确定隶属函数的几种主要方法21190
第4章_隶属函数的确定方法

第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
隶属函数及其确定方法

美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。
指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)∈[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。
当x在U中变动时,A(x)就是一个函数,称为A的隶属函数。
隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。
用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。
隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。
隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。
隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。
对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
下面介绍几种常用的方法。
(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。
对于不同的试验者,清晰集合A3可以有不同的边界,但它们都对应于同一个模糊集A。
模糊统计法的计算步骤是:在每次统计中, v o是固定的,A3的值是可变的,作n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率= v0∈A 的次数/ 试验总次数n随着n的增大,隶属频率也会趋向稳定,这个稳定值就是vo对A 的隶属度值。
确定隶属函数的几种主要方法

一、确定隶属函数的几种主要方法
1.F统计方法 确定“青年人”的隶属函数.
以年龄为论域 U , A是“青年人”在 U上的F集. 选取u0 27岁, 用F统计实验确定u0对A的隶属度. 选择若干(n)合适人选,请他们写出各自认为 “青年人”最适宜、最恰当的年限,即将模糊概念 明确化。
隶属频率
m/n
0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78
m A(27) 0.78 n 将论域U分组,每组以中值为代表,分别计算各组
隶属频率.(见表2 2)
表2-2 分组计算隶属频率(实验次数129)
分组
频数 隶属频率
1
33.5~34.5 26 0.202
22.5~23.5 129
1
34.5~35.4 26 0.202
23.5~24.5 129
1
35.5~36.5 1 0.008
24.5~25.5 128 0.992
连续描出图形,可得到“青年人”隶属函数曲线。
1
0.8
0.6
0.4
0.2
0 15 20 25 30 35
设进行了n次试验,第k次试验的映射为ek .
令
aik
(u)
1 0
ek (u) Ai ek (u) Ai
aik (u)为元素u在第k次试验划归Ai的次数
u对Ai的隶属频率
Ai
(u)
1 n
n
aik
(u)
k 1
m
Ai
i 1
(u)
m1 i 1n
n
aik
(u)
第七讲 隶属函数的确定方法

中间型隶属函数
1.矩形 2.尖型 3.正态型 4.柯西型 5.梯形
µA1 ( x) =
ɶ
1, a − b < x ≤ a + b 0, 其他 exp[ k (x − a)] , x ≤ a (k > 0) exp[ −k ( x − a)] , x > a
−1
µA2 ( x) =
参数法是指利用已知形状的隶属函数作为样板, 通过确定函数参数的方式来给出隶属函数的方 法。 常用隶属函数
偏小型 偏大型 中间型
偏小型隶属函数
x≤a 1, µ A ( x) = ɶ f ( x), x > a
1.降半矩阵型 2.降半伽马型 3.降半正态型 4.降半柯西型 5.降梯形 6.降岭形 7.k次抛物线
隶属函数的确定方法
模糊统计法 参数法
模糊统计法
通过模糊统计实验来确定隶属函数的方法 四要素
① 论域X ② 试验所要处理的论域X的固定元素x0 ③ 论域X的可变动的子集A*,它作为模糊集 A 的有可塑性 ɶ 边界的反映,可由它得到每次试验中x0是否符合模糊集A ɶ 所刻划的模糊概念的一个判决 ④ 条件集C,它限制着A*的变化
ɶ ɶ
µA3 ( x) = exp −k ( x − a)2 , (k > 0) µA4 ( x) = 1+ α ( x − a)β (α > 0, β是非负偶数)
(a2 + x − a) /(a2 − a1), a − a2 < x ≤ a − a1 1, a − a1 < x ≤ a + a1 µA5 ( x) = ɶ (a2 − x + a) /(a2 − a1), a + a1 < x ≤ a + a2 0, 其他 0.5 + 0.5sin [π /(b − a)( x + (b + a) / 2)] , −b < x ≤ −a 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b µA6 ( x) = ɶ −a < x ≤ a 1, 0, 其他
确定隶属函数的方法

