空间向量与立体几何强化训练专题练习(四)附答案新高考高中数学
高考数学压轴专题新备战高考《空间向量与立体几何》难题汇编附答案
新高中数学《空间向量与立体几何》专题解析一、选择题1.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A 【解析】 【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+232832V =⨯⨯=, 故选A. 【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+ ⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC∆的外接圆半径为2332sin3ABrπ==,PA⊥Q底面ABC,所以,三棱锥P ABC-的外接球半径为222223211233PAR r⎛⎫⎛⎫=+=+=⎪⎪ ⎪⎝⎭⎝⎭,因此,三棱锥P ABC-的外接球的表面积为2221284433Rπππ⎛⎫=⨯=⎪⎪⎝⎭.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为23厘米,瓶颈到水位线距离和水位线到瓶底距离均为332厘米,现将1颗石子投入瓶中,发现水位线上移3厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是()A.2颗B.3颗C.4颗D.5颗【答案】C【解析】【分析】利用图形中的数据,分别算出石子的体积和空瓶的体积即可.【详解】如图,9,3,33AB cm EF GH cm LO cm ====所以60A ∠=︒,原水位线直径6CD cm =,投入石子后,水位线直径5IJ cm = 则由圆台的体积公式可得石子的体积为:()22319133MN CN IM CN IM cm ππ⋅⋅++⋅= 空瓶的体积为:()22213LN CN EL CN EL EL KL ππ⋅++⋅+⋅⋅633363993888πππ=+=所以需要石子的个数为:()99329783,491913ππ=∈ 所以至少需要4颗石子 故选:C 【点睛】本题考查的是圆台和圆柱体积的算法,掌握其公式是解题的关键.4.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.5.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .6C .5D 53【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以16sin 5APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.6.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.7.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C 【解析】 【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C. 【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.8.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64B .62C .3 D .3 【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为64. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.9.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.10.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.11.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .1∶3 C .1∶5 D .3∶2【答案】C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.12.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4π C .512π D .2π 【答案】C 【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,,即可求出33cos 123QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果.【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C. 【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.13.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .123π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。
(常考题)北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(4)
一、选择题1.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355 C .3510D .7052.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A .1313B .21313C 26D 2263.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .124.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定5.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 6.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .223C .324D .127.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1BC 所成角的余弦值是( )A 3B .12C .14D .08.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( ) A .105B .1010C .32D .629.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33310.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1211.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11AC 和11A B 的中点,当AE 和BF 所成角的余弦值为710时,AE 与平面11BCC B 所成角的正弦值为( ) A 15B 15C 5 D 512.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( )A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =--二、填空题13.如图,正三棱柱111ABC A B C -的棱长均为2.点M 是侧棱1AA 的中点,点P 、Q 分别是侧面11BCC B ,底面ABC 的动点,且1A P 平面BCM ,PQ ⊥平面BCM .则点Q的轨迹的长度为___________.14.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.15.如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点,E F ,且 22EF =,现有如下四个结论: ①AC BE ⊥;②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值; ④异面直线,AE BF 所成的角为定值. 其中正确结论的序号是______.16.把地球看作是半径为R 的球,A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,求A B 、两点间的球面距离______________.17.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.18.正方体1111ABCD A BC D -的棱长为1,若动点P 在线段1BD 上运动, 则·DC AP 的取值范围 是 .19.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________. 20.已知平行六面体中,则____.三、解答题21.如图,在多面体ABCDEF 中,等腰梯形ABCD 所在平面垂直于正方形CDEF 所在平面,1,2DA AB BC CD ====.(Ⅰ)求证:AC ⊥平面ADE ;(Ⅱ)求BF 与平面ADE 所成角的正弦值.22.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.23.如图,四边形ABCD 与四边形BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =(1)求证:平面ACF ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.24.如图,在等腰直角三角形PAD 中,90A ∠=︒,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC折起,得到四棱锥P ABCD -,连结MN .(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求二面角B PC D --的余弦值.25.如图,在四棱锥S ABCD -中,侧面SCD 为钝角三角形且垂直于底面ABCD ,底面为直角梯形且90ABC ∠=︒,12AB AD BC ==,CD SD =,点M 是SA 的中点.(1)求证:BD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60︒,求SD 与平面MBD 所成角的正弦值. 26.如图,在三棱锥P ABC -中,PAC △为等腰直角三角形,90APC ∠=︒,ABC 为正三角形,D 为AC 的中点,2AC =.(1)证明:PB AC ⊥; (2)若三棱锥P ABC -3A PCB --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】建立空间直角坐标系,利用三点共线的思想,分别求出点R ,Q ,利用两点距离公式求解,后利用导数求最值,进一步求出答案. 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q 因为211(0(,0),22P C -,112(,22PC =-, 又因为R 在PC 上,PR PC λ= 所以2(,m m q =,112(,),22λλ-, 所以R 1122(,),2222λλ=--+, 所以222211122222QR a λλ⎛⎛⎫⎛⎫=--+-++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+= 所以11,36a λ==时取最小值, 所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭所以PQ CQ=10所以当||QR 达到最小值时,||||PQCQ 的值为10故选:A. 【点睛】空间直角坐标系距离公式的理解:(1)两点间的距离公式其形式与平面向量的长度公式一致,它的几何意义是表示长方体的对角线的长度.(2)两点间的距离公式与坐标原点的选取无关,经过适当转化也可以求异面直线间的距离,点到面以及平面与平面的距离等. 本题主要是R 的坐标利用三点共线的思想去求.2.C解析:C 【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 11,2),A 0,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1AE =(0,12-),1AC=(1,2), 设异面直线A 1E 与AC 1所成角为θ,则cosθ11111313A E AC A E AC ⋅===⋅. ∴异面直线A 1E 与AC 1. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A 【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系. 【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A . 【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.5.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱6,故662R ==因此,三棱锥A ﹣BCD 的内切球的表面积为226244(63R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.6.B解析:B 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,求得11,1,22MB ⎛⎫=--- ⎪⎝⎭,()10,? 02AA =,,利用空间向量夹角余弦公式能求出异面直线MB 与1AA 所成角的余弦值.【详解】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC , ∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 设11111222AA A B B C ===, 则11,1,22M ⎛⎫ ⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=, 设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅, ∴异面直线MB 与1AA 所成角的余弦值为3,故选B . 【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.7.C解析:C【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,)B ,)12B ,()0,1,0C ,向量()13,1,2A B =-,()12B C =--, 11cos ,A B BC <>1111AB BC A B B C ⋅=⨯=14=. 本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.8.A解析:A【分析】建立空间直角坐标系,求出向量AM与1BC的向量坐标,利用数量积求出异面直线A M B C所成角的余弦值.与1【详解】以D为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C所成角的余弦值为1111cos ,510AM B C AM B C AM B C⋅===⋅ 故选A.【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解. 9.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】 设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 10.B解析:B【分析】根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-. 故选:B .【点睛】 本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.11.B解析:B【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为710,求出12t AA ==.由此能求出AE 与平面11BCC B 所成角α的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则31,,(0,0,0),,22A E t B F t ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,(2AE =-,12,)t ,3(2BF =12,)t , AE ∵和BF 所成角的余弦值为710, 2221||||72|cos ,|10||||11t AE BF AE BF AE BF t -∴<>===+,解得2t =.∴(2AE =-,12,2), 平面11BCC B 的法向量(1,0,0)n =, AE ∴与平面11BCC B 所成角α的正弦值为:3||2sin ||||5AE n AE n α===. 故选:B .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.C解析:C【分析】由共面向量定理可得:若定点M与点A、B、C一定共面,则存在实数x,y,使得AM xAB yAC=+,即(1)OM x y OA xOB yOC=--++,判断标准是验证OA,OB,OC三个向量的系数和是否为1,若为1则说明四点M,A,B,C一定共面,由此规则即可找出正确的条件.【详解】由题意,,A B C三点不共线,点O是平面ABC外一点,对于A由于向量的系数和是32,不是1,故此条件不能保证点M在面ABC上;对于B,等号右边三个向量的系数和为3,不满足四点共面的条件,故不能得到点M与,,A B C一定共面对于C,等号右边三个向量的系数和为1,满足四点共面的条件,故能得到点M与,,A B C一定共面对于D,等号右边三个向量的系数和为0,不满足四点共面的条件,故不能得到点M与,,A B C一定共面综上知,能得到点M与,,A B C一定共面的一个条件为C.故选:C.【点睛】本题考查平面向量的基本定理,利用向量判断四点共面的条件,解题的关键是熟练记忆四点共面的条件,利用它对四个条件进行判断得出正确答案,本题考查向量的基本概念,要熟练记忆.二、填空题13.【分析】根据已知可得点Q的轨迹是过△MBC的重心且与BC平行的线段进而根据正三棱柱ABC﹣A1B1C1中棱长均为2可得答案【详解】∵点P是侧面BCC1B1内的动点且A1P∥平面BCM则P点的轨迹是过解析:4 3【分析】根据已知可得点Q的轨迹是过△MBC的重心,且与BC平行的线段,进而根据正三棱柱ABC﹣A1B1C1中棱长均为2,可得答案.