNA的紫外吸收光谱 增色效应:DNA变性时其溶液A260增高的现象。
热变性
解链曲线:如果在连续加热DNA的过程中以
温 度 对 A260 ( absorbance , A , A260 代 表 溶 液 在 260nm处的吸光率)值作图,所得的曲线称为解 链曲线。
最基本的原则是核酸探针与要检测的核酸之 间在核酸序列上要有高度的特异性
基因组DNA探针
• 真核生物基因组中存在大量的重复序列和 非编码序列,因此选择基因组DNA做探针 时,一定要充分考虑实验目的性
• 利用分子克隆或PCR方法可以获得某一段 特定的DNA序列
cDNA探针
• cDNA是能与mRNA互补的DNA分子,它是 利用RNA分子作模板在逆转录酶作用下产 生的。
• 首先用E.coli的DNAse I 在探针DNA双链上造成缺口, 然后再借助于DNA pol I的5`→3`外切酶活性,切去带有5`磷酸的核苷酸;同时利用该酶5`→3`聚合酶活性,使生物 素或同位素标记的互补核苷酸补入缺口。
• 这两种活性同时作用,缺口不断向3`方向移动,DNA链 上的核苷酸不断为标记的核苷酸取代,成为带有标记的 DNA,纯化除去游离脱氧核苷酸后成为标记DNA探针。
• 化学法P48:利用标记物分子上的活性基团与探 针分子上的基团发生的化学反应直接将标记物结 合到探针分子上。特点是简单、快速、均匀。
• 酶法P48:将标记物预先标记在核苷酸分子上, 然后利用酶促反应将标记的核苷酸分子渗入到探 针分子上去,或将核苷酸分子上的标记基团交换 到探针分子上。
一个想的标记物应满足:
第二节 核酸探针技术及其标记
探针 (probe) P46 经过特殊标记的核酸片段,具有特定的序列,
能够与待测的核酸片段互补结合,因此可用于检 测核酸样品中的特定基因。
一、核酸探针的种类和应用
根据核酸性质和检测目的不同可以分为: (一)基因组DNA探针 (二)cDNA探针 (三)RNA探针 (四)人工合成的寡核苷酸探针
• 利用DNA合成仪,采用化学方法人工合成 寡核苷酸探针
设计寡核苷酸探针的原则
• 1)序列及长度 根据靶分子的序列而定, 长度一般为18-50个核苷酸合适。
• 2)碱基成分 一般G+C含量为40%-60% • 3)探针分子内不存在互补,避免出现“发
夹”结构 • 4)避免单一碱基的重复出现,不超过4个 • 5)与非靶标区域的同源性不超过70%
(1)标记前后探针基本结构、化学性质相同; (2)特异性强、本底低、重复性好; (3)操作简单、节时; (4)安全、无环境污染。
常用探针的标记方法
3.2.1 缺口平移法 3.2.2 随机引物标记法 3.2.3 末端标记法 3.2.4 生物素光照标记法
缺口平移法的原理
• 将DNAase I 的水解活性与大肠杆菌DNA polymerase I 的5`→3`的聚合酶活性和5` →3`的外切酶活性相结合。
Tm:变性是在一个相当窄的温度范围内完成, 在这一范围内,紫外光吸收值达到最大值的 50%时的温度称为DNA的解链温度,又称融解 温 度 (melting temperature, Tm) 。 其 大 小 与 G+C含量成正比。
DNA的复性与分子杂交
DNA复性(renaturation)的定义
一、分子杂交与印迹技术的原理P44
(一)核酸分子杂交 (nucleic acid hybridization ) 在DNA复性过程中,如果把不同DNA单
链分子放在同一溶液中,或把DNA与RNA放 在一起,只要在DNA或RNA的单链分子之间 有一定的碱基配对关系,就可以在不同的分 子之间形成杂化双链(heteroduplex) 。
随机引物标记法原理
用一些六核苷酸作为随机引物,将这些 引物和探针DNA片段一起热变性,退火后, 引物与单链DNA互补结合,再在DNA聚合酶的 作用下,按碱基互补配对原则不断在其3`OH端添加标记的单核苷酸修补缺口,合成新 的标记的探针片段。
末端标记法原理
(1)一种是在5`末端加成标记法: 先用碱性磷酸酶(AP)去掉dsDNA 5`-磷 酸,再用T4多核苷酸激酶催化标记的ATP 的γ-磷酸转移加到DNA片段5`-OH上。
在适当条件下,变性DNA的两条互补链 可恢复天然的双螺旋构象,这一现象称为复性。
热变性的DNA经缓慢冷却后即可复性, 这一过程称为退火(annealing) 。
复性条件:Tm-50C 4度以下几乎不复性
核酸分子杂交的应用
研究DNA分子中某一种基因的位置 鉴定两种核酸分子间的序列相似性 检测某些专一序列在待检样品中存在与否 是基因芯片技术的基础
相关文档
最新文档