7
其中mi是第i位专家的估计值,并请每个人标出各自对
所做估计值的信任度,记为 e1,e2, ,en, 这里ei表示第i
位专家对自己的估计的把握程度,并且规定 ei [0,1],第 有绝对把握时, ei=1;毫无把握时,取ei=0; 其
它情形,取 0 ei 1.
(6)计算
m
1 M
n
mi ,
iM
其中 M {iei;i1 ,2,...,n },
③中间型 A ( x ) 1, a x b
1
e
(
x
b
)
2
,x
b
a
编辑ppt
15
其它常见模糊分布还有 (3) 半梯形分布与梯形分布;
m21,m22, ,m2n
(4)重复2、3步,直至离差值小于或等于预先
给定的标准 0. 设重复k次后,有 d k , 这里 d k 为重复k次后的离差。
(5)将第k次得到的对
A (u 0 )的平均估计值
m
k
和d再交k给各位专家,请他们做最后的“判断”,给出估计
值
m1,m2, ,mn
编辑ppt
对于 m11,m12, ,m1n计算平均值 m 1 和离差 d 1 :
m1
1 n
n i 1
m1i ,
d1
1 n
n i1
m1i
m1
2
编辑ppt
6
(3)不记名将全部数据 m 11,m 12, ,m 1n,m 1,d 1送交 每位专家,同时附上进一步的补充资料,请每位
专家在阅读和思考之后,给出新的估计值:
可暂时使用m , 但要特别注意信息反馈,不断通过
“学习过程”,完 A(u0)m
(仅供参考)隶属函数的确定方法[1]
![(仅供参考)隶属函数的确定方法[1]](https://img.taocdn.com/s3/m/4eb2959b852458fb760b563e.png)
第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
确定隶属函数的几种主要方法

区别: 区别:
若把概率统计比喻为“变动的点” 若把概率统计比喻为“变动的点”是否 落在“不动的圈” 落在“不动的圈”内, 则把模糊统计比喻为“变动的圈” 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点” 盖住“不动的点”.
二相F统计 二相 统计: 设有二相集 P2 = { A, A } 统计
x
−∞
Pη ( x )dx
的概率密度, 其中Pξ ( x )和Pη ( x )分别是随机变量 ξ和η的概率密度,即
A2 ( x ) = 1 − A1 ( x ) − A3 ( x )
按概率方法计算,得 按概率方法计算,
x − a1 A1 ( x ) = 1 − Φ σ1 x − a2 A3 ( x ) = Φ σ2
A3 ( x )
0
a1
a2
x
数对(ξ ,η )确定映射
e(ξ ,η ) :
即
U → { A1 , A2 , A3 }
x≤ξ A1 ( x ) e(ξ ,η )( x ) = A2 ( x ) ξ < x ≤ η A ( x) x >η 3
概率P{ x ≤ ξ }是随机变量 ξ落在区间[ x , b )的可能大小.
次实验中覆盖27岁的年龄区间的次数为 若n次实验中覆盖 岁的年龄区间的次数为 , 次实验中覆盖 岁的年龄区间的次数为m, 则称m/n为27岁对于(青年人)的隶属频率。 为 岁对于 青年人)的隶属频率。 岁对于( 则称
岁对( 表2-1 27岁对(青年人)的隶属频率 岁对 青年人)
实验次数n 实验次数 隶属次数m 隶属次数 隶属频率 m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78 10 20 30 40 6 14 23 31 50 39 60 47 70 53 80 62 90 100 110 68 76 85 120 130 95 101
模糊数学教程第6章确定隶属函数的方法