【详解】∵点P是侧面BCC1B1内的动点,且A1P∥平面BCM,则P点的轨迹是过A1点与平面MBC平行的平面与侧面BCC1B1的交线,则P点的轨迹是连接侧棱BB1,CC1中点的线段l,∵Q是底面ABC内的动点,且PQ⊥平面BCM,则点Q的轨迹是过l与平面MBC垂直的平面与平面ABC相交得到的的线段m,故线段m过△ABC的重心,且与BC平行,由正三棱柱ABC﹣A1B1C1中棱长均为2,故线段m的长为:23×2=43,故答案为4 3【点睛】本题考查的知识点是平面与平面之间的位置关系,棱柱的几何特征,动点的轨迹,难度中档.14.【解析】【分析】取MC中点O连结AOBO推导出AC=BM=AM=CM=1AO=BO=AO⊥MCAO⊥平面BMCAO⊥BO由此能求出AB两点之间的距离【详解】取MC中点O连结AOBO∵△ABC中∠C=10【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO =32,BO =72,AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点, ∴AC =BM =AM =CM =1,∴AO 2131()2- BO 22011172cos120121422BM MO BM OM ⎛⎫+-⨯⨯⨯+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |22371044BO AO +=+=, 10. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.15.①②③【分析】根据平面可判断①;根据可判断②;利用体积公式判断③;设用向量法求出的夹角的范围判断④【详解】连接由可知平面而平面故①正确;由且平面平面可得平面故②正确;三棱锥的体积为定值故③正确;建立解析:①②③【分析】根据AC ⊥平面11BB D D 可判断①;根据11//B D BD 可判断②;利用体积公式判断③;设11D E a =,用向量法求出,AE BF 的夹角的范围判断④.【详解】连接BD ,由AC BD ⊥,1AC DD ⊥,可知AC ⊥平面11BB D D ,而BE ⊂平面11BB D D ,AC BE ∴⊥,故①正确;由//EF BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD ,可得//EF 平面ABCD ,故②正确;1132A BEF BEF V S AC -=⋅ 112211232=⨯=, ∴三棱锥A BEF -的体积为定值,故③正确;建立坐标系如图所示;设11202D E a a ⎛=≤≤ ⎝⎭, 则()1,0,0A ,()1,1,0B ,22,1E ⎫⎪⎪⎝⎭, 2121,,12222F a ⎛⎫++ ⎪ ⎪⎝⎭, 221,,122AE a a ⎛⎫∴=- ⎪ ⎪⎝⎭,2121,,12222BF a a ⎛⎫=-- ⎪ ⎪⎝⎭, 设异面直线,AE BF 所成的角为θ, 则22322cos 22a a AE BF AE BF a a θ-+⋅==⋅-+ 212122a a =--+2232222a a a ⎛-+=-+ ⎝⎭∴当0a =时,cos θ取得最大值2, θ∴的最小值为30,即异面直线,AE BF 所成的角不为定值,故④错误; 故答案为:①②③【点睛】本题考查了线面垂直的性质定理、线面平行的判定定理、三棱锥的体积公式以及空间向量法求异面直线所成的角,综合性比较强,属于中档题.16.【分析】设球心为北纬纬线圈所在圆的圆心为半径为且是等边三角形即中由余弦定理得的值利用弧长公式求得两点间的球面距离【详解】设球心为北纬纬线圈所在圆的圆心为半径为则根据点位于北纬30°东经20°点位于北解析:5arccos 8R 【分析】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,r =,且ABC 是等边三角形,即2AB R =,AOB 中,由余弦定理得AOB ∠的值,利用弧长公式求得,A B 两点间的球面距离.【详解】设球心为O ,北纬30纬线圈所在圆的圆心为1O ,半径为r ,130OAO ∠=, 则3cos302r R ==, 根据A 点位于北纬30°,东经20°,B 点位于北纬30°,东经80°,可得160AO B ∠=,1AO B ∴是等边三角形,即AB r R ==, ABC 中,由余弦定理可得2222232cos 4AB R R R R AOB ==+-⋅∠,求得5cos 8AOB ∠= ,5arccos 8AOB ∴∠=, ,A B ∴两点间的球面距离5arccos 8AB R AOB R =⋅∠=⋅.故答案为:5arccos 8R ⋅ 【点睛】 本题主要考查球面距离的求法,利用余弦定理解三角形,意在考查数形结合分析问题和解决问题的能力,属于中档题型. 17.【解析】∵∴∴故答案为 解析:111,,633【解析】∵ O G OM MG =+,1 2OM OA =,2 ,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111 633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63318.【详解】试题分析:以所在的直线为轴以所在的直线为轴以所在的直线为轴建立空间直角坐标系则∴∵点在线段上运动∴且∴∴故答案为考点:空间向量数量积的运算解析:[]0,1【详解】试题分析:以所在的直线为轴,以所在的直线为轴,以所在的直线为轴,建立空间直角坐标系.则、、、、.∴、.∵点在线段上运动,∴,且.∴AP AB BP DC BP =+=+(),1,λλλ=--,∴,故答案为[]0,1.考点:空间向量数量积的运算.19.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直 解析:33【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min 13(cos )33CD CD CA CDα===. 考点:1、异面直线所成的角;2、线面垂直、线线垂直.20.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)1510【分析】(Ⅰ)由面面垂直的性质定理得到DE ⊥平面ABCD ,从而得到DE AC ⊥,再由勾股定理的逆定理证明CA AD ⊥,即可得证;(Ⅱ)建立空间直角坐标系,利用空间向量法求出线面角的正弦值; 【详解】(Ⅰ)因为平面ABCD ⊥平面CDEF ,四边形CDEF 为矩形,所以CD DE ⊥,又平面ABCD 平面CDEF CD =,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD , 所以DE AC ⊥,在底面ABCD 中,过,A B 作,AN BM DC ⊥,交CD 于,N M ,因为1,2DA AB BC CD ====,所以12DN CM ==,所以2213122AN ⎛⎫=-= ⎪⎝⎭,所以2233322AC ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎝⎭⎝⎭,所以222AD AC CD +=,所以CA AD ⊥,又AD DE D ⋂=,,AD DE ⊂面ADE ,所以AC ⊥面ADE ;(Ⅱ)如图建立空间直角坐标系,则31,02B ⎫-⎪⎪⎝⎭,)3,0,2F ,所以31,222BF ⎛⎫= ⎪ ⎪⎝⎭由(1)可知AC ⊥面ADE ,则面ADE 的法向量可以为()1,0,0n =,设BF 与平面ADE 所成角为θ,则2223152sin 1031222n BF n BFθ===⋅⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,BF 与平面ADE 所成角的正弦值为1510;【点睛】本题考查了立体几何中的线面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析;(2)2211. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值. 【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =--设二面角B AE C --的平面角为θ,所以622cos cos ,11322AD m θAD m AD m⋅-====⨯,所以二面角B AE C --的余弦值为2211.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 23.(1)证明见解析;(215. 【分析】(1)AC 与BD 交于点O ,连接FO 、FD ,证明FO AC ⊥,FO BD ⊥,然后得到FO ⊥平面ABCD 即可;(2)以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立空间直角坐标系,然后求出平面BFC 和平面ACF 的法向量,然后可算出答案.【详解】(1)证明:AC 与BD 交于点O ,连接FO 、FD ,∵FA FC =,O 是AC 中点,且O 是BD 中点,∴FO AC ⊥, ∵四边形BDEF 为菱形,60DBF ∠=︒, ∴FD FB =,∴FO BD ⊥, 又ACBD O =,∴FO ⊥平面ABCD ,∵FO ⊂平面ACF ,∴平面ACF ⊥平面ABCD (2)易知OA ,OB ,OF 两两垂直以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立如图所示的空间直角坐标系设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒ 则2BD =,∴1OB =,3OA OF ==故(0,0,0)O ,(0,1,0)B ,()3,0,0C -,()3F ∴(3,0,3CF =,3,1,0CB,()0,1,0OB =设平面BFC 的一个法向量为(,,)n x y z =则33030n CF x z n CB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得()1,3,1n =-- 显然,()0,1,0OB =为平面ACF 的一个法向量 ∴15cos ,5OB n OB n OB n⋅<>==-⋅ 由图知,二面角A FC B --的平面角为锐角 ∴二面角A FC B --的余弦值为155【点睛】关键点睛:用向量法求解空间角的问题时,解题的关键是建立适当的空间直角坐标系,准确地写出点的坐标和算出直线的方向向量、平面的法向量.24.(1)证明见解析;(2)63-. 【分析】(1)取AB 的中点E ,连结EM ,EN ,根据线面平行的判定定理以及面面平行的判定定理,先证明平面//MNE 平面PAD ,进而可证//MN 平面PAD ;(2)根据题中条件,以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,分别求出两平面的法向量,由向量夹角公式,即可求出结果. 【详解】(1)证明:在四棱锥P ABCD -中,取AB 的中点E ,连结EM ,EN . 因为M ,N 分别为BP ,CD 的中点,//AD BC . 所以//ME PA ,//EN AD .因为PA ⊂平面PAD ,ME ⊄平面PAD , 所以//ME 平面PAD , 同理,//EN 平面PAD .又因为ME NE E ⋂=,ME 、NE ⊂平面MNE , 所以平面//MNE 平面PAD . 因为MN ⊂平面MNE , 所以//MN 平面PAD ;(2)因为在等腰直角三角形PAD 中,90A ∠=︒,//AD BC , 所以BC PA ⊥,即在四棱锥P ABCD -中,BC PB ⊥,BC AB ⊥. 因为//AD BC ,所以AD PB ⊥,AD AB ⊥, 因为PB AB B ⋂=,PB 、AB平面PAB ,所以AD ⊥平面PAB ,所以PA AD ⊥.又因为8AD =,3AB =,4PA =,所以5PB =. 所以222AB PA PB +=,所以PA AB ⊥.以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则()3,0,0B ,()0,0,4P ,()0,8,0D ,()3,5,0C , 所以(3,0,4)PB =-,(3,5,4)PC =-,(0,4)8,PD =-.设()1111,,x n y z =为平面PBC 的一个法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111113403540x z x y z -=⎧⎨+-=⎩, 令14x =,得1(4,0,3)n =;设()2222,,n x y z =为平面PCD 的一个法向量,则2200n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222228403540y z x y z -=⎧⎨+-=⎩, 令21y =,得2(1,1,2)n =.所以1212212cos ,34n n n n n n⋅<>===. 因为二面角B PC D --是钝角, 所以二面角B PC D --的余弦值是 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可. 25.(1)证明见解析;(2. 【分析】(1)根据已知条件证明BD CD ⊥,根据线面垂直的判定定理即可得到BD ⊥平面SCD ;(2)根据已知条件建立合适的空间直角坐标系,利用直线的方向向量与平面法向量夹角的余弦值的绝对值求解出SD 与平面MBD 所成角的正弦值. 【详解】解:(1)证明:取BC 的中点E ,连接DE ,设==AB AD a ,2BC a =,依题意,四边形ABED 为正方形, 且有BE DE CE a ===,BD CD ==, ∴222BD CD BC +=,则BD CD ⊥. 又平面SCD ⊥底面ABCD ,平面SCD底面ABCD CD =,∴BD ⊥平面SCD(2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH , ∵平面SCD ⊥底面ABCD ,平面SCD底面ABCD CD =,SH CD ⊥,SH ⊂平面SCD ,SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影,SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒. 由(1)得,2SD a =,∴在Rt SHD 中,2SD a =,62SH a =, 在ADH 中,45ADH ∠=︒,AD a =,22DH a =,由余弦定理得222222cos 45222AH a a a a a ⎛⎫=+-⋅⋅⋅︒= ⎪ ⎪⎝⎭, ∴222AH DH AD +=,从而90AHD ∠=︒,过点D 作//DF SH ,∴DF ⊥底面ABCD ,∴DB 、DC 、DF 两两垂直,如图,以点D 为坐标原点,DB 为x 轴正方向,DC 为y 轴正方向,DF 为z 轴正方向建立空间直角坐标系,则)2,0,0Ba ,()2,0C a ,260,2S ⎛⎫- ⎪⎝⎭,22,,022A a ⎛⎫- ⎪ ⎪⎝⎭,226,,424M a a ⎛⎫- ⎪ ⎪⎝⎭,设平面MBD 的法向量(),,n x y z =,由202022n DB ax n DM ax ⎧⋅==⎪⎨⋅=-=⎪⎩,取1z =,得30,,12n ⎛⎫= ⎪ ⎪⎝⎭,又0,,2SD a ⎛⎫= ⎪ ⎪⎝⎭,∴sin cos ,n SD θ=<>==, ∴SD 与平面MBD所成角的正弦值为14. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果. 26.(1)证明见解析;(2 【分析】(1)根据PAC △为等腰直角三角形,D 为中点,得到PDAC ⊥,再根据ABC 为正三角形,D 为中点,得到BD AC ⊥.然后利用线面垂直的判定定理证明.(2)设三棱锥P ABC -的高为h ,由 1132P ABC V AC BD h -=⨯⨯⨯⨯==, 求得h ,由以D 为坐标原点,建立空间直角坐标系,设为平面PBC 的一个法向量(),,n x y z =,又DB 是平面PAC 的一个法向量,然后由cos ,DB n DB n DB n⋅=求解..【详解】(1)∵PAC △为等腰直角三角形,D 为中点,. ∴PD AC ⊥,又ABC 为正三角形,D 为中点, ∴BD AC ⊥.又PD BD D ⋂=,PD ,BD ⊂平面PBD ,∴AC ⊥平面PBD . 又PB ⊂平面PBD , ∴PB AC ⊥.(2)设三棱锥P ABC -的高为h ,sin60BD BC =︒=∴11333233P ABC V AC BD h h -=⨯⨯⨯⨯==, ∴1h =. 又112PD AC ==, ∴PD ⊥平面ABC .如图,以D 为坐标原点,建立空间直角坐标系D xyz -,则()1,0,0A ,()3,0B,()1,0,0C -,()0,0,1P∴()0,3,0=DB ,()1,0,1CP =,()1,3,0CB =. 设(),,n x y z =为平面PBC 的一个法向量,则00CP n CB n ⎧⋅=⎨⋅=⎩,即030x z x +=⎧⎪⎨+=⎪⎩令1x =,得31y z ⎧=⎪⎨⎪=-⎩∴31,1n ⎛⎫=-- ⎪ ⎪⎝⎭.又DB 是平面PAC 的一个法向量, ∴7cos ,7DB n DB n DB n⋅==-∴二面角A PC B --7【点睛】方法点睛:向量法求二面角的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。
高中数学——空间向量与立体几何练习题(附答案)
专业分享
nn
12
nn
12
2 3 15 .
52 5
WORD 格式
故平面
PAD 和平面 PBE 所成二面角(锐角)的大小是
arccos
15 .
5
专业分享
WORD 格式
2. 如图,正三棱柱 ABC- A1B1C1 的所有 棱长都为 2, D 为 CC1 中点。 (Ⅰ)求证: AB1⊥面 A1BD; (Ⅱ)求二面角 A- A1D- B 的大小; (Ⅲ)求点 C 到平面 A1BD 的距离;
WORD 格式
空间向量练习题
1. 如图所示,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠ BCD=60° , E 是 CD 的中点, PA⊥底面 ABCD ,PA=2.
(Ⅰ)证明:平面 PBE⊥平面 PAB; (Ⅱ)求平面 PAD 和平面 PBE 所成二面角(锐角)的大小 .
如图所示,以 A 为原点,建立空间直角坐标系 .则相关各点的 坐标分别是 A( 0, 0, 0),B( 1, 0, 0),
,
n AC (x, y, z) (0, 3, 1) 0
xz0
∴
,令 y 1,得 n (
3y z 0
3,1, 3) 是平面 ACD 的一个法向量.
又
EC
( 1 , 3 ,0),
∴点 E 到平面 ACD 的距离
22
h
EC n n
3 21
7 7
.
4.已知三棱锥P- ABC 中,PA⊥ ABC ,AB ⊥ AC ,PA=AC= ?AB ,N 为 AB 上一点,AB=4AN,M,S 分别为 PB,BC 的中点 .
BEC B1EC1 45
专业分享
空间向量与立体几何 2024高考题目及答案
空间向量与立体几何 2024高考题目及答案2024年高考题目及答案:空间向量与立体几何【引言】2024年高考数学试题中,空间向量与立体几何是一个重要的考点。
在此次试题中,考查了空间向量的定义、运算和应用,以及立体几何中的线面交角、直线方程和平面方程等内容。
本文将对这些题目进行具体分析和解答,帮助同学们更好地理解和掌握相关知识点。
【题目一:空间向量的定义和运算】题目描述:已知点A(1, 2, -3)、B(4, -1, 2),向量AB可以表示为OA减去OB。
求向量AB的模长和方向余弦。
解答:首先,根据向量的定义,向量AB可以表示为OB减去OA,即AB = OB - OA。
则有向量AB = (4, -1, 2) - (1, 2, -3) = (4-1, -1-2, 2-(-3)) = (3, -3, 5)。
其次,求向量AB的模长,使用模长的定义:|AB| = √(3^2 + (-3)^2+ 5^2) = √(9 + 9 + 25) = √43。
最后,利用方向余弦的定义,设向量AB与空间坐标轴的夹角为α、β、γ,则有:cosα = 3 / √43,cosβ = -3 / √43,cosγ= 5 / √43。
【题目二:空间向量的应用】题目描述:在空间直角坐标系中,已知向量a = (3, 0, 4),向量b = (1, -2, 2)。
求向量a与向量b的数量积、向量积和夹角。
解答:首先,求向量a与向量b的数量积,使用数量积的定义:a·b = 3*1 + 0*(-2) + 4*2 = 3 + 0 + 8 = 11。
其次,求向量a与向量b的向量积,使用向量积的定义:a×b = |i j k ||3 0 4 ||1 -2 2 |= i*(0*2-(-2)*4) - j*(3*2-4*1) + k*(3*(-2)-1*0)= i*(-8) - j*(6) + k*(-6)= (-8, -6, -6)。
(易错题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测(有答案解析)(4)
一、选择题1.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6πB .4πC .3πD .2π 2.如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是( )A .30B .45C .60D .903.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A 2B .1C .2D 34.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1BC 所成角的余弦值是( )A .32B .12C .14D .05.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21=S S 且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠7.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为A 5B 5C 5D .358.在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .10B .15C 10D 15 9.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大10.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .455B .2C .22D .311.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD 内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332- 12.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .2二、填空题13.在长方体1111ABCD A BC D -中,若1AB BC ==,12AA =,则点A 到平面11BD A 的距离为_______ .14.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.15.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,5PA PD ==,平面ABCD ⊥平面PAD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是__________.16.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为________.17.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.18.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.19.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______. 20.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,E 为PD 中点.(1)求证:BD ⊥平面PAC ;(2)求二面角P AC E --的余弦值;22.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD DC =,F ,G 分别是PB ,AD 的中点.(Ⅰ)求证:GF ⊥平面PCB ;(Ⅱ)求平面PAB 与平面PCB 的夹角的大小;(III )在线段AP 上是否存在一点M ,使得DM 与平面ADF 所成角为30︒?若存在,求出M 点坐标,若不存在,请说明理由.23.如图,在等腰直角三角形PAD 中,90A ∠=︒,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC 折起,得到四棱锥P ABCD -,连结MN .(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求二面角B PC D --的余弦值.24.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,4AB =,11112A B AC ==,11AB BC ⊥.(1)求1AA 的长;(2)求二面角11B AC C --的正弦值.25.如图,在四棱锥S ABCD -中,侧面SCD 为钝角三角形且垂直于底面ABCD ,底面为直角梯形且90ABC ∠=︒,12AB AD BC ==,CD SD =,点M 是SA 的中点.(1)求证:BD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60︒,求SD 与平面MBD 所成角的正弦值. 26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD 的体积为36,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M ,据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.2.D解析:D【分析】可以建立空间直角坐标系,求出向量1A M与DN 的夹角进而求出异面直线1A M 与DN 所成角.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A BC D -中棱长为2,则1(2,A 0,2),(0,M 1,0),(0,D 0,0),(0,N 2,1),1(2,AM =-1,2)-,(0,DN =2,1), 设异面直线1A M 与DN 所成角为θ, 则11cos 0A M DNA M DN θ⋅==⋅,90θ∴=.∴异面直线1A M 与DN 所成角的大小为90.故选D .【点睛】本题考查异面直线所成角的求法,考查正方体的结构特征,异面直线所成角等基础知识,是基础题.3.A解析:A【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果.【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=, 11AC AB BC CC ∴=++,()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅ 114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】 本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =. 4.C解析:C【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,)B ,)12B ,()0,1,0C , 向量()13,1,2A B =-,()12B C =--, 11cos ,A B BC <>1111A B B C A B B C⋅=⨯=14=. 本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A【分析】建立空间直角坐标系,求出向量AM与1BC的向量坐标,利用数量积求出异面直线A M B C所成角的余弦值.与1【详解】以D为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C 所成角的余弦值为111110cos ,5102AM B C AM B C AM B C⋅===⋅ 故选A. 【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解.6.D解析:D 【分析】试题分析:结合其空间立体图形易知,112222=⨯⨯=S ,2312222S S ==⨯⨯=,所以23S S =且13S S ≠,故选D .考点:空间直角坐标系及点的坐标的确定,正投影图形的概念,三角形面积公式.7.A解析:A 【解析】分析:建立空间直角坐标系,结合题意得到点的坐标,然后利用空间向量求解点面距离即可.详解:如图所示,建立空间直角坐标系,则()10,0,1A ()10,1,1D,11,0,2E ⎛⎫ ⎪⎝⎭,据此可得:()110,1,0A D =,111,0,2A E ⎛⎫=-⎪⎝⎭, 设平面11A D E 的法向量为()111,,m x y z =,则:1110102y x z =⎧⎪⎨-=⎪⎩, 据此可得平面11A D E 的一个法向量为()1,0,2m =,而()1,1,0C ,据此有:()11,1,1AC =-, 则点C 到平面11A D E 的距离为11555AC m m⋅==. 本题选择A 选项.点睛:本题主要考查空间向量的应用,点面距离的求解等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【分析】本题首先可以根据题意建立空间直角坐标系,然后根据2AB =以及11BC CC ==得出12,0,1AB 、()10,1,1BC =,最后根据1111cos θAB BC AB BC 即可得出结果.【详解】因为三棱柱111ABC A B C -是直三棱柱,且90ABC ∠=︒,所以可以以B 为原点、AB 为x 轴、BC 为y 轴、1BB 为z 轴构建空间直角坐标系, 如图:因为2AB =,11BC CC ==,所以()2,0,0A ,()10,0,1B ,()0,0,0B ,()10,1,1C , 故12,0,1AB ,()10,1,1BC =,设异面直线1AB 与1BC 所成角为θ, 则1111110cos θ1052AB BC AB BC , 故选:C. 【点睛】本题考查异面直线所成角的求法,可借助空间向量来求解,能否合理的构建空间直角坐标系是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.D解析:D 【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论. 【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED ⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧++=⎪⎨+-=⎪⎩,令23k =33,1t x s x ==+,所以平面BDE 的一个法向量(133,23)m x x =+,底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小, 当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大. 故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.10.D解析:D 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值. 【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-,由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤,()()2221224548B P x y y y ∴=-+-+=-+,01y ≤≤,当1y =时,1B P 取得最大值3.故选:D. 【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.11.C解析:C 【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=可得1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ =,1DN MQ ==,故552NM DN MQ =--=-故答案选:C 【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题12.A解析:A 【分析】由题意画出结晶体的图形,利用向量加法的三角形法则求解晶体的对角线的长. 【详解】设AB a =,AD b =,1AA c =,棱长为t ,则两两夹角为60︒, 11AC AB AD A A a b c=++=+-, 22222222122232AC a b c a b c a b a c c b t t t ∴=+-=+++⋅-⋅-⋅=-=, 12AC t ∴=. 2m ∴=故选:A . 【点睛】本题考查了棱柱的结构特征,考查了向量加法三角形法则,解答的关键是掌握22||a a =,是基础题.二、填空题13.【分析】以为原点为轴为轴为轴建立空间直角坐标系利用向量法即可求解到平面的距离【详解】以为原点为轴为轴为轴建立空间直角坐标系则所以设平面的法向量为则取得所以到平面的距离故答案为:【点睛】本题主要考查了 6【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法,即可求解A 到平面11BD A 的距离 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 则11(1,0,0),(1,0,2),(1,1,0),(0,0,2)A A B D , 所以11(0,1,2),(1,1,2),(0,1,0)BA BD BA =-=--=-, 设平面11BD A 的法向量为(,,)n x y z =,则112020n BA y z n BD x y z ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,取1z =,得(0,2,1)n =, 所以A 到平面11BD A 的距离2633n BA d n⋅===. 故答案为:63.【点睛】本题主要考查了点到平面的距离的求法,其中解答中熟记空间向量在立体几何中的应用,合理利用空间向量运算是解答的关键,着重考查了推理与运算能力,属于基础题.14.【解析】以正方形的中心为原点平行于的直线为轴平行于的直线为轴为轴建立如图所示空间直角坐标系设四棱锥棱长为则所以∴故异面直线所成角的余弦值为解析:33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴,SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则(1,1,0)A --,(1,1,0)B -,(0,0,2)S ,(1,1,0)D -,112,,222E ⎛⎫- ⎪ ⎪⎝⎭, 所以312,,222AE ⎛⎫= ⎪ ⎪⎝⎭,(1,1,2)SD =--,∴311322cos ,3911112442AE SD -+-==-++⋅++. 故异面直线AE ,SD 所成角的余弦值为33. 15.【详解】以O 为坐标原点建立空间直角坐标系设因此设平面一个法向量为取因此直线与平面所成角的正弦值是 解析:88585【详解】以O 为坐标原点建立空间直角坐标系,设1(1,2,0),(1,2,0),(0,0,2)(,1,1)2B C P M -∴- 因此3(,1,1)2BM =-- ,设平面PCO 一个法向量为(,,)(0,0,2)00(,,)(,,)(1,2,0)02x y z z n x y z x y z x y ⋅==⎧⎧=∴∴⎨⎨⋅-==⎩⎩,取(2,1,0)n =因此直线BM 与平面PCO所成角的正弦值是3cos ,8517BM n --== 16.【解析】由平行四边形中对角线互相平分的性质知AC 的中点即为BD 的中点AC 的中点设D(xyz)则∴x =5y =13z =-3故D(513-3)解析:(5,13,3)- 【解析】由平行四边形中对角线互相平分的性质知,AC 的中点即为BD 的中点,AC 的中点7(,4,1)2O - ,设D (x ,y ,z ), 则7251,4,12222x y z +-++==-= ∴x =5,y =13,z =-3,故D (5,13,-3).17.【解析】即 解析:12λλ<≠-且【解析】0a b a b ⋅<且与不共线 ,即212110,1λλ---<≠⇒ 12λλ<≠-且 18.3【解析】试题分析:由于三个向量共面所以存在实数使得即有解得考点:空间向量的正交分解及其坐标表示解析:3 【解析】试题分析:由于a b c 、、三个向量共面,所以存在实数m n 、,使得=c ma nb +,即有13=2{6323m n m nm nλ-=-+=-,解得9{53m n λ===. 考点:空间向量的正交分解及其坐标表示.19.26【分析】推导出=从而=()2=由此能出CD 【详解】∵平面α⊥平面β且α∩β=l 在l 上有两点AB 线段AC ⊂α线段BD ⊂βAC ⊥lBD ⊥lAB=6BD=24AC=8∴=∴=()2==64+36+57解析:26 【分析】推导出CD =CA AB BD ++,从而2CD =(CA AB BD ++)2=222CA AB BD ++,由此能出CD . 【详解】∵平面α⊥平面β,且α∩β=l ,在l 上有两点A ,B ,线段AC ⊂α,线段BD ⊂β, AC ⊥l ,BD ⊥l ,AB=6,BD=24,AC=8, ∴CD =CA AB BD ++, ∴2CD =(CA AB BD ++)2 =222CA AB BD ++ =64+36+576 =676, ∴CD=26. 故答案为26. 【点睛】本题考查两点间距离的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.20.【解析】分析:确定A1C1到底面ABCD 的距离为正四棱柱ABCD ﹣A1B1C1D1的高即可求得结论详解:∵正四棱柱ABCD ﹣A1B1C1D1∴平面ABCD ∥平面A1B1C1D1∵A1C1⊂平面A1B解析:26 【解析】分析:确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高,即可求得结论. 详解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1, ∴平面ABCD ∥平面A 1B 1C 1D 1, ∵A 1C 1⊂平面A 1B 1C 1D 1, ∴A 1C 1∥平面ABCD∴A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高∵正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长为2,AC 1与底面ABCD 成60°角,∴A 1A=22tan60°=26故答案为26.点睛:本题考查线面距离,确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.三、解答题21.(1)证明见解析;(2)63. 【分析】(1)本题首先可根据PA ⊥平面ABCD 得出PA BD ⊥,然后根据底面ABCD 为正方形得出AC BD ⊥,最后根据线面垂直的判定即可得出结果;(2)本题首先可建立空间直角坐标系,然后求出平面EAC 的法向量n 以及平面PAC 的法向量BD ,最后通过cos ,n BD n BD n BD ⋅=⋅即可得出结果. 【详解】(1)因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥,因为底面ABCD 为正方形,所以AC BD ⊥,因为=AP AC A ,所以BD ⊥平面PAC .(2)如图,以A 为原点,分别以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系,则(0,0,0)A 、(2,0,0)B 、(2,2,0)C 、(0,2,0)D 、(0,0,2)P ,则(2,2,0)BD =-,(2,2,0)AC =,因为E 为PD 中点,所以(0,1,1)E ,(0,1,1)AE =,设平面EAC 的法向量为(,,)n x y z =,则00AC n AE n ⎧⋅=⎨⋅=⎩,即2200x y y z +=⎧⎨+=⎩,令1y =,则(1,1,1)n =--, 因为BD ⊥平面PAC ,所以BD 为平面PAC 的法向量,则cos ,33n BDn BD n BD ⋅===⋅⋅,故结合图像易知,二面角P AC E -- 【点睛】关键点点睛:本题考查线面垂直的判定以及二面角的余弦值的求法,若平面外一条直线与平面内两条相交直线都垂直,则线面垂直,可通过建立空间直角坐标系的方式求二面角,考查数形结合思想,是中档题.22.(Ⅰ)证明见解析;(Ⅱ)60°;(III )存在,()1,0,1.【分析】(1)以D 为原点,DA 、DC 、DP 分别为x 、y 、z 轴建立空间直角坐标系,写出G 、P 、A 、B 、C 、F 的坐标,根据法向量的性质求得平面PCB 的法向量n ,证得//GF n 即可;(2)由(1)知,平面PCB 的法向量为(0n =,1,1),同(1)可求得平面PAB 的法向量m ,由cos m <,||||m n n m n >=即可得解; (3)设AM AP λ=,则(22M λ-,0,2)λ,故有,|cos 60|cos D t M →︒=><·=||·DM t DM t ,解之得λ的值即可. 【详解】(Ⅰ)证明:以D 为原点,DA 、DC 、DP 分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则(2,0,0),(2,2,,0),(0,2,0),(0,0,2),(1,0,0),(1,1,1)A B C P G F(0,1,1),(2,2,2),(0,2,2)GF PB PC ∴==-=-设平面PCB 的法向量为111(,,)m x y z =,则00m PB m PC ⎧⋅=⎨⋅=⎩,即111112220220x y z y z +-=⎧⎨-=⎩ 令1=1z ,则110,1x y ==,(0,1,1)m ∴=∴//GF m ,故GF ⊥平面PCB .