主观经验法主要依赖于专家的专业知识和经验,通过专家对模糊概念的深入理 解和主观判断,来确定隶属函数的形状、参数和阈值等。这种方法简单易行, 但受限于专家知识和经验的局限性。
统计学习法
总结词
基于数据样本和统计学习理论来确定隶属函数的方法。
详细描述
统计学习法利用已知数据样本,通过统计学习理论和方法,如回归分析、决策树、支持向量机等,来拟合和优化 隶属函数。这种方法客观、科学,但需要足够的数据样本和计算资源。
VS
详细描述
连续性是指隶属函数在定义域内的任何一 点都存在明确的隶属度值,没有跳跃或中 断。连续的隶属函数能够更好地描述模糊 现象,因为模糊现象本身也是连续变化的 。
单调性
总结词
隶属函数应该是单调的,以反映模糊集合的 单调性质。
详细描述
单调性是指随着输入值的增大或减小,隶属 度值也相应增大或减小。单调递增的隶属函 数表示随着输入值的增加,隶属度也逐渐增 加;单调递减的隶属函数则表示随着输入值 的增加,隶属度逐渐减小。
经济效益评价
在经济效益评价中,隶属函数可以用于将各 评价指标的量纲统一,通过计算隶属度来评 价项目的经济效益。
在模糊聚类分析中的应用
模糊聚类算法
隶属函数在模糊聚类算法中起到关键作用,通过计算样本点对各个聚类的隶属度,实现样本点的软分 类。
聚类效果的评估
在模糊聚类分析中,隶属函数可以用于评估聚类效果,通过计算样本点对各个聚类的隶属度分布情况 ,判断聚类的质量和稳定性。
模糊数学教程第6章确定隶属函数 的方法
目 录
• 引言 • 确定隶属函数的方法 • 隶属函数的特性 • 隶属函数的优化 • 隶属函数的应用 • 总结与展望
01 引言
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Detailed Reading
别:
Unit 6 The Pace of Life After Reading Supplementary Reading
• 若把概率统计比喻为“变动的点”是否
落在“不动的圈”内,
• 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点”.
Unit 6 The Pace of Life
以年龄为论域 U , A是“青年人”在 U上的F集. 选取u0 27岁, 用F统计实验确定u0对A的隶属度.
选择若干(n)合适人选,请他们写出各自认为 “青年人”最适宜、最恰当的年限,即将模糊概念 明确化。
Unit 6 The Pace of Life
Before若Reandin次g 实G验lob中al R覆ead盖ing 27D岁eta的iled年Rea龄ding区间Af的ter R次ead数ing为mSu,pplementary Reading
0 xa
x b
a a
k
axb 1
A( x) 1 b x c
d d
x c
k
cxd 0a b
cd
x
0
dx
(3)抛物型分布
Before Reading Global Reading
①偏小型
Detailed Reading
1
A(
x
)
b b
x a
k
0
②偏大型
xa a xb
b x
①偏小型
1 xa
1
A( x)
b b
x a
0
a xb b x
0
ab
x
②偏大型
0
A(
x)
x b
a a
xa a xb
1
1 b x
0 ab
x
Before Reading Global Reading
③中间型
Detailed Reading
Unit 6 The Pace of Life After Reading Supplementary Reading
分组
频数 隶属频率
分组
频数 隶属频率
13.5~14.5
2
0.016 25.5~26.5 103 0.798
14.5~15.5
27 0.210 26.5~27.5 101 0.783
15.5~16.5
51 0.395 27.5~28.5 99 0.767
16.5~17.5
67 0.519 28.5~29.5 80 0.620
22.5~23.5
129
1
34.5~35.4 26 0.202
23.5~24.5
129
1
35.5~36.5 1
0.008
24.5~25.5
128 0.992
Unit 6 The Pace of Life
连续描出图形,可得到“青年人”隶属函数曲线。
Before Reading Global Reading Detailed Reading After Reading Supplementary Reading
Unit 6 The Pace of Life
设进行了n次试验, 第k次试验的映射为e . Before Reading Global Reading Detailed Reading After Reading Supplemenktary Reading
令
aik
(u)
1 0
ek (u) Ai ek (u) Ai
aik (u)为元素u在第k次试验划归Ai的次数
u对Ai的隶属频率
Ai
(u)
1 n
n
aik
(u)
k 1
m
Ai
i 1
(u)