(Ⅱ)解:由(Ⅰ)知,平面PCB 的法向量为(0,1,1)m =,(2,2,2),(2,0,2)PB PA =-=-设平面PAB 的法向量为222(,,)n x y z =,则2222222200,2200x y z n PB x z n PA +-=⎧⎧⋅=⎨⎨-=⋅=⎩⎩即, 令21z =,则221,0,x y ==,所以平面PAB 的法向量(1,0,1)n = 11cos ,||||222m n m n m n ⋅∴<>===⋅⨯ 平面PAB 与平面PCB 的夹角大小为60.(III )假设线段AP 上存在一点M ,设AM AP λ=,[]01λ∈,,则(22,0,2)M λλ-, (22,0,2)DM λλ∴=-,设平面ADF 的法向量为333(,,)t x y z =,(2,0,0),(1,1,1)DA DF ==,由0,0DA t DF t ⋅=⋅=得到(0,1,1)t =-,DM 与平面ADF 所成角为30︒,DM ∴与t 所成角为60︒,22||cos60|cos ,|(22)42||||DM t DM t DM t λλ→︒→⋅∴=<>==-+⋅⋅解得12λ=, 故在线段AP 上存在一点M ,使得DM 与平面ADF 所成角为30︒,点M 的坐标为(1,0,1).【点睛】关键点点睛:存在性问题,一般假设存在一点M ,设AM AP λ=,利用向量的坐标运算,根据线面角公式求解,如能求出符合范围的λ,即存在,否则不存在.23.(1)证明见解析;(2)3-. 【分析】(1)取AB 的中点E ,连结EM ,EN ,根据线面平行的判定定理以及面面平行的判定定理,先证明平面//MNE 平面PAD ,进而可证//MN 平面PAD ;(2)根据题中条件,以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,分别求出两平面的法向量,由向量夹角公式,即可求出结果.【详解】(1)证明:在四棱锥P ABCD -中,取AB 的中点E ,连结EM ,EN .因为M ,N 分别为BP ,CD 的中点,//AD BC .所以//ME PA ,//EN AD .因为PA ⊂平面PAD ,ME ⊄平面PAD ,所以//ME 平面PAD ,同理,//EN 平面PAD .又因为ME NE E ⋂=,ME 、NE ⊂平面MNE ,所以平面//MNE 平面PAD .因为MN ⊂平面MNE ,所以//MN 平面PAD ;(2)因为在等腰直角三角形PAD 中,90A ∠=︒,//AD BC ,所以BC PA ⊥,即在四棱锥P ABCD -中,BC PB ⊥,BC AB ⊥.因为//AD BC ,所以AD PB ⊥,AD AB ⊥,因为PB AB B ⋂=,PB 、AB 平面PAB ,所以AD ⊥平面PAB ,所以PA AD ⊥. 又因为8AD =,3AB =,4PA =,所以5PB =.所以222AB PA PB +=,所以PA AB ⊥.以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则()3,0,0B ,()0,0,4P ,()0,8,0D ,()3,5,0C ,所以(3,0,4)PB =-,(3,5,4)PC =-,(0,4)8,PD =-.设()1111,,x n y z =为平面PBC 的一个法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111113403540x z x y z -=⎧⎨+-=⎩, 令14x =,得1(4,0,3)n =;设()2222,,n x y z =为平面PCD 的一个法向量,则2200n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222228403540y z x y z -=⎧⎨+-=⎩, 令21y =,得2(1,1,2)n =. 所以121222126cos ,343114n n n n n n ⋅<>===+++. 因为二面角B PC D --是钝角,所以二面角B PC D --的余弦值是6 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.24.(1)222)155. 【分析】(1)连接1A B ,先证得11AC ⊥平面11ABB A ,得111AC AB ⊥,然后由已知得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥,在直角梯形11AA B B 中,可求得1AA ; (2)以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,然后求得二面角11B AC C --的两个面的的法向量,由法向量的余弦值得二面角的正弦值.【详解】解:(1)如图,连接1A B .1AA ⊥平面111A B C ,11A B ⊂平面111A B C ,则111AC A A ⊥,又1111AC A B ⊥,1111AA A B A =,∴11AC ⊥平面11ABB A ,而1AB ⊂平面11ABB A , 故111AC AB ⊥.又11AB BC ⊥,1111AC BC C ,可得1AB ⊥平面11A BC ,1A B ⊂平面11A BC ,∴11AB A B ⊥, 故1111111112tan tan 224AA A BA A AB A BA A AB AA AA ∠=∠⇒∠=∠⇒=⇒=(2)如图,以A 为原点,AB ,AC ,1AA 方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,则(12,0,2B ,()10,2,22C ()4,0,0AB =为平面1AC C 的一个法向量.设(),,n x y z =为平面11B AC 的一个法向量,则112220002220x z n AB n AC y z ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩,取1z =,得()2,2,1n =--,则4210cos ,545n AB -〈〉==-, ∴15sin ,5n AB 〈〉=. 故所求二面角的正弦值为155. 【点睛】 方法点睛:本题考查线面垂直的判定,考查空间向量法求二面角.求二面角的常用方法是空间向量法,即建立空间直角坐标系,求出二面角两个面的法向量,由法向量的夹角与二面角相等或互补求解.25.(1)证明见解析;(2)2114. 【分析】(1)根据已知条件证明BD CD ⊥,根据线面垂直的判定定理即可得到BD ⊥平面SCD ;(2)根据已知条件建立合适的空间直角坐标系,利用直线的方向向量与平面法向量夹角的余弦值的绝对值求解出SD 与平面MBD 所成角的正弦值.【详解】解:(1)证明:取BC 的中点E ,连接DE ,设==AB AD a ,2BC a =,依题意,四边形ABED 为正方形,且有BE DE CE a ===,2BD CD a ==,∴222BD CD BC +=,则BD CD ⊥.又平面SCD ⊥底面ABCD ,平面SCD 底面ABCD CD =,∴BD ⊥平面SCD(2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH ,∵平面SCD ⊥底面ABCD ,平面SCD 底面ABCD CD =,SH CD ⊥,SH ⊂平面SCD ,SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影,SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒.由(1)得,2SD a =,∴在Rt SHD 中,2SD a =,62SH a =, 在ADH 中,45ADH ∠=︒,AD a =,22DH a =,由余弦定理得222222cos 45222AH a a a a a ⎛⎫=+-⋅⋅⋅︒= ⎪ ⎪⎝⎭, ∴222AH DH AD +=,从而90AHD ∠=︒,过点D 作//DF SH ,∴DF ⊥底面ABCD ,∴DB 、DC 、DF 两两垂直,如图,以点D 为坐标原点,DB 为x 轴正方向,DC 为y 轴正方向,DF 为z 轴正方向建立空间直角坐标系,则)2,0,0B a ,()2,0C a ,260,S ⎛⎫ ⎪⎝⎭,22,,0A ⎫⎪⎪⎝⎭,226,M a ⎫⎪⎪⎝⎭, 设平面MBD 的法向量(),,n x y z =,由2022602n DB ax n DM ⎧⋅==⎪⎨⋅==⎪⎩,取1z =,得30,,1n ⎛⎫= ⎪ ⎪⎝⎭,又26,SD ⎛⎫= ⎪ ⎪⎝⎭,∴22662142sin cos ,3131422a a n SD a a θ-=<>==+⋅+, ∴SD 与平面MBD 所成角的正弦值为2114. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.26.(1)证明见解析;(2)14. 【分析】(1 )连接BD 交AC 于点O ,连接OE ,根据中位线定理可得//PB OE ,由线面平行的判定定理即可证明//PB 平面AEC ; (2)设菱形ABCD 的边长为a ,根据23243P ABCD P ACD E ACD V V V ---===可得2a =,以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立空间直角坐标系,分别求出平面CAE 与平面DAE 的一个法向量,根据空间向量夹角余弦公式,可得结果.【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 为BD 中点,E 为PD 的中点,所以//PB OE ,OE ⊂平面,ACE PB ⊄平面ACE ,所以//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,2324P ABCD P ACD E ACD V V V ---===, 1233113132P ABCD ABCD V S PA a a -⨯⨯⨯=⋅==,则2a =. 取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立如图所示坐标系.()0,2,0D ,()0,0,0A ,10,1,2⎛⎫ ⎪⎝⎭E ,()3,1,0C 10,1,2AE ⎛⎫= ⎪⎝⎭,()3,1,0AC =, 设平面ACE 的法向量为1(,,)n x y z =,由11,n AE n AC ⊥⊥, 得10230y z x y ⎧+=⎪⎪+=⎩,令3y =1,23x z =-=-(11,3,23n =∴--,平面ADE 的一个法向量为()21,0,0n = 1212121cos<,>41312n n n n n n ⋅===++⋅, 即二面角D AE C --的余弦值为14. 【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n ;再代入公式cos m nm n α⋅=±(其中,m n分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)。
高中数学《空间向量与立体几何》练习题(含答案解析)
高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。
2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析
空间直线、平面的平行考试要求 1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)教材改编题1.下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是( )A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案 D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F 分别是BC ,PD 的中点,求证:(1)PB ∥平面ACF ;(2)EF ∥平面PAB .证明 (1)如图,连接BD 交AC 于O ,连接OF ,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,又∵F 是PD 的中点,∴OF ∥PB , 又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2 直线与平面平行的性质例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM 上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.延伸探究在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解如图,连接A1B交AB1于O,连接OD1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即AD DC=1. 教师备选如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A 1C 1G ∩BC =H ,求证:H 为BC 的中点. 证明 (1)∵E ,F 分别为B 1C 1,A 1B 1的中点, ∴EF ∥A 1C 1,∵A 1C 1⊂平面A 1C 1G ,EF ⊄平面A 1C 1G , ∴EF ∥平面A 1C 1G ,又F ,G 分别为A 1B 1,AB 的中点, ∴A 1F =BG , 又A 1F ∥BG ,∴四边形A 1GBF 为平行四边形, 则BF ∥A 1G ,∵A 1G ⊂平面A 1C 1G ,BF ⊄平面A 1C 1G , ∴BF ∥平面A 1C 1G ,又EF ∩BF =F ,EF ,BF ⊂平面BEF , ∴平面A 1C 1G ∥平面BEF .(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B 1D 1∥BD ,所以B 1D 1∥l .题型三 平行关系的综合应用例4 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. (1)证明 连接CP 并延长,与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD ,故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23, 所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明如下:因为AR AB =35,即BR RA =23, 故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA . 教师备选如图,四边形ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .思维升华 证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.(1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解 设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC=BC -CF BC =1-x4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝⎛⎭⎪⎫x +6-32x =12-x .又∵0<x <4,∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则( )A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案 D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶3B.2∶5C.4∶9D.4∶25答案 D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是( )答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值 答案 AD解析 根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A 正确;由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误;因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案 l ⊄α解析 ①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明 如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE 綉D 1G .∴四边形OEGD 1是平行四边形, ∴EG ∥D 1O .又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,由题意易证B 1D 1∥BD .又B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , ∴平面BDF ∥平面B 1D 1H .10.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)如图,连接EC , 因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是( )A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β答案BC解析如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.13.(多选)(2022·临沂模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将△ABE 沿AE 翻折,使得二面角B -AE -D 为直二面角,得到图2所示的四棱锥B -AECD ,点F 为线段BD 上的动点(不含端点),则在四棱锥B -AECD 中,下列说法正确的有( )图1 图2A .B ,E ,C ,F 四点不共面 B .存在点F ,使得CF ∥平面BAE C .三棱锥B -ADC 的体积为定值D .存在点E 使得直线BE 与直线CD 垂直 答案 AB解析 对于A ,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在折前线段BC 上,BC ∩平面BCF =C ,所以E 与C 重合,与E 异于C 矛盾, 所以直线BE 与直线CF 必不在同一平面上,即B ,E ,C ,F 四点不共面,故A 正确; 对于B ,如图,当点F 为线段BD 的中点,EC =12AD 时,直线CF ∥平面BAE ,证明如下:取AB 的中点G ,连接GE ,GF , 则EC ∥FG 且EC =FG ,所以四边形ECFG 为平行四边形, 所以FC ∥EG ,又因为EG ⊂平面BAE , 则直线CF 与平面BAE 平行,故B 正确;对于C ,在三棱锥B -ADC 中,因为点E 的移动会导致点B 到平面ACD 的距离发生变化,所以三棱锥B -ADC 的体积不是定值,故C 不正确;对于D ,过D 作DH ⊥AE 于H ,因为平面BAE ⊥平面AECD ,平面BAE ∩平面AECD =AE ,所以DH ⊥平面BAE ,所以DH ⊥BE ,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,且DC ⊂平面AECD ,DH ∩DC =D ,所以BE ⊥平面AECD ,所以BE ⊥AE ,与△ABE 是以B 为直角的三角形矛盾,所以不存在点E 使得直线BE 与直线CD 垂直,故D 不正确.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =DD 1=1,AB =3,E ,F ,G 分别是AB ,BC ,C 1D 1的中点,点P 在平面ABCD 内,若直线D 1P ∥平面EFG ,则线段D 1P 长度的最小值是________.答案72解析 如图,连接D 1A ,AC ,D 1C .因为E ,F ,G 分别为AB ,BC ,C 1D 1的中点, 所以AC ∥EF ,又EF ⊄平面ACD 1,AC ⊂平面ACD 1, 则EF ∥平面ACD 1.同理可得EG ∥平面ACD 1,又EF ∩EG =E ,EF ,EG ⊂平面EFG ,所以平面ACD 1∥平面EFG . 因为直线D 1P ∥平面EFG , 所以点P 在直线AC 上.在△ACD 1中,易得AD 1=2,AC =2,CD 1=2, 所以1AD C S △=12×2×22-⎝⎛⎭⎪⎫222=72, 故当D 1P ⊥AC 时,线段D 1P 的长度最小,最小值为7212×2=72.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN ,∴点P 的轨迹是线段EF ,∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22,∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O , A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.如图,正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为AB 1,A 1C 1上的点,A 1N =AM .(1)求证:MN ∥平面BB 1C 1C ;(2)求MN 的最小值.(1)证明 如图,作NE ∥A 1B 1交B 1C 1于点E ,作MF ∥AB 交BB 1于点F ,连接EF , 则NE ∥MF .∵NE ∥A 1B 1,∴NEA 1B 1=C 1NA 1C 1.又MF ∥AB ,∴MF AB =B 1MAB 1,∵A 1C 1=AB 1,A 1N =AM ,∴C 1N =B 1M .∴NE A 1B 1=MF AB,又AB =A 1B 1,∴NE =MF .∴四边形MNEF 是平行四边形,∴MN ∥EF , 又MN ⊄平面BB 1C 1C ,EF ⊂平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .(2)解 设B 1E =x ,∵NE ∥A 1B 1, ∴B 1E B 1C 1=A 1NA 1C 1.又∵MF ∥AB ,∴B 1F BB 1=B 1M AB 1,∵A 1N =AM ,A 1C 1=AB 1=2a ,B 1C 1=BB 1=a ,B 1E =x ,∴B 1E B 1C 1+B 1F BB 1=A 1N A 1C 1+B 1MAB 1,∴x a +B 1F a =1,∴B 1F =a -x ,从而MN =EF =B 1E 2+B 1F 2 =x 2+a -x2 =2⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫a 22, ∴当x =a 2时,MN 的最小值为22a .。
浙江新高考数学二轮复习专题强化练:专题四 3 第3讲 空间向量与立体几何 含解析
专题强化训练1.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD 和C 1C 的中点,则直线AE 与D 1F 所成角的余弦值为( )A.13 B.25 C.35D.37解析:选B.以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(图略).若棱长为2,则A (2,0,0)、E (0,1,0)、D 1(0,0,2)、F (0,2,1).所以EA →=(2,-1,0),D 1F →=(0,2,-1), cos 〈EA →,D 1F →〉=EA →·D 1F→|EA →||D 1F →|=-25·5=-25.则直线AE 与D 1F 所成角的余弦值为25.2.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B.以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12, D (0,1,0),所以A 1D →=(0,1,-1), A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1), 所以cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.3.(2019·浙江省十校联合体期末联考)在三棱锥O -ABC 中,已知OA ,OB ,OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足BP ≤12BC ,AQ ≥12AO ,则PQ 和OB 所成角的余弦的取值范围是( )A.⎣⎡⎦⎤22,1B.⎣⎡⎦⎤33,1C.⎣⎡⎦⎤33,255D.⎣⎡⎦⎤22,255解析:选B.根据题意,以O 为原点,建立如图所示的空间直角坐标系,不妨设OA =OB =OC =2,OB →=(2,0,0),设P (x ,y ,0),Q (0,0,z ),因为BP ≤12BC ,AQ ≥12AO ,所以1≤x ≤2,0≤y ≤1且x +y =2,0≤z ≤1,PQ →=(-x ,x -2,z ),|cos 〈OB →,PQ →〉|=⎪⎪⎪⎪⎪⎪⎪⎪OB →·PQ →|OB→|·|PQ →|=⎪⎪⎪⎪⎪⎪⎪⎪-x 2x 2-4x +4+z 2, 当x =1,z =1时,|cos 〈OB →,PQ →〉|=33;当x =2,z =1时,|cos 〈OB →,PQ →〉|=255;当x =2,z =0时,|cos 〈OB →,PQ →〉|=1.当x =1,z =0时,|cos 〈OB →,PQ →〉|=22,结合四个选项可知PQ 和OB 所成角的余弦的取值范围是⎣⎡⎦⎤33,1.4.(2019·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1ABC 中,∠BAC =π2,AB =AC =AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A.⎣⎡⎭⎫55,1B.⎣⎡⎦⎤55,1C.⎝⎛⎭⎫255,1D.⎣⎡⎭⎫255,1解析:选 A.建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝⎛⎭⎫0,1,12,G ⎝⎛⎭⎫12,0,1,F (x ,0,0),D (0,y ,0), 由于GD ⊥EF ,所以x +2y -1=0, DF =x 2+y 2=5⎝⎛⎭⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1而不包括端点,故y =0不能取,故选A. 5.已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33解析:选C.如图所示,将直三棱柱ABC -A 1B 1C 1补成直四棱柱ABCD -A 1B 1C 1D 1,连接AD 1,B 1D 1,则AD 1∥BC 1,所以∠B 1AD 1或其补角为异面直线AB 1与BC 1所成的角.因为∠ABC =120°,AB =2,BC =CC 1=1,所以AB 1=5,AD 1= 2.在△B 1D 1C 1中,∠B 1C 1D 1=60°,B 1C 1=1,D 1C 1=2,所以B 1D 1=12+22-2×1×2×cos 60°=3,所以cos ∠B 1AD 1=5+2-32×5×2=105,选择C.6.(2019·杭州市学军中学高考数学模拟)如图,在二面角A -CD -B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折过程中,二面角A -CD -B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →,设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ,即x 2-4x cos θ-1=0,即cos θ=x 2-14x .因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎪⎨⎪⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]7.(2019·台州市高考模拟)如图,在棱长为2的正四面体A -BCD 中,E 、F 分别为直线AB 、CD 上的动点,且|EF |= 3.若记EF 中点P 的轨迹为L ,则|L |等于________.(注:|L |表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L |分别对应长度、面积、体积)解析:如图,当E 为AB 中点时,F 分别在C ,D 处,满足|EF |=3,此时EF 的中点P 在EC ,ED 的中点P 1,P 2的位置上;当F 为CD 中点时,E 分别在A ,B 处,满足|EF |=3,此时EF 的中点P 在BF ,AF 的中点P 3,P 4的位置上,连接P 1P 2,P 3P 4相交于点O ,则四点P 1,P 2,P 3,P 4共圆,圆心为O ,圆的半径为12,则EF 中点P 的轨迹L 为以O 为圆心,以12为半径的圆,其测度|L |=2π×12=π.答案:π8.(2019·金丽衢十二校联考)如图,在三棱锥D -ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:29.(2019·宁波诺丁汉大学附中高三期中考试)如图,矩形ABCD 中,AB =1,BC =3,将△ABD 沿对角线BD 向上翻折,若翻折过程中AC 长度在⎣⎡⎦⎤102,132内变化,则点A 所形成的运动轨迹的长度为________.解析:过A 作AE ⊥BD ,垂足为E ,连接CE ,A ′E . 因为矩形ABCD 中,AB =1,BC =3, 所以AE =32,CE =72. 所以A 点的轨迹为以E 为圆心,以32为半径的圆弧.∠A ′EA 为二面角A -BD -A ′的平面角. 以E 为原点,以EB ,EA ′所在直线为x 轴,y 轴建立如图所示空间直角坐标系E -xyz ,设∠A ′EA =θ,则A ⎝⎛⎭⎫0,32cos θ,32sin θ,C ⎝⎛⎭⎫-1,-32,0,所以AC =1+34(cos θ+1)2+34sin 2θ=5+3cos θ2,所以102≤5+3cos θ2≤132, 解得0≤cos θ≤12,所以60°≤θ≤90°,所以A 点轨迹的圆心角为30°, 所以A 点轨迹的长度为π6·32=3π12.答案:312π 10.(2019·宁波十校联考模拟)如图,在四棱锥P -ABCD 中,∠BAD =120°,AB =AD =2,△BCD 是等边三角形,E 是BP 的中点,AC 与BD 交于点O ,且OP ⊥平面ABCD .(1)求证:PD ∥平面ACE ;(2)当OP =1时,求直线P A 与平面ACE 所成角的正弦值. 解:(1)证明:因为在四棱锥P -ABCD 中,∠BAD =120°,AB =AD =2,△BCD 是等边三角形,所以△ABC ≌△ACD ,因为E 是BP 中点,AC 与BD 交于点O ,所以O 是BD 中点,连接OE ,则OE ∥PD ,因为PD ⊄平面ACE ,OE ⊂平面ACE ,所以PD ∥平面ACE .(2)因为BD ⊥AC ,PO ⊥平面ABCD ,以O 为原点,OB ,OC ,OP 所在直线为坐标轴建立空间直角坐标系, 则P (0,0,1),A (0,-1,0),B (3,0,0),C (0,3,0),E ⎝⎛⎭⎫32,0,12,EA →=⎝⎛⎭⎫-32,-1,-12,EC →=⎝⎛⎭⎫-32,3,-12,P A →=(0,-1,-1),设平面ACE 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EA →=3x +2y +z =0n ·EC →=3x -6y +z =0,取x =1,得n =(1,0,-3),设直线P A 与平面ACE 所成角为θ, 则sin θ=|n ·P A →||n |·|P A →|=322=64,所以直线P A 与平面ACE 所成角的正弦值为64. 11.(2019·浙江暨阳4月联考卷)在四棱锥P -ABCD 中,PC ⊥平面ABCD ,BC ∥AD ,BC ⊥AB ,PB =AD =2,AB =BC =1,E 为棱PD 上的点.(1)若PE =13PD ,求证:PB ∥平面ACE ;(2)若E 是PD 的中点,求直线PB 与平面ACE 所成角的正弦值.解:(1)证明:过A 作Az ⊥平面ABCD ,以A 为原点,如图建立直角坐标系,由题意解得,PC =3,所以B (1,0,0),P (1,1,3),所以BP →=(0,1,3),C (1,1,0),D (0,2,0),设E (x ,y ,z ),由PE →=13PD →,得E (23,43,233),设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n AC→=x +y =0n AE →=23x +43y +233z =0,取z =1,得n =(3,-3,1),所以BP →·n =0,因为PB ⊄平面ACE ,所以PB ∥平面ACE .(2)过A 作Az ⊥平面ABCD ,以A 为原点,如图建立直角坐标系,由题意解得PC =3,所以B (1,0,0),P (1,1,3),A (0,0,0), 所以BP →=(0,1,3),C (1,1,0),D (0,2,0),所以E (12,32,32),AC →=(1,1,0),AE →=(12,32,32),设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n AC→=x +y =0n AE →=12x +32y +32z =0,取z =2,得n =(3,-3,2),所以直线PB 与平面ACE 所成角的正弦值: sin θ=|BP →·n ||BP →||n |=3210=3020.12.(2019·嵊州市第二次高考适应性考试)如图,在直三棱柱ABC -A 1B 1C 1中,底面ABC 为边长为2的正三角形,D 是棱A 1C 1的中点,CC 1=h (h >0).(1)证明:BC 1∥平面AB 1D ;(2)若直线BC 1与平面ABB 1A 1所成角的大小为π6,求h 的值.解:(1)证明:连接A 1B 交AB 1于E ,连接DE , 则DE 是△A 1BC 1的中位线. 所以DE ∥BC 1.又DE ⊂平面AB 1D ,BC 1⊄平面AB 1D ,故BC 1∥平面AB 1D .(2)以AB 的中点O 为坐标原点,OB ,OC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图所示,则B (1,0,0),C 1(0,3,h ).易得平面ABB 1A 1的一个法向量为n =(0,1,0). 又BC 1→=(-1,3,h ).所以sin π6=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→|·|n |.即3h 2+4=12,解得h =2 2. 13.(2019·温州十五校联考)已知菱形ABCD 中,对角线AC 与BD 相交于一点O ,∠BAD =60°,将△BDC 沿着BD 折起得△BDC ′,连接AC ′.(1)求证:平面AOC ′⊥平面ABD ;(2)若点C ′在平面ABD 上的投影恰好是△ABD 的重心,求直线CD 与底面ADC ′所成角的正弦值.解:(1)证明:因为C ′O ⊥BD ,AO ⊥BD ,C ′O ∩AO =O ,所以BD ⊥平面C ′OA ,又因为BD ⊂平面ABD ,所以平面AOC ′⊥平面ABD .(2)如图建系O -xyz ,令AB =a ,则 A ⎝⎛⎭⎫32a ,0,0,B ⎝⎛⎭⎫0,12a ,0, D ⎝⎛⎭⎫0,-12a ,0, C ′⎝⎛⎭⎫36a ,0,63a ,所以DC →=AB →=⎝⎛⎭⎫-32a ,12a ,0,平面ADC ′的法向量为m =⎝⎛⎭⎫1,-3,22,设直线CD与底面ADC ′所成角为θ,则sin θ=|cos 〈DC →,m 〉|=|DC →·m ||DC →||m |=3a a ·32=63,故直线CD 与底面ADC ′所成角的正弦值为63. 14.(2019·宝鸡市质量检测(一))如图,四棱锥P -ABCD 的底面ABCD 为矩形,P A ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a ,0,0),C (2a ,2b ,0),D (0,2b ,0), P (0,0,2c ).设AC ∩BD =O ,连接OE ,则O (a, b ,0),又E 是PD 的中点,所以E (0,b ,c ). (1)证明:因为PB →=(2a ,0,-2c ),EO →=(a ,0,-c ), 所以PB →=2EO →,所以PB →∥EO →,即PB ∥EO . 因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,A (0,0,0),B (2a ,0,0),C (2a ,2a ,0),D (0,2a ,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x ,1,0),而AC →=(2a ,2a ,0),所以AC →·n =2ax +2a =0,得x =-1, 所以n =(-1,1,0).因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ),而AF →=(a ,a ,c ), 所以AF →·m =a +cz =0,得z =-a c ,所以m =(1,0,-ac)∥m ′=(c ,0,-a ).cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c . 故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。
高考数学压轴专题新备战高考《空间向量与立体几何》技巧及练习题附答案
【高中数学】高考数学《空间向量与立体几何》解析一、选择题1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643πB .8316ππ+C .28πD .8216ππ+ 【答案】B【解析】【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可.【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l πππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.2.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+【答案】A【解析】【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可.【详解】 由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为22,则该几何体的表面积为2116(222)42282322S ⎡=⨯+-⨯+⨯⨯⎢⎣8(623)=+. 故选:A.【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.3.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =21122''N M M C N C =+,即1'90N MC ∠=︒ 故选D【点睛】本题考查异面直线的求法,属于基础题4.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β【答案】D【解析】【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.5.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C【解析】【分析】 根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C. 【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.6.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂,当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r成立, 反之当a b ⊥r r 时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.7.已知ABC V 的三个顶点在以O 为球心的球面上,且22cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为14,则球O 的表面积为( ) A .36πB .16πC .12πD .163π 【答案】B【解析】【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.【详解】由余弦定理得22229122cos 263AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点,11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.8.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V =⨯⨯=+, 故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.9.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).A 10B .3:1C .2:1D 102 【答案】A【解析】【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值.【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长22910l r r r =+=, ∴圆锥SC 的侧面积为210rl r ππ=;圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4r h ∴=,∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM 的侧面积之比为2210:10:1r r ππ=.故选:A .【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题. 10.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.11.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305C .275D .475 【答案】B【解析】【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值.【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.12.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】【分析】 将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件.【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B.【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.13.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r ,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r ,则αβ∥.正确的个数为( ) A .0B .1C .2D .3 【答案】B【解析】【分析】对每一个选项逐一分析得解.【详解】命题①中α与β还有可能平行或相交;命题②中α与β还有可能相交;命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确.故选B .【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.14.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A.441斛B.431斛C.426斛D.412斛【答案】A【解析】【分析】由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积117127812714V=⨯⨯⨯+⨯⨯=,2∴粮仓可以储存的粟米714441=≈斛.1.62故选:A.15.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是()A.若,与所成的角相等,则B.若,,则C.若,,则D.若,,则【答案】C【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A错.若,,则或,B错. 若,,则正确. D.若,,则,相交或,异面,D错考点:直线与平面,平面与平面的位置关系16.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( )A .13 B.33 C .223 D .63【答案】C【解析】【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF n EF n EF n ⋅〈〉=u u u r ru u u r r u u u r r ,即可得出答案.【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点 所以(0,0,2),(2,2,0)E F 故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r .设平面ACD 的法向量为(,,)n x y z =r ,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u uv v 令1,x = 则1y z ==; 所以(1,1,1)n =r 1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r r u u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以222cos 1sin θθ=-=故选:C【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.17.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .32πB .πC .3πD .12π【答案】C【解析】【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积.【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示该几何体是棱长为1的正方体中的三棱锥1A BCD AB BC BD -===,.所以该三棱锥的外接球即为此正方体的外接球,球的直径2r 为正方体体对角线的长. 即22221113r =++=.所以外接球的表面积为243r ππ=.故选:C .【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.18.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.19.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )A .B .C .D .【答案】B【解析】【分析】 根据三视图得到几何体的直观图,然后再根据题中的数据求出几何体的表面积即可.【详解】由三视图可得,该几何体为如图所示的正方体截去三棱锥和三棱锥后的剩余部分.其表面为六个腰长为1的等腰直角三角形和两个边长为的等边三角形, 所以其表面积为. 故选B .【点睛】 在由三视图还原空间几何体时,一般以主视图和俯视图为主,结合左视图进行综合考虑.热悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.求解几何体的表面积或体积时要结合题中的数据及几何体的形状进行求解,解题时注意分割等方法的运用,转化为规则的几何体的表面积或体积求解.20.如图所示,在平行六面体ABCD A B C D ''''-中1AB =,2AD =,3AA '=,90BCD ∠=︒,60BAA DAA ''∠=∠=︒,则AC '的长为( )A 13B 23C 33D 43【答案】B【解析】【分析】 由向量AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r 得:()()22AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r ,展开化简,再利用向量的数量积,便可得出答案.【详解】 AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r Q ,()()()()()222222()AC AB BC CC AB BC CC AB BC AB CC BC CC '''''∴=++=+++⋅+⋅+⋅u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r uu u r u u u u r u u u r u u u u r ()222291232(013cos6023cos60)142232AC ︒︒'∴=+++⨯+⨯+⨯=+⨯=u u u u r . 23AC '∴=u u u u r ,即AC '23故选:B.【点睛】本题主要考查了空间向量在立体几何中的应用,掌握向量法求线段长的方法是解题关键,属于中档题目.。