m1 i 1n
n
aik
(u)
k 1
1 n
m
n
aik
i 1k 1
(u)
1 n
nm
aik
k 1i 1
(u)
1 n
n
1
i 1
1 n
•
n
1
2.三分法 Before Reading Global Reading
e( ,) : U { A1, A2, A3}
即
e(
,
)(
x)
A1( A2 (
x) x)
x x
A3( x) x
概率P{ x }是随机变量落在区间[ x,b)的可能大小.
若x增大,则[ x,b)变小,从而落在区间 [ x,b)的可能性
也变小. 概率P{ x }的这个特性与矮个子F集相同 .
0
x
a
A(
x
)
b
1
a
d x d c
0
xa a xb b xc c xd dx
1 0a b c d x
③中间型
Before Reading Global Reading
Detailed Reading
Unit 6 The Pace of Life After Reading Supplementary Reading
: 矮个子与中等个子的分界点
:中等个子与高个子的分界点
矮个子,中等个子和高个子的区间是随机区间,
从而和是随机变量.它们服从正态分布.
Before Reading
Unit 6 The Pace of Life
~ N (a , ), ~ N (a , ) Global Reading Deta2iled Reading
11
After Reading2 Supplementary Reading 22
A1( x)
A2( x)
A3( x)
0
a1
a2
x
数对( , )确定映射 Before Reading Global Reading Detailed Reading
Unit 6 The Pace of Life After Reading Supplementary Reading
实数R上F集的隶属函数称为F分布.
列出典型F分布, 根据问题性质选择适当分布.
(1)矩形分布或半矩形分布
1
①偏小型
A(
x)
1 0
xa xa
0a
x
②偏大型 Before Reading Global Reading Detailed Reading
A(
x)
0 1
xa xa
Unit 6 The Pace of Life
0
A(
x)
x b
a a
k
1
xa a xb b x
Unit 6 The Pace of Life After Reading Supplementary Reading
1
0 ab x
1
0 ab
x
Before Re(adin4g )正Glo态bal分Rea布ding ①偏小型
1
A(
x)
e
m A(27) 0.78 n 将论域U分组,每组以中值为代表,分别计算各组
隶属频率.(见表2 2)
Unit 6 The Pace of Life
Before Reading 表2Gl-o2bal分Rea组din计g 算D隶et属aile频d R率ead(ing实验A次fter数Re1a2di9ng) Supplementary Reading
所以有
A1( x) P{ x } x P ( x)dx
类似地
Before Reading Global Reading
Detailed Reading
Unit 6 The Pace of Life After Reading Supplementary Reading
A3( x) P{ x}
Unit 6 The Pace of Life
§6 确定隶属函数的方法综述 Before Reading Global Reading Detailed Reading After Reading Supplementary Reading
一、确定隶属函数的几种主要方法
1.F统计方法
确定“青年人”的隶属函数.
1
0.8
0.6
0.4
0.2
0 15 20 25 30 35
岁
上述F统计试验说明了隶属程度的客观规律.
中年人
Before ReadFin统g 计G与loba概l Re率adi统ng 计D区eta别iled:Reading
Unit 6 The Pace of Life After Reading Supplementary Reading
u U , A(u) Ac (u) 1
多相F统计: 设有多相集Pm { A1, A2 , , Am }
Ai F (U ) i 1,2 m.每次试验都确定一个映射 e : U Pm
多项F统计的结果,可确定各相在U上的隶属函数
它们满足
u U , A1(u) A2(u) Am (u) 1
x
P ( x)dx
其中P ( x)和P ( x)分别是随机变量和的概率密度,即
A2( x) 1 A1( x) A3( x)
按概率方法计算,得
A1
(
x)
1
x a1
1
A3
(
x
)
x
a2
2
从而 Before Reading Global Reading
Detailed Reading
Unit 6 The Pace of Life After Reading Supplementary Reading