空间向量与立体几何强化训练专题练习(四)含答案新高考高中数学
7.在平行六面体ABCD-A1B1C1D1中,向量 是( )
(A)相同起点的向量(B)等长的向量
(C)共面向量(D)不共面向量
8.已知二面角-l-的大小为 ,异面直线a,b分别垂直于平面,,则异面直线a,b所成角的大小为( )
(A) (B) (C) (D)
第II卷(非选择题)
12.棱长为4的正方体内一点P,它到共顶点的三个面的距离分别为1,1,3,则点P到正方体中心O的距离为______.
13.平行六面体ABCD-A1B1C1D1中,所有棱长均为1,且∠A1AB=∠A1AD=60°,AB⊥AD,则AC1的长度为______.
14.设n1,n2分别为一个二面角的两个半平面的法向量,若 ,则此二面角的大小为______.
且 ,若二面角 的余弦值为 ,求实数 的值.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.A
2.D
3.B;
4.B
5.C 或
6.AC
解析:Bc=a+b=-i+3j+4k=-i+mj-nk,m=3,n=-4,m+n=-1.
7.C∵ 共面.
8.B
第II卷(非选择题)
请点击修改第II卷的文字说明
所以
,设 ,则 ,
故 ,根据法向量的方向,
可知二面角 的余弦值大小为
16.解:建立空间直角坐标系B-xyz,如图,
则B(0,0,0),A(1,0,0),C(0,1,0),B1(0,0,1),A1(1,0,1),D( , , ).
(A) (B) (C) (D)
5.若向量a=(1,λ,2),b=(2,-1,2),且a与b的夹角余弦为 ,则λ等于( )
高考数学压轴专题新备战高考《空间向量与立体几何》专项训练及答案
新高考数学《空间向量与立体几何》专题解析一、选择题1.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和② B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A. 【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.2.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果.几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A .7B .3C .1+3D .2【答案】A 【解析】 【分析】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=.所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A . 【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.5.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.6.若四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和为( )A .2B .25+C .425+D .4【答案】B 【解析】 【分析】根据四面体的三视图可知:一侧面垂直于底面,且底面是以该侧面与底面的交线为直角边的直角三角形,然后根据面面垂直的性质定理,得到与底面的另一直角边为交线的侧面为直角三角形求解. 【详解】由四面体的三视图可知:平面PAB ⊥平面ABC ,BC AB ⊥, 所以BC ⊥平面PAB ,所以BC PB ⊥, 所以,ABC PBC V V 是直角三角形, 如图所示:所以直角三角形的面积和为:11112252252222ABC PBC S S AB BC PB BC +=⨯⨯+⨯⨯=⨯⨯+=+V V 故选:B 【点睛】本题主要考查三视图的应用以及线面垂直,面面垂直的关系,还考查了运算求解的能力,属于中档题.7.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36 B.26 C .5 D .534【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以16sin 5APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠= 故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.8.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( ) A .若//a α,//b α,则//a b B .若a α⊥,//a b ,则b α⊥ C .若a α⊥,a b ⊥r r ,则//b α D .若//a α,a b ⊥r r,则b α⊥【答案】B 【解析】 【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解. 【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确;若a α⊥,a b ⊥r r,则//b α或b α⊂,故C 错误;若//a α,a b ⊥r r,则//b α,或b α⊂,或b 与α相交,故D 错误.故选:B . 【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.9.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B 6C .34D 3 【答案】B 【解析】 【分析】设1AA c=u u u v v,AB a =u u u vv,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,ABBC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又()222123AB a c a a c c =+=+⋅+=u u u v v v v v v v()222212222BC b a cb ac a b b c a c =-+=++-⋅+⋅-⋅=u u u u vv v v v v v v v v v v v1111116cos ,66AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6 本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.10.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A 3B .πC .3πD .12π【答案】C 【解析】 【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积. 【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示该几何体是棱长为1的正方体中的三棱锥1A BCD AB BC BD -===,.所以该三棱锥的外接球即为此正方体的外接球,球的直径2r 为正方体体对角线的长. 即22221113r =++=. 所以外接球的表面积为243r ππ=. 故选:C . 【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.11.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B .3 C .223D .6 【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u ur r ,即可得出答案. 【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r1cos ,3||||EF n EF n EF n ⋅〈〉===u u u r ru u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以cos 3θ== 故选:C 【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.12.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643πB .8316ππC .28πD .8216ππ+ 【答案】B【解析】【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可.【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l ππππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.14.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( )A .3B .3C .13D .3【答案】B【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB =∴132232ABC S ∆=⨯⨯=∵CD ⊥底面ABC ,//AE CD ,2CD AE ==∴四边形AEDC 为矩形,则F 为EC 与AD 的中点∴三棱锥F ABC -的高为112CD =∴三棱锥F ABC -的体积为1133V == 故选B.15.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.16.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( ) A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A【解析】【分析】 D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos 2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO PO APB PD a α==∠, 同理可得: sin cos 2PO CPB aβ=∠,sin cos 2PO CPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>. 故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.17.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C【解析】【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B点所在的棱长为2,则沿着长方体的表面从A到B的距离可能为===(2)当B点所在的棱长为4,则沿着长方体的表面从A到B的距离可能为===(3)当B点所在的棱长为6,则沿着长方体的表面从A到B的距离可能为===综上所述,沿着长方体的表面从A点到B.故选:C.【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.18.在三棱锥P ABC-中,PA⊥平面ABC,2π,43BAC AP∠==,AB AC==P ABC-的外接球的表面积为()A.32πB.48πC.64πD.72π【答案】C【解析】【分析】先求出ABCV的外接圆的半径,然后取ABCV的外接圆的圆心G,过G作//GO AP,且122GO AP==,由于PA⊥平面ABC,故点O为三棱锥P ABC-的外接球的球心,OA为外接球半径,求解即可.【详解】在ABCV中,AB AC==23BACπ∠=,可得6ACBπ∠=,则ABCV的外接圆的半径2sin2sin6ABrACB===ABCV的外接圆的圆心G,过G作//GO AP,且122GO AP==,因为PA⊥平面ABC,所以点O为三棱锥P ABC-的外接球的球心,则222OA OG AG=+,即外接球半径4R==,则三棱锥P ABC-的外接球的表面积为24π4π1664πR=⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A.6πB.12πC.32πD.48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。
(常考题)人教版高中数学选修一第一单元《空间向量与立体几何》测试题(有答案解析)(4)
一、选择题1.设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则x y z ++=( ).A .14B .12C .34D .12.直三棱柱111ABC A B C -中,1AC BC AA ==,90ACB ∠=,则直线1A C 与平面11A BC 所成的角的大小为( )A .30B .60C .90D .1203.已知点P 是平行四边形ABCD 所在的平面外一点,如果()2,1,4AB =--,(4,2,0)AD =,(1,2,1)AP =--.对于结论:①||6AD =;②AP AD ⊥;③AP 是平面ABCD 的法向量;④AP//BD .其中正确的是( ) A .②④ B .②③ C .①③ D .①② 4.如图,在三棱锥P ﹣ABC 中,△ABC 为等边三角形,△PAC 为等腰直角三角形,PA =PC =4,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .14B .24C .24-D .125.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+B .a b c +-C .a b c -+D .1122a b c -+- 6.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A .306 B .63 C .3 D .667.如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱AD ,1CC ,11A D 的中点,则1B P 与MN 所成角的余弦值为( )A 30B .15- C 70 D .158.在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( )A .52B .2C .32D .1169.以下四个命题中,正确的是( )A .若1123OP OA OB =+,则P 、A 、B 三点共线 B .若{,,}a b c 为空间的一个基底,则{,,}a b b c c a +++构成空间的另一个基底 C .()a b c a b c ⋅=⋅⋅D .ABC 为直角三角形的充要条件是·0AB AC =10.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .211.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN xAB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .212.已知ABC ,AB AC =,D 是BC 上的点,将ABD ∆沿AD 翻折到1AB D ∆,设点A 在平面1B CD 上的射影为O ,当点D 在BC 上运动时,点O ( )A .位置保持不变B .在一条直线上C .在一个圆上D .在一个椭圆上13.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若4AB AC BD ===,则线段CD 的长为( )A .43B .16C .8D .42 二、填空题14.在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为________. 15.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.16.已知正三棱锥P ABC -的侧棱长为2020,过其底面中心O 作动平面α交线段PC 于点S ,交,PA PB 的延长线于,M N 两点,则111PS PM PN++的取值范围为__________17.平行六面体1111ABCD A B C D -中,已知底面四边形ABCD 为正方形,且113A AB A AD π∠=∠=,其中,设1AB AD ==,1AA c =,体对角线12AC=,则c 的值是______.18.平行六面体1111ABCD A B C D -中,1160A AB A AD BAD ∠=∠=∠=︒,且1AB =,2AD =,13AA =,则1AC 等于______.19.设a =(1,1,0),b =(﹣1,1,0),c =(1,0,1),d =(0,0,1),,,,a b c d 存在正交基底,则四个向量中除正交基底外的向量用正交基底表示出来并写在填空处;否则在填空处写上“无正交基底”.你的答案是_____.20.设E ,F 是正方体1AC 的棱AB 和11D C 的中点,在正方体的12条面对角线中,与截面1A ECF 成60︒角的对角线的数目是______.21.已知直线l 的一个方向向量(4,3,1)d =,平面α的一个法向量(,3,5)n m =-,且//l α,则m =____22.在平行六面体1111ABCD A B C D -中,12AB AD AA ===,90BAD ∠=,1160BAA DAA ∠=∠=,则异面直线1AB 与1BC 所成角的余弦值是________. 23.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.24.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.25.已知非零向量n b 、及平面α,向量n 是平面α的一个法向量,则0n b ⋅=是“向量b 所在直线在平面α内”的____________条件.26.如图,在长方体1111ABCD A B C D -中,1AB =,3BC =,点M 在棱1CC 上,且1MD MA ⊥,则当1MAD 的面积取得最小值时其棱1AA =________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C【分析】利用空间向量的基本定理可计算得出1111333OG OA OB OC =++,由已知条件可得出134OG OG =,进而可求得x 、y 、z 的值,由此可求得结果. 【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G 为ABC 的重心,可得123AG AD =, 而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, ()1122123333OG OA AG OA AD OA OD OA OA OD =+=+=+-=+()()12113323OA OB OC OA OB OC =+⋅+=++,所以,13311111144333444OG OG OA OB OC OA OB OC ⎛⎫==++=++ ⎪⎝⎭, 所以,14x y z ===,因此,34x y z ++=. 故选:C.【点睛】 方法点睛:对于空间向量的基底分解的问题,一般需要利用向量的加减法法则进行处理,也可以借助一些相应的结论对运算进行简化.2.A解析:A【分析】以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1A C 与平面11A BC 所成的角.【详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,又90ACB ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:设11AC BC AA ===,则()11,0,1A 、()0,1,0B 、()0,0,0C 、()10,0,1C , ()111,0,0A C =-,()10,1,1=-BC ,()11,0,1=--AC ,设平面11A BC 的法向量为(),,n x y z =,由11100n AC x n BC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可得0x y z =⎧⎨=⎩,令1y =,可得0x =,1z =, 所以,平面11A BC 的一个法向量为()0,1,1n =,1111cos ,22n A Cn A C n A C ⋅<>==-⨯⋅, 所以,直线1A C 与平面11A BC 所成角的正弦值为12,则直线1A C 与平面11A BC 所成角为30.故选:A.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.B解析:B【分析】求出||25AD =①不正确;根据 0AP AD ⋅=判断②正确;由AP AB ⊥,AP AD ⊥判断③正确;假设存在λ使得λ=AP BD ,由122314λλλ-=⎧⎪=⎨⎪-=⎩无解,判断④不正确. 【详解】由(2AB =,1-,4)-,(4AD=,2,0),(1AP =-,2,1)-,知:在①中,||1646AD =+=≠,故①不正确;在②中,4400AP AD ⋅=-++=,∴⊥AP AD ,AP AD ∴⊥,故②正确; 在③中,2240AP AB ⋅=--+=, AP AB ∴⊥,又因为AP AD ⊥,AB AD A ⋂=,知AP 是平面ABCD 的法向量,故③正确;在④中,(2BD AD AB =-=,3,4),假设存在λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,无解,故④不正确;综上可得:②③正确.故选:B .【点睛】本题考查命题真假的判断,考查空间向量垂直、向量平行等基础知识,考查了平面的法向量以及空间向量的模,考查推理能力与计算能力,属于基础题.4.B解析:B【分析】取AC 的中点O ,连结OP ,OB ,以O 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出异面直线AC 与PD 所成角的余弦值.【详解】取AC 的中点O ,连结OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC ∆是等腰直角三角形,4PA PC ==,ABC ∆为直角三角形,A ∴,0,0),(C -0,0),(0P ,0,,(2D ,6,0), ∴(AC =-0,0),(2PD =,-,cos AC ∴<,||||4AC PD PD AC PD >=== ∴异面直线AC 与PD . 故选:B .【点睛】本题考查异线直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算与求解能力,考查化归与转化思想,是中档题.5.A解析:A【分析】利用空间向量的加法和减法法则可得出BD 关于a 、b 、c 的表达式.【详解】()11112222OD OA AD OA AC OA OC OA OA OC =+=+=+-=+, 因此,11112222BD OD OB OA OB OC a b c =-=-+=-+. 故选:A.【点睛】 本题考查利用基底表示空间向量,考查计算能力,属于中等题.6.D解析:D【分析】根据三棱柱的边长和角度关系,设棱长为1,分别求得AB AC ⋅、1AB AA ⋅、1AC AA ⋅的数量积,并用1,,AA AC AB 表示出1AB 和1BC ,结合空间向量数量积的定义求得11AB BC ⋅,再求得1AB 和1BC ,即可由向量的夹角公式求得异面直线1AB 与1BC 所成角的余弦值.【详解】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,设棱长为1,则111cos602AB AC ⋅=⨯⨯︒=,1111cos602AB AA ⋅=⨯⨯︒=,1111cos602AC AA ⋅=⨯⨯︒=. 11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-221111AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅11111112222=+-++-= 而()222111123AB AB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB =+-==,所以111111cos 62AB BC AB BC AB BC ⋅<⋅>===⋅, 故选:D. 【点睛】本题考查了空间向量的线性运算,空间向量数量积的定义与运算,异面直线夹角的向量求法,属于中档题.7.A解析:A 【分析】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,求出1B P 和MN 的坐标,设1B P 与MN 所成的角为θ,利用11cos B P MN B P MNθ=⋅⋅即可求解.【详解】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,设正方体的棱长为2,则()0,1,0M ,()2,2,1N ,()12,0,2B ,()0,1,2P , 所以()12,1,0B P =-,()2,1,1MN =, 设1B P 与MN 所成的角为θ, 所以1122130cos 56B P MN B P MNθ=⋅-⨯+==⨯⋅, 1B P 与MN 30,故选:A 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.A解析:A 【分析】根据空间向量的线性运算,得出AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,结合题意,即可求出11,2y z ==,从而得出x y z ++的值. 【详解】解:由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,由题可知,2AC x AB y BC z CC →→→→''=++,则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=. 故选:A. 【点睛】本题考查空间向量的基本定理的应用,以及空间向量的线性运算,属于基础题.9.B解析:B 【分析】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,故A 不正确;对于B , ,,a b b c c a +++不共线,所以 {,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,反之也可以是B ,C ∠为直角,故D 不正确. 【详解】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,1123OP OA OB =+,P ∴,A ,B 三点共线不成立,故A 不正确;对于B ,若{,,}a b c 为空间的一个基底,则,,a b c 不共线,∴,,a b b c c a +++不共线,∴{,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,故ABC ∆为直角三角形,反之也可以是B ,C ∠为直角,故D 不正确. 故选:B 【点睛】本题主要考查命题真假的判断,考查向量共线的条件,考查向量的数量积的计算,考查充要条件的判定,意在考查学生对这些知识的理解掌握水平.10.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC=++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.11.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.12.C解析:C 【分析】为计算简便,不妨设ABC 为等腰直角三角形,建立空间直角坐标系,取BC 中点M ,利用AO OC ⊥,AO OM ⊥即可得到轨迹方程. 【详解】为计算简便,不妨设ABC 为等腰直角三角形,令2BC =,且令190B DC ∠=︒, 以BC 中点M 为空间原点,MA 为z 轴,建立空间直角坐标系,设(02)BD a a =<<,12B A BA ==,设(,,)O x y z ,则()010C ,,,(001A ,,),(000M ,,),()0,1,0D a -,所以(AO x =,y ,1z -),(),1,CO x y z =-,(),,MO x y z =, 因为AO OC ⊥,所以()()2110AO CO x y y z z ⋅=+-+-=,同理AO OM ⊥,所以()2210AO MO x y z z ⋅=++-=,两式相减得0y =,代入得()222111()24x z z x z +-=+-=, 故选:C . 【点睛】本题考查点的轨迹方程,考查空间向量位置关系等,建立空间直角坐标系是关键,属于中档题.13.D解析:D 【分析】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE ,则由题意可知ACE ∆为等边三角形,CDE ∆为直角三角形,求解CD 即可. 【详解】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE , 则四边形ABDE 为平行四边形.线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB .AC AB ∴⊥,AE AB ⊥则CAE ∠为二面角的平面角,即60CAE ∠= 4AB AC BD ===4AC BD AE AB DE ∴=====,如图所示.ACE ∴∆为等边三角形,4CE =AC DE ⊥,AE DE ⊥,AC AE A ⋂=,AC ⊂平面ACE ,AE ⊂平面ACE DE ∴⊥平面ACE 又CE ⊂平面ACE∴DE CE ⊥在Rt CDE ∆中22224442CD CE DE =+=+= 故选:D 【点睛】本题考查空间的距离问题,属于中档题.二、填空题14.【分析】首先可证平面PAC 则BD 与平面PAC 所成角为所以当D 为PC 的中点时取得最大值如图建立空间直角坐标系利用空间向量法求出线面角的正弦值;【详解】解:因为PAABAC 两两垂直所以平面PAC 则BD 与 解析:311【分析】首先可证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,所以当D 为PC 的中点时ADB ∠取得最大值,如图建立空间直角坐标系,利用空间向量法求出线面角的正弦值; 【详解】解:因为PA ,AB ,AC 两两垂直,PA AC A =所以AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠, 所以3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值在等腰Rt PAC △中, 当D 为PC 的中点时,AD 取得最小值,以A 为坐标原点, 建立如图所示的空间直角坐标系A -xyz ,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D ,则(0,1,1)AD =,(0,2,2)PC =-,(3,2,0)BC =-,设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=, 即220320y z x y -=⎧⎨-+=⎩,令3y =,得(2,3,3)n =.因为cos ,11n AD 〈〉==,所以AD 与平面PBC .【点睛】(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.15.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考解析:【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=,所以AB =,故答案为:【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.16.【分析】设则根据空间四点共面的条件又四点共面则即得出答案【详解】设则由为底面中心又因为四点共面所以且所以即即故答案为:【点睛】本题考查空间四点共面的条件的应用属于中档题解析:32020⎧⎫⎨⎬⎩⎭【分析】设,,PM x PN y PS z ===,则111333zPAPB PCPO PM PN PS x y =⨯⋅+⨯⋅+⨯⋅,根据空间四点共面的条件,又,,,S M N O 四点共面,则202020202020+1333zx y +=,即得出答案. 【详解】设,,PM x PN y PS z ===. 则PA PA PM x=⋅,PB PB PN y=⋅,PC PC PS z=⋅.由O 为底面ABC 中心, ()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PCPA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333z PA PB PCPM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333zPA PB PC PM PN PS x y=⋅+⋅+⋅又因为,,,S M N O 四点共面,所以+1333zPA PB PC xy+=且2020PA PB PC ===.所以202020202020+1333z x y +=,即1113+z 2020x y += 即11132020PS PM PN ++=. 故答案为:32020⎧⎫⎨⎬⎩⎭.【点睛】本题考查空间四点共面的条件的应用,属于中档题.17.【分析】根据平方得到计算得到答案【详解】故解得故答案为:【点睛】本题考查了平行六面体的棱长意在考查学生的计算能力和空间想象能力 解析:13【分析】根据11AC AB AD AA =+-,平方得到2224c c +-=,计算得到答案. 【详解】11AC AB AD AA =+-, 故2222211111222AC AB AD AA AB AD AA AB AD AA AB AD AA =+-=+++⋅-⋅-⋅ 2224c c =+-=,解得31c =.31. 【点睛】本题考查了平行六面体的棱长,意在考查学生的计算能力和空间想象能力.18.5【分析】将已知条件转化为向量则有利用向量的平方以及数量积化简求解由此能求出线段的长度【详解】平行六面体中即向量两两的夹角均为则因此故答案为:5【点睛】本题考查向量的数量积和模在求解距离中的应用考查解析:5 【分析】将已知条件转化为向量则有11AC AB BC CC →→→→=++,利用向量的平方以及数量积化简求解,由此能求出线段1AC 的长度. 【详解】平行六面体1111ABCD A B C D -中, 1160A AB A AD BAD ∠=∠=∠=︒,即向量1,,AB AD AA→→→两两的夹角均为1601,2,3AB AD AA →→→︒===,,则11AC AB BC CC →→→→=++ 22221111222149212cos60213cos60223cos6025AC AB BC CC AB BC BC CC CC AB →→→→→→→→→→︒︒︒=+++⋅+⋅+⋅=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=因此15AC →=. 故答案为:5. 【点睛】本题考查向量的数量积和模在求解距离中的应用,考查学生转化与划归的能力,难度一般.19.【分析】四个向量中找出三个不共面的非零向量可以作为基底除正交基底外的向量用正交基底表示出来【详解】1100若共面则存在使得化简得:无解故不共面则为正交基底设则解得:故答案为:【点睛】本题考察了空间向 解析:1122c a bd =-+【分析】四个向量中找出三个不共面的非零向量可以作为基底,除正交基底外的向量用正交基底表示出来. 【详解】(1a =,1,0),(1b =-,1,0),(1c =,0,1),(0d =,0,1),∴0a b =,0a d =,0b d =,若,,a b d 共面,则存在,x y 使得a xb yd =+,化简得:110x x y =-⎧⎪=⎨⎪=⎩,无解,故,,a b d 不共面,则a ,b ,d 为正交基底, 设c xa yb zd =++,则101x y x y z =-⎧⎪=+⎨⎪=⎩,解得:11,,122x y z ==-=, ∴1122c a b d =-+.故答案为:1122c a bd =-+.【点睛】本题考察了空间向量的基本定理,正交分解坐标表示,属于基础题. 20.【分析】由于平面不是特殊的平面故建系用法向量求解以为原点建系正方体三边为坐标轴求出平面的法向量求解面对角线和的夹角即可求得答案【详解】以点为原点所在直线为轴所在直线为轴所在直线为轴设正方体棱长为2如 解析:4【分析】由于平面1A ECF 不是特殊的平面,故建系用法向量求解,以D 为原点建系,正方体三边为坐标轴,求出平面1A ECF 的法向量n ,求解面对角线和n 的夹角,即可求得答案.【详解】以点D 为原点,AD 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴设正方体棱长为2,如图:则(2,0,0),(0,0,0),(2,2,0),(0,2,0)A D B C1111(2,0,2),(2,2,2,),(0,2,2),(0,0,2)A B C D ,(2,1,0),(0,1,2)E F∴ 1(2,1,0),((0,1,2),(2,2,0)EC A E AC =-==-1(2,2,0),(2,0,2)BD BC =--=-- 11(0,2,2),(0,2,2)B A A B =--=-当面对角线与截面1A ECF 成60︒角,∴ 需保证直线与法向量的夹角为30︒,即其余弦值3± 设平面1A ECF 的法向量(,,)n x y z =100n EC n A E ⎧⋅=⎪⎨⋅=⎪⎩ 可得:2020y z x y -=⎧⎨-+=⎩ ,取2y = ∴ (1,2,1)n = ,则||6n =cos ,62||||8n AC AC n n AC ⋅<>===≠±⋅ cos,2BDn <>== 1cos ,2B Cn <>=≠± 1cos ,2B A n <>==- 1cos ,2A B n <>=≠± 当两条面对角线平行时,求解其中一条与面1A ECF 的法向量n 夹角即可.平面11AA D D 中1AD 与EF 平行,故不符合题意. 综上所述,符合题意的面对角线为:1111,,,BD B D AB DC 共4条.故答案为:4.【点睛】本题考查了线面角求法,根据题意画出几何图形,掌握正方体结构特征是解本题的关键.对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题. 21.【分析】由题意可得根据线面平行可得则进而得到解得即可【详解】解:由题意可得则解得【点睛】本题主要考查了直线与平面的位置关系根据线面平行线面垂直的性质得到平面的法向量与平行于平面的直线垂直考查了空间向 解析:1-【分析】由题意可得,根据线面平行可得d n ⊥,则=0d n ,进而得到4950m +-=,解得即可.【详解】解:由题意可得d n ⊥,则4950m +-=解得1m =-【点睛】本题主要考查了直线与平面的位置关系,根据线面平行、线面垂直的性质得到平面的法向量与平行于平面的直线垂直,考查了空间向量垂直的坐标表示.22.【分析】利用表示向量利用空间向量数量积计算出即可得解【详解】如下图所示:所以因此异面直线与所成角的余弦值是故答案为:【点睛】方法点睛:求异面直线所成角的余弦值方法如下:一是几何法:作—证—算;二是向解析:23【分析】利用AB 、AD、1AA表示向量1AB、1BC ,利用空间向量数量积计算出11cos,AB BC<>,即可得解.【详解】如下图所示:11AB AB AA=+,111BC BC BB AD AA=+=+,()222222111111122cosAB AB AA AB AA AB AA AB AA AB AA BAA =+=++⋅=++⋅∠22212222122=++⨯⨯=,123AB∴=()222222111111122cosBC AD AA AD AA AD AA AD AA AD AA DAA =+=++⋅=++⋅∠22212222122=++⨯⨯=,123BC∴=()()2 1111111AB BC AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+222111111cos cos22282AB AA BAA AD AA DAA AA=⋅∠+⋅∠+=⨯⨯+=,所以,()111121182cos,323AB BCAB BCAB BC⋅<>===⋅,因此,异面直线1AB与1BC所成角的余弦值是23.故答案为:23.【点睛】方法点睛:求异面直线所成角的余弦值,方法如下:一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线的夹角的余弦值为cos ,m nm n m n ⋅<>=⋅.23.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 24.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平解析:2【解析】分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n = (,,)m x y z =为平面1D EC 的法向量,∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=- 二面角1D EC D --的大小为4π ∴cos 4m nm n π⋅=⋅,即 2222(2)12λ=-++ 解得 23λ=-,23λ=+(舍去)∴23AE =-故答案为23-点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).25.必要不充分【分析】根据充分条件和必要条件的定义进行判断即可【详解】解:若向量是平面的法向量则若则则向量所在直线平行于平面或在平面内即充分性不成立若向量所在直线平行于平面或在平面内则向量是平面的法向量 解析:必要不充分【分析】根据充分条件和必要条件的定义进行判断即可.【详解】解:若向量n 是平面α的法向量,则n α⊥,若0n b =,则//b α,则向量b 所在直线平行于平面α或在平面α内,即充分性不成立, 若向量b 所在直线平行于平面α或在平面α内,则//b α,向量n 是平面α的法向量,∴n α⊥,则n b ⊥,即0n b =,即必要性成立,则0n b =是向量b 所在直线平行于平面α或在平面α内的必要条件,故答案为:必要不充分【点睛】本题主要考查充分条件和必要条件的判断,根据向量和平面的位置关系是解决本题的关键.26.【分析】设建立空间直角坐标系由向量的垂直可得进而可得由基本不等式即可得解【详解】设如图建立空间直角坐标系则所以又所以所以所以当且仅当时等号成立所以当的面积取得最小值时其棱故答案为:【点睛】本题考查了 解析:322【分析】设()10AA m m =>,()0M n n C m =≤≤,建立空间直角坐标系,由向量的垂直可得1m n n -=,进而可得1221452MAD S n n=++△,由基本不等式即可得解. 【详解】设()10AA m m =>,()0M n n C m =≤≤,如图建立空间直角坐标系,则()10,0,D m ,()0,1,M n ,)A , 所以()10,1,M n m D =-,()AM n =-,又1MD MA ⊥,所以()110M A D M n n m ⋅=+-=,所以1m n n -=,所以1112MAD S M AM D =⋅==△32==≥=,当且仅当n =m =所以当1MAD 的面积取得最小值时其棱1AA =.. 【点睛】 本题考查了空间向量及基本不等式的应用,考查了运算求解能力,合理转化、细心计算是解题关键,属于中档题.。
高考数学压轴专题2020-2021备战高考《空间向量与立体几何》专项训练解析附答案
【最新】高考数学《空间向量与立体几何》练习题一、选择题1.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和② B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A. 【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.2.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).A B .3:1C .2:1D 2【答案】A 【解析】 【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==,∴圆锥SC 的侧面积为2rl r π=;圆柱OM 的底面半径为2r ,高为h ,又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM 的侧面积之比为2210:10:1r r ππ=.故选:A . 【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.3.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .32⎣D .62⎣ 【答案】D 【解析】 【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可.【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-.所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r ,所以62AP ≤≤u u ur 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.4.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.5.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.6.《九章算术》是中国古代的数学瑰宝,其第五卷商功中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”翻译成现代汉语就是:今有三面皆为等腰梯形,其他两侧面为直角三角形的五面体的隧道,前端下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺(注:一丈=十尺).则该五面体的体积为( )A .66立方尺B .78立方尺C .84立方尺D .92立方尺【答案】C 【解析】 【分析】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,ADE BGH B CGHF V V V --=+,计算得到答案.【详解】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,故多面体的体积11()7332ADE BGH B CGHF V V V S AB CG HF --=+=⋅+⨯+⨯⨯直截面111736(42)7384232=⨯⨯⨯+⨯⨯⨯⨯=, 故选:C .【点睛】本题考查了几何体体积的计算,意在考查学生的计算能力和空间想象能力.7.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .53【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面.因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以126sin 5APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠= 故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.8.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.9.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.10.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C 【解析】 【分析】由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离. 【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为()22461101++=()2241661++=()2246165++=(2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为()22226213++=()22262217++=()22262217++=(3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=()2224335++=()2223453++=综上所述,沿着长方体的表面从A 点到B 41. 故选:C . 【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.11.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643π B .8316ππ+C .28πD .8216ππ+【答案】B 【解析】 【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l πππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.12.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件.【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B.【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.13.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.14.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )A .m l ⊥,m β⊂,l α⊥B .m l ⊥,l αβ=I ,m α⊂C .//m l ,m α⊥,l β⊥D .l α⊥,//m l ,//m β【答案】D【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.15.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.16.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶2【答案】C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C .【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.17.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+C .12π+D .1233π+ 【答案】B【解析】【分析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可.【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体,如图所示; 则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+. 故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.18.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( )A .2παββγ+<,>B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,< 【答案】C【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】 由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ, 由最小角定理得αβ>,排除A 和B ;由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,∴tan tan AB BNA ANγ=∠=,而tan AB BVA AV ∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠,∴2MVA πβ+∠=, ∵tan AM MVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题. 19.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36πB .16πC .12πD .163π 【答案】B【解析】【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.【详解】由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-==g ,解得22AB = 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点, 11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.20.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B AD C --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC .196D 287 【答案】D【解析】分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形, 又正弦定理可得,03223sin 60r ==3BE = 设球的半径为R ,且4=AD , 在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=,所以7R =,所以球的体积为3344287(7)33V R ππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.。
高考数学压轴专题新备战高考《空间向量与立体几何》专项训练及答案
数学《空间向量与立体几何》试卷含答案(1)一、选择题1.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C【解析】【分析】 根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小.【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SO OMγ= ,如下图(3)所示:因为,,SN SO OE OM ≥≥所以tan tan tan αγβ≥≥,而,,αβγ均为锐角,所以,αγβ≥≥故选:C.【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B .【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B【解析】【分析】 先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ PC ,同理1//AP QC ,所以四边形1APC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B PC =,即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以16sin 5APC ∠= 所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠=故选:B【点睛】 本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.4.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β【答案】D【解析】【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.5.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3πC .4πD .6π 【答案】C【解析】【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.【详解】设AE BF a ==,则()()23119333288B EBF a aV a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=. 方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r , 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r , 所以异面直线A F '与AC 所成的角为4π. 故选:C【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.6.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( )A .若//a α,//b α,则//a bB .若a α⊥,//a b ,则b α⊥C .若a α⊥,a b ⊥r r ,则//b αD .若//a α,a b ⊥r r,则b α⊥ 【答案】B【解析】【分析】 利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解.【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确;若a α⊥,a b ⊥r r,则//b α或b α⊂,故C 错误; 若//a α,a b ⊥r r ,则//b α,或b α⊂,或b 与α相交,故D 错误.故选:B .【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.7.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B 6C .34D 3 【答案】B【解析】【分析】 设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v ,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v ,即可得所求角的余弦值.【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v 1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v 又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u v u u u v u u u u v u u u v u u u u v 即异面直线1AB 与1BC 本题正确选项:B【点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.8.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥;②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β.其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④ 【答案】A【解析】【分析】逐一分析命题①②③④的正误,可得出合适的选项.【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确;对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.9.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( )A.13B.33C.223D.63【答案】C【解析】【分析】因为AB,BC,BD两两垂直,以BA为X轴,以BD为Y轴,以BC为Z轴建立空间直角坐标系,求出向量EFu u u r与平面ACD的法向量nr,再根据cos,||||EF nEF nEF n⋅〈〉=u u u r ru u u r ru u u r r,即可得出答案.【详解】因为在四面体ABCD中,AB,BC,BD两两垂直,以BA为X轴,以BD为Y轴,以BC为Z轴建立空间直角坐标系,又因为4AB BC BD===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C,又因为E、F分别为棱BC、AD的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF=-u u u r,(4,4,0)AD=-u u u r,(4,0,4)AC=-u u u r.设平面ACD的法向量为(,,)n x y z=r,则n ADn AC⎧⋅=⎨⋅=⎩u u u vvu u u vv令1,x=则1y z==;所以(1,1,1)n=r1cos,3||||332EF nEF nEF n⋅〈〉===⨯u u u r ru u u r ru u u r r设直线EF与平面ACD所成角为θ,则sinθ=cos,EF n〈〉u u u r r所以222cos1sinθθ=-=故选:C【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.10.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.11.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .22B 25C 26D 26 【答案】B【解析】【分析】连接EF ,可证平行四边形EFGH 为截面,由题意可找到1A M 与平面1111D C B A 所成的角,进而得到sinα的最大值.【详解】连接EF ,因为EF//面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH//BC 交CD 于点G,交AB 于H 点,则GH//EF,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH-FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N ∠=α,因为sinα=1MNA M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M AH =25, 故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题.12.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .441斛B .431斛C .426斛D .412斛【答案】A【解析】【分析】 由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积1171278127142V =⨯⨯⨯+⨯⨯=,∴粮仓可以储存的粟米7144411.62=≈斛.故选:A .13.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,>B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,< 【答案】C【解析】【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】 由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ, 由最小角定理得αβ>,排除A 和B ;由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,∴tan tan AB BNA ANγ=∠=,而tan AB BVA AV ∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠,∴2MVA πβ+∠=, ∵tan AM MVA AV ∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.14.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4πC .512πD .2π 【答案】C【解析】【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x ∠=≤≤+-,即可求出33cos 123QPM ∠∈⎣⎦,,进而求出结果. 【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-,在正四面体A BCD -中,易知PQ MQ =,所以在等腰三角形PMQ 中,()2cos 0442QPM x x x ∠=≤≤+-, 所以33cos QPM ⎡⎤∠∈⎢⎥⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C.【点睛】 本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.15.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C【解析】【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为=== (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为=== (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为===综上所述,沿着长方体的表面从A 点到B .故选:C .【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.16.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为1,此三棱柱的高为A .323πB .163πC .83πD .643π 【答案】A【解析】【分析】求得该直三棱柱的底面外接圆直径为22r ==,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.【详解】由题意可得该直三棱柱的底面外接圆直径为221r r ==⇒=,根据球的性质,可得外接球的直径为24R ===,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B AD C --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC .6D .3π【答案】D【解析】分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形, 又正弦定理可得,03223sin 60r ==,即23BE =, 设球的半径为R ,且4=AD , 在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=,所以7R =,所以球的体积为3344287(7)33V R πππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.18.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )A 6B 5C .2D .1【答案】A【解析】 由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =+=,2BE AB AE =+=,222DE AD AE =+= ∴225CE BE BC =+=,225PB BE PE =+=,223PD PE DE =+= ∴226PC CE PE =+=∴最长棱为PC故选A.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C【解析】【分析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《空间向量与立体几何》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为
A .252
B .216
C .72
D .42
2.(汇编·全国Ⅰ)设a 、b 、c 是单位向量,有a ·b =0,则(a -c )·(b -c )的最小值为( )
A .-2 B.2-2
C .-1
D .1- 2
解析:解法一:设a =(1,0),b =(0,1),c =(cos θ,sin θ),则
(a -c )·(b -c )=(1-cos θ,-sin θ)·(-cos θ,1-sin θ)=1-sin θ-cos θ=1-2
sin ⎝⎛⎭
⎫θ+π4 因此当sin ⎝⎛⎭
⎫θ+π4=1时,(a -c )·(b -c ) 取到最小值1- 2. 解法二:(a -c )·(b -c )=a ·b -(a +b )·c +c 2=1-(a +b )· c ≥1-|a +b ||c |=1-(a +b 2) =1- 2.。